
FaPES: Enabling Efficient Elastic Scaling for Serverless
Machine Learning Platforms

Xiaoyang Zhao
The University of Hong Kong

xyzhao@cs.hku.hk

Siran Yang
Alibaba Group

siran.ysr@alibaba-inc.com

Jiamang Wang
Alibaba Group

jiamang.wang@alibaba-inc.com

Lansong Diao
Alibaba Group

lansong.dls@alibaba-inc.com

Lin Qu
Alibaba Group

xide.ql@taobao.com

Chuan Wu
The University of Hong Kong

cwu@cs.hku.hk

ABSTRACT
Serverless computing platforms have become increasingly
popular for running machine learning (ML) tasks due to
their user-friendliness and decoupling from underlying in-
frastructure. However, auto-scaling to efficiently serve in-
coming requests still remains a challenge, especially for dis-
tributed ML training or inference jobs in a serverless GPU
cluster. Distributed training and inference jobs are highly
sensitive to resource configurations, and demand high model
efficiency throughout their lifecycle. We propose FaPES, a
FaaS-oriented Performance-aware Elastic Scaling system to
enable efficient resource allocation in serverless platforms
for ML jobs. FaPES enables flexible resource loaning between
virtual clusters for running training and inference jobs. For
running inference jobs, servers are reclaimed on demand
withminimal preemption overhead to guarantee service level
objective (SLO); for training jobs, optimal GPU allocation
and model hyperparameters are jointly adapted based on an
ML-based performance model and a resource usage predic-
tion board, alleviating users from model tuning and resource
specification. Evaluation on a 128-GPU testbed demonstrates
up to 24.8% job completion time reduction and ×1.8 Goodput
improvement, as compared to representative elastic scaling
schemes.
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1 INTRODUCTION
Serverless computing, also known as function-as-a-service
(FaaS), has emerged as a new computing paradigm adopted
onmajor cloud platforms such as Amazon Lambda [2], Google
Cloud Functions [4], and Microsoft Azure [7]. Serverless
computing features ease of computing job deployment, high
scalability, and cost effectiveness for users. In a serverless
platform, users can run applications without managing in-
frastructure configurations. Instead, the cloud provider is
responsible for allocating resources on-demand for the ap-
plication (i.e., when function events are triggered) and au-
tomatically scaling resources based on resource utilization
and changes in workload [20].

With the proliferation of machine learning (ML) services
(e.g., training/fine tuning/serving of various deep neural
network models [16]), leveraging GPU devices in a server-
less platform for model training and inference is in demand.
GPU-based serverless platforms [12, 13, 29, 37] often rely on
NVIDIA device plugin to expose GPUs for hosting worker
containers, and Kubernetes for resourcemanagement and job
deployment [13]. However, efficiently serving ML workloads
in a serverless environment poses a number of challenges.

First, hybrid workload is typically involved in ML services,
comprising both offline training jobs (e.g., model develop-
ing) and online inference jobs (e.g., recommendation serv-
ing) [34]. Deploying them on the shared multi-tenant cluster
often leads to performance degradation due to significant
resource contention [9]. One common solution is reserving
dedicated GPU servers as resource pools for training jobs
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and inference jobs, respectively. But according to our obser-
vations over a productive cluster, resource consumption of
online serving requests often follows tidal patterns based on
the time of day and workload submitted by users, causing
most of the reserved inference servers underutilized. Global
management for GPU resources is required to accommo-
date both types of workloads, maximizing the throughput of
training tasks while guaranteeing the service level objectives
(SLOs) of inference tasks.

Second, the auto-scaling decisions for ML training jobs
should be model performance-aware. In a serveless platform,
users rely on the platform to effectively allocate GPU re-
sources to their jobs. Several elastic schedulers have been
introduced for distributed machine learning [12, 19, 33]. Opti-
mus [26] leverages predictive models to estimate DNN train-
ing throughput under different GPU allocations. Antman [34]
adopts dynamic scaling and fine-grained GPU sharing to en-
hance cluster utilization. Themis [21] achieves finish-time
fairness among concurrent jobs by periodically reallocat-
ing GPUs. In general, as more GPUs are allocated to a job,
the communication overhead grows, and the global batch
size may also rise, affecting both throughput and statistical
efficiency [27, 38]. There is a need for strategically reconfig-
uring resources among concurrent jobs and co-adapt their
hyperparameters (e.g., global batch size, learning rate) for
better overall performance.
Third, monitoring of server resource usage and job de-

mands should be forward-looking.While monitoring tools [6,
8] provide useful server utilization data for informed scaling
decisions, current serverless platforms tend to focus only on
the current resource utilization when allocating resources to
each job [25, 35]. Without knowledge of completion times
of existing jobs and the available time of GPU servers for
hosting jobs, new job placements face a dilemma - whether
to wait for more or better resources or be deployed with in-
sufficient or non-ideal resources. This decision could further
influence the scaling of latter arrival jobs, due to potential
resource fragmentation or relaunch overhead of resource ad-
justment. Globally optimal resource allocation thus becomes
challenging over long run of the serverless system. In addi-
tion, though serverless platforms can track traffic demands
for serving applications, there is a lack of monitoring tools
for ML training jobs on the training status (e.g., the gradient
noise that reflects model convergence), making it incapable
for timely resource adjustments.

To address the challenges mentioned above, we propose a
FaaS-oriented Performance-aware Elastic Scaling system for
effective resource management in a serverless ML platform.
FaPES exposes FaPES-Interfaces for developers to trigger
hybrid ML functions in a serverless platform and enables
efficient resource scaling for ML tasks. In FaPES, FaPES-
Manager divides GPU servers into virtual clusters (VCs) -

one for inference tasks and one for training tasks. Servers are
dynamically loaned from the inference cluster to the training
cluster as needed, and reclaimed back on demand with mini-
mal migration costs. FaPES-Scheduler allocates resources
for inference jobs tomeet SLOs and generates resource sched-
ule plans for training jobs (i.e., GPU allocation over time to
fulfill the respective workload), with throughput prediction
by a Goodput model under any resource and hyperparame-
ter configurations. FaPES-Pod records the training status
of a running training job and potentially reconfigures its
resources as needed. To predict resource usage, FaPES main-
tains a FaPES-Board that collects the schedule plan for each
job and estimates the release time of GPU resources.
In a nutshell, our contributions in designing FaPES are

summarized as follows:
⊲We propose FaPES-Manager with the flexible resource loan-
ing ability between VCs for inference and training workloads,
and design a built-in mechanism to select GPU servers to be
reclaimed for reduced preemption overhead.
⊲ A GNN-based performance model is devised for Goodput
metric on a given global batch size and a graph abstraction
of allocated GPUs. Predicting the performance of an ML
training task allows FaPES-Scheduler to co-optimize the hy-
perparameters and resource configuration, and estimate the
completion time of each job to update the GPU occupation
time on the FaPES-Board.
⊲ We design FaPES-Scheduler with a comprehensive auto-
scalingmechanism for hybridML jobs. Especially for training
jobs, it prioritizes pending jobs and selects a subset of run-
ning jobs to perform resource reconfiguration. With forward-
looking resource utilization from the FaPES-Board, the sched-
ule plans of training jobs are generated using a primal-dual
optimization framework to minimize the average job com-
pletion time (JCT).
⊲ We implement FaPES on Kubernetes and evaluate its per-
formance on a testbed of 128 GPUs. FaPES outperforms nu-
merous existing scheduling schemes by 24.8% and ×1.8 in
terms of average JCT and training efficiency, respectively.

2 BACKGROUND AND MOTIVATION
2.1 Serverless Computing
Serverless computing is a cloud computation paradigm that
allows developers to deploy and run applications in the cloud
without the need of configuring detailed infrastructure. De-
velopers provide service functions, which are self-contained
units of code, such as processing logic for data streaming
or neural network models written in PyTorch. The func-
tions are then packaged into containers and deployed on
demand when triggered. During the application’s lifecycle,
auto-scaling is provided to adjust resource configuration as
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Figure 1: GPU allocation rate and utilization over 192
hours.
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Figure 2: CDF of queuing time in the training cluster.

needed [13]. For conventional serving applications (such
as Web services and video streaming) that receive varying
request loads, the existing serverless platforms can scale
resources in or out as required [35]. For ML training jobs
which are resource intensive, it becomes more important to
effectively coordinate resources among concurrent jobs for
optimized resource utilization and model performance. Un-
like on-demand cloud offerings such as AWS EC2 which sup-
port customized instance configurations, publicly available
serverless platforms have only recently started to support
accelerators like GPUs to meet the growing demand for ML
training and inference [20].

