
AdapCC: Making Collective Communication in
Distributed Machine Learning Adaptive

Xiaoyang Zhao, Zhe Zhang, Chuan Wu
Department of Computer Science, The University of Hong Kong, Email: {xyzhao, zzhang2, cwu}@cs.hku.hk

Abstract—As deep learning (DL) models continue to grow in
size, there is a pressing need for distributed model learning
using a large number of devices (e.g., GPUs) and servers.
Collective communication among devices/servers (for gradient
synchronization, intermediate data exchange, etc.) introduces sig-
nificant overheads, rendering major performance bottlenecks in
distributed learning. A number of communication libraries, such
as NCCL, Gloo and MPI, have been developed to optimize col-
lective communication. Predefined communication strategies (e.g.,
ring or tree) are largely adopted, which may not be efficient or
adaptive enough for inter-machine communication, especially in
cloud-based scenarios where instance configurations and network
performance can vary substantially. We propose AdapCC, a novel
communication library that dynamically adapts to resource het-
erogeneity and network variability for optimized communication
and training performance. AdapCC generates communication
strategies based on run-time profiling, mitigates resource waste
in waiting for computation stragglers, and executes efficient data
transfers among DL workers. Experimental results under vari-
ous settings demonstrate 2× communication speed-up and 31%
training throughput improvement with AdapCC, as compared to
NCCL and other representative communication backends.

Index Terms—distributed training, collective communication

I. INTRODUCTION

With the growth of DL model sizes [1], parallel training
of a deep neural network (DNN) using multiple GPUs on
multiple servers has become the norm. Collective communi-
cation among the devices is required in distributed training
for various purposes, including gradient synchronization with
AllReduce [2], token dispatching with AlltoAll (as in the
MOE framework) [3] and parameter sharding with AllGather
in tensor parallelism [4]. Cross-server communication incurs
significant overhead in distributed training, occupying up to
50% - 90% of the total training time [5] and preventing linear
scaling of training throughput with computation capacity.

A number of libraries have been developed for acceler-
ating collective communication, e.g., NCCL [2], Gloo [6]
and MPI [7], which use rings or trees as communication
graphs. Several hierarchical methods are also exploited [8]–
[12]. These libraries are mostly optimized for a homogeneous
environment (same type of devices, stable and homogeneous
interconnects). They may not perform efficiently in a less
homogeneous setting, e.g., in a cluster where machines of
different configurations can be used [13]. In those cases, more
adaptive communication strategies are needed, to best cater
to the heterogeneity and dynamics, minimize idle time of
resources, and maximize distributed training speed.

This work was supported in part by grants from Hong Kong RGC under
the contracts HKU 17208920,17204423 and C7004-22G(CRF).

There have been efforts on generating better communica-
tion graphs among devices. Blink [14] detects GPU place-
ments in servers and constructs spanning trees for intra-server
communication. TACCL [15] formulates an integer problem
to decide the routing of each data chunk before rendering
the corresponding NCCL kernel, based on communication
sketches provided by users. PLink [16] searches for a cluster-
ing of servers for a two-level hierarchical reduction strategy.
SCCL [17] solves an integer program to generate a pareto-
optimal chunk fusion solution, achieving latency-bandwidth
tradeoffs of a collective. These designs are all built on top of
existing communication libraries, e.g., NCCL or Gloo, which
adopt static communication graphs, and may not adapt well
to workload interference and link variation in a shared cluster,
over the long training period of large models [18].

We enhance the adaptivity of the communication system
from three aspects. First, communication graphs that best
utilize heterogeneous links or devices should be identified
for each collective operation, enabling efficient training using
diverse resources. Second, communication strategies should be
adaptive, by efficiently reconstructing communication graphs,
deciding chunk size and the need for partial aggregation based
on runtime system performance. Third, the communication
system should work closely with the DL framework (e.g.,
PyTorch [19]) and be aware of the training status (e.g.,
computation progress at the workers), to allow efficient com-
munication schedules accordingly.

We design AdapCC (Adaptive Collective Communication
Library), a new communication system that provides efficient
collective primitives with optimized adaptive communication
strategies to accelerate distributed training. AdapCC is open-
sourced at https://github.com/joeyyoung/adapcc. Our contribu-
tions are summarized as follows:
▷ AdapCC integrates a detection module (for inferring

GPU placements) and a profiling module (for profiling link
properties). It coordinates workers to enable efficient profiling
on the fly during training, capturing dynamic network changes.
▷ AdapCC automatically generates optimized communica-

tion strategies for different collective primitives based on the
profiling results. It solves a network optimization problem to
identify communication graphs, chunk size, and aggregation
control. AdapCC reconstructs the communication graph ac-
cordingly during training, without any need of checkpointing,
terminating and restarting the training job.
▷ AdapCC identifies stragglers in each training iteration

and decides whether to wait or proceed with communication

https://github.com/joeyyoung/adapcc

among ready workers based on an online algorithm. In the
latter case, GPUs of non-ready workers can be used as relays
for communication expedition. We also enhance AdapCC with
efficient fault recovery capabilities during training.

▷ AdapCC generates CUDA code on each worker for multi-
stream parallelism of each collective and manages GPU buffers
efficiently. Extensive experiments show up to 2× communica-
tion speed-up and 31% training throughput improvement when
training various representative DNN models in comprehensive
settings, as compared to NCCL.

II. BACKGROUND AND MOTIVATION
A. Resource Heterogeneity

The rapid development of hardware has led to heterogeneity
of server configuration and GPU interconnection in a cluster.
Link throughput differs across different generations of the
same type of links: PCIe throughput has increased from 250
MB/s to 2 GB/s, and NVLink4.0 achieves 900GB/s on H100,
almost ten times faster than NVLink1.0 on M40 [20]. NCCL
typically assumes a strongly homogeneous scenario, where
empirical bandwidth values are assigned to each type of link
when constructing the communication graph. It fails to capture
the complexities of the actual connections.

Non-regular GPU interconnect topologies often lead to inef-
ficient utilization of inter-GPU links. For instance, when GPUs
without direct NVLinks are allocated to a training job, e.g., due
to unavoidable resource fragmentation in an IaaS cloud [21],
NCCL is unable to form an NVLink ring and falls back to a
less efficient PCIe ring instead. Blink [14] constructs topology-
aware spanning trees to resolve the problem. However, it
considers intra-server communication only and neglects the
potential heterogeneity of network links and GPU devices
when training with multiple servers. In practice, servers could
be equipped with NICs that have varying bandwidths, ranging
from 1 Gbps to 200 Gbps, and use different network stacks,
such as RDMA or TCP. The adoption of heterogeneous GPUs
among servers is also gaining increasing attention, due to the
short release cycle of new GPU architectures [13] [22].

Issue 1: Constructing communication graphs that best
utilize heterogeneous links/devices for collective opera-
tions can enable efficient training over diverse resources,
which has not been adequately addressed in existing
DL communication systems. AdapCC generates optimized
communication strategies that are adaptive to various allocated
resources and link properties. Meanwhile, heterogeneity is not
mandatory to gain benefits from AdapCC.

B. Volatile Network Status
Network performance varies in a shared cluster. Modern

data centers typically adopt a hierarchical network architecture
where server-to-server bandwidth is non-uniform due to cross-
traffic [16]. In Fig. 1, we measure bandwidth and network
latency between two instances (reserved with 16vCPU and
15Gbps throughput) on a public cloud during a 6-hour pe-
riod. We observe that the performance varies substantially,
degrading from the peak as much as 34% and 17%, in terms
of bandwidth and latency, respectively. In scenarios where

Time(hour) Time(hour)

Ba
nd

w
id

th
 (G

bp
s)

La
te

nc
y

(u
s)

Figure 1: 6-hour profiling using iperf3 and netperf.

B

A

C D

A

B

C D

Ingress port
congested

Higher
throughputadapt

A

B C

D E

A

B E

D C

adapt

Delay
occurs

Lower
lantecy

(a) (b)

A

B

C D

A

B E

D C

Figure 2: Adaptively construct communication graph.

co-located workloads within the same server contend for
bandwidth [20], the achieved network performance could be
more unpredictable.

