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Abstract—Distributed deep learning (DL) training constitutes
a significant portion of workloads in modern data centers that
are equipped with high computational capacities, such as GPU
servers. However, frequent tensor exchanges among workers
during distributed deep neural network (DNN) training can result
in heavy traffic in the data center network, leading to congestion
at server NICs and in the switching network. Unfortunately,
none of the existing DL communication libraries support active
flow control to optimize tensor transmission performance, instead
relying on passive adjustments to the congestion window or
sending rate based on packet loss or delay. To address this issue,
we propose a flow scheduler per host that dynamically tunes
the sending rates of outgoing tensor flows from each server,
maximizing network bandwidth utilization and expediting job
training progress. Our scheduler comprises two main compo-
nents: a monitoring module that interacts with state-of-the-art
communication libraries supporting parameter server and all-
reduce paradigms to track the training progress of DNN jobs, and
a congestion control protocol that receives in-network feedback
from traversing switches and computes optimized flow sending
rates. For data centers where switches are not programmable,
we provide a software solution that emulates switch behavior
and interacts with the scheduler on servers. Experiments with
real-world GPU testbed and trace-driven simulation demonstrate
that our scheduler outperforms common rate control protocols
and representative learning-based schemes in various settings.

Index Terms—Machine Learning System, Networking for AI,
Congestion Control Protocol.

I. INTRODUCTION

Nowadays leading IT companies are managing machine
learning (ML) clusters within data center environments. These
clusters are utilized to execute deep learning (DL) jobs aimed
at training ML models that cater to diverse business require-
ments. Modern ML models, such as deep neural networks
(DNNs), have been rapidly growing in size. For instance,
the latest language model, GPT-4 [1], boasts an impressive
1.76 trillion parameters. The scale of these large DNN models
necessitates the adoption of distributed iterative training, in-
volving multiple workers spread across multiple servers. Dur-
ing each training iteration, these workers exchange gradients
and parameters with one another following local computation,
resulting in significant network traffic and communication
bottleneck. For example, in a scenario where a job trains a
1GB model with 1000 workers over 1000 iterations, the total
traffic generated amounts to approximately 2PB [2].

Numerous approaches have been investigated to optimize
communication performance in distributed DNN training. One
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strategy involves reducing the traffic volume associated with
tensor transfers through techniques such as gradient quantiza-
tion [3] or in-network aggregation [4]. Other approaches aim to
maximize the overlap between tensor communication and gra-
dient computation, for instance, through the utilization of wait-
free backpropagation [5]. Additionally, careful transmission
scheduling techniques, such as tensor partitioning/fusion [6]
and transmission ordering [7], [8], have also been explored.

However, these existing approaches primarily focus on en-
hancing the training speeds of individual DNN jobs, neglecting
the potential resource contention that arises when multiple jobs
run concurrently in a shared cluster [9]. In such scenarios,
numerous DL jobs are likely deployed on the same server,
possibly sharing a single network interface card (NIC) and
in-network links for transmitting tensor traffic. The communi-
cation libraries currently employed in distributed deep learning
(i.e., NCCL [10], PS-Lite [11]) rely on conventional or OS-
default rate control mechanisms for managing tensor flows.
These protocols, such as CUBIC and Reno used in most
kernels, are designed with rules to increase congestion win-
dows for faster transmission and regulate congestion windows
after congestion events (e.g., packet loss). In the context of
distributed training, tensor traffic is generated periodically in
bursts, with a large number of gradient packets transmitted
within very short intervals following the completion of local
computations in each training iteration. Reacting to congestion
“after the fact” leads to inefficient transmissions and hampers
the communication phases of jobs. Consequently, there is a
lack of a proactive mechanism that can cooperatively inter-
leave ML flows, mitigating the risk of network congestion
and accelerating the training progress.

The networking community has a rich history of scheduling
flows in data centers, ranging from individual flow schedul-
ing [12], [13] to coflow scheduling [14]–[18] for application-
level optimization. However, when it comes to distributed ML
jobs, the coflow network abstraction falls short due to two
main reasons. First, existing solutions typically consider two
types of dependencies: “Start-After” (a coflow cannot start
until another coflow is completed) and “Finish-Before” (a
coflow cannot end until another coflow has ended). However,
these dependencies do not meet the efficiency requirements
of parameter synchronization in data-parallel training (we
detail the unique dependencies of parameter server architecture
and AllReduce collective in Sec. II-C). Scheduling flow rates
without considering these dependencies can lead to bandwidth
wastage and low throughput. Second, most coflow approaches
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employ a centralized scheduler, prohibiting scalability of dis-
tributed ML. Instead of treating the entire data center as a large
logical switch, each worker should monitor network statistics
along the routing path, negotiate with dependent workers, and
adjust its flow rate in a timely manner.

In this paper, we propose a distributed scheduling frame-
work designed specifically for managing ML flows within a
shared data center. Our scheduler runs in each server’s user
space and expedites job training for higher cluster throughput.
It interacts with ML communication libraries to collect training
status data, receives in-network feedback of link load from
switches and schedules the transmission rate of tensor flows.
Our contributions in developing the framework include:
⊲ We design a cooperative mechanism between schedulers

and switches. Each scheduler conveys lightweight messages
about the current flow schedules to traversing switches, and
the switches update load estimations of adjacent links over
future time. By continuous information exchange, schedulers
achieve global congestion-avoiding flow scheduling.
⊲ We integrate a control protocol into each scheduler to

compute the sending rates of flows at regular intervals. This
protocol is derived from a networking problem of minimizing
competition time among concurrent flows. It further takes into
account the dependencies of ML flows and dynamically adjusts
flow rates during each training iteration.
⊲ We implement a prototype of our scheduler, which is

compatible with the state-of-the-art communication libraries
for run-time status collection and achieves individual control
of each tensor flow sent out from the host. We also provide
a software solution to support our framework with non-
programmable switches.
⊲ We evaluate our system using representative DNN training

workloads on a GPU testbed under various settings. The results
demonstrate that our system can efficiently stagger bursty ML
flows to avoid congestion, thus expediting training over 15%
as compared to representative congestion control modules.
Profiling results also indicate minimal overhead in scheduling
latency and bandwidth consumption of message negotiations.

II. BACKGROUND AND MOTIVATION

A. Distributed DNN Training
ML model training typically minimizes a loss function over

a large dataset, which is time consuming. Many frameworks
have been developed for distributed training, e.g., Tensor-
Flow [19], MXNet [20] and PyTorch [21].

Synchronous data-parallel training is widely used in produc-
tion DL workloads [8]. Each worker (e.g., one GPU device)
computes gradients of model parameters using one mini-batch
from the allocated partial training dataset, exchanges gradients
with other workers, and updates the parameters of their local
model replica. Gradient exchange among workers is typically
achieved through a PS architecture [22] or an AllReduce
algorithm [23]. With the PS architecture, one or multiple
PSs aggregate gradients from all workers and send updated
parameters back to the workers in each iteration. Using an
AllReduce algorithm, workers perform a collective operation
(e.g., ring collective [10]) to sum or average the gradients and
disperse the aggregated gradients among themselves.
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Fig. 1: Congestion at server NIC due to burst ML flows, when
two training jobs (VGG19 and ResNet50) are co-located in the
same server with architecture shown in (a).

B. Bursty ML Flows Causes Congestion

Gradient/parameter tensors are transferred among workers
for parameter synchronization, using different communication
libraries with various DL frameworks. For example, MXNet
uses PS-Lite [11], TensorFlow [19] uses gRPC, and PyTorch’s
DDP paradigm enables collective communication with differ-
ent backends (e.g., Gloo [24], MPI [25] and NCCL [10]).
However, none of these libraries allow in-network control of
communication flows and rely on default congestion control
algorithms in the kernel modules. In an RDMA environment,
high-performance network stacks like Infiniband or RoCE are
deployed [26], and conventional congestion control solutions
(such as explicit congestion notification and priority-based
flow control [26])) are still commonly used.

Training jobs may involve many workers located on dif-
ferent servers, leading to a large volume of network traffic.
For example, a PS job training VGG16 with 10 workers
can generate over 5GB of traffic in each iteration [27]. In
addition, the bursty nature of tensor traffic during iterative
training can cause contention at a server’s NIC when multiple
jobs/workers located on the same server are sending tensors
concurrently. Fig. 1 shows a simple scenario of training
VGG19 and ResNet50 models, concurrently, using ring all-
reduce with Horovod and NCCL. Each server hosts a worker
of each job, and each worker communicates with another
worker of the same job on another server. The default CUBIC
congestion control is used, and the bandwidth usage of each
worker on the server is profiled using Nethogs and plotted
in Fig. 1(b). As shown in the figure, communication from
both jobs concurs over time, leading to congestion at the
NIC and slower communication in both jobs. This inspires
us to strategically adjust the transmission time and rate from
different co-located DL jobs to manage bandwidth usage at
NICs/network links for better overall job throughput.

C. Opportunities and Challenges

Opportunities exist with ML flow scheduling.
Periodic Training. In a shared data center, jobs arrive over
time, and the duration of their computation phases varies
due to differences in model complexity. Instead of pursuing
optimal scheduling over the system’s entire operation span,
we practically aim to schedule concurrent flows in a periodic
manner to reduce communication completion time.

We focus on a more common synchronous training scenario
that involves numerous mini-batch iterations because asyn-
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Fig. 2: Periodic communications of VGG19 and ResNet50.
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Fig. 3: Parameter Synchronization Schemes.

chronous algorithms tend to trade off training efficiency for
throughput by removing some of the iteration barriers.
Flow Dependency. During each iteration of a distributed job,
tensor flows sent out from workers are interdependent. In the
PS architecture depicted in Fig. 3(a), parameters can only
be broadcast after aggregating the corresponding gradients
received from workers. In the AllReduce collective, shown in
Fig. 3(b), each worker must receive gradient chunks from the
preceding worker, aggregate them with its own chunks, and
send the result to the subsequent worker. Maintaining these
dependencies is crucial to maximize throughput and efficiently
utilize bandwidth during the communication phase. However,
existing coflow solutions focus on the dependent relationship
of start time or finish time among different transmissions,
neglecting the dependencies during the whole period [28].
Considering the start time of different coflows (e.g., aggre-
gation flows from workers to PSs as one coflow, broadcast
flows from PSs to workers as the other coflow) leads to a
low pipelining degree in transmission since the aggregated
parameters could be immediately broadcast to all workers; on
the other hand, if we focus on the finish time dependency,
any flow rate allocation that violates the ML dependencies
throughout the transmission can result in wasted bandwidth
and inefficient transmission.

Improvement space exists by tuning the rates dynamically
to cater to the dependency. Taking the PS job as an example,
if any gradient flow sent to a PS is delayed, the scheduler
on that PS node should reduce bandwidth allocation to the
broadcast flows but assign higher transmission rates to other
co-located jobs’ flows. Conversely, considering that the PS has
available bandwidth for sending broadcast flows, schedulers at
workers should schedule faster gradient flow transmissions to
best exploit the currently available bandwidth. Similarly, each
worker in the AllReduce collective should have a lower allo-
cated bandwidth if the transmission of its precedent worker is
delayed, and take the opportunity to increase the transmission
rate if its subsequent worker has a higher bandwidth.
Staggering Flows. ML training jobs alternate between com-
putation and communication phases. When multiple ML flows
compete for bandwidth on the same server or link, equal

sharing of bandwidth can lead to reduced transfer speeds
and congestion due to bursty traffic patterns. In the worst-
case scenario, multiple jobs undergo communication phase
simultaneously, intensifying the competition for bandwidth.
When they step into the following computation phase, the
network bandwidth remains under-utilized. Hence, staggering
flows is an effective method to alleviate congestion, enabling
each transmission to fully utilize the available bandwidth and
facilitating overlapping of computations and communications
of differnet jobs. For example, consider two co-located training
jobs, ResNet50 and VGG19. If the ResNet50 job is in its com-
munication phase while the VGG19 job completes a compu-
tation phase and is ready to transmit gradients, staggering the
communication in the VGG19 job until ResNet50 completes
its communication allows the ResNet50 job to commence its
next computation phase earlier, potentially overlapping with
the communication phase of VGG19.