As compared to classic ML job scheduling architecture [9,
21, 26, 33, 34], FaPES exposes APIs for easy deployment of
hybrid ML tasks, designs integration between the job sched-
uling component (FaPES-Scheduler) and resource manage-
ment component (FaPES-Manager), and provides job status
tracking and hyperparameter auto-tuning.

2.2 ML Applications
Both ML training and inference jobs can be submitted as
functions to run in a serverless computing platform. Online
inference tasks typically need to meet specific SLOs (e.g., in
terms of response latency), which must be guaranteed with
sufficient GPU resources. Inference workloads often show
strong tidal patterns according to peak and off-peak usage
times. Fig. 1 gives the GPU allocation ratio (out of all GPUs)
and average GPU utilization per allocated GPU in an ML
inference resource pool with 6000 NVIDIA A10 GPUs, on a
production system hosting searching services in e-commerce
platforms. During peak periods, the GPU allocation rate and
utilization reach 95% and 41.2%, respectively. During night

time when the workloads subside, these numbers drop to
86.3% and 10%. As this resource pool is reserved for inference
services, the time-varying workloads result in a waste of
expensive GPU resources. The underutilized resources can
well be exploited for training tasks, which typically suffer
from extended queuing time, waiting to be run. Fig. 2 shows
the queueing times of recommendation training jobs on a
resource pool with V100 GPUs. The average queuing time
is 1460 seconds, accounting for 13.5% of the lifecycle of a
training job; jobs in tail cases could be starved for hours.
Instead of reserving servers for each workload type, it is

more efficient for a serverless ML platform to manage all
servers as a shared pool. That is, when inference demands
surge, resources should be quickly returned from the training
pool to meet the serving objectives, while more resources
can be used for training jobs during off-peak serving times.
The key challenge in such serverless management lies in
minimizing the migration and relaunch cost of preempting
any running training jobs on these resources. FaPES seeks to
dynamically adjust server allocation between training and
inference jobs and minimize the preemption overhead by
identifying servers with the least impact on running training
tasks.

2.3 Performance-aware Auto-scaling
Prior to the rise of serverless computing, users would typi-
cally over-reserve resources beyond the actual requirements
of their applications, leading to a significant waste of expen-
sive resources [20]. Serverless computing eliminates the need
for manual resource configuration, but generally adopts sim-
ple, classic scheduling methods for executing functions. For
example, AWS Lambda uses a packing strategy to deploy ap-
plications [2]. Apache OpenWhisk uses a hashing method to
schedule functions within a distributed cluster [1]. Some oth-
ers [35] rely on Kubernetes’s default load balancing scheme,
which scores each server based on its resource load. When
it comes to ML workloads, GPU allocation greatly affects
the training throughput of a training job. Co-located jobs
within the same server or under the same network switch
can experience varying levels of performance interference.
Auto-scaling on a serverless platform expects an elastic

strategy to determine resource configurations of jobs. Most
elastic scaling strategies for ML clusters [26, 33, 34] only deal
with elastic resource allocation, while users need to provide
well-tuned hyperparameters (e.g. batch size, learning rate)
before submitting their jobs to the platform. These hyperpa-
rameters impact training convergence, whose optimal set-
tings change as a job scales. Pollux [27] and Shockwave [38]
co-adapt hyperparameters with the job scale. Pollux intro-
duces "Goodput" - a metric calculated as the product of the
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Figure 3: Job3 and job4 arrive at time T0 and T1, respec-
tively. By predicting job2’s completion time, job3 and
job4 can be better scheduled with packed resources and
competed in shorter time.

throughput (trained samples per second) and statistical effi-
ciency (achieved loss convergence progress per sample), to
reflect the training efficiency. It solves a linear problem to
decide the resource allocations of concurrent jobs for min-
imized average Goodput. Shockwave extends the through-
put model of Pollux and targets the Nash fairness objective.
These elastic scaling designs are insufficient for a serverless
ML platform.
First, job performance modeling is a key to support ef-

fective elastic scaling. Server architecture and data center
topology can be intricate in a modern cluster, and GPU place-
ments of an ML job greatly impact the performance of the
communication phase of a distributed ML job. Pollux models
the training throughput using a linear online fitting model,
which may not capture the complex behavior of tensor trans-
mission within a cluster. Other embedded performance mod-
els [15, 24, 26] ignore the influence of GPU placements on
the communication or the potential overlap between com-
putation and communication phases.

Next, the elastic scaling process may introduce large over-
head. Most methods [12, 15, 24, 27] reallocate resources of
all concurrent jobs when a scheduling event occurs, which
is not affordable (due to preemption and migration over-
head) when the demands change all the time. Some allocate
available GPUs to jobs with higher priority (e.g., shortest
remaining time first) whenever a job is completed [14], but
ignore the internal training status of running jobs (e.g., loss
convergence, gradient noise).
FaPES employs a GNN-based performance model that

encodes resource configuration into a graph and maps it
to job performance. We also seek an efficient scheduling
mechanism that identifies running jobs with sub-optimal
performance based on runtime tracking, and tunes their
hyperparameters and optimizes their resource allocation
together with new arrival jobs.

2.4 Forward Looking of Resource Usage
Predicting resource usage of running jobs is crucial for mak-
ing globally optimal scheduling decisions for new arrival
jobs. Consider the scenario depicted in Fig. 3, where each
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Figure 4: FaPES Overview

server has four GPUs and 2 GPUs are available on each server
initially. When a new job (job3) arrives at time T0, there are
two scheduling options: 1) immediately assign job3 to the 2
servers, or 2) wait for a dedicated 4-GPU server to become
available once job2 is completed. Without forward visibility
into future resource utilization, the first, more myopic op-
tion is likely to be chosen due to less queuing time. However,
this short-sighted resource allocation decision is not globally
optimal: it leads to higher cross-server communication over-
head in job3 and potential performance interference between
co-located job2 and job3; it also causes resource fragmen-
tation for later arrival jobs (e.g., job4 at T1), prolonged job
execution time and cluster usage inefficiency (e.g., job5 at
T3 is queued). This motivates us to predict each running
job’s completion time and resource demand over time until
job completion, and make informed, better decisions on new
jobs’ scheduling. As far as we know, none of existing ML
scheduling systems consider forward-looking resource usage
and make decisions accordingly.

3 FAPES SYSTEM
3.1 Overview
The overall architecture and workflow of FaPES are given
in Fig. 4. The architecture follows the Kubernetes’ design
with serverless compatibility, consisting of five components
to enable efficient elastic scaling for ML functions: FaPES-
Interface, FaPES-Manager, FaPES-Scheduler and FaPES-Board
in the control plane, and FaPES-Pod on GPU servers.

In the cluster, GPU servers are deployed with kubelet and
kubeproxy to be visible to FaPES-Manager through kube-
apiserver. Servers are divided into two virtual clusters (VCs)
and identified by specific server labels - one VC for run-
ning training functions and the other for inference func-
tions. FaPES-Interface receives requests from developers and
launches each job as a function to perform ML training or
inference tasks on the GPU servers. Each worker container
is wrapped as a FaPES-Pod. The training status (e.g., gradient
noise, remaining epochs) of each training job is collected by
FaPES-Scheduler, and the intermediate checkpoints are saved
to the centralized Model Storage. FaPES-Scheduler controls
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resource allocation and auto-scaling of concurrent jobs. The
determined schedule plans are collected by FaPES-Board,
which predicts future resource usage and provides this infor-
mation to the FaPES-Scheduler’s decision-making process in
turn. FaPES-Manager is triggered by FaPES-Scheduler with
server loaning or reclaiming events between the two VCs,
based on the scaling requirements for each inference job.

3.2 FaPES-Interface
APIs. FaPES-Interface exposes high-level serverless APIs for
deep learning (DL) developers to submit training or infer-
ence function. A training function includes the following
parameters:

• model, the ML training model used to identify the cor-
responding container (e.g., docker) image for model
creation and execution.

• length, the training workload in terms of the number
of epochs of training. It is used as the termination
condition for model training.

• dataset, the training dataset to use.