When determining the communication strategies (i.e., com-
munication graph, chunk size), Blink [14] uses empirical
values for inter-device link bandwidth (similar to NCCL) and
assumes it stable during training. TACCL [15] requires users to
provide a topology sketch including detailed information about
actual link performance between GPUs. However, the sketch
is only exploited in the initialization stage and the measured
values are assumed stable afterwards. Under practical volatile
link status, these communication systems are not able to
automatically perceive the network dynamics and the training
performance may not be ideal (evaluated in Sec. VI-D).
Incorporating a new strategy into existing communication
systems by periodically re-running them necessitates the in-
tervention of developers (e.g., providing new sketches as in
TACCL), which is not user-friendly. Moreover, this process
requires restarting the training process, involving tasks such
as checkpointing gradients, rebuilding the process group, and
restoring the model, resulting in a considerable overhead as
evaluated in Sec. VI-E.

Issue 2: communication strategies should be adaptive to
the changing network status during training, by efficiently
reconstructing the communication graphs and choosing
the chunk sizes without relaunching the model. AdapCC
employs profiling to track network status on the fly and
reconstructs the communication graph accordingly. In the
example depicted in Fig. 2(a), workers communicate with a
Reduce primitive; when the ingress bandwidth of server B
decreases (e.g., due to cross traffic), AdapCC can adjust the
communication topology accordingly for better throughput. In
Fig. 2(b), when data transmission from server E is delayed
(e.g., due to interference caused by co-located workloads),
the topology can be dynamically adjusted to enable partial
gradients aggregation of other servers first.
C. Computation Stragglers

A collective primitive is usually triggered when all workers
have completed the computation of the respective tensors [12].
However, completion of tensor computation at the workers

BP1 BP2 FP2

BP1 BP2 FP2

worker 1

worker 2 Communication
Kernel

wait time

allreduce time

Time

(a) timeline example (b) measured time

Communication Kernel C
DF

Wait Time Ratio(%)

Figure 3: (a) BPi and FPi denote the backward and forward pass
of computation operator i, respectively. (b) Cumulative distribution
function (CDF) of the wait time ratio collected in GPT-2 training.

may not happen strictly at the same time, which causes waiting
time in the communication kernel as shown in Fig. 3(a).

To quantify this, we train GPT-2 model in both heteroge-
neous and homogeneous settings, using a local batch size of
16. In heterogeneous case, we use two servers each with four
V100 GPUs and two servers each with four A100 GPUs; in
homogeneous case, we employ four servers each with four
A100 GPUs. Each server is configured with 100Gbps RDMA
network. In Fig. 3(b), we measure the time taken by the
fastest worker to wait for the slowest worker to be ready for
an AllReduce operation in each iteration. In heterogeneous
case, the wait time accounts for more than 23% of the actual
communication time (denoted as wait time ratio) in 50% of the
observed iterations; even in homogeneous case, the wait time
ratio is larger than 10% in 50% of the observed iterations.
This ratio could further increase with a larger batch size,
a greater number of training GPUs, or a higher degree of
heterogeneity in server configurations. We further observe that
in a production hybrid cluster, where online services are run on
the CPUs and offline training is run on the GPUs, the straggler
problem is more likely to occur due to workload interference.

Issue 3: The communication system should enable flex-
ible collective communication among selected subsets of
workers for reduced waiting time and improved training
throughput. With NCCL, only ranks within the pre-defined
nccl communicator context can participate in a collective [23],
and changing the workers involved requires terminating the
job and relaunching the process group. AdapCC aims to
enable participation of an arbitrary set of workers in collective
communication and dynamically determine the workers to
trigger communication, adaptive to real-time training status.
In addition, it exploits GPUs of non-ready workers as relays
for data transfer to maximize communication speed.

This adaptivity further enhances the fault tolerance capa-
bility in distributed training. In the event of worker failures,
NCCL experiences hang-ups and blocks the training process.
To recover training, it becomes necessary to checkpoint the
model and relaunch the training job. In contrast, AdapCC
allows for continued communication and efficient recovery of
training among the remaining workers.

III. DESIGN OVERVIEW

A DNN job runs across multiple servers or cloud instances.
Without loss of generality, we use instances in our presenta-
tion. Each instance contains multiple GPUs, and each worker

Instance Instance

ML Framework

Job

links

property

ML Framework monitor
Profiler

Infer
Detector

logical graph

Relay Workers

Strategy
Synthesizer

links
property

communication
strategy

Controller

CUDA
Executor

Communicator

Work
Result
Queue

Enqueue Tensors

Job

Profiler

Detector

Strategy
Synthesizerlogical graph CUDA

Executor

Work
Queue

Result
Queue

Controller Communicator
Infer

Monitor

communication

strategy

Enqueue Tensors

relay workers

Figure 4: AdapCC System Overview

(aka rank) runs on one GPU. AdapCC runs on each worker
and has two modules, as shown in Fig. 4. Controller detects
inter-worker connectivity, profiles link properties, monitors
computation delay of workers, and produces communication
strategies. Communicator executes respective communications
after retrieving tensors from the ML framework.
Detector infers inter-GPU connectivity on each instance by
coordinating GPUs on an instance to send bandwidth or
latency probes (Sec. IV-A). The information collected by
local rank0 on each instance about GPU interconnections and
NIC affinity is then negotiated among instances to construct a
logical topology that connects all GPUs in the job.
Profiler probes properties (e.g., latency, bandwidth) of inter-
GPU connections periodically given the detected logical graph
(Sec. IV-B). Profiled results are gathered by (world) rank0
and provided as input to the synthesizer. A coordinator on
rank0 collects the tensor ready times computed by workers
to select non-ready workers as relays and schedule partial
communication in each iteration (Sec. IV-C).
Synthesizer on rank0 incorporates an optimizer (Sec. IV-D)
to generate communication strategies for a respective primitive
that include: (i) parallel communication graphs, with the
transmission chunk size; (ii) whether partial tensor aggregation
should be performed on each GPU, balancing between band-
width contention and synchronization delay. The strategies will
be dispatched to other workers.
Queues store consecutive communication requests. In each
iteration, tensors are pushed into the Work Queue by the ML
framework and executed in order. Communicated tensors are
fetched from the Result Queue for continued computation.
Executor parses communication strategies from Controller,
together with the information of relay workers to generate
respective CUDA codes. It splits a tensor into multiple par-
titions and executes parallel communication with concurrent
GPU streams to maximize the throughput (Sec. V).

IV. CONTROL STRATEGY

We now present the Controller design.
A. Inferring Logical Topology

Detectors on workers are triggered during the initialization
stage of a training job or when a new worker joins the job (e.g.,
elastic scaling scenario). They first cooperatively decide the
topology connecting all GPUs within an instance, including:
(1) The CPU affinity of NICs in the instance, which is
determined by binding the host process of the local rank0
GPU to different NUMA nodes and doing a socket loopback
to each NIC. The smallest latency measured in each case tells
which NUMA node is nearest to the NIC card.

GPU 0 GPU 2

GPU 1 GPU 3
NIC

NIC

NIC

NIC GPU 4

GPU 5 GPU 7

GPU 6

0 1 2 3

Round 1

0 1 2 3

Round 2

0 1 2 3

Round 3

(a)

(b)
barrier barrier

Figure 5: (a) Logical topology: green line denotes NVLink, blue line
is network transmission, and the dotted line indicates PCIe transfer.
(b) Example of the second stage profiling, where four instances
perform three probing rounds in order.

(2) Whether two GPUs are under the same PCIe switch.
For each pair of GPUs on the same instance, we allow
one GPU to send 20MB of data to the CPU via 8 parallel
transmissions, while the other GPU sends 20MB to the CPU
simultaneously with bandwidth measured. Low bandwidth
indicates contention on the shared PCIe bus, implying locality.
(3) The PCIe locality of NICs. For each GPU pair (detected in
(2)), one GPU copies data to the CPU while the CPU conducts
a socket loopback to the affinity NIC (detected in (1)). The
lowest bandwidth achieved by the GPU copy indicates the
locality with NIC due to the competition of PCIe.