Determining the optimal flow staggering schedule for mul-
tiple jobs in a shared cluster is challenging, particularly when
individual host schedulers make independent decisions. Host
schedulers have limited visibility for decision-making in two
key aspects. Firstly, they lack awareness of the workloads on
in-net links that their flows traverse, as these links are shared
by flows from different hosts. This makes it difficult to regulate
flow rates before congestion occurs within the network. Sec-
ondly, the scheduling strategies employed by other schedulers
are not disclosed, posing obstacles to global scheduling. To
address these challenges, our design incorporates switches
to provide schedulers with information on future load over
routing paths. The scheduler adopts an efficient rate control
solution derived from a global optimization problem.

In summary, none of the existing scheduling systems could
satisfy the aforementioned requirements to accelerate commu-
nication in ML jobs.

III. SYSTEM FRAMEWORK

We consider a data center consisting of GPU servers
interconnected by a switching network. Data-parallel DNN
training jobs are submitted to run in the data center over time,
which use either the PS architecture [22] or the all-reduce
paradigm [23] for gradient/parameter communication. Workers
(PSs) of a job could be assigned to one or multiple servers, due
to resource fragmentation. Our scheduling framework consists
of three key modules as shown in Fig. 4.

A. A scheduler on each server host

We deploy a scheduler on every server hosting distributed
training jobs. Each scheduler runs in the user space of the host
as an independent process. Upon the arrival of a training job,
the scheduler on each of the servers, where a worker or PS
of the job is deployed, collects the job information including
the architecture used for parameter synchronization and the
total parameter size of the model (which can be specified
by the job owner). During training, the monitoring block in
each scheduler interacts with the communication library of
the worker/PS to track the tensor transfers by comparing the
volume of delivered tensors and the total model gradients.
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Abstract—Cloud services have changed the way computing
power is delivered to customers, by offering computing and
storage capacity in remote data centers on demand over the
Internet. The success of the cloud model, however, has not come
without challenges. Cloud providers have repeatedly been related
to reports of major failures, including outages and performance
degradation. The internal network of cloud data centers has
frequently been identified as a root-cause of these problems,
showing that network provisioning and monitoring is still a major
challenge for the deployment of cloud services. This paper argues
that today’s technologies for measuring and monitoring Internet
traffic could be applied in the context of the internal network
of cloud data centers as well. To support that, we first show
the suitability of flow-based traffic measurements for monitoring
cloud services. Then, we present a case on bandwidth capacity
provisioning to exemplify how flow-based measurements can be
used to guarantee the performance of cloud services. Finally, we
discuss future directions we believe will guide the development
of new cloud services. We advocate that next generation cloud
services will not only rely on the Internet as a means to reach
users, but also influence how the Internet itself is organized. We
illustrate this trend by describing our ongoing research on mobile
clouds.

I. INTRODUCTION

Cloud services have changed the way computing power
is delivered to customers. Cloud services abstract away the
complexity of system management, by offering computing
and storage capacity in remote data centers on demand. In
retrospective, this advent can be seen as a natural step in
the evolution of the Internet [1]. The extreme growth of Web
services popularity in the early 2000’s led cloud providers,
such as Amazon, Google and Microsoft, to invest both in
data center provisioning for their own services and in the
development of scalable software solutions [1]. Even though
the later conversion of this infrastructure into a utility may
have involved major technical challenges, the way for a new
computing model was certainly starting to be paved.

It is not surprising that many companies are considering
to migrate services to the cloud [14]. Outsourcing to the
cloud is deemed advantageous given the gains obtained from
the reduced costs, flexible provisioning and high scalability.
However, this migration also has drawbacks. Cloud providers
have been repeatedly related to reports of major failures [6].
Among the most common causes, network failures have been
pointed as a recurring problem, e.g., because of internal recon-
figurations in cloud data center networks [6]. Addressing the
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Fig. 1. An example of a generic data center topology.

problems in the cloud internal networks is, therefore, essential
for the deployment of dependable cloud services.

It is known that some cloud providers (e.g., Google) en-
gineer their own networks starting from hardware compo-
nents, making the data center application-specific. However,
the tendency is to generalize data centers to well-known
topologies, thus enabling the evolution of such infrastructure
as the application mix changes [3]. Therefore, such a generic
internal cloud network would have a topology similar to the
one presented in Fig. 1. In this simplified 3-tiered topology, the
edge switches – also known as Top-of-Rack (ToR) switches –
interconnect servers that host the services. The ToR switches
are interconnected by switches at the aggregation level, and
these are interconnected by devices (e.g., IP routers) in the
core tier. The core tier also connects the data center to
external networks (e.g., the Internet). In the topology of Fig. 1,
traffic between services running in the same rack goes via a
two-hop path: from the server to the ToR switch and back.
Communication between services running in different racks,
however, may require up to six hops.

As one can see, internal networks of cloud data centers
closely resemble those supporting the Internet itself. Therefore,
we believe that widely-deployed technologies to measure and
monitor Internet traffic could be brought to the context of
internal cloud networks as well. This paper illustrates this point
of view by discussing the use of flow-based measurements
to monitor and provision networks for cloud services. Flow-
based measurements are typically exported by network devices,
such as routers and dedicated probes, using protocols such as
Cisco NetFlow [4] or IPFIX [5]. We first review the suitability
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Cloud services have changed the way computing power
is delivered to customers. Cloud services abstract away the
complexity of system management, by offering computing
and storage capacity in remote data centers on demand. In
retrospective, this advent can be seen as a natural step in
the evolution of the Internet [1]. The extreme growth of Web
services popularity in the early 2000’s led cloud providers,
such as Amazon, Google and Microsoft, to invest both in
data center provisioning for their own services and in the
development of scalable software solutions [1]. Even though
the later conversion of this infrastructure into a utility may
have involved major technical challenges, the way for a new
computing model was certainly starting to be paved.

It is not surprising that many companies are considering
to migrate services to the cloud [14]. Outsourcing to the
cloud is deemed advantageous given the gains obtained from
the reduced costs, flexible provisioning and high scalability.
However, this migration also has drawbacks. Cloud providers
have been repeatedly related to reports of major failures [6].
Among the most common causes, network failures have been
pointed as a recurring problem, e.g., because of internal recon-
figurations in cloud data center networks [6]. Addressing the
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problems in the cloud internal networks is, therefore, essential
for the deployment of dependable cloud services.

It is known that some cloud providers (e.g., Google) en-
gineer their own networks starting from hardware compo-
nents, making the data center application-specific. However,
the tendency is to generalize data centers to well-known
topologies, thus enabling the evolution of such infrastructure
as the application mix changes [3]. Therefore, such a generic
internal cloud network would have a topology similar to the
one presented in Fig. 1. In this simplified 3-tiered topology, the
edge switches – also known as Top-of-Rack (ToR) switches –
interconnect servers that host the services. The ToR switches
are interconnected by switches at the aggregation level, and
these are interconnected by devices (e.g., IP routers) in the
core tier. The core tier also connects the data center to
external networks (e.g., the Internet). In the topology of Fig. 1,
traffic between services running in the same rack goes via a
two-hop path: from the server to the ToR switch and back.
Communication between services running in different racks,
however, may require up to six hops.

As one can see, internal networks of cloud data centers
closely resemble those supporting the Internet itself. Therefore,
we believe that widely-deployed technologies to measure and
monitor Internet traffic could be brought to the context of
internal cloud networks as well. This paper illustrates this point
of view by discussing the use of flow-based measurements
to monitor and provision networks for cloud services. Flow-
based measurements are typically exported by network devices,
such as routers and dedicated probes, using protocols such as
Cisco NetFlow [4] or IPFIX [5]. We first review the suitability
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for the deployment of dependable cloud services.
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edge switches – also known as Top-of-Rack (ToR) switches –
interconnect servers that host the services. The ToR switches
are interconnected by switches at the aggregation level, and
these are interconnected by devices (e.g., IP routers) in the
core tier. The core tier also connects the data center to
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traffic between services running in the same rack goes via a
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Each scheduler works in a time-slotted manner. When a
tensor flow from a worker/PS starts, the scheduler determines
the sending rate of the flow in each time slot, based on a
carefully designed control protocol, until the tensors are fully
transmitted. The determined sending rates are passed to the
datapath program launched in the kernel to control actual
packet transmissions and will not change within one time slot.

Monitoring Block. It interacts with our customized com-
munication libraries that each worker/PS uses. To achieve
individual flow control, the monitoring block identifies dif-
ferent connections between workers or PSs with their socket
handlers, collects the size of tensors ready to be synchronized
from the respective communication module and infers the job
training status, i.e., which iteration the training has reached,
whether the communication phase has started in the current
training iteration and how many tensors remain to be trans-
mitted for the current flow. It only focuses on inter-server
flows (distinguished according to source and destination IP
addresses), since intra-server communication is much faster
through NVLinks. The training status information will be
exploited by the control protocol to dynamically adjust the
sending rates of flows.

Control Protocol. The protocol receives notifications from
the monitoring block at the start of each new communication
round of a training job. It includes the newly generated flows in
its scheduling process. These flows follow the ECMP routing
protocol [29] for their traversal. The scheduler retrieves link
load estimations over future time slots from switches (Sec. IV-
A) and determines the initial sending rate at the beginning of
each time slot (Sec. IV-B).

Then over time, the scheduler dynamically adjusts the
flow transmission rates, according to link load dynamics and
flow dependencies (Sec. IV-C). The goal is to reduce the
communication time in each iteration of each training job.

B. Modified communication libraries

We modify DL communication libraries (NCCL [10] for
all-reduce jobs and PS-Lite [11] for PS jobs) to allow the
communication module of a worker/PS to interact with our
scheduler located on the same server. When tensors are ready
for communication, the accumulative size of tensors enqueued
into CUDA kernel (in NCCL) or pushed/pulled with remote
servers (in PS-Lite) is recorded and stored into host shared
memory. The monitoring block in the co-located scheduler
can then fetch the value to infer the training status. We detail
the implementation in Sec. V.

C. Switch

To prevent congestion on in-network links, our approach
assumes the presence of programmable switches in the data
center. These switches are capable of estimating future loads
on adjacent links for a specified number of time slots (10 time
slots in our setting). Each switch collects schedule information
carried in bypassing flows, including planned transmission
rates for future time slots. By aggregating the traffic load
for each link across future time slots, the switch obtains
load estimations. These load estimations are then sent to the
schedulers on servers as in-network feedback, which enables
the schedulers to anticipate potential congestion caused by
concurrent training jobs and make more effective plans for
tensor transfers. In data centers where programmable switches
are not available, we provide a software-based solution that
serves as a switch module on servers (refer to Sec. IV-A).

IV. DETAILED DESIGN

In Sec. IV-A, we first present how switches provide es-
timated load information to schedulers. Following that, in
Sec. IV-B, we formulate a global flow scheduling problem and
employ an online primal-dual algorithm to derive the initial
schedule, leveraging the provided load information as input.
Finally, in Sec. IV-C, we describe the detailed control proto-
col implemented in our distributed schedulers. This protocol
dynamically adjusts flow rates to cater to flow dependencies,
based on the initial schedule.