An inference function includes the following parameters:

• model, the ML inference model. An inference task is
completed when the developer terminates it by stop-
ping the corresponding containers.

• min_scale, the minimal number of workers estimated
by users tomeet customized SLOs (latency, throughput,
precision, etc.) during peak request demand, based on
historical serving records.

• max_scale, the maximum number of workers that a
function could be scaled up to in case the request de-
mand hits an unexpected peak beyond what has been
provisioned for. For example, one might set min_scale
to 8 given historical estimationwhile settingmax_scale
to 12, so that the task can tolerate unexpected request
traffic or underestimation of the required resources,
thereby further improving the serving metrics (e.g.,
latency, throughput, etc.). It is usually set based on
developer experience or task urgency [20].

The above APIs allow a developer to focus on the task,
while the system-level resource management and the scal-
ing of each job is handled by other components of FaPES.
For inference tasks, we let users provide scaling range for
two reasons: first, how GPU allocation affects various SLO
metrics is more unpredictable than training tasks, as they
are sensitive to hyper-parameters and influenced by request
traffic demand; second, it allows those inference tasks that
don’t have an SLO value (e.g., not for online serving) to be
started, when the minimum number of GPUs are allocated.

Automated Processing.When a function is triggered, FaPES
automates pre-processing before launching it to the respec-
tive VC. A training function undergoes a profiling stage first,
by being assigned to a dedicated server and running there for
a few training iterations. This profiling stage gathers essen-
tial information about the job’s execution timeline, including
the order and duration of each operator within one training
iteration. The information is used by FaPES-Scheduler to
construct the job performance model for scaling decision
making. An inference function is assigned a priority accord-
ing to the request submission time, i.e., the earlier job has a
higher priority.
After pre-processing, jobs are pushed into the queues of

the two VCs, respectively, and wait for the decision from
FaPES-Scheduler to run with allocated resources.

3.3 FaPES-Scheduler
FaPES-Scheduler makes resource scaling decisions every 10
minutes (denoted as one time round).
Scaling for Inference Jobs. FaPES guarantees the SLO of
pending inference jobs by satisfying the respectivemin_scale
resource requirement set by developers. FaPES-Scheduler
allocates and places required GPUs close enough inside the
inference VC [3]. As illustrated in Fig. 5, when resources are
sufficient to serve concurrent job, FaPES-Scheduler scales
jobs up to max_scale to available servers in order of their
priorities. If there are remaining idle servers after each job
has scaled up to max_scale, the loan event is triggered to
FaPES-Manager, which moves the idle servers from the in-
ference VC to the training VC to improve the throughput of
training jobs. When there are inference jobs whosemin_scale
cannot be satisfied due to the limited number of available
servers, those that have been scaled up are scaled down to
conserve resources for min_scale fulfillment. If still not all
concurrent inference jobs can be served with min_scale, the
reclaim event is triggered and FaPES-Manager moves loaned
servers from the training VC back to the inference VC [18].
Both events take one server as the moving unit, to avoid co-
location interference between different types of jobs within
a server.
Scaling for Training Jobs. For performance-aware scaling
of training jobs, FaPES-Scheduler relies on a carefully built
performance model to predict the Goodput performance un-
der arbitrary resource configurations and hyperparameters
(i.e., batch size and learning rate), to be detailed in Sec. 4. The
scaling of each training job undergoes three phases (further
detailed in Sec. 5):
Phase 1 - Filtering: FaPES-Scheduler exploits the perfor-

mance model to filter out training jobs with sub-optimal
performance, which join the rescheduling process with new
arrival jobs.
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Figure 5: Loan/Reclaim events triggered to FaPES-
Manager.

Phase 2 - Prioritizing: Priorities are given to jobs based on
well-designed rules.

Phase 3 - Planning: In job priority order, FaPES-Scheduler
determines a schedule plan for each job, i.e., GPU allocation
and co-adapted hyperparameters over future time periods,
based on resource occupation provided by FaPES-Board.

3.4 FaPES-Manager
FaPES-Manager receives events from FaPES-Scheduler and
labels GPU server for VC identification accordingly. Servers
are relabelled when loaned to the training VC and when
reclaimed back to the inference VC. Flexible reallocation
of server between the training VC and the inference VC is
efficiently enabled by such label switches.
The challenge lies in which loaned servers should be re-

claimed back when a 𝑟𝑒𝑐𝑙𝑎𝑖𝑚 event occurs (which specifies
𝑁𝑟 servers to be reclaimed). Reclaiming servers involves a
series of time-consuming steps: (1) gracefully terminate the
containers of the training jobs running on the servers; (2)
checkpoint the respective models and upload them to model
storage for training recovery; (3) allocate new servers from
the training VC to relaunch containers for continuous train-
ing. Choosing the right servers with a specific number is a 0-1
knapsack problem [18], where the decisions are binary vari-
ables associated with every loaned server, indicating whether
to reclaim or not, and the objective is to minimize the total
reclaiming overhead. The unique nature of distributed train-
ing makes the reclaiming decision for each server dependent.
Suppose one job is occupying four servers, when we reclaim
one server, the preemption time cost occurs on the remain-
ing three servers as the job is scaled down and its training
needs to be recovered. Then we can further reclaim any of
the remaining three servers without additional cost.

FaPES-Manager uses two metrics to evaluate each server
in reclaiming decision making: reclaim cost and reclaim gain.
The reclaim cost is defined to be the number of running
jobs on that server; the reclaim gain is the total number of
servers that can be reclaimed without any additional cost
when preempting all jobs on that server. In the example in
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Figure 6: Optimal choices in example scenarios with
𝑁𝑟 = 2: (a) reclaim server1 and server2 with a total cost
of 2; (b) reclaim server2 and server3 with a total cost
of 2.

Fig. 6(a), suppose two servers need to be reclaimed (𝑁𝑟 = 2)
according to the triggered event. Reclaim costs of both server
1 and server 2 are 2, since they are holding job A and job B.
The reclaim gain of server 1 is 2, since server 1 and server 2
become available when suspending jobs A and B on server 1.
After reclaiming server 1, the reclaim cost of server 2 reduces
to 0, because job A and job B are both terminated. Thus, the
optimal decision is reclaiming server 1 and server 2 with a
total cost of 2.

FaPES-Manager iteratively makes reclaiming decisions in
two steps: (1) select a server with the largest reclaim gain, but
smaller than 𝑁𝑟 ; when there are multiple candidate servers,
choose the one with the least reclaim cost. A larger reclaim
gainmeans that when suspending jobs running on the server,
more additional servers holding the same jobs could become
available, which can be reclaimed subsequently as well (due
to lowered reclaim costs). Those servers are then selected to
be reclaimed andwill not join the following iterative steps. (2)
update the reclaim cost and reclaim gain of remaining servers,
after suspending jobs on the server chosen in step (1). The
iterative selection process terminates when 𝑁𝑟 servers to be
reclaimed are decided.

4 TRAINING PERFORMANCE MODEL
FaPES-Scheduler relies on the performance model to make
scaling decisions for training jobs. For topology-aware scal-
ing, on each server, a device plugin exposes the GPU infor-
mation and the bandwidth of NVLinks and NICs to FaPES-
Scheduler. The intra-server architecture and inter-server
connections are exploited in our graph-based throughput
model (Sec. 4.1).
FaPES-Pod asynchronously calculates the gradient noise

of each training job and reports them to FaPES-Scheduler us-
ing RPC. The training status information is exploited by the
statistic efficiency model to predict the Goodput (Sec. 4.2).