Once these tasks are completed on each instance, we con-
sider the instance-to-instance connectivity as a fully connected
graph, focusing on the instance-to-instance performance [24].

B. Profiling Link Properties

Profilers on workers conduct profiling based on constructed
logical topology (Fig. 5(a)). We use α-β cost model [15] to
quantify the property (latency and bandwidth) for each link
connecting a pair of local GPUs and each network connection
between two NICs. We do not profile PCIe links as the data
movement could be overlapped with network transmissions.
Here, α is the link latency, and β is the inverse of the link
bandwidth. Specifically, we target three types of interconnects:
(1) NVLink to connect local GPUs; (2) inter-server RDMA
connections; and (3) inter-server TCP connections.

The profiling is triggered at a frequency (e.g., every 500
iterations) that can be customized with our API. To ensure
efficient and interference-free profiling on the fly, all instances
perform intra-instance GPU-to-GPU profiling, and then move
on to inter-instance profiling for NIC-to-NIC links.

Between each GPU pair on an instance, we send a piece
of data (with size s) n times and measure the transmission
time n(α + β ∗ s). Then a group of data with size n ∗ s is
sent at once, and the transfer time is α + β ∗ n ∗ s. Several
measurements are performed under different values of n and
s, and then α and β for this link can be derived.

For inter-instance profiling, we use a multiple-round scheme
to prevent interference among different profiling flows, as in
Fig. 5(b). With N instances, there are N −1 profiling rounds,
each with a synchronization barrier. In round i, the profiler
on an instance n sends probes (similar to the GPU-to-GPU
profiling flows) to the instance (n + i)%N simultaneously.

worker0

send signals
when ready

worker1

worker2

worker3

✔

✔

✔

coordinator
1 1 1

1 1 1

1 1 1

3

3

3

1 1 1

join

3 3

3 3

3 3

4

4

4

1 4

444

444

444

4441

broadcast

✔

update locally

option 1:
waiting

Time
option 2: triggering

phase 1 communication

worker 0,1,2 ready
for communication

worker 3 delay
relay worker
becomes ready

asynchronously
relay data

response relay list

2

3

3

3

1

1

1

worker0

online decision making

worker1

worker2

worker3

✔

✔

✔

coordinator

1 1 1

1 1 1

1 1 1

3

3

3

1 1 1

join

3 3

3 3

3 3

4

4

4

1 4

444

444

444

4441

broadcast

✔

update locally

option 1:
waiting

Time
option 2: triggering

phase 1 communication

worker 0,1,2 ready
for communication

worker 3 delay
relay worker
becomes readyasynchronously

relay data

response relay list

2

3

4

3

3

3

1

1

1

5

1

send signals
when ready

online decision making

phase 2

2

1

4

4

3
5

Figure 6: The coordinator assigns non-ready worker 3 as a relay. The
example shows a collective communication involving tensors of value
1, resulting in an aggregated tensor of value 4 on each worker.

This consensus ensures the best flow parallelization, with only
one transmission in any ingress or egress port at a time.

Model training is blocked during the profiling to eliminate
interference. Profiled results are gathered in rank0 GPU and
fed to the synthesizer, which solves an optimization problem
to determine the communication strategies (Sec. IV-D). If
the resulting communication graph is unchanged, training
proceeds to the next iteration directly; otherwise, it waits
for the completion of graph reconstruction before proceeding.
Throughout the procedure, we do not need to checkpoint the
model and the training can resume immediately (the overhead
of graph reconstruction is evaluated in Fig. 19(c)).

C. Adaptive Relay Control
AdapCC achieves flexible communication among an arbi-

trary set of workers, adapting to variations in the computation
completion times across workers in each iteration.

In Fig. 6, a coordinator on the rank0 worker receives com-
munication requests from each worker after completing their
computation. It periodically (with a 5ms time cycle) makes
decisions between two options: (1) waiting for all workers
to be ready (i.e., complete the precedent computation) for
collective communication, or (2) triggering a partial commu-
nication for ready workers (referred to as phase 1). The partial
communication may not lead to the same model accuracy as
involving all workers in each collective. To maintain the same
model accuracy, after phase 1, the tensor data of workers that
become ready later is broadcast to others in phase 2 so that
each worker holds the complete tensors for aggregation.

To improve communication performance in option (2),
during phase 1, the coordinator assigns non-ready workers
as relays and shares the relay list with all workers. GPUs
managed by relay workers asynchronously participate in com-
munication as intermediaries, relaying tensor data from other
workers using dedicated backend threads (without aggregating
the worker itself’s tensor). This allows utilizing additional
links for communication among ready workers, with better
aggregated bandwidth. If relay workers become ready during
phase 1, i.e., when computed tensor data fills the GPU memory
buffer (buffer management is detailed in Sec. V-A), data
chunks with the same offset in the buffer join the ongoing
aggregation process. Then in phase 2, only partial data chunks
from relay workers that have not been aggregated need to be
broadcast for aggregation. These chunks are locally combined

with aggregated results from phase 1 (obtained from the relay
GPU’s result queue) to obtain the final tensor.

We address three challenges in our design. Firstly, whether
the coordinator should choose option (1) (wait) or (2) (proceed
with immediate communication) in each time cycle. This
decision is crucial as waiting, like in existing communica-
tion libraries, leads to time waste. However, allowing active
workers to communicate first brings overhead in phase 2 for
model update consistency. AdapCC employs an online ski-
rental algorithm to guide decision-making. Secondly, when
relay workers remain not ready, such as due to faults, training
recovery is needed. Lastly, behaviors of each GPU should be
defined for arbitrary relay control on a communication graph.

1–Waiting or Proceeding with Communication. In a ski-
rental problem [25], a person decides whether to rent skis
for an additional day or buy a pair of skis, with each option
having a different cost. Our objective is to minimize overall
communication time of each collective, where each time cycle
represents a decision-making day. Waiting for all workers to be
ready corresponds to renting, while proceeding with immediate
communication corresponds to buying. Waiting incurs a cost
of 1 in each time cycle, and there is a constant time cost
for completing collective communication when all workers
become ready. The time cost can be estimated by dividing the
total communicated data volume S by the aggregate bandwidth
B among workers [20]. For example, in AllReduce, S is equal
to 2(N − 1) times the tensor size of each worker, where N is
the number of participating workers; in AlltoAll, S is equal
to N times the tensor size; and in Broadcast, S is equal to the
tensor size. B is obtained by accumulating the profiled link
bandwidth in the communication graph. The buying cost is the
estimated time spent on phase 1 and phase 2 of option (2),
and this cost can vary over time due to changes in the number
of ready workers, which in turn affects the data volume S.

We employ the break-even algorithm, known as the best
deterministic method of the ski rental problem with a com-
petitive ratio of 2. Specifically, the coordinator waits at most
until the accumulated waiting cost exceeds the buying cost in a
time cycle. If all workers are ready during this waiting period,
they engage in communication together. Otherwise, phase 1
communication is initiated among the active workers, followed
by phase 2 communication. By monitoring the training status
and enabling relay GPUs, AdapCC enables adaptability and
outperforms naive waiting policies in existing libraries.