A. Switch module

Link Load Estimation. Each switch maintains a load table
recording the estimated link load over future  time slots
(including the current time slot when the flow schedule is
being made), as shown in Fig. 5. Each traversing flow carries
its transmission schedule in the packet payload, which is a
set of rates over future  time slots decided by the sender-
side scheduler. We assume the flow routing path is decided by
ECMP protocol [30] and keeps unchanged. Switches extract
bypassing flows’ schedule payload and update load estimation
of their adjacent links by accumulating them with scheduled
rates of other bypassing flows in each future time slot.

For example in Fig. 5, a flow carrying its rate schedule
(i.e., 5Gbps in time slot C1, 20Gbps in C2, etc.) traverses links
;1 and ;4 through a switch. In the switch’s load table, rates
of the flow (marked in red) are then added onto the original
load estimation to render the new load estimation in rows
corresponding to the links.
Link Load Feedback. Along the path of a flow, each by-
passing switch encodes the load estimation (i.e., a  -element
array) of its outgoing link in the path into the payload of a
few packets of the flow. The load of links in the flow’s path in
the same time slot is summed up to indicate the overall path
load of transmitting the flow in the time slot. The path load
is carried in the flow packet and the flow receiver will encode
it into the payload of ACK packets sent back to the sender
of the flow. To allow schedule information exchange among
schedulers, the receiver of a flow also encodes the transmission
status of its outgoing flows (if any) into the payload of ACK
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control protocols such as TCP vegas [30], FAST TCP [31],
and Compound TCP [32] have inherent limitations to achieve
both fast convergence and low latency in current high-speed
datacenter networks. They only react after queue build-up.
Although TIMELY mitigates the problem by using the delay
gradient, it fails to converge to a fixed point.

B. Framework

Before proceeding to describe the framework of RCC, we
first explain why RCC is window-based and delay-based.

Window-based or rate-based. In rate-based congestion con-
trol schemes, packets are continuously sent before receiving
feedback, which may further aggravate congestion when feed-
back is delayed due to congestion. Window-based solutions
can avoid this problem by limiting the number of inflight
packets even if the feedback is delayed. In this way, congestion
will not be magnified, making the network more stabilized.

Delay-based or ECN-based. ECN is per-hop feedback,
which can prevent packet loss efficiently. However, ECN-based
schemes fail to effectively control the end-to-end queuing
length as the number of hops increases, while RTT is end-
to-end feedback information, which can be used to control the
end-to-end queuing length more effectively.

Fig. 2 shows the framework of RCC. It includes three
main functions: Differentiating Congestion Types (§III-C),
Explicit Window Assignment (§III-D) and PID-based Iterative
Adjustment (§III-E). Each flow starts at line rate like other
RDMA congestion control mechanisms [3], [4], [8]. Each data
packet has a timestamp field to indicate the packet’s sending
time. As shown in Alg. 1, the receiver calculates the one-way
delay by subtracting the timestamp value from the current time
when the packet arrives (Line 3). Besides, if the packet belongs
to a new flow or is the last packet for an existing flow, the
receiver will update the number of active flows and calculate
the new fair share (Line 4).

If the flow has been in PID-based congestion control pro-
cedure, it will stay in this state until the end (Line 6-9). This
is because most flows are quite short in high-speed datacenter
networks and switching between Explicit Window Assignment
and PID-based congestion control may cause in-network queue
oscillation. And the PID-based congestion control results will
be limited by Explicit Window Assignment. Thus, last-hop
congestion will not happen again.

Algorithm 1 RCC Algorithm at Receiver Side

1: INPUT: data packet pkt
2: OUTPUT: sending window cwnd
3: rtt ← CALCULATERTT(pkt)
4: num ← UPDATEFLOWNUMBER(pkt)
5: fair share ← EXPLICITWINDOWASSIGNMENT(num)
6: if flow already in PID-based congestion control then
7: cwnd ← PIDCONTROL(rtt, fair share)
8: return
9: end if

10: if RX rate >= NIC speed ∗η then
11: cwnd ← fair share
12: else
13: in network ← CONGESTIONDETECTION(rtt)
14: if in network == true then
15: cwnd ← PIDCONTROL(rtt, fair share)
16: else
17: cwnd ← fair share
18: end if
19: end if

Otherwise, the receiver uses one-way delay and other in-
formation to determine if in-network congestion occurs (Line
13). If in-network congestion does not happen, the receiver
explicitly assigns the sending window to the fair share (Line
11 and 17). For in-network congestion, the receiver adjusts
the sending window using the PID-based congestion control
mechanism and the upper bound of the sending window is set
to be the fair share (Line 15). After the adjustment of sending
window, the receiver piggybacks this information by ACK
packets to senders. The sender adjusts its sending window
after receiving each ACK packet.

C. Differentiating Congestion Types

Detecting network congestion. In RCC, each packet carries
the sending timestamp in its header. Upon receiving a packet,
a receiver can obtain the real-time one-way delay of the
corresponding connection. Note that here we assume that the
clock at senders and receivers are synchronized [33].

Let RTT base
i and RTTi(t) represent the base and measured

one-way delay of connection i, respectively. We can use the
difference between RTTi(t) and RTT base

i to infer whether
network congestion happens or not. If the difference between
RTTi(t) and RTT base

i exceeds a threshold, then RCC will
decrease the congestion window of connections.

However, many flows in datacenter networks are extremely
short [34], maybe containing only several packets. Besides,
each connection starts at line rate. Thus, these extremely short
flows possibly incur ephemerally high RTTi(t). If we directly
use RTTi(t) to detect network congestion and decrease the
congestion window of all connections once the instantaneous
RTTi(t) is larger than RTT base

i , network bandwidth will
possibly suffer from being under-utilized.

Enlightened by the fast recovery mechanism in TCP, we
use n consecutive RTTi(t) values to infer whether network
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control protocols such as TCP vegas [30], FAST TCP [31],
and Compound TCP [32] have inherent limitations to achieve
both fast convergence and low latency in current high-speed
datacenter networks. They only react after queue build-up.
Although TIMELY mitigates the problem by using the delay
gradient, it fails to converge to a fixed point.

B. Framework

Before proceeding to describe the framework of RCC, we
first explain why RCC is window-based and delay-based.

Window-based or rate-based. In rate-based congestion con-
trol schemes, packets are continuously sent before receiving
feedback, which may further aggravate congestion when feed-
back is delayed due to congestion. Window-based solutions
can avoid this problem by limiting the number of inflight
packets even if the feedback is delayed. In this way, congestion
will not be magnified, making the network more stabilized.

Delay-based or ECN-based. ECN is per-hop feedback,
which can prevent packet loss efficiently. However, ECN-based
schemes fail to effectively control the end-to-end queuing
length as the number of hops increases, while RTT is end-
to-end feedback information, which can be used to control the
end-to-end queuing length more effectively.

Fig. 2 shows the framework of RCC. It includes three
main functions: Differentiating Congestion Types (§III-C),
Explicit Window Assignment (§III-D) and PID-based Iterative
Adjustment (§III-E). Each flow starts at line rate like other
RDMA congestion control mechanisms [3], [4], [8]. Each data
packet has a timestamp field to indicate the packet’s sending
time. As shown in Alg. 1, the receiver calculates the one-way
delay by subtracting the timestamp value from the current time
when the packet arrives (Line 3). Besides, if the packet belongs
to a new flow or is the last packet for an existing flow, the
receiver will update the number of active flows and calculate
the new fair share (Line 4).

If the flow has been in PID-based congestion control pro-
cedure, it will stay in this state until the end (Line 6-9). This
is because most flows are quite short in high-speed datacenter
networks and switching between Explicit Window Assignment
and PID-based congestion control may cause in-network queue
oscillation. And the PID-based congestion control results will
be limited by Explicit Window Assignment. Thus, last-hop
congestion will not happen again.

Algorithm 1 RCC Algorithm at Receiver Side

1: INPUT: data packet pkt
2: OUTPUT: sending window cwnd
3: rtt ← CALCULATERTT(pkt)
4: num ← UPDATEFLOWNUMBER(pkt)
5: fair share ← EXPLICITWINDOWASSIGNMENT(num)
6: if flow already in PID-based congestion control then
7: cwnd ← PIDCONTROL(rtt, fair share)
8: return
9: end if

10: if RX rate >= NIC speed ∗η then
11: cwnd ← fair share
12: else
13: in network ← CONGESTIONDETECTION(rtt)
14: if in network == true then
15: cwnd ← PIDCONTROL(rtt, fair share)
16: else
17: cwnd ← fair share
18: end if
19: end if

Otherwise, the receiver uses one-way delay and other in-
formation to determine if in-network congestion occurs (Line
13). If in-network congestion does not happen, the receiver
explicitly assigns the sending window to the fair share (Line
11 and 17). For in-network congestion, the receiver adjusts
the sending window using the PID-based congestion control
mechanism and the upper bound of the sending window is set
to be the fair share (Line 15). After the adjustment of sending
window, the receiver piggybacks this information by ACK
packets to senders. The sender adjusts its sending window
after receiving each ACK packet.

C. Differentiating Congestion Types

Detecting network congestion. In RCC, each packet carries
the sending timestamp in its header. Upon receiving a packet,
a receiver can obtain the real-time one-way delay of the
corresponding connection. Note that here we assume that the
clock at senders and receivers are synchronized [33].

Let RTT base
i and RTTi(t) represent the base and measured

one-way delay of connection i, respectively. We can use the
difference between RTTi(t) and RTT base

i to infer whether
network congestion happens or not. If the difference between
RTTi(t) and RTT base

i exceeds a threshold, then RCC will
decrease the congestion window of connections.

However, many flows in datacenter networks are extremely
short [34], maybe containing only several packets. Besides,
each connection starts at line rate. Thus, these extremely short
flows possibly incur ephemerally high RTTi(t). If we directly
use RTTi(t) to detect network congestion and decrease the
congestion window of all connections once the instantaneous
RTTi(t) is larger than RTT base

i , network bandwidth will
possibly suffer from being under-utilized.

Enlightened by the fast recovery mechanism in TCP, we
use n consecutive RTTi(t) values to infer whether network

^ϭ

Z

^Ϯ

ĚĂƚĂ

ƚŝŵĞƐƚĂŵƉ

ĚĂƚĂ

ĐǁŶĚ

��<

(a) Workflow

5&&�RYHUYLHZ

ϰ͘�&ĞĞĚďĂĐŬ�
ŐĞŶĞƌĂƚŝŽŶ

ϭ͘��ŽŶŐĞƐƚŝŽŶ�
ĚĞƚĞĐƚŝŽŶ

Ϯ͘��ǆƉůŝĐŝƚ�
tŝŶĚŽǁ�

�ƐƐŝŐŶŵĞŶƚ

ĚĂƚĂ

ϯ͘�W/�ͲďĂƐĞĚ�
�ŽŶŐĞƐƚŝŽŶ�
�ŽŶƚƌŽů

(b) RDMA NIC components

Fig. 2: The overview of RCC framework.

control protocols such as TCP vegas [30], FAST TCP [31],
and Compound TCP [32] have inherent limitations to achieve
both fast convergence and low latency in current high-speed
datacenter networks. They only react after queue build-up.
Although TIMELY mitigates the problem by using the delay
gradient, it fails to converge to a fixed point.

B. Framework

Before proceeding to describe the framework of RCC, we
first explain why RCC is window-based and delay-based.