4.1 GNN-based Throughput Model
We first analyze how the global batch size and GPU alloca-
tion affect the training throughput. The time of one training
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iteration is split into the computation phase and communica-
tion phase. We estimate the computation time based on the
profiling results after automated processing of FaPES, and
model the communication time based on the interconnect
graph among allocated GPUs and a graph neural network
(GNN) model.
Computation Phase. During the profiling stage, a data-
parallel job run on a dedicated server with 2 workers, each
occupying one GPU. The local batch size of each worker is
𝑚∗, and all-reduce communication is performed for gradient
synchronization between both workers. We collect the time-
line of each training iteration including the total computation
duration 𝑇 ∗

𝑐𝑜𝑚𝑝 and the precedent computation operators be-
fore launching each communication kernel. For actual model
training on allocated resources in the training VC, we esti-
mate the actual computation cost as follows, where𝑀 is the
global batch size and 𝑉𝑔𝑝𝑢 is the set of allocated GPUs to the
training job (|𝑉𝑔𝑝𝑢 | is the number of workers involved):

𝑇𝑐𝑜𝑚𝑝 =
𝑀

|𝑉𝑔𝑝𝑢 |𝑚∗𝑇
∗
𝑐𝑜𝑚𝑝

as the computation time grows linearlywith the batch size [27].
Communication Phase.Conventional communication cost
models estimate communication time by dividing total com-
municated data size by the aggregated bandwidth [12, 26, 27],
which do not capture the complex intra-connections and
inter-connections of GPU servers. For example, within a
DGX-1 server of 8 GPUs, the locations of allocated GPUs
decide whether NVLinks or PCIe links are used in inter-GPU
paths [31]. The whole cluster often adopts a hierarchical
fat-tree topology to connect GPU servers [12]. Behavior of
communication libraries is not negligible either, e.g., NCCL
chooses between ring or tree communication topologies, and
determines the chunking protocol and the number of paral-
lel channels based on the communicated data size and GPU
allocations. We use a GNN model to capture the inter-GPU
topology, learn the behavior of the NCCL library and pre-
dict the communication time. We collect over 5,000 training
samples using NCCL benchmarks by varying GPU alloca-
tions and tensor sizes to avoid overtuning. This prediction
is generic to different workloads, since ML jobs of different
models widely adopt NCCL as backend [32].
The complete cluster topology can be represented by a

graph𝐺 = (𝑉 , 𝐸) (an example in Fig. 7(a)).𝑉 = {𝑉𝑔𝑝𝑢,𝑉𝑐𝑝𝑢,𝑉𝑠𝑤}
is the set of nodes containing GPUs, CPUs, and network
switches. 𝐸 = {𝐸𝑛𝑣, 𝐸𝑝𝑐𝑖𝑒 , 𝐸𝑛𝑒𝑡 } is the set of links among dif-
ferent nodes. GPUs on the same server are inter-connected
with NVLinks and each GPU is connected to its affinity CPU
on the server with a PCIe link. If one CPU has an affinity NIC,
there is a link in the graph abstraction connecting the CPU
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Switch Switch

CPU

GPU4 GPU5

GPU6 GPU7

CPU CPU

GPU0

GPU2

CPU

Switch Switch

GPU5
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CPU
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Figure 7: (a) Graph abstraction of the cluster: blue lines
- NVLinks, orange lines - PCIe links, green lines - net-
work links. (b) Extract subgraph when allocating GPUs
0, 2, 5, 7 to a training job.

to the switch that the NIC is connected to, whose bandwidth
is the NIC bandwidth capacity.
We consider the following features for each GPU node

𝑣 ∈ 𝑉𝑔𝑝𝑢 :

ℎ𝑣 = (−−−→𝑡𝑦𝑝𝑒, 𝑑𝑎𝑡𝑎_𝑠𝑖𝑧𝑒, 𝑑𝑎𝑡𝑎_𝑡𝑦𝑝𝑒, 𝑐𝑝𝑢,𝑚𝑒𝑚)
−−−→
𝑡𝑦𝑝𝑒 is a one-hot encoding of GPU types in the cluster; the
other four values indicate communicated data size, tensor
data type (e.g., int8, fp16, fp32), number of available CPU
cores and memory bandwidth on its affinity CPU, respec-
tively. These features reflect the traffic volume and the trans-
mission capacity of hardware. NCCL takes this information
as input to select the communication topology from ring and
tree, determine the chunking protocols, and set the number
of parallel channels. For each CPU node in 𝑉𝑔𝑝𝑢 or switch
node in 𝑉𝑠𝑤 , the node features are zero vectors, as they do
not produce tensor data but join the feature aggregation
process. The edge feature 𝑒𝑣𝑢 between two nodes 𝑣 and 𝑢
is a scalar representing the bandwidth capacity in-between,
normalized against the maximal link speed in the cluster.

For any given set of allocated GPUs (e.g., to run a training
job), we can extract a subgraph𝐺𝑠𝑢𝑏 connecting those GPUs
(among which collective communication is run to synchro-
nize gradients). An example subgraph is given in Fig. 7(b). A
𝐾-layer GCN model is used to learn node embeddings from
the subgraph constructed. Node feature aggregation is done
on the subgraph only. In convolutional layer 𝑘 + 1, a node
𝑣 in the subgraph aggregates layer-𝑘 representations of the
nodes in its neighborhood setN𝑣 in the subgraph. To capture
the edge information, edge features are used as the weights
in aggregation:

ℎ𝑘+1𝑣 = 𝜎
(
𝑏𝑘 +𝑊 𝑘

∑︁
𝑢∈N𝑣

𝑒𝑣𝑢

𝑐𝑣𝑢
ℎ𝑘𝑢

)
where 𝜎 is the non-linear activation function, 𝑏𝑘 and𝑊 𝑘 are
learnable parameters of layer 𝑘 , and 𝑐𝑣𝑢 =

√︁
|N𝑣 |

√︁
|N𝑢 | is the

product of square roots of node degrees. The rationale behind
using the square root of node degrees is to prevent larger
feature values of high-degree nodes (e.g., one Top-of-Rack
switch could connect dozens of servers) from dominating the
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convolution operation. The final representations obtained
at layer 𝐾 are node embeddings of the subgraph, used for
generating the subgraph-level embedding.
We further conduct three-level pooling of node features

embeddings obtained from GCN modules to capture the sub-
graph structure. Each CPU node 𝑣 ∈ 𝑉𝑐𝑝𝑢 aggregates feature
embeddings of its affinity GPU nodes. At each switch, feature
embeddings of attached CPU nodes are aggregated. Then at
the cluster level, all aggregated feature embeddings of the
switches are further aggregated. The final feature embedding
vector of the subgraph is passed through a linear neural net-
work layer, producing a scalar value as the communication
time estimation, 𝑇𝑐𝑜𝑚𝑚 .

By utilizing GNNs, the performance model can learn how
NCCL reacts and chooses the communication strategies (e.g.,
topology, chunking protocol, channel number) under differ-
ent communication requests and GPU inter-connections.

To learn the model, we collect actual communication time
samples of the NCCL kernel on various subgraphs, by vary-
ing GPU allocations and communicated data properties (e.g.,
data size, data type).
Iteration Time. We insert the estimated communication
time of each communication operator into the computation
timeline, according to profiled communication triggering
points. Since computation and communication are over-
lapped in most cases, duration of the critical path in the
timeline of one training iteration is regarded as the iteration
time. Given GPU allocation subgraph 𝐺𝑠𝑢𝑏 and the global
batch size𝑀 , training throughput is estimated as:

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (𝐺𝑠𝑢𝑏, 𝑀) = 𝑀

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑃𝑎𝑡ℎ𝑇𝑖𝑚𝑒 (𝑇𝑐𝑜𝑚𝑝 ,𝑇𝑐𝑜𝑚𝑚𝑢)

4.2 Goodput Performance Metric
Statistic Efficiency. We use the metric in Pollux [27] to
model statistic efficiency of a training job, interpreted as
the training progress in terms of convergence achieved per
sample. Let 𝜙 =

𝑡𝑟 (∑)
|𝑅 |2 be the gradient noise scale (GNS)

observed from FaPES-Pod, which says that the noise scale is
equal to the sum of the variances of the individual gradient
components, divided by the global norm of the gradient
𝑅 [22]. Statistical efficiency under global batch size𝑀 can be
computed relative to the smallest batch size𝑀0 = 1:

𝐸𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝜙,𝑀) = 𝜙 +𝑀0

𝜙 +𝑀

Goodput.We formulate the Goodput performance of a train-
ing job as the product of throughput and statistic efficiency,
which indicates the training progress achieved per second:

𝑃𝑒𝑟 𝑓 (𝐺𝑠𝑢𝑏, 𝜙, 𝑀) = 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (𝐺𝑠𝑢𝑏, 𝑀)×𝐸𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝜙,𝑀)

This performance model is used by FaPES-Scheduler to
estimate the training performance under any GPU alloca-
tion and global batch size, and find the best global batch
size and GPU allocation that maximizes the Goodput of a
job. The learning rate is linearly scaled with the batch size
change [27].