2–Fault Tolerance. NCCL may cause training to hang when
a faulty worker occurs, and the entire job is required to restart.
In our design, after a period of time Tfault has passed since
the completion of phase 1 communication, the coordinator
identifies the remaining non-ready workers as faulty workers.
The threshold Tfault is set as five times the duration since the
fastest worker became ready (PyTorch Elastic uses a keep-alive
signal with a duration of 15 seconds to identify any fault).
These faulty workers are excluded from the training group.
Each remaining worker proceeds with the model update of the
current iteration using the communicated tensor. Afterwards,

1 0
2

3

<1, 0, 0, 1>

<1, 0, 0, 1>

<0, 1, 1, 1>

<1, 1, 1, 0>

relay

(b) <isActive, hasRecv, hasKernel, hasSend>(a) unsupported relay control

1 0
2

3
unclear behavior

Figure 7: Illustration of the GPU behavior abstraction.

the coordinator notifies the data loader of remaining workers
for a redistribution of the training data, to ensure that the
global batch size remains consistent throughout the whole
training process. With this fault tolerance, AdapCC enables
continued training efficiently without interruption.
3–GPU Behavior Abstraction. Current communication li-
braries [2] [15] [17] [26] [27] lacks the flexibility to control
GPUs as relays. For example, when constructing the commu-
nication channels in NCCL, each rank only interacts with the
memory buffers of its previous and next ranks. The channel
information is initialized for the NCCL communicator and
cannot be adjusted without relaunching. A Reduce kernel is
thus pre-defined on each rank: chunks are received from the
previous rank, reduced with data in the current rank, and then
sent to the next rank. However, the introduction of a relay GPU
breaks the receive-reduce-send dependency. For example of a
4-GPU reduce graph in Fig. 7(a), where GPU1 acts as a relay
and does not contribute tensors in the aggregation. Since GPU0
only interacts with GPU1, it cannot decide whether to wait for
receiving tensors from GPU2 and GPU3. Also, if GPU2 is not
ready, GPU1 does not need to launch the aggregation kernel
but can directly relay traffic from GPU3 to GPU0.

To abstract the complex behavior of each GPU on a given
communication graph with arbitrary ready workers, we share
the complete communication graph structure generated by
the synthesizer with each rank and define a tuple with four
Boolean values, <isActive, hasRecv, hasKernel, hasSend>:

• isActive: it indicates whether the current GPU rank is active
or not. A GPU rank is active if the worker is ready for
communication (i.e., not a relay). Each rank holds the active
status of all ranks provided by the coordinator.

• hasRecv: it decides whether a GPU should wait for receiving
data from its direct predecessors. Each rank recursively
checks whether its predecessors have data to send, and the
flag is set as long as an active rank is found.

• hasKernel: it implies whether an aggregation kernel should
be launched to aggregate received data and local data. For
collectives such as AlltoAll and Broadcast, this flag is not
set. For Reduce, AllReduce or Reduce-Scatter collectives,
we always set the flag unless one of the following conditions
is met: (1) hasRecv is not set. The current rank only needs
to send its local data to its successor. (2) isActive is false and
there is only one active precedent. Hence, the rank acts as
a relay and aggregation is not needed since it only receives
data from one rank. (3) The synthesizer explicitly indicates
that aggregation will not be done on the rank, and data
received from different precedent ranks will be directly sent
to subsequent ranks without synchronization (Sec. IV-D).

• hasSend: it implies whether the rank should launch sending

events to its successor. The flag will not be set when
both isActive and hasRecv are false. For ranks without a
subsequent rank (e.g., root in a tree), hasSend is false.
Once the coordinator has decided the relay workers, the

behavior tuple of each GPU is decided. Fig. 7(b) gives the
behavior tuples of the GPUs when GPU1 plays the relay role.
Based on the behavior tuple, the communicator then generates
CUDA code, which determines actions such as waiting for
data from predecessors, launching the aggregation kernel, and
sending data to successors. It ensures that on a constructed
communication graph, arbitrary GPU relay control can be
applied without reconstructing the graph.

D. AdapCC Synthesizer
We next describe how the synthesizer produces communi-

cation strategies based on the logical graph G (Fig. 5) with
profiled link information. We denote GPU node set as Ggpu

and NIC node set as Gnic. The set of edges is denoted as E.
We formulate strategies for Reduce, Broadcast and AlltoAll,

which represent many-to-one, one-to-many and many-to-many
primitives, respectively. These optimizations can be readily
used for other primitives: for AllReduce, we generate strategies
for Reduce and execute Broadcast reversely; for AllGather, we
use a combination of one Broadcast on each GPU.

In a collective communication, each GPU g ∈ Ggpu has a
tensor of total size S to communicate, which is divided into M
partitions for parallel sub-collectives (M is a tunable system
parameter), as shown in Fig. 8(a). Each sub-collective m ∈ M
communicates one tensor partition of size Sm (

∑
m∈M Sm =

S) and has a different communication graph.
For Reduce and Broadcast, there is a root GPU g in each

sub-collective m, indicated by a binary variable rgm = 1 (rgm =
0 for other non-root GPUs), which aggregates gradients from
or broadcasts parameters/tokens to other GPUs. Consider the
tensor data sent out from a GPU g in sub-collective m as a
flow set F g

m. In Reduce, F g
m contains one flow from GPU

g to the root; in Broadcast, only the root’s flow set is non-
empty, including multiple flows sending aggregated parameters
to non-root GPUs; in AlltoAll, each GPU sends multiple flows
to all other GPUs. The source and destination GPUs of a flow
f are denoted by Srcf and Dstf , respectively. Fm is the set
of all flows in sub-collective m, i.e., Fm = {F g

m}g∈Ggpu
.

Routing Decision. The synthesizer generates routing paths for
each flow, indicated by binary variables xf

i,j with xf
i,j = 1

if flow f ∈ Fm traverses edge (i, j) ∈ E and xf
i,j = 0,

otherwise. The following constraints applied to each node
i ∈ G ensure that a flow starts from the source, ends
at the destination, and complies with flow conservation at
intermediate nodes:

∀f ∈ Fm :
∑

j:(i,j)∈E

xf
i,j −

∑
i:(j,i)∈E

xf
j,i =

1, i = Srcf
−1, i = Dstf
0, otherwise

(1)

Chunked Transmission. For each sub-collective m, tensor
data is further divided into chunks with size Cm (a decision
variable) for pipelined transmission. The transmission time of
each chunk in flow f on the edge (i, j) is computed as tfi,j =

0 2

1 3

0

1 3

2

(a) two sub-collectives in
Reduce with different graphs

(b) infer link load in a sub-collective

0 2

1 3

Reduce

0 2

1 3

Broadcast

0 2

1 3

AlltoAll

a=1

m

am,1

Aggregated
as one flow

grouped as
one flow

=1

Figure 8: In each sub-collective (with a dedicated graph), GPUs send
gradients, parameters or tokens to corresponding destinations.

αi,j + β̃i,jCm, where αi,j is the latency profiled on link (i, j)
and 1/β̃i,j is the available bandwidth competed by concurrent
flows (to be decided later in ‘Bandwidth Sharing’).

We use a binary variable am,g to decide aggregation on
node g ∈ Ggpu (am,g = 0 if g ∈ Gnic): when am,g = 1,
an aggregation kernel is launched on node g to synchronize
and aggregate local data chunks with received chunks from
precedent nodes; for primitives not requiring aggregation,
am,g = 0. Taking the Reduce graph in Fig. 8(b) as an example,
GPU1 needs to wait for the same chunks sent from GPU0 and
GPU3 before launching an aggregation kernel if the respective
am,g is 1; the aggregated gradients, whose size is only one-
third of the data volume when directly forwarding gradients
without aggregation, are then transmitted to GPU2.