Window-based or rate-based. In rate-based congestion con-
trol schemes, packets are continuously sent before receiving
feedback, which may further aggravate congestion when feed-
back is delayed due to congestion. Window-based solutions
can avoid this problem by limiting the number of inflight
packets even if the feedback is delayed. In this way, congestion
will not be magnified, making the network more stabilized.

Delay-based or ECN-based. ECN is per-hop feedback,
which can prevent packet loss efficiently. However, ECN-based
schemes fail to effectively control the end-to-end queuing
length as the number of hops increases, while RTT is end-
to-end feedback information, which can be used to control the
end-to-end queuing length more effectively.

Fig. 2 shows the framework of RCC. It includes three
main functions: Differentiating Congestion Types (§III-C),
Explicit Window Assignment (§III-D) and PID-based Iterative
Adjustment (§III-E). Each flow starts at line rate like other
RDMA congestion control mechanisms [3], [4], [8]. Each data
packet has a timestamp field to indicate the packet’s sending
time. As shown in Alg. 1, the receiver calculates the one-way
delay by subtracting the timestamp value from the current time
when the packet arrives (Line 3). Besides, if the packet belongs
to a new flow or is the last packet for an existing flow, the
receiver will update the number of active flows and calculate
the new fair share (Line 4).

If the flow has been in PID-based congestion control pro-
cedure, it will stay in this state until the end (Line 6-9). This
is because most flows are quite short in high-speed datacenter
networks and switching between Explicit Window Assignment
and PID-based congestion control may cause in-network queue
oscillation. And the PID-based congestion control results will
be limited by Explicit Window Assignment. Thus, last-hop
congestion will not happen again.

Algorithm 1 RCC Algorithm at Receiver Side

1: INPUT: data packet pkt
2: OUTPUT: sending window cwnd
3: rtt ← CALCULATERTT(pkt)
4: num ← UPDATEFLOWNUMBER(pkt)
5: fair share ← EXPLICITWINDOWASSIGNMENT(num)
6: if flow already in PID-based congestion control then
7: cwnd ← PIDCONTROL(rtt, fair share)
8: return
9: end if

10: if RX rate >= NIC speed ∗η then
11: cwnd ← fair share
12: else
13: in network ← CONGESTIONDETECTION(rtt)
14: if in network == true then
15: cwnd ← PIDCONTROL(rtt, fair share)
16: else
17: cwnd ← fair share
18: end if
19: end if

Otherwise, the receiver uses one-way delay and other in-
formation to determine if in-network congestion occurs (Line
13). If in-network congestion does not happen, the receiver
explicitly assigns the sending window to the fair share (Line
11 and 17). For in-network congestion, the receiver adjusts
the sending window using the PID-based congestion control
mechanism and the upper bound of the sending window is set
to be the fair share (Line 15). After the adjustment of sending
window, the receiver piggybacks this information by ACK
packets to senders. The sender adjusts its sending window
after receiving each ACK packet.

C. Differentiating Congestion Types

Detecting network congestion. In RCC, each packet carries
the sending timestamp in its header. Upon receiving a packet,
a receiver can obtain the real-time one-way delay of the
corresponding connection. Note that here we assume that the
clock at senders and receivers are synchronized [33].

Let RTT base
i and RTTi(t) represent the base and measured

one-way delay of connection i, respectively. We can use the
difference between RTTi(t) and RTT base

i to infer whether
network congestion happens or not. If the difference between
RTTi(t) and RTT base

i exceeds a threshold, then RCC will
decrease the congestion window of connections.

However, many flows in datacenter networks are extremely
short [34], maybe containing only several packets. Besides,
each connection starts at line rate. Thus, these extremely short
flows possibly incur ephemerally high RTTi(t). If we directly
use RTTi(t) to detect network congestion and decrease the
congestion window of all connections once the instantaneous
RTTi(t) is larger than RTT base

i , network bandwidth will
possibly suffer from being under-utilized.

Enlightened by the fast recovery mechanism in TCP, we
use n consecutive RTTi(t) values to infer whether network
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control protocols such as TCP vegas [30], FAST TCP [31],
and Compound TCP [32] have inherent limitations to achieve
both fast convergence and low latency in current high-speed
datacenter networks. They only react after queue build-up.
Although TIMELY mitigates the problem by using the delay
gradient, it fails to converge to a fixed point.

B. Framework

Before proceeding to describe the framework of RCC, we
first explain why RCC is window-based and delay-based.

Window-based or rate-based. In rate-based congestion con-
trol schemes, packets are continuously sent before receiving
feedback, which may further aggravate congestion when feed-
back is delayed due to congestion. Window-based solutions
can avoid this problem by limiting the number of inflight
packets even if the feedback is delayed. In this way, congestion
will not be magnified, making the network more stabilized.

Delay-based or ECN-based. ECN is per-hop feedback,
which can prevent packet loss efficiently. However, ECN-based
schemes fail to effectively control the end-to-end queuing
length as the number of hops increases, while RTT is end-
to-end feedback information, which can be used to control the
end-to-end queuing length more effectively.

Fig. 2 shows the framework of RCC. It includes three
main functions: Differentiating Congestion Types (§III-C),
Explicit Window Assignment (§III-D) and PID-based Iterative
Adjustment (§III-E). Each flow starts at line rate like other
RDMA congestion control mechanisms [3], [4], [8]. Each data
packet has a timestamp field to indicate the packet’s sending
time. As shown in Alg. 1, the receiver calculates the one-way
delay by subtracting the timestamp value from the current time
when the packet arrives (Line 3). Besides, if the packet belongs
to a new flow or is the last packet for an existing flow, the
receiver will update the number of active flows and calculate
the new fair share (Line 4).

If the flow has been in PID-based congestion control pro-
cedure, it will stay in this state until the end (Line 6-9). This
is because most flows are quite short in high-speed datacenter
networks and switching between Explicit Window Assignment
and PID-based congestion control may cause in-network queue
oscillation. And the PID-based congestion control results will
be limited by Explicit Window Assignment. Thus, last-hop
congestion will not happen again.

Algorithm 1 RCC Algorithm at Receiver Side

1: INPUT: data packet pkt
2: OUTPUT: sending window cwnd
3: rtt ← CALCULATERTT(pkt)
4: num ← UPDATEFLOWNUMBER(pkt)
5: fair share ← EXPLICITWINDOWASSIGNMENT(num)
6: if flow already in PID-based congestion control then
7: cwnd ← PIDCONTROL(rtt, fair share)
8: return
9: end if

10: if RX rate >= NIC speed ∗η then
11: cwnd ← fair share
12: else
13: in network ← CONGESTIONDETECTION(rtt)
14: if in network == true then
15: cwnd ← PIDCONTROL(rtt, fair share)
16: else
17: cwnd ← fair share
18: end if
19: end if

Otherwise, the receiver uses one-way delay and other in-
formation to determine if in-network congestion occurs (Line
13). If in-network congestion does not happen, the receiver
explicitly assigns the sending window to the fair share (Line
11 and 17). For in-network congestion, the receiver adjusts
the sending window using the PID-based congestion control
mechanism and the upper bound of the sending window is set
to be the fair share (Line 15). After the adjustment of sending
window, the receiver piggybacks this information by ACK
packets to senders. The sender adjusts its sending window
after receiving each ACK packet.

C. Differentiating Congestion Types

Detecting network congestion. In RCC, each packet carries
the sending timestamp in its header. Upon receiving a packet,
a receiver can obtain the real-time one-way delay of the
corresponding connection. Note that here we assume that the
clock at senders and receivers are synchronized [33].

Let RTT base
i and RTTi(t) represent the base and measured

one-way delay of connection i, respectively. We can use the
difference between RTTi(t) and RTT base

i to infer whether
network congestion happens or not. If the difference between
RTTi(t) and RTT base

i exceeds a threshold, then RCC will
decrease the congestion window of connections.

However, many flows in datacenter networks are extremely
short [34], maybe containing only several packets. Besides,
each connection starts at line rate. Thus, these extremely short
flows possibly incur ephemerally high RTTi(t). If we directly
use RTTi(t) to detect network congestion and decrease the
congestion window of all connections once the instantaneous
RTTi(t) is larger than RTT base

i , network bandwidth will
possibly suffer from being under-utilized.

Enlightened by the fast recovery mechanism in TCP, we
use n consecutive RTTi(t) values to infer whether network
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control protocols such as TCP vegas [30], FAST TCP [31],
and Compound TCP [32] have inherent limitations to achieve
both fast convergence and low latency in current high-speed
datacenter networks. They only react after queue build-up.
Although TIMELY mitigates the problem by using the delay
gradient, it fails to converge to a fixed point.

B. Framework

Before proceeding to describe the framework of RCC, we
first explain why RCC is window-based and delay-based.

Window-based or rate-based. In rate-based congestion con-
trol schemes, packets are continuously sent before receiving
feedback, which may further aggravate congestion when feed-
back is delayed due to congestion. Window-based solutions
can avoid this problem by limiting the number of inflight
packets even if the feedback is delayed. In this way, congestion
will not be magnified, making the network more stabilized.

Delay-based or ECN-based. ECN is per-hop feedback,
which can prevent packet loss efficiently. However, ECN-based
schemes fail to effectively control the end-to-end queuing
length as the number of hops increases, while RTT is end-
to-end feedback information, which can be used to control the
end-to-end queuing length more effectively.

Fig. 2 shows the framework of RCC. It includes three
main functions: Differentiating Congestion Types (§III-C),
Explicit Window Assignment (§III-D) and PID-based Iterative
Adjustment (§III-E). Each flow starts at line rate like other
RDMA congestion control mechanisms [3], [4], [8]. Each data
packet has a timestamp field to indicate the packet’s sending
time. As shown in Alg. 1, the receiver calculates the one-way
delay by subtracting the timestamp value from the current time
when the packet arrives (Line 3). Besides, if the packet belongs
to a new flow or is the last packet for an existing flow, the
receiver will update the number of active flows and calculate
the new fair share (Line 4).

If the flow has been in PID-based congestion control pro-
cedure, it will stay in this state until the end (Line 6-9). This
is because most flows are quite short in high-speed datacenter
networks and switching between Explicit Window Assignment
and PID-based congestion control may cause in-network queue
oscillation. And the PID-based congestion control results will
be limited by Explicit Window Assignment. Thus, last-hop
congestion will not happen again.

Algorithm 1 RCC Algorithm at Receiver Side

1: INPUT: data packet pkt
2: OUTPUT: sending window cwnd
3: rtt ← CALCULATERTT(pkt)
4: num ← UPDATEFLOWNUMBER(pkt)
5: fair share ← EXPLICITWINDOWASSIGNMENT(num)
6: if flow already in PID-based congestion control then
7: cwnd ← PIDCONTROL(rtt, fair share)
8: return
9: end if

10: if RX rate >= NIC speed ∗η then
11: cwnd ← fair share
12: else
13: in network ← CONGESTIONDETECTION(rtt)
14: if in network == true then
15: cwnd ← PIDCONTROL(rtt, fair share)
16: else
17: cwnd ← fair share
18: end if
19: end if

Otherwise, the receiver uses one-way delay and other in-
formation to determine if in-network congestion occurs (Line
13). If in-network congestion does not happen, the receiver
explicitly assigns the sending window to the fair share (Line
11 and 17). For in-network congestion, the receiver adjusts
the sending window using the PID-based congestion control
mechanism and the upper bound of the sending window is set
to be the fair share (Line 15). After the adjustment of sending
window, the receiver piggybacks this information by ACK
packets to senders. The sender adjusts its sending window
after receiving each ACK packet.

C. Differentiating Congestion Types

Detecting network congestion. In RCC, each packet carries
the sending timestamp in its header. Upon receiving a packet,
a receiver can obtain the real-time one-way delay of the
corresponding connection. Note that here we assume that the
clock at senders and receivers are synchronized [33].