5 AUTO-SCALING DESIGN
Wenext present the detailed mechanism for FaPES-Scheduler
to scale training jobs. When resource allocation to a job is
decided, FaPES-Scheduler controls join and leave of GPU
workers; FaPES-Pod detects these events and relaunches
training jobs efficiently with adjusted hyperparameters.

5.1 Filtering Running Jobs
FaPES-Scheduler selects running training jobs for resource
adjustment upon the start of a time round.
Inefficiency of Strawman Selection. One strawman ap-
proach is to select running jobs with poor performance
achievement, defined as the average Goodput performance
achieved over time rounds in its current schedule plan (de-
tailed definition in Sec. 5.3) divided by its optimal perfor-
mance according to the performance model (obtained by grid
search). Jobs whose performance achievement is lower than
a threshold are selected for rescheduling. However, several is-
sues arise for such a strategy. First, jobs that will be completed
soon could be selected, resulting in delayed completion or
even job starvation after rescheduling. Consider a scenario
in Fig. 8(a). In the current time round 𝑇0, 8 GPUs are occu-
pied by four distributed training jobs, and job4 and job5 are
waiting in the queue. Job0 is estimated to complete in𝑇1 and
job2 will scale up in𝑇1 according to their respective schedule
plan. If job0 is under poor performance achievement and
selected to be rescheduled, it will have a larger completion
time or even be starved in the queue. Second, the resource
recycled from the selected jobs may not be enough to serve
pending jobs, hurting overall performance. For example, if
job1 is selected, only 1 GPU becomes available for job4 and
job5 in the queue. Third, it is also possible that all running
jobs achieve good performance, preventing admission of new
jobs for potential global performance improvement.
Dynamic Filtering. To avoid these problems, we design
the job selection following two rules: (1) Remaining time
awareness. Jobs to be completed in the next time round are
not selected for rescheduling, to avoid increasing their total
execution time. (2) Dynamic selection instead of a determin-
istic threshold. FaPES-Schedule recycles resources of run-
ning jobs in increasing order of their performance achieve-
ment, until better average performance achievement is esti-
mated when allocating the recycled resources to all jobs to
be (re)scheduled (new arrival jobs and running jobs selected
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Figure 8: Filtering running jobs for rescheduling at T0.

to be rescheduled). To quickly estimate whether recycled
resources can lead to better overall performance, FaPES-
Schedule allocates recycled resources evenly among jobs to
be (re)scheduled, estimates their performance achievements,
and compares the average performance achievement with
the current average of selected running jobs. If there is no
potential performance improvement over existing resource
allocations of running jobs, no running jobs will be selected
for rescheduling. In Fig. 8(b), job3 is selected to be resched-
uled with jobs in the queue for better overall performance.
As job arrivals change over time in a severless platform, this
dynamic selection enables efficient resource reconfiguration
as needed.

5.2 Prioritising Jobs
In each time round, we (re)allocate GPUs to running jobs
that are selected to be rescheduled and new arrival jobs wait-
ing in the queue, referred to as a scheduling cohort. Optimal
resource allocation to the scheduling cohort that minimizes
the average job completion time is commonly a NP-hard
problem (Sec. 5.3), with a solution space growing exponen-
tially with the size of the cohort. Prioritizing jobs in resource
allocation helps reduce the solution complexity, to be linear
to the number of jobs in the scheduling cohort.
Priority Assignment. FaPES-Scheduler prioritizes jobs fol-
lowing three rules: (i) new arrival jobs have higher priorities
over running jobs, to reduce job queuing time (practically,
developers may like to have their jobs running first, and
then scaled up when available resources allow); (ii) new ar-
rival jobs are prioritized in decreasing order of the queueing
time, i.e., higher priority to longer-waiting jobs (e.g., those
not scheduled in the last few rounds); (iii) among running
jobs, jobs with lower performance achievement have lower
priority than those with higher performance achievement.
Starvation Avoidance. After a running job is selected to
be rescheduled, the job may wait in the queue due to its
lower priority than new arrival jobs. To avoid starvation,
FaPES-Scheduler uses pop up operations to give the highest

priority to such old jobs that have been waiting for a long
time (i.e., 3 time rounds in our experiments).

5.3 Scheduling Jobs
In each time round, FaPES-Scheduler makes a schedule plan
for each job 𝑗 in the current scheduling cohort 𝐽 . A schedule
plan is described by a set of binary decisions {𝑥𝑔

𝑗
(𝑡)} over

future time rounds, indicating whether job 𝑗 has a worker
placed on GPU 𝑔 in time round 𝑡 , for all 𝑔 ∈ G (G is the set of
all available GPUs), 𝑡 ∈ 𝑇 (𝑇 is the set of time rounds starting
from the current one). We assume no GPU sharing among
different jobs.
Schedule Planning Problem. Let 𝐿 𝑗 be the set of feasi-
ble schedule plans for job 𝑗 . Binary variable 𝑦 𝑗𝑙 indicates
whether the schedule 𝑙 ∈ 𝐿 𝑗 is chosen for job 𝑗 or not. 𝑑 𝑗𝑙 is
the completion time of job 𝑗 when choosing schedule 𝑙 . 𝑣 𝑗𝑙 (𝑡)
is the training throughput of job 𝑗 in time round 𝑡 predicted
from the performance model of the job when choosing sched-
ule 𝑙 , i.e., given its GPU allocation at 𝑡 , the corresponding
throughput when tuning the global batch size𝑀 to achieve
the best performance. Let 𝑆 be the set of all servers in the
serverless cluster, and G𝑠 be the number of available GPUs
on server 𝑠 . 𝐹 𝑗 is the maximal number of training epochs of
the job, specified by the 𝑙𝑒𝑛𝑔𝑡ℎ argument in the job function;
𝑁 𝑗 is the total number of data samples per training epoch ac-
cording to the 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 in use. 𝑡 denotes the duration of each
time round (600 seconds in our experiments). The schedule
planning problem that FaPES-Scheduler solves in each time
round can be formulated into the following optimization
problem, aiming at minimizing the completion time of all
jobs in the scheduling cohort:

min
∑︁
𝑗 ∈𝐽

∑︁
𝑙 ∈𝐿𝑗

𝑦 𝑗𝑙𝑑 𝑗𝑙 (1)

s.t.: ∀𝑗 ∈ 𝐽 :
∑︁
𝑙 ∈𝐿𝑗

𝑦 𝑗𝑙 ≤ 1 (2)

∀𝑡 ∈ 𝑇,∀𝑠 ∈ 𝑆 :
∑︁
𝑗 ∈𝐽

∑︁
𝑙 ∈𝐿𝑗

∑︁
𝑔∈G𝑠

𝑦 𝑗𝑙𝑥
𝑔

𝑗𝑙
(𝑡) ≤ G𝑠 (3)

∀𝑗 ∈ 𝐽 :
∑︁
𝑡 ∈𝑇

𝑡𝑣 𝑗𝑙 (𝑡) ≥ 𝐹 𝑗𝑁 𝑗 (4)

∀𝑗 ∈ 𝐽 , 𝑙 ∈ 𝐿𝑗 : 𝑦 𝑗𝑙 ∈ {0, 1} (5)

(2) specifies that at most one schedule plan is chosen for each
job. (3) ensures that the number of allocated GPUs on a server
is less than the server capacity. (4) guarantees completion
of each job’s training workload with the chosen schedule
plan: in each time round, the finished training workload
equals the product of the time duration 𝑡 and the training
throughput 𝑣 𝑗𝑙 (𝑡); the total number of trained samples over
the scheduled time rounds should be no smaller than the
total workload 𝐹 𝑗𝑁 𝑗 .
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𝑑 𝑗𝑙 , 𝑥
𝑔

𝑗𝑙
(𝑡) and 𝑣 𝑗𝑙 (𝑡) are given in each feasible schedule

plan 𝑙 , and the decisions to solve are 𝑦 𝑗𝑙 ’s. The number of
decision variables increases exponentially with the num-
bers of servers and jobs. We design an efficient algorithm
to derive good solutions in polynomial time, exploiting job
priorities and the primal-dual optimization framework [39].
We relax integrity constraint (5), associate dual variable 𝑢 𝑗
and 𝛼𝑠 (𝑡) with constraint (2) and constraint (3), respectively.
We then obtain the dual problem of the relaxed optimiza-
tion problem, where the complicating resource constraint (3)
(due to resource sharing among jobs on the same server) is
decomposed into the following:

∀𝑗 ∈ 𝐽 , 𝑙 ∈ 𝐿𝑗 : 𝑢 𝑗 ≤ 𝑑 𝑗𝑙 +
∑︁
𝑡 ∈𝑇

∑︁
𝑠∈𝑆

∑︁
𝑔∈G𝑠

𝛼𝑠 (𝑡)𝑥𝑔𝑗𝑙 (𝑡) (6)

𝛼𝑠 (𝑡) can be interpreted as the unit resource price for allocat-
ing one GPU in server 𝑠 in time round 𝑡 . Then the RHS of (6)
can be regarded as the total resource price of adopting the
schedule 𝑙 for job 𝑗 , which should be minimized to minimize
the dual objective (and hence optimize the primal objective
according to duality) [39].
Making schedule plans. We propose a primal-dual opti-
mization approach to minimize the RHS of (6) and obtain the
schedule plan of individual jobs. Iteratively, we compute the
best schedule for each job according to the current dual price
values (𝛼𝑠 (𝑡)), and then estimate the resulting load on each
server 𝑠 and updates the dual prices {𝛼𝑠 (𝑡)} accordingly.
Best schedule. Observe the RHS of (6): if we enforce a comple-
tion time 𝑑 𝑗𝑙 = 𝜏 𝑗 for job 𝑗 , the best schedule for job 𝑗 should
achieve the minimal total resource price 𝑃 (𝜏 𝑗 , 𝐹 𝑗𝑁 𝑗 ) accumu-
lated over time rounds before the enforced completion time
𝜏 𝑗 .

𝑃 (𝜏 𝑗 , 𝐹 𝑗𝑁 𝑗 ) =
∑︁
𝑡 ∈𝑇

∑︁
𝑠∈𝑆

∑︁
𝑔∈G𝑠

𝛼𝑠 (𝑡)𝑥𝑔𝑗𝑙 (𝑡)

To compute the schedule plan achieving this minimal total
resource price, we use dynamic programming to decide the
required training workload in each time round:

𝑃 (𝜏 𝑗 , 𝐹 𝑗𝑁 𝑗 ) = min
𝑤∈[0,𝐹 𝑗𝑁 𝑗 ]

𝑃_𝑡 (𝜏 𝑗 ,𝑤) + 𝑃 (𝜏 𝑗 − 1, 𝐹 𝑗𝑁 𝑗 −𝑤)

where 𝑃_𝑡 (𝜏 𝑗 ,𝑤) represents the minimal resource price in-
curred to finishworkload𝑤 during time round 𝑡 . We compute
𝑃_𝑡 (𝑡,𝑤) by greedily allocating GPUs on servers with the
smallest price 𝛼𝑠 (𝑡).
Specifically, for the first time round of a job with a new

schedule plan (new arrival or rescheduled), we gradually allo-
cate GPUs on servers in increasing order of their prices 𝛼𝑠 (𝑡)
until the required training workload of the job in 𝑡 can be
completed on the allocated GPUs, according to throughput
prediction with the performance model. If several servers
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Figure 9: Compute GPU allocation with least overall
resource price, when enforcing a job completion time
T7.

have the same resource price, we prefer ones that could
bring more performance gain, as guided by the performance
model. For later time rounds of the job, GPU allocation is
determined based on GPU placements of the job in the previ-
ous time round 𝑡 − 1, in order to reduce migration overhead.
If the existing GPU allocation (aka allocation in the previ-
ous round) can finish a larger training workload than the
required in 𝑡 , we gradually recycle GPUs allocated to the job
(i.e., scaling down) from servers with the highest prices until
the remaining GPU allocation can just fulfill the required
training workload; if the existing allocation cannot fulfill the
required workload in 𝑡 , we gradually add more GPUs to the
job (i.e., scaling up) on servers with lowest prices.

Take Fig. 9 as an example, to complete more training work-
load in T3 (than T2), the job chooses to scale up with server
S3 joined (servers are sorted with prices). Practically, the
minimal allocation unit within each server is 2 GPUs under
the same PCIe switch, for the purpose of reducing resource
fragmentation and mitigating PCIe interference between dif-
ferent jobs. Jobs in the scheduling cohort are allocated in
order, based on predefined priorities.

We enumerate completion times 𝜏 𝑗 , compute GPU alloca-
tion and overall resource prices accordingly, and choose the
one with the least overall resource price as the best schedule
plan for job 𝑗 .
Price updates. The schedule plan made for each job is col-
lected by FaPES-Board and the load (i.e., GPU occupation)
on each server is updated. We update the resource price of
each server according to the server load, such that a higher
load incurs a larger cost, for cluster-wide server load bal-
ance and resource interference mitigation among concur-
rent jobs. Especially, we update the server resource price
to 𝐻 (𝑈

𝐻
)𝑙𝑜𝑎𝑑/𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 , where 𝑈 and 𝐻 are upper bound and

lower bound of completion time among all jobs, respectively,
load and capacity indicate the occupied and total numbers
of GPUs on the server. In this way, we unify the arithmeti-
cal unit of price with the completion time in (6). We obtain
bound values by allocating one GPU and all GPUs to jobs in
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advance and predicting the corresponding makespan with
the throughput model.

Whenever a job is determined with a schedule plan, it will
be collected by FaPES-Board (as shown in Fig. 9) to update
the resource occupation and prices over future time rounds,
which are provided as the forward-looking information for
FaPES-Scheduler to make schedule plans for the following
jobs.
Compensation for Estimation Error. FaPES-Scheduler
relies on the performance model to predict the training
throughput and co-adapt training hyperparameters. To track
the actual training progress and correct the estimation error,
FaPES-Scheduler collects the actual remaining workload of
each job from FaPES-Pod and redistributes the remaining
workload among future time rounds when a job is to be
rescheduled. It is possible that a job will not be rescheduled
along its life cycle and the accumulated estimation error may
cause two situations. First, if the job is completed earlier
than the scheduled time, GPUs are wasted since the resource
board makes them available only when a job’s schedule plan
has been done. To counter this, we let FaPES-Scheduler no-
tify FaPES-Board to recycle the resources, once it identifies
the job has been completed (no more remaining samples
to train). Next, if the actual training takes more time than
the predicted, when the planned completion time is reached,
FaPES-Board could have reported availability of the job’s
GPUs to FaPES-Scheduler, leading to GPU conflicts. In such
a case, we allow the job to maintain its current GPU alloca-
tions until the tail samples are trained and retain the GPU
occupation status in FaPES-Board.

6 FAPES IMPLEMENTATION
We implement FaPES prototype using Python with 4,000+
LoC to be compatible with k8s of version 1.22. Developers
submit jobs with a specific tag on the scheduler field, indi-
cating that they will not be scheduled by the default k8s
scheduler. FaPES-Board is implemented as a daemon process
on the same server as FaPES-Scheduler, it receives update
and fetch requests from FaPES-Scheduler and maintains a
table recording the load and price of each server. FaPES-
Scheduler achieves the placement of FaPES-Pod onto GPUs
by binding specific servers with affinity, using the k8s client
APIs. When co-adapting the hyperparameters, FaPES passes
them as a key-value format in environment variables, which
can be read by k8s containers and exploited for training.
For running jobs that need to be scaled in or scaled out,
FaPES optimizes model checkpointing and training recovery
procedures as follows.

First, instead of periodically checkpointing model parame-
ters, we enable each job to checkpoint its model and upload

FaPES-Scheduler FaPES-Pod

preStop hook

kill containers

grace period

termination signal

Time
remove pods

handler(){ 
    model_save()
    model_upload()
    // release gpu
    exit()
}

Master Worker

Time

detecting

model saving

redistribution

Remaining Workers

model
synchronizing continous

training

detecting

model saving

information
redistribution

model
synchronizing

model saving

(a) graceful model checkpointing (b) efficient training recovery

redistributing synchronizing

continous training

Figure 10: FaPES-Pod supports efficient scaling.

it to the Model Storage when its containers are to be ter-
minated (e.g., resources preempted by new jobs or claimed
back by the inference VC). To ensure graceful termination,
FaPES-Scheduler sets up a preStop lifecycle hook for each
container as shown in Fig. 10(a). When FaPES-Scheduler
decides to stop a job, a termination signal is triggered to
FaPES-Pod, whose handler function will upload the model
within a grace period (15 seconds in our setting) and release
resources. After the grace period, the container is removed
successfully.