We use hf
j to indicate the time when a chunk of flow f

is ready at node j ∈ G to be sent to the successor. When
aggregation is not done on node j for sub-collective m that
flow f belongs to (am,j = 0), we compute the time according
to the ready time of the chunk at j’s predecessor i and the
transfer time tfi,j on link (i, j); when am,j = 1, a chunk at
node j is sent to the successor only when the same chunks
from all other flows, which traverse node j have arrived:

∀m ∈ M, f ∈ Fm, j ∈ G, (i, j) ∈ E, xf
i,j = 1 :

hf
j =

hf
i + tfi,j , if am,j = 0

max
f̂ ,i:x

f̂
i,j=1

{hf̂
i + tf̂i,j}, if am,j = 1

(2)

The max indicates waiting for the slowest flow to arrive.
Bandwidth Sharing. The profiled bandwidth 1/β̃i,j of each
link (i, j) is equally shared by traversing flows. Nm

i,j denotes
the traffic load contributed by sub-collective m (Fig. 8(b)).
▷ For Reduce, when aggregation is done at node i (i.e., am,i =
1), only one flow sent out to the subsequent node j contributes
to the link load:

∀m ∈ M, (i, j) ∈ E : Nm
i,j = I

(
∃f ∈ Fm : xf

i,j = 1
)

Otherwise, traversing flows are sent to node j individually and
the load on edge (i, j) equals the sum of flows generated by
node i and flows routed from precedent edges:

∀m ∈ M, (i, j) ∈ E :

Nm
i,j = I

(
∃f ∈ Fm : xf

i,j = 1
)(
|F i

m|+
∑

(k,i)∈E

Nm
k,i

)
|F i

m| indicates the number of flows sent out from node i.
▷ For Broadcast, each flow sent out from the root carries a
replica of the same data, and flows traversing the same link
are grouped as one flow to contribute to the link load:

∀m ∈ M, (i, j) ∈ E : Nm
i,j = I

(
∃f ∈ Fm : xf

i,j = 1
)

▷ For AlltoAll, flows carry different parameters, and the link
load sums all traversing flows:

∀m ∈ M, (i, j) ∈ E : Nm
i,j =

∑
f∈Fm

xf
i,j

Considering bandwidth sharing among all sub-collectives,
the available bandwidth for each flow on link (i, j) ∈ E is:

1

β̃i,j

=
1

βi,j

∑
M Nm

i,j

(3)

Objective. We aim to derive the communication strategies
(routing paths of sub-collectives, chunk size and aggregation
control) that minimize the completion time of the collective
communication, i.e., when all flows have been transferred:

minimize max
m∈M,f∈Fm

Tf (4)

where Tf denotes the finish time of flow f . With the pipelined
chunk transmission design, transferring ⌈Sm/Cm⌉ chunks of
a flow f of sub-collective m takes the following time:

∀m ∈ M, f ∈ Fm : Tf = hf
Dstf

+ ⌈Sm/Cm⌉T f
bottle (5)

where T f
bottle denotes the transmission time on the bottleneck

link along the flow routing path, i.e.,
∀m ∈ M, f ∈ Fm : T f

bottle = max
(i,j)∈E:x

f
ij=1

{hf
j − hf

i } (6)

The optimization problem, with objective in (4) subject to
constraints in (1)-(3)(5)(6), is NP-hard with mixed integers.
The synthesizer uses the state-of-the-art solver Gurobi [28] to
derive a solution, with the solving time under different scales
measured in Fig. 19(c). The strategies are output in an XML
format and parsed by the Communicator.

V. DATA COMMUNICATION

We next present the Communicator design.

A. Parallel Transmissions
A distributed training system typically utilizes multiple

processes, where each process manages a GPU device. To
manage parallel sub-collectives in the same GPU process, we
introduce the concept of transmission context (each for one
concurrent sub-collective), as illustrated in Fig. 9.

Each transmission context has a unique ID shared among
all processes, used for sub-collective identification. For each
context, a persistent thread is launched to continuously poll
data from the Work Queue. Especially for AllReduce, a context
executes a Reduce thread and a Broadcast thread simultane-
ously to pipeline the two stages. Unlike NCCL which uses
a single CUDA stream, we use one stream per thread to
parallelize the transmissions.

Three types of memory buffers are registered for each
context: (1) local buffer, which stores data of the current GPU
to communicate; (2) receive buffer, which receives data sent
from precedent GPU nodes; (3) result buffer, which contains
communicated data to be pushed into the Result Queue.
To enable threads in one process to access receive buffer
in another process for data transmissions, AdapCC utilizes
CUDA inter-process communication (IPC) technology.

AdapCC sets up each transmission context in a distributed
manner as shown in Fig. 10. We first allocate the memory

receive buffer

result buffer

reduce thread

broadcast thread

Context ID: 1local buffer

GPU Process

reduce stream

broadcast stream

receive buffer

result buffer

reduce thread

broadcast thread

Context ID: 1local buffer

reduce stream

broadcast stream

Figure 9: Illustration of transmission contexts managed by one GPU
process in an AllReduce collective.

IP Table

Memory

Pointer Table

Peer Memory

Machine
GPU

…

…

IP Table

Memory

Pointer Table

Peer Memory

GPU

…

IP Table

Memory

Pointer Table

Peer Memory

Machine
GPU

…

…

IP Table

Memory

Pointer Table

Peer Memory

GPU
Exchange

Host IP

CUDA
IPC

Figure 10: Set-up phase of one transmission context.

buffers in GPUs for receiving data and expose their memory
pointers through CUDA IPC handles. Once all contexts on dif-
ferent processes with the same context ID have obtained their
own IPC handles, an AllGather communication is performed
to enable each thread in the context to get all the IPC handles
on the same server with the same ID and store them in a
memory pointer table. In this way, memory allocated on other
GPUs on the same machine can be directly accessed for peer-
to-peer transmission. Since CUDA IPC only works within the
same server, contexts on different servers also exchange host
IPs to form an IP table for across-server transmissions.

The overhead of allocating GPU memory and performing
IPC is non-negligible. Nonetheless, AdapCC executes the set-
up procedure before training starts. The memory registered in
the set-up phase is reused by later communication requests,
and reclaimed after training is completed, making it possible
to perform CUDA IPC once at the beginning.

B. Pipelined chunk transmissions
In each transmission context, the behavior of a GPU follows

the determined behavior tuple as discussed in Sec. IV-C. The
executor executes pipelined chunk transmissions.
Chunk pipeline on a server. Let A (with behavior tuple
<isActive=1, hasRecv=0, hasKernel=0, hasSend=1>) and B
(with behavior tuple <isActive=1, hasRecv=1, hasKernel=1,
hasSend=1>) be a pair of sending and receiving GPUs on
the same server, A first calls cudaMemcpyPeerAsync() to send
one chunk, which is asynchronous with host; an event is then
recorded into the same stream of data transfer. A continuously
sends remaining chunks by repeating these steps.

On the receiver side, B calls cudaStreamWaitEvent() to
wait for events recorded by A in the same order as they
were recorded. Each event indicates that the chunk has been
completely received by the receive buffer of B. If no other
precedent nodes, B launches an aggregation kernel and the
aggregated chunk is then sent to the successors. By pipelining
chunks, we maximally mitigate the kernel launch overhead as
it could be overlapped with NVLink transmission time.

Hidden memory movements. When GPU A and B are on
different servers, the data transfer uses IB Verbs (for RDMA)
or sockets (for TCP). The data sent from GPU A are first
moved to the CPU memory and then to the NIC buffer through
PCIe if GPU-Direct is not supported [20]. Reverse steps are
carried out at GPU B. With data chunking, the memory
movement could be hidden: the device-host memory copies
of later chunks can be overlapped with network transfers of
earlier chunks in a pipelining fashion.
Multi-stage parallelism. We enable pipelining across different
stages in a multi-stage collective. For AllReduce, reduce and
broadcast are pipelined, i.e., chunks aggregated on the root
are immediately broadcast to other GPUs, which have result
buffers to receive the aggregated data. For AlltoAll, a GPU
simultaneously receives data from and sends data to others.

VI. EVALUATION

A. Implementation.
We implement AdapCC with 5,000+ LoC in C++ and

2,000+ LoC in Python. The C++ backend relies on CUDA
runtime and is wrapped into a Python module. To use AdapCC,
users only need to add a few lines of code in the training script.
First, import our Python module with import adapcc and call
adapcc.init() to initialize the controller. This includes detecting
topology, profiling links and generating strategies for a specific
collective. To set up the communicator, call adapcc.setup()
before the training starts. We expose various primitives as APIs
(allreduce(), etc.) and also provide a communication hook for
PyTorch DDP. For runtime profiling, we allow users to specify
the profiling period by calling the adapcc.profile(). Profiling is
executed in the C++ backend and does not terminate the host
process nor involve any model checkpointing.