Let RTT base
i and RTTi(t) represent the base and measured

one-way delay of connection i, respectively. We can use the
difference between RTTi(t) and RTT base

i to infer whether
network congestion happens or not. If the difference between
RTTi(t) and RTT base

i exceeds a threshold, then RCC will
decrease the congestion window of connections.

However, many flows in datacenter networks are extremely
short [34], maybe containing only several packets. Besides,
each connection starts at line rate. Thus, these extremely short
flows possibly incur ephemerally high RTTi(t). If we directly
use RTTi(t) to detect network congestion and decrease the
congestion window of all connections once the instantaneous
RTTi(t) is larger than RTT base

i , network bandwidth will
possibly suffer from being under-utilized.

Enlightened by the fast recovery mechanism in TCP, we
use n consecutive RTTi(t) values to infer whether network
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packets sent back to the flow sender, including sizes of tensors
transmitted. The load estimation as well as the transmission
status can then be collected from the corresponding ACK
packets, which will be exploited by the schedulers.
Software Implementation. Switches are required to be pro-
grammable to achieve aforementioned functionalities, such
as supporting P4 [4] protocol or being equipped with an
FPGA board [2]. To implement data storage in a load table
format within the switches, a key-value pair structure could be
utilized. Each entry in the table would consist of a unique key,
representing the specific time slot, and a corresponding value,
storing the accumulated link load values. The switches could
also be programmed to extract the schedule contents carried in
the payload of packets and update the load table accordingly.

However, most data center consists of conventional switches
with only packet forwarding capabilities. Thus, we provide a
software solution that emulates the additional switch behavior.
For each non-programmable switch, we execute a background
process on a server to simulate the switch. This switch process
is notified of the corresponding switch’s link connectivity
and maintains the load table similarly to a programmable
switch. The schedule and link load estimations are explicitly
exchanged between schedulers and emulated switches. A
scheduler transmits messages containing its flow schedules
to the emulated switches to update link load estimations,
requests link load estimations from emulated switches and
receives the response messages. Since the message sizes are
significantly smaller than tensor sizes, the message passing
time and bandwidth consumption between schedulers and
emulated switches are negligible (as assessed in Sec. VI-G).

B. Basic Flow Scheduling Problem for Each Job

Original Global Problem. We first formulate the offline cen-
tralized problem to minimize all flows generated by concurrent
jobs (tentatively not considering flow dependencies). Denote
� as the job set, # 9 as the flow set of job 9 ∈ �:

minimize
∑
9∈�

∑
5 ∈# 9

V 5 (1)

subject to:

∀ 9 ∈ �,∀ 5 ∈ # 9 : V 5 = <0GC ∈[) ]
{
C |A 5 (C) > 0

}
(2)

∀ 9 ∈ �,∀ 5 ∈ # 9 : Ĉ
)∑
C=1

A 5 (C) ≥ � 5 (3)

∀; ∈ !,∀C ∈ [)] :
∑
9∈�

∑
5 ∈# 5

A 5 (C) ≤ D; (C) (4)

∀ 9 ∈ �,∀ 5 ∈ # 9 ,∀C ∈ [)] : A 5 (C) ≥ 0 (5)

where ) is the system time horizon ([)] = 1, ..., )), A 5 (C) is
the decision variable denoting the sending rate of flow 5 , Ĉ is
the duration of a time slot, � 5 is the transmitting size of flow
5 and D; (C) is the available bandwidth capacity of link ; ∈ !
in time slot C (link capacity excluding non-ML cross traffic at
C). In this problem, constraint (2) defines the completion time
of each flow, constraint (3) ensures that the gradient tensor is
successfully transmitted and constraint (4) is the link capacity.

Decomposition with Switch Feedback. Instead of adopting
a centralized approach that assumes complete knowledge of
all jobs and links, we propose decomposing the problem into
individual jobs. In problem (1), variables related to different
jobs are only interconnected by constraint (4). However, the
impact of concurrent jobs on link load can be reflected through
the link load estimation obtained from switches, as described
in Sec. IV-A. Additionally, ML jobs are executed in an iterative
manner, with each iteration following the next. Therefore, we
assign schedulers the task of minimizing the makespan of the
flow set (represented as "8, 9 ) generated during iteration 8 of
job 9 . To circumvent the non-conventional constraint (2), i.e.,
non-linear max operator, we denote a valid variable B as a
set of rates {A 5 (C)} 5 ∈"8, 9

over future  time slots (since the
switch module maintains the load estimations of those time
slots) and satisfies the constraints (3)(5). Let (8, 9 be the set
of feasible schedules for flow set "8, 9 , the original problem
is converted to the following ILP to identify the best schedule
B ∈ (8, 9 which minimizes the communication makespan of
iteration 8 of job 9 :

minimize
∑
B∈(8, 9

GB8, 9 V
B
8, 9 (6)

subject to:

∀C = [)],∀; ∈ ! :
∑
B∈(8, 9

GB8, 9

∑
5 :;∈! 5

AB
5
(C) + 1; (C) ≤ D; (C) (7)∑

B∈(8, 9
GB8, 9 = 1 (8)

∀B ∈ (8, 9 : GB8, 9 ∈ {0, 1} (9)

where GB
8, 9

is the binary decision variable indicating whether
schedule B is chosen (GB

8, 9
= 1) or not (GB

8, 9
= 0), ! 5 is the

routing path of flow 5 , and 1; (C) is the estimated load on link
; in time C by the adjacent switch module, i.e., the total traffic
of other concurrent jobs on ; in C. Given a feasible schedule
B, flow rate AB

5
(C) for each flow in each time slot and the

communication completion time VB
8, 9

are both determined.

Convert into Dual Problem. Problems (6) and (1) are
equivalent because they share the same objective and feasible
solutions. However, the decision variable associated with B can
grow exponentially and flows typically start at different times
due to the distributed placement of workers. Thus, we design
an algorithm to derive the best rate allocation for each flow
upon it being ready, exploiting the primal-dual framework to
solve it in polynomial time.

We first formulate the dual of (6) by relaxing integrity
constraint (9) and associate dual variables _; (C) and a8, 9 with
constraints (7) and (8), respectively:



6

maximize a8, 9 −
∑
;∈!

∑
C ∈[) ]

_; (C)
(
D; (C) − 1; (C)

)
(10)

subject to:

∀B ∈ (8, 9 : a8, 9 ≤ VB8, 9 +
∑

5 ∈"8, 9

∑
C ∈[1,) ]

AB
5
(C) (

∑
;∈! 5

_; (C)) (11)

the dual variable _; (C) can be interpreted as the unit bandwidth
cost on link ; in C, then the RHS of (11) can be regarded
as the total transmission cost of adopting schedule B for the
current communication flows. By the rule of complementary
slackness [31], variable GB

8, 9
equals 0 unless the constraint (11)

in its dual problem is tight. Thus, in order to minimize the dual
objective, the chosen schedule B∗ should hold the following,
while satisfying feasibility constraints (3)(5):

B∗ = arg min
B∈(8, 9

RHS of (11)

Solve in Polynomial Time. To minimize the RHS of (11),
we observe that when we enforce a time V̂8, 9 , before which
the communication phase needs to be complete, the best rate
schedule B should have the minimal total transmission cost.
We obtain it by greedily assigning sending rates A 5 (B) of
each flow to time slots with the least cost {∑;∈! 5

_; (C)}
until all its tensor volume � 5 can be transmitted. This is
equivalent to allocating rates to time slots with lower path
load retrieved from switch modules (Sec. IV-A), because the
transmission cost increases with the accumulation of traffic
load, and heavier traffic load induces larger transmission
costs [31]. We use the sum of link load feedback accumulated
along the routed switches as the path load for rate allocation.
The rationale behind this is to prevent concurrent flows from
causing traffic bursts at the same time on the same routing link,
thereby staggering flows temporally and avoiding potential
congestion and bottlenecks.

The sketch of our algorithm is shown in Alg. 1. We iterate
over the communication completion time slots V̂8, 9 from 1 to
) (line 1): for each V̂8, 9 , we use a greedy method to allocate
the sending rates of the flow 5 over time slots in the range [1,
V̂8, 9 ]. We begin by sorting time slots based on the transmission
path load, in non-decreasing order, and store the sorted time
slots in a set � (line 2). As long as there are remaining tensors
to be transmitted and available time slots for allocation (line
4), we select the first time slot g from set � (line 5) and
allocate the flow rate in a best effort manner (line 6). The
assigned rate for flow 5 at any time C should not exceed the
minimum available bandwidth along its routing path, which is
denoted as min;∈! 5

D; (C) − 1; (C). Since non-ML flows are not
controlled by our schedulers, the host side will estimate the
minimal available bandwidth that an ML flow could achieve
(under the prerequisite that the performance of non-ML flows
is not compromised) as the difference between the maximal
recorded load on the link over a past time window (4 time
slots in our experiments) and the estimated link load caused
by other flows in the respective future time slot.

After allocation, we update the remaining tensor volume
and transmission cost accordingly (line 7-8), and remove
the allocated time slot from set � (line 9). This process

Algorithm 1: Greedily Scheduling Flow 5 ∈ "8, 9
Input: ! 5 , � 5 ,

∑
;∈! 5

_; (C), D; (C), 1; (C)
Init: A 5 (C) = 0, � = ∅, B∗ = ∅, > = ∞

1 for V̂8, 9 = 1 to ) do
2 Sort time slots in [1, V̂8, 9 ] according to

∑
;∈! 5

_; (C)
in non-decreasing order into set �.

3 Initialize 6 = � 5 , 2>BC = 0.
4 while 6 > 0 and � ≠ ∅ do
5 Set g to be the first element in �.
6 A 5 (C) = A 5 (C) +min;∈! 5

D; (C) − 1; (C)
7 6 = 6 − ĈA 5 (C)
8 cost = cost +

∑
;∈! 5

_; (C)
9 Remove g from �.

10 if 6 ≤ 0 then
11 >̃ = V̂8, 9 + 2>BC
12 if >̃ < > then
13 > = >̃, B∗ = {A 5 (C)}

Return: B∗

repeats until all required tensors are transmitted or there are
not enough available time slots for allocation. In the former
case, we compare the transmission costs induced by schedules
enforced at different times and select the best schedule B∗ that
achieves the lowest transmission cost (line 10-13).

The algorithm can be executed in a distributed manner by
different schedulers as the guidance of flow control. We next
describe the detailed behaviors of a scheduler, which dynam-
ically adjusts flow rates to cater to dependency requirements.
C. Distributed Schedulers

A scheduler schedules flows of a job (located on the same
server as the scheduler) when the job has completed the
computation phase in a training iteration. The goal is to collec-
tively minimize the communication makespan in each training
iteration of the training jobs through distributed scheduling.
Control Protocol. At the beginning of a time slot, a scheduler
allows a few packets of each flow to be transmitted at the line
rate, in order to retrieve the link load estimation piggybacked
in ACK packets. Once the load estimation returns, the sched-
uler computes the initial rate schedule following Alg. 1: with
the link load estimation over future  time slots, it assigns
higher sending rates to time slots with lower traffic, until all
tensors in the flow can be transmitted.

After computing the initial schedule of flow rates in the next
 time slots (starting from the current time slot), the scheduler
adjusts the flow transfer rate of the current time slot, catering to
flow dependencies according to allocated rates of other flows
in the same training job. Fig. 6 illustrates how the scheduler
calculates the rate adjustment in the two cases of using PS or
all-reduce for parameter synchronization, respectively.