Second, when FaPES-Scheduler decides to scale a job, it re-
moves workers from or adds new workers to the job, instead
of relaunching the whole job. As illustrated in Fig. 10(b),
FaPES-Pod on the master worker relies on a Rendezvous
handler to detect worker joins and leaves. When a scaling
event is detected by the master worker, distributed training
is interrupted and the master worker in the job uploads the
current model parameters to Model Storage, which will be
fetched by the remaining workers for model parameter syn-
chronization. The data loader and rank information of all
workers are then redistributed based on the new hyperpa-
rameters and number of workers. This distribution process
can be fully overlapped in time with model synchronization,
allowing training to be efficiently recovered in a short time.

7 EVALUATION
7.1 Experimental Settings
Testbed. We evaluate FaPES on a serverless cluster con-
taining 16 servers and 128 GPUs in total. Each server is
equipped with Intel Xeon 8163 CPU@2.50GHz with 96 cores,
8 Nvidia V100 GPUs with 300GB/s NVLinks, 16 lanes of
16GB/s PCIe3.0 bus, and a Mellanox 200Gbps NIC. Linux-
4.19.91 OS and Kubernetes 1.22 are installed for container
management. The servers are inter-connected by three switches:
one switch is connected to 6 servers, the second switch is
connected to other 6 servers, and the third switch is to the
rest 4 servers. The switches are interconnected with 400GbE
high-bandwidth links.
Baselines. We compare FaPES-Manage against two base-
line strategies for resource loaning between inference VC
and training VC: (1) Dedicated partition - 𝑁𝑚𝑎𝑥

𝑟 servers are
reserved exclusively for inference workloads in the shared
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cluster, where 𝑁𝑚𝑎𝑥
𝑟 is the maximal number of servers re-

quired to meet SLOs of the inference workloads (i.e., the
maximal number of the sum of𝑚𝑖𝑛_𝑠𝑐𝑎𝑙𝑒 of inference jobs);
the remaining servers are dedicated to the training work-
load; (2) One-way resource loaning - only servers loaned
from inference VC to training VC will be reclaimed back for
inference workload when needed.
We compare FaPES-Scheduler with the following repre-

sentative scheduling strategies for ML clusters:
- First-in-First-out (FIFO). The training functions are pushed
into the tail of the job waiting queue, and the system fetches
from the head of the queue for training job execution. Elastic
scaling is not supported. The number of GPUs is set from 4
to 64, the learning rate is set to 10−4, and the local batch size
is set from 1 to 128.
- Shortest Job First (SJF). It prioritizes jobs with shorter
training length, and always executes jobs in the current
queue with the shortest training length first. Elastic scaling
is not supported. Number of GPUs and hyperparameters are
set the same as FIFO.
- Pollux [27]. It co-adapts hyperparameters of each training
job with allocated GPU resources, using a built-in Goodput
performance model. It employs a population-based search
algorithm to find optimal GPU allocations among all con-
current jobs, that maximize overall Goodput. In each time
round, all running jobs are terminated, and GPU resources
are completely reallocated based on the optimization results.
- ElasticFlow [12]. It is a serverless framework that supports
elastic scaling for ML training jobs. Each job has a specific
deadline that must be met. ElasticFlow has three modules: (1)
admission control - it accepts jobs that are estimated to be
able to meet the deadlines with available GPUs; (2) resource
allocation - it greedily allocates GPUs to jobs with higher
marginal throughput gain; (3) placement - a packing strategy
is used to reduce the communication cost. To implement it in
our system, admission control only accepts new jobs whose
initial GPU demand can be satisfied; in each time round,
resource allocations to all concurrent jobs are reconfigured.
- Optimus [26]: It reschedules all concurrent training jobs
in each time round based on an online fitting throughput
model. It first allocates at least one GPU for each running job
to avoid starvation, and then gradually allocates additional
GPUs to the job with the largest marginal throughput gain. It
employs a packing strategy to place allocated GPUs of each
job together.
Workloads. We collect training and inference workload
traces from a production serverlessML cluster.We extract the
tidal pattern of inference requests from the productive cluster
(Fig. 1) for inference job injections in our experiments. The
inference requests contain searching and recommendation
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Figure 11: Performance of resource loaning strategies.

models, and the resource demand varies as the min_scale
and max_scale parameters of inference jobs.
We use the observed arrival pattern (i.e., the number of

submitted requests per minute) to inject training jobs in
our experiments as well. Each training job function spec-
ifies: (1) the DNN model, which is randomly chosen from
four models, ResNet50 [17], VGG16 [30], GPT-2 [28], and
ViT [10]; (2) length, set from 100 epochs to 200 epochs (for
resource conservation); (3) dataset, ImageNet for vision tasks
ResNet50, VGG16 and ViT and a personal chat dataset for
natural language processing tasks GPT-2. Both datasets are
down-scaled for resource conservation. We train the models
using PyTorch 1.12 with CUDA 11.3 and NCCL version 2.14.

7.2 FaPES-Manager: Resource Loaning
We first evaluate how our resource loaning design between
inference VC and training VC benefit the cluster through-
put. By varying 𝑁𝑚𝑎𝑥

𝑟 and proportionally scaling resource
demands of inference jobs, we evaluate FaPES-Manager un-
der different levels of inference request traffic. To focus on
inspecting performance gains of resource loaning, we inject
but do not perform elastic scaling for the training workloads
in this experiment. The number of GPUs is set from 4 to 64,
the learning rate is set to 10−4, and the local batch size is set
from 1 to 128, according to experiences.

Fig. 11(a) reports the average queuing time and completion
time of training jobs under different resource loaning strate-
gies. Compared to the baselines, FaPES reduces the queuing
time of training workloads by 14.7% to 69.6%, and job com-
pletion time by 9.0% to 42.8%. Fig. 11(b) further shows that
FaPES improves the overall cluster utilization (the number
of occupied GPUs divided by the total number of GPUs) by
a factor of ×1.09 to ×1.67. With its dynamic resource loan-
ing between inference VC and training VC, under-utilized
servers can be fully utilized for training jobs waiting in the
queue, leading to reduced queuing times compared to the ded-
icated server partition baseline. Additionally, with FaPES’s
selective server movement from training VC to inference
VC for inference workload, less training job preemption and
relaunching are incurred, contributing to reduced job com-
pletion times compared to the one-way resource loaning
baseline.
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7.3 FaPES-Scheduler: Elastic Scaling
We next focus on comparing FaPES-Scheduler’s performance
on scheduling training jobs, and use all 128 GPUs for training
jobs.
Cluster Utilization. In Fig. 12, we observe FaPES achieves
up to 51.5% improvement in cluster utilization, compared to
non-elastic scheduling baselines. When compared to elastic
scheduling baselines, FaPES demonstrates a 6.5% improve-
ment, except Optimus. Optimus tends to launch as many
jobs as possible by assigning one GPU to each job first. This
greedy scheme results in the highest GPU allocation rate,
leading to better cluster utilization than others. Nonetheless,
when both inference and training jobs are run in the cluster,
FaPES-Scheduler can still achieve the best cluster utilization,
together with resource management with FaPES-Manager,
to be shown in Sec. 7.5.
Job Completion Time. In Fig. 13(a), FaPES achieves an av-
erage job completion time (JCT) reduction of 42.3% to 47.9%,
as compared to non-elastic scheduling baselines. The tail
jobs (e.g., 95th percentile) incur significantly longer comple-
tion times with the baselines, up to 2.8X longer than FaPES’s
95th percentile jobs. With the non-elastic baselines, jobs
are more likely to be queued and starved, as they prioritize
running jobs with large GPU demands. FaPES outperforms
the elastic scheduling baselines by 10.2% to 24.8%, attrib-
uted to several key factors: (i) Unlike other elastic methods
that require extensive resource reconfiguration across all
concurrent jobs, FaPES tracks runtime performance of run-
ning jobs and only adjusts resources for selected scheduling
cohort, incurring less job relaunching overhead; (ii) FaPES
employs a more sophisticated, topology-aware throughput
model that captures communication patterns and behavior
across the cluster, helping better scheduling decision mak-
ing; (iii) FaPES allocates GPUs based on training workload
requirements in future time rounds, with less GPU resources
allocated to a job predicted to complete soon and effective
resource allocation to jobs with more needs.
Queuing Time. In Fig. 13(b), Optimus incurs no queuing
time as all jobs are assigned with one GPU first. FaPES re-
duces job queuing time by 20.8% to 86.4% as compared to
other baselines, due to its design property and starvation
avoidance to avoid queuing jobs for an unexpected time.
Statistic Efficiency. Except Pollux, the existing scheduling
schemes primarily focus on the throughput impact when
scaling jobs, but neglect the training efficiency implications.
FaPES co-adapts the global batch size to ensure the best
Goodput at each job scale. As shown in Fig. 13(c), FaPES
demonstrates a 1.4× to 1.8× improvement in average Good-
put, compared to other baselines. Compared to Pollux, FaPES
achieves a 10.6% Goodput gain. This advantage is enabled

by FaPES’s more comprehensive performance model, which
is aware of the effects of GPU placements on training effi-
ciency. When setting the schedule plan, FaPES allows jobs to
be queued opportunistically, letting other running jobs com-
plete first if their remaining workloads are not much. This
reduces contention among many concurrent jobs, enabling
global optimal resource utilization and training efficiency.