B. Methodology
Testbed Set-up. Our testbed includes six servers: four are
equipped each with four A100 GPUs with NVLinks, two AMD
EPYC-7H12 CPUs, PCIe 4.0, 256GB RAM, one Mellanox
100Gbps NIC; two are equipped each with four V100 GPUs
with NVLinks, two Intel 6230 CPUs, PCIe 3.0, 256GB RAM,
one Mellanox 50Gbps NIC. All servers run Ubuntu 20.04 LTS
and are installed with Nvidia Driver 520.61.05, CUDA 11.3
and OpenMPI 4.1.1 for launching multi-process programs.
Baselines. We compare AdapCC with three representative
communication systems: (1) NCCL-v2.14 [2], a state-of-the-
art GPU collective library that builds ring/tree graphs based
on a backtracking algorithm, which injects flows into the
topology to saturate links with empirically labeled throughput.
NCCL divides data into small chunks for pipelining. (2)
MSCCL [29], which is a communication platform built on top
of NCCL that executes customized algorithms. TACCL [15]
system is not fully open-sourced and currently only provides
template communication strategies for specific server configu-
rations (i.e., DGX2 and NDv2). Since it relies on MSCCL
as its run-time tool for data transmissions, we use pareto-
optimal algorithms [17] officially recommended by MSCCL,
which searches through different latency-bandwidth tradeoffs,
to run multi-server communication. (3) Blink [14], which

A100: (4,4,4,4)

V100: (4,4)

(4,4,3,3)

(4,4)

(4,4,3,3)

(3,3)

(4,4,3,3)

(4,0)

(4,2,2,0)

(4,4)

(4,4,4,4)

(0,0)

(4,4,4,0)

(4,0)

geoMean

Figure 11: Performance comparison of Reduce.

A100: (4,4,4,4)

V100: (4,4)

(4,4,3,3)

(4,4)

(4,4,3,3)

(3,3)

(4,4,3,3)

(4,0)

(4,2,2,0)

(4,4)

(4,4,4,4)

(0,0)

(4,4,4,0)

(4,0)

geoMean

Figure 12: Performance comparison of AllReduce.

uses spanning trees for intra-server communication and NCCL
primitives for inter-server communication. BLink sets chunk
size empirically (i.e., 8MB). Since it is not open-sourced, we
implement a prototype of Blink with CUDA and NCCL-v2.14.

C. Benchmarking Performance without Relay
To evaluate the synthesized communication strategies with-

out the relay control, we first benchmark AdapCC on three
most frequently used collective primitives, Reduce, AllReduce
and AlltoAll, in terms of the algorithm bandwidth (abbreviated
as Algo.bw). The algorithm bandwidth is derived by running
each primitive with an input float data of 256 MB (similar
performance is observed in various data sizes) and dividing the
data size by the time taken to complete the communication. We
set the number of sub-collectives in each collective as M = 4
when producing the communication strategy. The performance
impact of M is discussed and evaluated in Sec. VI-E.
Reduce. In Fig. 11, the x axis indicates different cases of
GPUs involved in the communication. For example, ‘A100:
(4,4,4,4) V100:(4,4)’ specifies using 4 GPUs on each of the
A100 servers and 4 GPUs on each of the V100 servers in
executing the collective. AdapCC outperforms all baselines,
and achieves 1.06×-1.23× (1.17× in geometric mean, which
is averaged among all cases) speed-up as compared to NCCL,
1.03×-1.29× (1.19× in geometric mean) to MSCCL, and
1.32×-1.58× (1.46× in geometric mean) to Blink.

We observe that NCCL fails to fully utilize heterogeneous
links and devices. A binary tree is used for inter-server
transmission, which assumes each node homogeneous and
causes the one with less network capacity to become the bottle-
neck. Within each server, only one communication channel is
launched to reduce data onto the GPU closest to an NIC, which
cannot fully utilize all NVLinks. The communication strategies
employed by MSCCL are designed for architectures similar
to DGX1, without taking into account the actual properties
of the underlying links. In the provided sketches, the chunk
size also remains fixed, which does not effectively optimize
the tradeoff between chunk pipelining and reduced latency

A100: (4,4,4,4)

V100: (4,4)

(4,4,3,3)

(4,4)

(4,4,3,3)

(3,3)

(4,4,3,3)

(4,0)

(4,2,2,0)

(4,4)

(4,4,4,4)

(0,0)

(4,4,4,0)

(4,0)

geoMean

Figure 13: Performance comparison of AlltoAll.

in practice. Blink’s performance is the lowest in multi-server
communication scenarios as it is primarily optimized for intra-
server communication, relying on NCCL operations for inter-
server aggregation. The two stages of intra- and inter-server
communications are not effectively pipelined.

AdapCC generates communication strategies for different
resource configurations by leveraging profiling results. It syn-
thesizes the communication graph to prevent any single node
from becoming a bottleneck, identifies optimized chunk size
to pipeline the transmission, and utilizes multiple parallel sub-
collectives to achieve higher throughput. Even in the homo-
geneous case with 16 A100 GPUs, AdapCC demonstrates
improvement as compared to baselines.
AllReduce. As shown in Fig. 12, AdapCC achieves 1.05×-
1.29× (1.19× in geometric mean) speed-up as compared to
NCCL, 1.02×-1.21× (1.15× in geometric mean) to MSCCL,
and 1.30×-1.61× (1.49× in geometric mean) to Blink, due to
better parallelization between reduce and broadcast stages in
AllReduce and the awareness of link properties.
AlltoAll. NCCL does not natively support AlltoAll primitive,
and we implement it using multiple ncclSend and ncclRecv
operations. We did not compare with Blink, as it does not
support AlltoAll in the multi-server case. Fig. 13 shows that
AdapCC achieves on average 31% and 14% better algorithm
bandwidth as compared to NCCL and MSCCL, respectively.

D. Training Performance
We next present end-to-end training results with adaptive

relay control enabled.
Workloads. We train four representative models with Py-
Torch implementation: (1) VGG16 (528MB), that uses Im-
ageNet as the training dataset [30]. (2) GPT2 (475MB), using
the personal chat dataset [31]. (3) ViT, aka Vision Trans-
former (208MB) [32], on ImageNet dataset. Official training
scripts are modified to use AdapCC as the communication
backend. (4) MOE (512MB), based on the fastMoE frame-
work [33] and dummy input data for simplicity, with each
GPU worker running one expert with two linear layers. We call
adapcc.alltoall() to replace the default implementation with
NCCL P2P in fastMoE. By default, the local batch size per
GPU for GPT2 is 16, and 128 for other models.
Stable Environment. We first run model training in a stable
scenario, i.e., the network status is not volatile and there are
no co-located interference workloads. In Fig. 14, data-parallel
training is run on four A100 servers in the homogeneous
setting (ref as ‘Homo’), and on two A100 servers and two
V100 servers in the heterogeneous setting (ref as ‘Heter’). The

(a) Homo + RDMA

(c) Heter + RDMA

(b) Homo + TCP

(d) Heter + TCP

C
om

m
un

ic
at

io
n

Sp
ee

du
p

C
om

m
un

ic
at

io
n

Sp
ee

du
p

C
om

m
un

ic
at

io
n

Sp
ee

du
p

C
om

m
un

ic
at

io
n

Sp
ee

du
p

Figure 14: Communication speed-up as compared to NCCL.

worker id

worker id

A100 GPUs

A100 GPUs V100 GPUs
Relay

Ratio

(%)

Relay

Ratio

(%)

Figure 15: Probabilities of workers being chosen as relays.

two settings are compared under both RDMA and TCP net-
work scenarios. The communication time measured includes
the waiting time of faster workers and the actual execution
time of AllReduce primitive for VGG16, GPT2 and ViT, and
the communication time is the AlltoAll time for MoE model.