PS Architecture. At any time slot of a PS, the size of
tensors carried by a broadcast flow should always not be larger
than the size of successfully aggregated gradients by each
aggregation flow. The dependency is formally presented as:

∀? ∈ % 9 , C ∈ [)] : min
5 ∈0?

∑
g∈[C ]

ĈA 5 (g) ≥ max
5 ∈1?

∑
g∈[C ]

ĈA 5 (g)
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Fig. 6: Illustration of how a scheduler caters to flow depen-
dency under PS architecture and all-Reduce paradigm.

where % 9 is the set of PS of job 9 , 0? is the set of flows to ps
? for aggregation, and 1? is the set of flows broadcast from
ps ? to workers. Take Fig. 6(a) as an example, a training
job uses 2 PSs and 2 workers, each located on a dedicated
server. %(1 receives aggregation flows 51 and 52 from the
two workers, and sends broadcast flows 53 and 54 to the
workers, respectively. The total size of each flow transmitted
from the flow start till the end of the current time slot can be
computed by summing up the products of the time slot length
(60ms in our experiments) and the flow rate in each time slot
(actual flow sending rate in an earlier time slot and the initially
scheduled rate for the current time slot), across all time slots.
We use �8 to denote the accumulated rate of flow 58 (sum
of actual sending rates in previous time slots and the initially
scheduled rate for the current time slot), use �<8=0 to denote
the minimal accumulated rate among aggregation flows at a
PS ( 51 and 52 in the example) and use �<0G

1
to represent the

maximal accumulated rate among broadcast flows at the PS ( 53
and 54 in the example). The scheduler at the worker that sends
an aggregation flow 58 to the PS increases the flow rate of the
current time slot by Δ8 = max{�<0G

1
− �8 , 0} = (�<0G1

− �8)+,
to better exploit potentially available outbound bandwidth at
the PS. On the other hand, the scheduler at a PS that sends a
broadcast flow 58 increases the rate by Δ8 = (�<8=0 − �8)+, to
cater to available outbound bandwidth from the worker nodes.

All-reduce Paradigm. For each worker sending out a flow 5 ,
at any time slot, the tensor size sent to the subsequent worker
should be no larger than the tensor size received from the
precedent worker. Formally:

∀C ∈ [)] :
∑
g∈[C ]

ĈAC 5 (g) ≥
∑
g∈[C ]

ĈA 5 (g)

where C 5 is the flow sent out from the precedent worker of
flow 5 . Take Fig. 6(b) as an example, 3 workers synchronize
the same gradient chunk in a ring through flows 55, 56, and
57. The scheduler at the worker that sends flow 58 increases
the flow rate by Δ8 = (�9 − �8)+, where �9 represents the
accumulated rate of precedent flow 9 (e.g., 55 is the precedent
flow of 56), in order to match the potentially higher rate in
chunk synchronization.

In our flow rate adjustment, we attempt to increase flow
rates to meet flow-dependency expectations as well as to use
maximally possible rates for most expedited communication.
The rate to increase for a flow 58 may not be achievable due
to bandwidth limitation along the flow path. The respective
scheduler further estimates the maximal available bandwidth
�8 to send a flow according to the maximum flow sending rate

Algorithm 2: Rate Allocation of Flow 58

Input: �8 , link load estimation over  time slots
1 Infer remaining tensor size � to be transmitted in

current iteration.
2 Compute initial schedule with Algorithm 1.
3 Set A as the initial rate derived for initial schedule.
4 Δ8 ⇐ 2><?DC4'0C4�39DBC<4=C ().
5 if Δ8 = 0 then
6 Apply rate A .
7 else
8 if Δ8 > 0 and A + Δ8 ≤ �8 then
9 Apply rate (A + Δ8).

10 else if A + Δ8 > �8 then
11 Apply rate �8 .
12 Greedily adjust future transmission rates of 58

based on link load estimation.
13 if receiver of 58 is a PS in a PS job then
14 Notify the PS to reduce rates of its

broadcast flows 9’s by (�9 − �<8=0 )+.
15 if receiver of 58 is a worker in an all-reduce

job then
16 Notify the worker to reduce rate of its

subsequent flow 5 9 by (�9 − �8)+.
17 Encode adjusted rate schedule into packet payload.
18 function computeRateAdjustment():
19 if 58 is an aggregation flow in a PS job then
20 Δ8 = (�<0G1

− �8)+
21 if 58 is a broadcast flow in a PS job then
22 Δ8 = (�<8=0 − �8)+
23 if 58 is a flow in an all-reduce job then
24 Depend on the precedent flow 5 9 of 58 ,
25 Δ8 = (�9 − �8)+

Return: Δ8

over a past time window (4 time slots in our experiments),
following the idea of BBR algorithm [32], and limits the flow
sending rate of the current time slot accordingly. The scheduler
obtains the actual sending rates by collecting transmission
statistics from the kernel.

The complete algorithm for a scheduler to decide the actual
sending rate of its flow 58 in the current time slot is given in
Alg. 2. When the increased rate Δ8 equals 0 (line 5), indicating
the flow dependency is satisfied, the actual applied rate in the
current time slot follows that derived in the initial schedule.
In case increasing the initial rate by Δ8 is achievable (line
8), the scheduler uses the increased rate and adjusts future
time slots’ transmission rates of the flow accordingly, using
the same greedy approach as setting the initial rate schedule.
Otherwise (line 10), the scheduler sets the flow rate to �8
and adjusts future rates accordingly. After the rate adjustment,
the scheduler notifies the flow receiver’s scheduler to adjust
allocated rate(s) of its subsequent flow(s) (if any), if the latter’s
allocated rate(s) is/are larger than the predecessor flow’s (lines
13-16): (i) for a PS receiver in a PS job, rate of each broadcast
flow 5 9 is reduced by (�9 − �<8=0 )+; (ii) for a worker receiver
in an all-reduce job, its subsequent flow 5 9 ’s rate is reduced
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by (�9 − �8)+. The released bandwidth can then be utilized
for other co-located jobs’ flows. The adjusted rate schedule
is encoded into the payload of outgoing packets, which will
be extracted by each traversing switch to update their load
estimations, as described in Sec. IV-A.

Time Complexity Analysis. When executing the rate alloca-
tion Alg. 2, it takes $ ()2;>6)) to compute the initial schedule
with Alg. 1: enumerating the completion time V̂8, 9 takes $ ())
and sorting time slots according to their costs takes $ ();>6))
time. The rest part of Alg. 2 takes constant time, then the
overall time complexity is $ ()2;>6)). We further evaluate
the scheduling overhead in Sec. VI-G.

Compatibility with legacy protocols. The control protocol
run by our schedulers is compatible with mainstream conges-
tion control protocols. Our schedulers only enforce sending
rates of ML flows in a data center, with packet structure and
semantics remaining the same as in TCP (ACK, hand-shaking,
re-transmissions, etc.). Non-ML flows in the data center, which
use TCP as the de-facto congestion control protocol, are not
affected by our protocol.

V. PROTOTYPE IMPLEMENTATION

We implement a prototype system using emulated switches,
which is open-sourced at https://github.com/joeyyoung/mlcc.

Scheduler with Kernel Support. Our scheduler employs the
CCP architecture [33], which is an off-datapath congestion
control plane and uses user-space signals to control the data-
path’s transmission rate. A kernel module is launched in the
Linux OS (kernel version 5.4.0), within which a compatible
datapath program enforces the rate control algorithm specified
by our user-space scheduler. The datapath program is event-
driven and developed in LISP-like syntax, and runs in the
context of each individual flow. In every time slot (60ms in our
implementation), the datapath program returns both ACK-level
and flow-level measurements, e.g., recent sampled minimal
round-trip time (RTT), outgoing sending rates, etc.

Communication Library Customization. To enable interac-
tion with our scheduler’s monitoring block and enforce our
control protocol in flow transmission, we slightly modify the
communication libraries that are commonly used by distributed
training frameworks.

We add support in the NCCL library [10] for all-reduce
jobs with patches. For ring all-reduce that we focus on,
GPUs located on different servers communicate with each
other using the CPU %A>GH thread launched at both the
sender and the receiver. In the TCP environment, we set
the socket option of %A>GH to adopt our control protocol.
During initialization, NCCL bootstraps the ring formulation
by collecting IP addresses from all ranks (workers) and then
broadcasting information of the previous and next ranks to
each worker. We filter out those bootstrapping flows which
are not controlled by our scheduler. During training, tensors
ready for communication are enqueued into the CUDA kernel
with =22;�=@D4D4�ℎ42: (), and the accumulated tensor size
in each iteration is recorded into shared memory. The local
monitoring block compares the size of transferred tensors and

the total model size, to identify the training progress and
determine the remaining tensors to be transmitted.

We also add patches to the PS-lite library [11] which is
commonly used by frameworks such as MXNet [20] and
BytePS [22]. In the low level, PS-lite uses the ZeroMQ
API [34] for data transmission. We set the TCP socket option
to enforce the use of our control protocol when the zmq socket
is created. During training, PS-lite tracks data push/pull with
remote nodes and interacts with the monitoring block in the
same way as what we do in NCCL.

No modifications of the training script and the original DL
framework (e.g., PyTorch [21], MXNet [20]) are needed.
Emulated Switch. Each emulated switch is implemented as a
daemon process with two gRPC services, invoked in each time
slot. (1) 5 4C2ℎ_ 5 443102: (): a scheduler sends requests to the
switch, and the switch responds with the load estimation of
future  time slots (we set  = 10). (2) D?30C4_B2ℎ43D;4():
the scheduler sends a message containing newly computed
flow schedule to by-passing switches, and the switches update
their link load estimations and respond with a status code
indicating success or not.

VI. PHYSICAL TESTBED EVALUATION

A. Methodology

Testbed. We conduct experiments in a cluster of 6 servers con-
nected by a Dell Z9100-ON switch. Each server is equipped
with two GTX 1080Ti GPUs, one 8-core Intel E5-1660
CPU, 48GB RAM and one MCX413A-GCAT NIC with peak
bandwidth 25Gbps. We install Ubuntu 18.04.5 LTS (Linux
Kernel 5.4.0-77-generic) with NVIDIA GTX driver 455.45.01,
CUDA 10.2 and CuDNN 7.6.5 on each server.
DNN training jobs. We run jobs training CNN models,
VGG19 (549 MB, using all-reduce), VGG16 (528MB, using
PS) and ResNet50 (98MB, using PS) on down-scaled Ima-
geNet dataset, and transformer model, GPT2 (1.2 GB, using
all-reduce) on down-scaled person-chat dataset [35]. We use
Horovod 0.22 with NCCL 2.11.4 to run ring all-reduce jobs
and BytePS 0.2.4 for PS jobs, and jobs with the two patterns
can coexist on the same server. All training scripts are written
with PyTorch [21] and from the official repositories [22]
[23]. Jobs are submitted following the job arrival pattern
(i.e., the number of arrived jobs per minute) extracted from
Google traces [27], which contains lifetime information and
resource consumption of each job managed by Google cluster
management software internally known as Borg. We down-
scale the arrival rates for a reduced workload scale. Each PS
job uses 2 parameter servers and 2 workers; each all-reduce
job uses 3 workers. Each worker occupies 1 GPU and the
batch size per GPU is 64. Jobs are queued if GPUs are not
available, and whenever a job completes training, the queued
job will be launched immediately.

We inject cross-traffic flows among the 6 servers, which use
default TCP congestion control protocol in the kernel. Each
server randomly chooses a destination to inject a non-ML flow
by iperf every 2 seconds, and each flow lasts 0.2 to 2 seconds.
We use the average job completion time (JCT) to evaluate the
throughput of cluster, and the training speed (images/sec for

https://github.com/joeyyoung/mlcc
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Fig. 7: Rate consistency and time slot configuration.