Table 1 summarizes the detailed performance statistics of
each completed training job.

7.4 System Overhead
We next report the overhead existing in the system workflow.
Scheduling delay. The scheduling delay is collected as the
duration from the start of a time round to when FaPES-
Scheduler has made schedule plans for jobs in the current
scheduling cohort. Fig. 14(a) shows that FaPES-Scheduler is
able to make scheduling decisions within 580ms in 90% of
the cases. This shows the efficiency of FaPES’s scheduling
algorithm, whose complexity is only linear to the number of
selected jobs in the scheduling cohort.
Negotiation delay. The negotiation delay between FaPES-
Pod container and FaPES-Scheduler for gradient noise data
over RPC is measured as the duration from the start of send-
ing the training status update from the container to when
feedback from FaPES-Scheduler is received back at the con-
tainer. Fig. 14(b) reveals that the RPC negotiation can be done
within 2ms among 90% of collected time samples, indicating
that FaPES-Scheduler can efficiently track training status
from FaPES-Pod containers in a timely manner.
Migration overhead. The auto-scaling process of a job
involves several steps: model parameters need to be saved
in a checkpoint format and uploaded to Model Storage; then
when the job is restarted, it undergoes container creation
(assuming the container image is cached locally) and the
model is downloaded from Model Storage. Table 2 gives the
average time spent on each of these phases during VGG16
model training (with a model size of 528MB). The overhead
is acceptable as compared to the running time of jobs.
Prediction accuracy. During our experiments, we measure
training jobs’ actual communication time and compare the
actual time with estimated communication time using our
performance model. We collect more than 5,000 data samples
for training and the average error is 36%, which stems from
two factors: (i) NCCL uses GPU kernels for communication,
contending with training kernels in terms of GPU SM and
memory bandwidth; (ii) cross-traffic generated by concurrent
jobs in the shared cluster could cause the network volatile
and unstable. In FaPES, we compensate for accumulated
estimation errors and avoid any GPU conflict or waste, using
our design at the end of Sec. 5.3.
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Figure 12: Cluster utilization over time under different scheduling strategies.
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Figure 13: Cumulative distribution function (CDF) of job performance statistics under different scheduling strate-
gies.

Table 1: Detailed job performance statistics.

JCT (×1000 seconds) Queuing time (×1000 seconds) Goodput

avg. min. max. 95th. avg. min. max. 95th. avg. min. max. 95th.

FaPES 1.76 0.43 4.97 4.03 0.19 0.00 1.80 0.60 387.86 74.04 760.29 718.01
ElasticFlow 2.34 0.24 7.07 5.75 0.37 0.00 2.40 1.80 277.54 23.00 690.49 655.58
Pollux 2.07 0.14 5.52 4.99 0.24 0.00 1.80 1.20 350.47 60.56 733.33 674.24
Optimus 1.96 0.17 4.46 4.24 0.00 0.00 0.00 0.00 257.31 9.13 656.49 582.87
SJF 3.38 0.21 24.89 11.56 1.40 0.00 15.00 5.94 215.87 25.23 564.27 523.41
FIFO 3.05 0.82 15.45 8.40 0.78 0.00 9.60 4.14 226.25 20.98 605.04 567.89

Table 2: Time overhead in job migration.

Phase Time Spent (ms)
model checkpointing 1580
model upload 402
model download 140
container creation 3558

7.5 Large-scale Simulation
To evaluate FaPES in larger cluster settings, we further con-
duct trace-driven simulation. We simulate 1000 servers, each
equipped with 8 GPUs. The servers are interconnected in a
hierarchical topology: each rack contains 10 servers, which
are connected to a ToR switch; every 10 ToR switches are
further connected to an edge switch; and a total of 10 edge
switches are linked to the aggregation switch in the top
tier. The bandwidth capacity of links from bottom to top



FaPES: Enabling Efficient Elastic Scaling for Serverless Machine Learning Platforms SoCC ’24, November 20–22, 2024, Redmond, WA, USA

(a) scheduling overhead (b) negotiation overhead

Figure 14: System overhead.
(a) Cluster Utilization (b) Average JCT

(a) Cluster Utilization (b) Average JCT

Figure 15: Performance under different workload
traces.

tiers of the topology are 200Gbps, 400Gbps, and 800Gbps,
respectively. We inject inference requests with 𝑁𝑚𝑎𝑥

𝑟 = 200,
accounting for 20% of all servers. To verify the workload
generality, we use the task arrival pattern from the public
Google trace [5] to inject training models described in the
production trace above.

We apply profiled computation timeline of each job from
our textbed experiments. We apply job migration overhead
as given in Table 2 in every auto-scaling event of a job as
well. In the simulation, FaPES adopts its complete inter-VC
resource loaning and job scheduling designs, while differ-
ent scheduling baselines adopt one-way resource loaning
between inference and training VCs.

Fig. 15(a) shows that FaPES achieves 9.6% to 26% improve-
ment in terms of cluster utilization as compared to elastic
baselines, and up to 2× as compared to non-elastic baselines.
Fig. 15(b) reveals that FaPES reduces the average JCT by
11.9% to 33.8% as compared to elastic baselines, and by 47.2%
to 54.8% as compared to non-elastic baselines. These vali-
date efficiency of FaPES’s resource loaning and auto-scaling
designs.
We further adjust the duration of the time round, and in-

vestigate FaPES’s cluster utilization and job completion time,
when its inter-VC resource loaning is enabled and not. In
the case without loaning (denoted as w/o loan), servers that
are underutilized by the inference jobs will not be moved to
the training cluster for training jobs. In Table 3, we observe
that when the duration is longer, though impact of job mi-
gration overhead is smaller and more jobs can be scheduled

Table 3: Performance under different time round dura-
tions

10min 20min 30min

Util. JCT Util. JCT Util. JCT

w. loan 93% 38.5 min 81% 42.7 min 62% 53.0 min
w/o loan 82% 41.6 min 66% 59.3 min 51% 67.9 min

jointly, the resource adjustments are less timely, which leads
to poorer overall performance.

7.6 Discussions
Besides data parallel jobs, FaPES can also be extended to
serve jobs with various parallelism strategies like pipeline
parallel [23] or tensor parallel [36]. One can exploit FaPES by
integrating a newly designed performance model into FaPES-
Scheduler, while keeping the whole architecture and the
remaining components (i.e., FaPES-Board, FaPES-Manager,
FaPES-Pod) just the same. LLM workload with hybrid paral-
lelism [11] is not the target of FaPES. It is more efficient to
reserve dedicated servers and pack a large-scale model onto
them with local affinity [16].

8 CONCLUSION
We present FaPES, a FaaS-oriented performance-aware elas-
tic scaling system for serverless ML platforms running both
training and inference workloads. FaPES advocates flexible
two-way loaning of GPU resources between training and
inference virtual clusters, achieving improved overall cluster
utilization and better serving SLO fulfillment. Additionally,
FaPES carefully designs a training performance model and
a job scheduling mechanism to minimize training job com-
pletion time and maximize training efficiency globally. We
extensively evaluate FaPES with testbed and simulation ex-
periments, using ML job traces from a production cluster.
Experimental results demonstrate that FaPES achieves higher
cluster throughput and better individual job performance
compared to representative resource schedulers.
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