AdapCC achieves 1.12×-1.30× speed-up in homogeneous
cases, by synthesizing optimized communication strategies,
leveraging the waiting time of workers to perform timely
partial communication and controlling GPUs as relays to
expedite data transmissions. Our design brings more benefits in
heterogeneous cases, where AdapCC achieves up to 2× speed-
up. In addition, NCCL only launches one channel for inter-
server transmission, which fails to saturate the available band-
width. Especially for TCP, we found that the peak bandwidth
achieved by a single channel is around 20Gbps (due to kernel
space overhead), which is far less than the 100Gbps capacity.
AdapCC uses parallel sub-collectives for better throughput.
We further calculate the probability of a worker being chosen
as the relay during training iterations, as in Fig. 15. In the
heterogeneous case, GPUs with lower computing capacity
have a higher probability of being selected; while in the
homogeneous case, the distribution is more evenly spread.

In Fig. 16 and Fig. 17, we evaluate the impact of different
training batch sizes (which affect computation time vari-
ance) on the training throughput, computed by global batch size

iteration time .
AdapCC brings up to 31% and 20% training throughput
improvement over NCCL, for GPT2 and VIT, respectively.
With a larger batch size, the variance in computation time
among workers also increases. In such cases, our adaptive
relay control offers more advantages compared to simply
waiting for all workers to complete computation.
Volatile Network. To assess the adaptability of AdapCC in
adjusting communication strategies based on network status,

1e3 1e3

(a) Homogenous (b) Heterogenous

(a) Homogenous (b) Heterogenous

Local Batch SizeTh
ro

ug
hp

ut
(s

am
pl

es
/s

ec
)

Local Batch SizeTh
ro

ug
hp

ut
(s

am
pl

es
/s

ec
)

Th
ro

ug
hp

ut
(s

am
pl

es
/s

ec
)

Local Batch Size Local Batch SizeTh
ro

ug
hp

ut
(s

am
pl

es
/s

ec
)

Figure 16: Training throughput of GPT2 (RDMA network).
1e3 1e3

(a) Homogenous (b) Heterogenous

(a) Homogenous (b) Heterogenous

Local Batch SizeTh
ro

ug
hp

ut
(s

am
pl

es
/s

ec
)

Local Batch SizeTh
ro

ug
hp

ut
(s

am
pl

es
/s

ec
)

Th
ro

ug
hp

ut
(s

am
pl

es
/s

ec
)

Local Batch Size Local Batch SizeTh
ro

ug
hp

ut
(s

am
pl

es
/s

ec
)

Figure 17: Training throughput of ViT (RDMA network).

we conduct experiments in a cloud scenario, where the net-
work status can vary due to cross-traffic within the data
center or bandwidth contention from co-located jobs. We train
models on four homogeneous A100 servers with RDMA and
use the tc tool on each server to manipulate the available
bandwidth over time, following the trace collected from a
public cloud (Sec. II-B). To offer more volatile cases, we
amplify the bandwidth changes from the traces by a factor of
x. If the bandwidth on a link drops or increases, it decreases or
increases to 1−x or 1+x times the values observed in the trace
data, respectively. Each model is trained for 104 iterations, and
we measure the makespan, which represents the time taken
to complete these training iterations. Profiling period is set to
500 iterations. In Fig. 18(a), we observe that AdapCC achieves
greater makespan reduction compared to NCCL when network
performance is more unstable. This improvement is attributed
to AdapCC’s ability to react to network variance and adjust
communication strategies accordingly.
Online Serving Interference. Some shared clusters in a com-
pany have hybrid deployments [34], a multi-GPU training job
could be co-located with some online CPU serving workloads.
Those online tasks will cause performance interference with
training workers on GPUs, due to resource contention of CPU
cache and memory bandwidth. To verify the effectiveness of
AdapCC in this scenario, we use four homogeneous A100
servers with RDMA to train each model. During model
training, we randomly choose 0 − 2 GPUs on each server
every 5 minutes to launch online tasks (which conduct model
inferences) on their affinity CPU socket. The CPU utilization
of each online task is denoted as CPU interference level,
ranging from 0% to 400% for observations. As shown in
Fig. 18(b), when the interference level grows, computations of
the chosen GPU workers are more likely to be slowed down.
Benefited from the adaptive relay control, AdapCC achieves
up to 1.49× faster communication as compared to NCCL.

E. Micro-Benchmark
Parallelization Degree. To investigate effect of the hyper-
parameter M , which denotes the number of parallel sub-

(a) (b)
Bandwidth Variation Level (x)

M
ak

es
pa

n
Re

du
ct

io
n(

%
)

C
om

m
un

ic
at

io
n

Sp
ee

du
p

CPU Interference Level

Figure 18: AdapCC’s adaptivity in cloud scenario.

(a) effect of parallelization degree

C
om

m
un

ic
at

io
n

Sp
ee

du
p

Ti
m

e
C

os
t(s

ec
)

(d) negotiation time cost(c) graph reconstruction cost

To
p-

1
Ac

cu
ra

cy
(%

)

Iteration
(b) training accuracy curve

C
DF

RPC Latency(ms)

Figure 19: Micro-benchmarks of AdapCC.

collectives in one transmission, we evaluate the communi-
cation speed-up over NCCL when training VGG16 under
different values of M , with testbed servers. As depicted in
Fig. 19(a), increasing the number of parallel transmissions
enables better utilization of available bandwidth. We choose
M = 4 for our testbed as it offers a promising communication
speedup while also minimizing GPU resource consumption.
Model Accuracy. We present the top-1 accuracy curve ob-
tained while training VGG16 with testbed servers on a down-
scaled Imagenet dataset consisting of 100, 000 images. As in
Fig. 19(b), AdapCC achieves consistent accuracy as NCCL but
could provide larger training throughput in various cases as
validated before. By incorporating the adaptive relay control,
AdapCC enables partial communication among ready workers
first, and then proceeds with the remaining communication
for relay workers. This approach ensures that the aggregated
results remain consistent with a normal collective communica-
tion process. In contrast, one can simply discard the tensors of
relay workers (denoted as ‘Relay Async’), which indeed leads
to higher throughput but also adversely impacts convergence.
Besides, ‘AdapCC-nccl graph’ implies using the graph dumped
from NCCL for communication, and the findings also support
the notion that altering the tensor aggregation order, which is
caused by a different communication graph [21], has minimal
impact on training convergence.
Graph Reconstruction Overhead. We measure the graph
reconstruction cost of AdapCC at different scales as in
Fig. 19(c). For NCCL, when a user observes a non-optimal
communication graph and wants to reconstruct it, the job needs
to be terminated, and the whole process group and the model

should be rebuilt, thus introducing extra checkpointing and
relaunching overhead. AdapCC does not need to terminate the
job; the graph reconstruction undergoes profiling, solving the
optimization problem and setting up the transmission context.
74%-91% time is saved as compared to NCCL. Additionally,
the time for inferring the topology only occurs during the ini-
tial resource allocation phase of the job and remains constant
as the job scale increases. In our measurements, this process
takes 1.2s and is executed concurrently on each server.

For fault recovery, AdapCC undergoes graph reconstruction
and data loader redistribution. This enables non-elastic ML
frameworks to continue training without hanging. Compared
to elastic frameworks like PyTorch Elastic, which by default
takes 15s to detect faults and requires restarting the job [19],
AdapCC ensures more efficient continuation of training.
RPC Delay in Relay Control. We measure the RPC latency
for exchanging the relay information between workers and the
coordinator. Fig. 19(d) shows the CDF of latencies collected
on workers over 1,000 training iterations of VGG16 using 6
servers. The negotiation latency for 90% of the data points is
smaller than 1.5ms. As compared to the multi-server commu-
nication time, this overhead is negligible.

VII. CONCLUSION

We present AdapCC, an adaptive communication library
designed to accelerate distributed training. AdapCC includes
a detection and profiling module that efficiently generates
communication strategies based on observed performance dur-
ing training. Additionally, AdapCC incorporates an adaptive
relay control mechanism that reduces waiting time for col-
lective communications. We evaluate AdapCC on multiple
DNNs with various training settings on our GPU testbed,
and demonstrate that it achieves significant improvements in
communication speed and training throughput compared to
state-of-the-art communication libraries.