CNNs and tokens/sec for the Transformer) as the job perfor-
mance metric, which is computed by batch size

training time per iteration .
Reported speed numbers are averaged over 100 training iter-
ations.
Baselines. We compare our scheduler system with various
flow/congestion control protocols:
- TCP Variants. We choose several commonly used TCP
algorithms: (1) CUBIC [36], the default congestion control
protocol since Linux kernel version 2.6, with a CUBIC
window growth function; (2) Reno [37], which applies the
AIMD method to control the congestion window with fast
retransmission and recovery mechanisms; (3) BBRv1 [32],
available since Linux kernel version 4.9, which periodically
estimates the available bandwidth and round trip time (RRT,
i.e., the actual time taken for a packet to travel from the
source to the destination and then back) to reach the maximum
throughput; (4) DCTCP [38], supported as a module in Linux,
which relies on explicit congestion signal (ECN) to adjust
sending window.
- PCC [39]: a well-known performance-oriented protocol. It
tries sending at two different rates, and moves in the direction
that empirically results in greater performance utility. We use
the user-space implementation as the baseline.
- Aurora [40]: a deep reinforcement learning (DRL)-driven
congestion control scheme. The input to the sender agent
contains a fixed-length history of measured statistics, and its
actions are translated to changes in sending rates in each time
interval. We use traces collected in our cluster to train the DRL
model, and deploy the trained model online for inference of
rate adjustments.
- DeepCC [41]: it adopts a DRL agent which takes measure-
ments (loss, RTT, throughput) as input and produces a sending
rate. We train the model offline and conduct online inferences
to determine sending rates periodically (100 ms).

None of the above algorithms consider the unique traffic
patterns and dependencies of ML jobs.

B. Rate Consistency and Time Slot Configuration

We first examine the consistency between the sending rate
computed by the scheduler and the actual flow rate profiled.
We use iperf to generate a long lasting flow between two
servers, and use the scheduler to enforce an explicit rate in
every 50ms. As Fig. 7(a) shows, our user-space scheduler can
precisely control the flow rate. Even in cases where the desired
sending rates vary greatly, such as from 20 Gbps to 5 Gbps
at the time of 300 ms, it is possible to control the actual
transmission as expected.

The time slot duration is a crucial factor in determining
the scheduling granularity when utilizing Alg. 1 to derive an
initial schedule for each flow. It also influences the duration of
negotiation with emulated switches and the evaluation of de-
pendency fulfillment for dynamic adjustments. A smaller time
slot duration enables more fine-grained flow rate control and
allows for timely adjustments to address potential congestion
and dependency violations. This finer granularity facilitates
optimized network performance by promptly responding to
changing conditions. However, as the time slot duration de-
creases, the proportion of negotiation and computation delays
relative to the overall duration increases (evaluated in Fig. 12).
Consequently, this can impact the precision and effectiveness
of the scheduling decisions made by the algorithm. To quantify
this phenomenon, we launch benchmark jobs as described
above and record the average JCT under different NIC speeds
(using Linux tc tool) and time slot durations as shown in
Fig. 7(b). For the latter experiments, we empirically choose
60ms as the time slot duration that achieves maximum system
throughput.

C. System Throughput

Figure 8 presents a performance comparison between our
schedulers and baselines at various bandwidth levels. The
results demonstrate at least 15% reduction in average JCT
compared to TCP variants. These passive congestion control
algorithms perform similarly and fail to consider the bursty
nature of ML flows, i.e., only when the congestion signal is
detected (loss packet or explicit signal), the sending window
size decreases and grows until the next congestion occurs.
Additionally, the dependency on flows sent out from different
workers/PSs is ignored, making the overall communication in-
efficient. Table I provides additional insights into the observed
JCT by reporting the minimum, maximum, and 99th percentile
values from the trace. Our protocol staggers concurrent flows
to enable the overlapping of computation and communication
phases for different jobs and iteratively optimizes the com-
munication makespan of each iteration to eliminate any job
starvation.

Our protocol also outperforms Google’s BBR algorithm.
As a proactive control mechanism that probes the maximum
bandwidth and the minimum RTT, BBR suffers from the
convergence problem with limited observations of the sender:
during the transmission of a BBR flow, when other ML
flows burst and compete for the bandwidth, it will take BBR
multiple probing rounds to decrease the flow’s sending rate
to an appropriate value, causing serious congestion. PCC
experiences the same problem as BBR, and heavily relies on
trying different sending rates to achieve the best bandwidth
utilization. DNN training alternatively carries out computation
and communication, and the communication time in one
iteration is respectively small. Hence, there is not enough
chance for a PCC flow to try numerous sending rates and
choose the best one from them.

As compared to learning-based algorithms Aurora and
DeepCC, our scheduler is more than 28.9% better in terms of
system throughput. The poor performance of learning-based
control is due to the dynamic network environment, which
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TABLE I: JCT statistics under different NIC bandwidth levels.

25Gbps (mins) 20Gbps (mins) 15Gbps (mins) 10Gbps (mins)

avg. min. max. 99th. avg. min. max. 99th. avg. min. max. 99th. avg. min. max. 99th.

Ours 3.96 1.12 6.23 6.10 4.41 1.28 8.09 7.92 5.54 1.74 10.29 9.20 7.05 2.24 13.20 12.89
PCC [39] 4.60 1.35 7.21 7.18 5.12 1.33 8.82 8.43 6.32 1.83 11.18 10.88 8.42 2.31 13.77 12.95
Aurora [40] 4.81 1.18 11.31 10.10 5.65 1.85 13.36 12.71 7.28 2.73 15.92 14.90 9.23 3.10 16.33 16.28
DeepCC [41] 4.94 1.61 12.83 10.42 5.55 2.09 13.22 13.01 7.16 2.65 14.96 14.24 9.62 2.73 18.31 15.25
CUBIC [36] 4.49 1.14 8.09 7.88 5.16 1.41 9.13 8.97 6.53 1.97 12.75 11.38 8.69 2.29 14.74 14.20
Reno [37] 4.53 1.26 7.24 7.03 5.19 1.52 9.93 9.82 6.47 2.01 13.01 11.89 8.72 2.31 14.82 14.80
BBR [32] 4.58 1.32 9.54 9.17 5.41 1.53 10.91 9.28 6.67 2.21 13.73 12.20 9.32 2.82 16.39 15.27
DCTCP [38] 4.55 1.46 8.38 8.26 5.24 1.59 9.72 9.37 6.72 2.16 13.23 11.30 9.12 2.41 15.93 15.73
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Fig. 8: Performance comparison under different NIC bandwidth levels.
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Fig. 9: Training speed at different bandwidth levels.

is more complex than the emulated scenarios that they focus
on, e.g., Pantheon [42] emulating Internet paths. In a shared
cluster, each sender only utilizes local measurements (i.e.,
RTT, loss) to generate a flow rate, without a mechanism to
coordinate transmissions of concurrent flows.

Our schedulers receive link load information from switches,
through which servers effectively cooperate to dynamically
schedule outgoing flows for congestion avoidance. Different
from centralized allocators [43] [44], we adopt a distributed
framework and achieve dependency-aware bandwidth alloca-
tion. All these contribute to our training expedition.

D. End-to-end Speed-up

To further examine training acceleration, we evaluate the
training speeds of different DNN models under a range of
bandwidth settings. Fig. 9 shows that our scheduler achieves
higher training speeds than baseline control algorithms on all
models. ResNet50 has respectively less speedup because it has
fewer parameters (i.e., 98MB) and the communication time
in a network with over 10Gbps bandwidth is much shorter
than the computation time, leaving little room for improvement
with flow scheduling. Other models are more communication
intensive and benefit from our flow scheduling. Therefore, as
the maximum bandwidth becomes larger, the improvement of
the same model slightly decreases, e.g., VGG19 has a 22%

speedup under 10Gbps bandwidth as compared to CUBIC,
while achieving 14.2% speedup under 24Gbps bandwidth.

E. Tolerance to Random Factors

In a practical data center environment, besides traffic con-
gestion, packet losses may happen due to random events such
as physical fault of a cable or electromagnetic interference.
To emulate such random factors, we use the tc tool to add a
random packet loss rate on each link and evaluate the tolerance
of our protocol.

We measure training speeds of VGG16 (communication-
bound) and ResNet50 (computation-bound) under different
packet loss rates. Fig. 10 shows that our protocol is highly
resilient to packet losses. When the loss rate is larger than 1%,
VGG-16 jobs only suffer from 4% performance degradation,
and are 5.1× faster as compared to using CUBIC. We observe
that the performance of TCP variants degrades very quickly,
e.g., with only a 0.2% loss rate, training of VGG16 slows
down by 62% with CUBIC and Reno. This is because the TCP
sending window decreases exponentially whenever a packet
loss is detected. Our scheduler achieves congestion-avoiding
flow control, and has no hardwired mapping to packet-level
events. Since our protocol is compatible with TCP, whenever
packet losses occur, the scheduler uses TCP’s re-transmission
mechanism to re-transmit lost packets but does not reduce the
sending rates computed.
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BBR and DCTCP do not rely on those packet events,
making them more resilient to random factors while inducing
more packet losses due to congestion at the same time [39]. For
PCC, the rate decisions can be affected by such random noise:
when a PCC flow is sent using a higher rate, a few packets
are dropped due to the random factors while the flow rate has
not reached the maximal available bandwidth, and PCC would
lower its sending rate. A learning-based algorithm still needs
a lot of online tuning, after its model is trained offline.

F. Flow behavior

We further look into competing flows in the same server.
We run two all-reduce jobs training VGG19 and ResNet50,
respectively. Each has a worker in the same server with
25Gbps NIC. Both have outgoing flows from the server to
workers located on another server. As compared to Fig. 1),
Fig. 11(a) shows that with our schedulers, flows are staggered
to avoid potential congestion. This further brings benefits that
are well-suited to the iterative pattern of ML training. As
different ML jobs may have varying iteration times, staggering
concurrent flows allows for the overlap of communication and
computations between different jobs, which helps improves
overall system efficiency.

To inspect co-existence of ML flows with non-ML flows,
we run one VGG19 job with two workers, each located on a
dedicated server. During training, we use iperf to inject one
TCP flow between the two servers, at 600ms as shown in
Fig. 11(b). Our scheduler estimates the available bandwidth by
profiling the maximum sending rate over past 4 time slots and
restricts further rate increment, hence achieving friendliness
with non-ML flows controlled by TCP.

G. Scheduling Overhead

Each scheduler needs to exchange information about the
current transmission schedule and link load estimation with
emulated switches at the beginning of each time slot. Specifi-
cally, the scheduler first sends a 5 4C2ℎ_ 5 443102: () request to
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Fig. 12: Delay overhead of our schedulers at runtime.

C
PU

 U
til

iza
tio

n 
(%

)

10

20

30

40

50

60
70

0 10 20 30 40 50 60
Time (s)

(a) Computation Load

0 0.5 1 1.5 2 2.5 3
Time (s)

(a) Bandwidth Load

Ba
nd

w
id

th
 U

sa
ge

 (M
bp

s)

0

10

20

30

Fig. 13: Load profiling of emulated switches and schedulers.

the emulated switches and then fetches the feedback through
the RPC framework. Then each scheduler employs Alg. 2 to
compute the flow rate applied in the current time slot and
adjust the schedule of remaining tensors. Fig. 12(a) reports the
cumulative distribution function (CDF) of negotiation delays
between schedulers and switches, which are measured as
the duration between the start of 5 4C2ℎ_ 5 443102: () request
and the time when the link load estimations are obtained.
We see that in 90% of the time slots, the scheduler can
collect information within 6.2ms. In Fig. 12(b), we collect
the computation times of schedulers to make rate decisions.
Since the proposed algorithm can run in polynomial time
and the rate adjustment is done in a heuristic manner, the
time consumption is negligible. We further demonstrate the
efficiency in simulation with thousands of jobs (Sec. VII).