REFERENCES

[1] OpenAI, “Gpt-4 technical report,” arXiv preprint:2303.08774, 2023.
[2] “Nccl,” https://developer.nvidia.com/nccl, 2024.
[3] D. Lepikhin, H. Lee, Y. Xu, D. Chen, O. Firat, Y. Huang, M. Krikun,

N. Shazeer, and Z. Chen, “Gshard: Scaling giant models with conditional
computation and automatic sharding,” arXiv preprint arXiv:2006.16668,
2020.

[4] J. Yuan, X. Li, C. Cheng, J. Liu, R. Guo, S. Cai, C. Yao, F. Yang,
X. Yi, C. Wu et al., “Oneflow: Redesign the distributed deep learning
framework from scratch,” arXiv preprint arXiv:2110.15032, 2021.

[5] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur,
G. R. Ganger, P. B. Gibbons, and M. Zaharia, “Pipedream: Generalized
pipeline parallelism for dnn training,” in Proceedings of the 27th ACM
Symposium on Operating Systems Principles, 2019, pp. 1–15.

[6] “Gloo,” https://github.com/facebookincubator/gloo, 2024.
[7] “Mpi,” https://github.com/open-mpi/ompi, 2024.
[8] C. Ying, S. Kumar, D. Chen, T. Wang, and Y. Cheng, “Image classifi-

cation at supercomputer scale,” arXiv preprint arXiv:1811.06992, 2018.
[9] H. Mikami, H. Suganuma, Y. Tanaka, Y. Kageyama et al., “Massively

distributed sgd: Imagenet/resnet-50 training in a flash,” arXiv preprint
arXiv:1811.05233, 2018.

[10] M. Cho, U. Finkler, D. Kung, and H. Hunter, “Blueconnect: Decompos-
ing all-reduce for deep learning on heterogeneous network hierarchy,”
Proceedings of Machine Learning and Systems, vol. 1, pp. 241–251,
2019.

[11] H. Zhao and J. Canny, “Butterfly mixing: Accelerating incremental-
update algorithms on clusters,” in Proceedings of the 2013 SIAM
International Conference on Data Mining. SIAM, 2013, pp. 785–793.

[12] J. Romero, J. Yin, N. Laanait, B. Xie, M. T. Young, S. Treichler,
V. Starchenko, A. Borisevich, A. Sergeev, and M. Matheson, “Ac-
celerating collective communication in data parallel training across
deep learning frameworks,” in 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), 2022, pp. 1027–1040.

[13] D. Narayanan, K. Santhanam, F. Kazhamiaka, A. Phanishayee, and
M. Zaharia, “Heterogeneity-aware cluster scheduling policies for deep
learning workloads,” in Proceedings of the 14th USENIX Conference on
Operating Systems Design and Implementation, 2020, pp. 481–498.

[14] G. Wang, S. Venkataraman, A. Phanishayee, N. Devanur, J. Thelin,
and I. Stoica, “Blink: Fast and generic collectives for distributed ml,”
Proceedings of Machine Learning and Systems, vol. 2, pp. 172–186,
2020.

[15] A. Shah, V. Chidambaram, M. Cowan, S. Maleki, M. Musuvathi,
T. Mytkowicz, J. Nelson, O. Saarikivi, and R. Singh, “Taccl: Guiding
collective algorithm synthesis using communication sketches,” arXiv
preprint arXiv:2111.04867, 2021.

[16] L. Luo, P. West, A. Krishnamurthy, L. Ceze, and J. Nelson, “Plink:
Discovering and exploiting datacenter network locality for efficient
cloud-based distributed training,” MLSys 2020, 2020.

[17] Z. Cai, Z. Liu, S. Maleki, M. Musuvathi, T. Mytkowicz, J. Nelson, and
O. Saarikivi, “Synthesizing optimal collective algorithms,” in Proceed-
ings of the 26th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, 2021, pp. 62–75.

[18] A. Maricq, D. Duplyakin, I. Jimenez, C. Maltzahn, R. Stutsman,
and R. Ricci, “Taming performance variability,” in 13th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI}
18), 2018, pp. 409–425.

[19] “Pytorch,” https://pytorch.org/docs/stable/distributed.elastic.html, 2024.
[20] Y. Jiang, Y. Zhu, C. Lan, B. Yi, Y. Cui, and C. Guo, “A unified

architecture for accelerating distributed dnn training in heterogeneous
gpu/cpu clusters,” in Proceedings of the 14th USENIX Conference on
Operating Systems Design and Implementation, 2020, pp. 463–479.

[21] M. Li, W. Xiao, B. Sun, H. Zhao, H. Yang, S. Ren, Z. Luan, X. Jia,
Y. Liu, Y. Li et al., “Easyscale: Accuracy-consistent elastic training for
deep learning,” arXiv preprint arXiv:2208.14228, 2022.

[22] J. H. Park, G. Yun, M. Y. Chang, N. T. Nguyen, S. Lee, J. Choi,
S. H. Noh, and Y.-r. Choi, “{HetPipe}: Enabling large {DNN} training
on (whimpy) heterogeneous {GPU} clusters through integration of
pipelined model parallelism and data parallelism,” in 2020 USENIX
Annual Technical Conference (USENIX ATC 20), 2020, pp. 307–321.

[23] “Nccl-issue,” https://github.com/NVIDIA/nccl/issues/670, 2022.
[24] Z. Zhang, C. Wu, and Z. Li, “Near-optimal topology-adaptive parameter

synchronization in distributed dnn training,” in IEEE INFOCOM 2021-
IEEE Conference on Computer Communications. IEEE, 2021, pp. 1–10.

[25] B. Wu, W. Bao, D. Yuan, and B. Zhou, “Competitive analysis for multi-
commodity ski-rental problem,” ratio, vol. 10, no. 10, p. 10.

[26] L. Pan, J. Liu, J. Yuan, R. Zhang, P. Li, and Z. Xiao, “Occl: a
deadlock-free library for gpu collective communication,” arXiv preprint
arXiv:2303.06324, 2023.

[27] J. Dong, S. Wang, F. Feng, Z. Cao, H. Pan, L. Tang, P. Li, H. Li,
Q. Ran, Y. Guo et al., “Accl: Architecting highly scalable distributed
training systems with highly efficient collective communication library,”
IEEE Micro, vol. 41, no. 5, pp. 85–92, 2021.

[28] L. Gurobi Optimization, “Gurobi optimizer reference manual,” 2021.
[29] “Msccl,” https://github.com/microsoft/msccl-tools, 2021.
[30] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
[31] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,

“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[32] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[33] J. He, J. Qiu, A. Zeng, Z. Yang, J. Zhai, and J. Tang, “Fastmoe: A fast
mixture-of-expert training system,” arXiv preprint arXiv:2103.13262,
2021.

[34] W. Xiao, S. Ren, Y. Li, Y. Zhang, P. Hou, Z. Li, Y. Feng, W. Lin, and
Y. Jia, “Antman: Dynamic scaling on gpu clusters for deep learning.” in
OSDI, 2020, pp. 533–548.

https://developer.nvidia.com/nccl
https://github.com/facebookincubator/gloo
https://github.com/open-mpi/ompi
https://pytorch.org/docs/stable/distributed.elastic.html
https://github.com/NVIDIA/nccl/issues/670
https://github.com/microsoft/msccl-tools

	Introduction
	Background and Motivation
	Resource Heterogeneity
	Volatile Network Status
	Computation Stragglers

	Design Overview
	Control Strategy
	Inferring Logical Topology
	Profiling Link Properties
	Adaptive Relay Control
	AdapCC Synthesizer

	Data Communication
	Parallel Transmissions
	Pipelined chunk transmissions

	Evaluation
	Implementation.
	Methodology
	Benchmarking Performance without Relay
	Training Performance
	Micro-Benchmark

	Conclusion
	References