In our framework, each emulated switch process emulates
the negotiation behavior of one real switch on a dedicated
server. It is scalable with the increase of the number of
attached servers, due to three reasons. First, the messages
exchanged between schedulers and switches are lightweight,
making the bandwidth load on each emulated switch quite
small. In our testbed, where one switch manages six servers,
we measure the bandwidth load of the emulated switch over a
period of time (including 50 time slots), as shown in Fig. 13(a).
The bandwidth consumed by the negotiation traffic is below
10Mbps at most times, far less than the device capacity.
Second, the computation and storage requirements are low.
Each emulated switch only performs accumulation operations
and the size of the load table grows linearly with the number
of attached servers. On the other hand, modern programmable
switches typically have memory capacities in the range of
gigabytes. Third, in the machine learning cluster, GPU servers
are typically inter-connected by hierarchical switches [9]. The
Top-of-Rack (TOR) switch usually connects a group of GPUs
first, then the aggregation switches in the upper layer. We are
able to use multiple emulated switches to emulate the network



12

Sp
ee

du
p 

(%
)

0

5

10

15

Av
g.

 J
C

T 
(m

in
ut

es
)

3

5

7

9

Ours PCC Aurora
Cubic

DeepCC
Reno BBR

(a) (b)
GPT2 VGG19 VGG16 ResNet50

Fig. 14: Performance comparison with baselines and training
speedup for different models.

topology, thus avoiding the occurrence of a hotspot.
On the host side, we further compare the CPU load of our

schedulers with that of learning-based algorithms implemented
in the user space. We choose one scheduler and measure the
average CPU utilization in 1-second intervals, while running
the DNN training jobs described in Sec. VI-A. We do not
track millisecond-level CPU load, since the high frequency
monitoring would cause additional burden that affects the
profiling results. Fig. 13(b) shows that our scheduler has
significantly lower CPU consumption at runtime, i.e., 15%
on average. DeepCC and Aurora incur much higher inference
overhead, 35% and 42% of CPU utilization, respectively.
With less CPU load, our scheduler incurs less performance
interference with DNN training.

H. Large-scale Public Cloud Evaluation

To further verify the effectiveness of our designs in a larger
scale, we conduct experiments on a 48-GPU AWS cluster. The
cluster has 12 g4dn.12xlarge EC2 instances, each configured
with 4 Nvidia T4 GPUs, 48 virtual CPU cores, 192 GB
RAM, 50Gbps NIC and PCIe supporting a throughput around
15GB/s. Jobs are submitted following the configurations and
arrival patterns as described in Sec. VI-A.

In a public cloud, the switch network connecting servers in
the cluster is unknown to us, thus the entire network could be
viewed as a logical switch. Instead of emulating switches as
gRPC services, we maintain link load tables in the instances,
and each instance estimates the traffic load on its outgoing
links. This is reasonable in large-scale data centers, where the
bandwidth bottleneck often lies at the server NICs [29]. Hence,
scheduling bursty flows generated by concurrent jobs in the
same server is essential for accelerating jobs training.

Fig. 14(a) shows the performance of our schedulers in
terms of average JCT. Without emulating switch processes,
our schedulers still achieve 8.5% improvement as compared
to TCP variants. This is because our scheduler avoids the
potential congestion on the host side, when co-located jobs
compete for the network bandwidth. TCP variant protocols
have very similar performance, i.e., Reno outperforms CUBIC
with 4%. When allocating instances in AWS, EC2 by default
places the instances in a way that spreads out all the instances
across different regions to minimize correlated failures (called
“Spread”). As compared to “Placement Group” strategy, which
packs instances close together inside a region to achieve a low-
latency network, the default instance placement leads to node-
to-node communication traversing multiple switch hops [45].
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This can introduce additional network variance and potential
latency, which brings the advantage of Reno, because it uses
more conservative rate adjustments as compared to CUBIC
(more aggressive, and is likely to cause congestion when
bursty traffic of multiple jobs occurs). The effect of unpre-
dictable cross traffic also weakens the advantages of probing
in BBR and makes learning-based methods low performance.

Fig. 14(b) shows the average speedup brought to different
models, even in an environment with high-speed network
environment (i.e., 50Gbps), model training still benefits from
our scheduling protocol especially for large model like GPT2
(15% speed up). With the increasing size of ML models nowa-
days [2], our protocol can bring more potential performance
improvement.

VII. TRACE-DRIVEN SIMULATION

In this section, we compare our scheduler with SOTA
coflow solutions. Since coflow frameworks with dependency
consideration are not open-sourced [18] [14], we implement
the core algorithm and conduct trace-drive simulations.
Simulator. Our simulator utilizes discrete-time simulation, i.e.,
we use for-loop to promote the progress of time slots, which
is a common evaluation way in resource scheduling [46].
For each time slot, we compute/allocate the sending rates
for uncompleted flows and calculate the transmitted volume
of them by multiplying the sending rate and the time slot
duration. A flow is completed when its accumulated transmit
volume equals its flow size; otherwise, the duration will be
accumulated as the flow’s running time.

The arrival of DL workloads follows patterns extracted from
Google traces, as mentioned in Sec. VI-A. The number of
concurrent jobs can be more than one thousand. For each
job, communication flows are generated following the iterative
pattern: (1) within one iteration, the communication flows will
start after its computation duration, which is calculated in
advance for training one iteration with a full batch and divide
it by the number of assigned workers. (2) when all flows in
the current iteration are completed, the next iteration starts.

In our setting, each server in the simulation is equipped
with 8 GPUs, and each GPU can be allocated to a worker
or PS. The servers are interconnected following a hierarchical
topology, where 10 servers form a rack connected to a ToR
switch. Every 10 racks are further connected to an upper
layer edge switch, and a total of 10 edge switches are linked
to the aggregation switch in the top layer. In total, the
simulation involves 1000 servers. Since our scheduler and
coflow scheduling mechanisms are tolerant to packet-level
events, we do not simulate low-level events such as packet
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loss and re-transmissions. Instead, we define the bandwidth
capacity of links in the different tiers as 10Gbps, 20Gbps, and
40Gbps, respectively. Flows that traverse the same link share
the available bandwidth equally.
Baselines. We compare our scheduler to:
- MCS [17]: the representative coflow solution that considers
scheduling multi-stage jobs with dependent coflows. MCS
addresses the “start-after” dependency, which requires one
coflow to start after the completion of the other flow. In the
context of distributed training, that means in PS architecture,
the PS needs to send broadcast flows after the completion of
aggregation flows from workers; in AllReduce, one worker
starts sending data to the subsequent worker after completely
receiving data from the precedent worker. It solves a central-
ized problem and regards the whole cluster as a logical switch
without considering the routing paths.
- CCML [47]: a congestion control method for ML jobs. It runs
on the host side, profiles the iteration time of different jobs in
advance, and aims to maximally interleave the communication
phases of co-located jobs based on their iteration patterns.

A. Effectiveness
Fig. 15(a) shows the JCT statistics. Our scheduler outper-

forms MCS and CCML by 33.6% and 23.3% in terms of
average JCT, respectively. The consideration of dependencies
in the coflow problem is not suitable for pipelined transmission
in distributed ML. When employed with MCS, the bandwidth
from PSs to workers and the downstream bandwidth from
one worker to its subsequent worker are underutilized, due
to low pipeline degree in transmission. Similarly, the “Finish-
before” dependency considered in coflows tends to cause two
dependent coflows to finish at the same time [28]. However,
this approach is not suitable for ML training and results in
bandwidth waste and buffering of tensors at the PS node due
to lower transmission rate from PS to worker. Our scheduler
ensures that, at any given time slot during transmission, the
accumulated size of transmitted data from worker to PS is
nearly equal to the accumulated size of transmitted data from
PS to worker (similar in case of AllReduce). By continuously
monitoring dependency violations and dynamically adjusting
the sending rate on the fly, we ensure the highest pipelining
degree and maximal bandwidth utilization.

Furthermore, we incorporate load estimation techniques
to effectively interleave concurrent bursty flows, achieving
a similar objective as CCML. However, our approach not
only takes into account congestion on the host side but also
considers potential congestion along routing paths, with the
help of in-network feedback from switches.

B. Efficiency
We present the CDF of the collected scheduling computa-

tion latency, as depicted in Fig. 15. The results indicate that
90% of the collected samples enable schedule decisions to be
made within 1.5ms since the decision-making is done in a
fully distributed manner. It further highlights the efficiency of
our proposed algorithm, particularly when confronted with a
large number of jobs.

VIII. RELATED WORK

A. Networking in Distributed Training

Mai et al. [48] propose a communication layer that runs as
a local process on workers and parameter servers. The layer
uses each parameter server as a root and establishes a spanning
tree to link all workers. Leaf workers send gradients to their
parent workers, which aggregate the received gradients and
push the results upstream toward the root. SwitchML [49]
employs a programmable switch to aggregate gradients from
multiple servers, update model parameters, and broadcast them
to the workers, with the aim of reducing gradient traffic.
ATP [4] extends in-network gradient aggregation to a multi-
rack and multi-job cluster setting. Panama [2] equips the
switch with an FPGA board to act as an in-network hardware
accelerator, supporting floating-point gradient aggregation at
line rate without compromising accuracy.

There have been efforts to prioritize flow scheduling in deep
learning communication. Geryon [7] schedules CNN param-
eter transmissions at the network level by utilizing multiple
flows with different priorities to transfer parameters of varying
urgency levels. Large parameters are assigned to a higher
urgency level, allowing them to initiate computation earlier.
CEFS [50] employs a similar approach and extends the priority
levels. Flows carrying data that can initiate computation earlier
at a worker are assigned higher priorities. Flows directed
toward workers with slower computation are also assigned
higher priorities to alleviate the straggler problem.

Our flow control protocol is complementary to these existing
efforts. Rather than altering the transmission order of tensors
or the traffic volume delivered in the network, our schedulers
precisely regulate the transmission rate of each flow to prevent
congestion when multiple flows compete for bandwidth.

B. Data Center Flow Scheduling

Efficient bandwidth allocation is critical for achieving opti-
mal application performance in a data center. pFabric [51] sets
each flow with a separate priority for transmission. It controls
each flow to start at line rate which falls back only upon packet
loss events, in order to achieve the optimal flow completion
time. NumFabric [52] enables an operator to specify how
bandwidth is allocated amongst concurrent flows to minimize
various objectives such as JCT and weighted fairness. Other
solutions [53] [44] [43] usually collect the whole network
status, and solve a centralized NUM problem to decide the
optimal bandwidth allocation for each flow. We decompose
the original NUM problem and develop a fully distributed
scheduler, which optimizes the performance of distributed
training workload.

Recently, receiver-driven techniques have also been pro-
posed to proactively address bandwidth contention. For ex-
ample, ExpressPass [54] manages congestion by controlling
credit messages between switches and hosts, where the re-
ceiver sends credit messages, and the sender transmits a data
message every time it receives a credit message. Homa [55]
divides a flow into schedulable and non-schedulable parts; the
non-schedulable packets carry flow states and acknowledge
priorities for later packets. Rajasekaran et al. [47] achieved a
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training speedup of two co-located DL jobs by tuning DCQCN
for unfair bandwidth sharing.

In modern data centers, priority-based Flow Control (PFC)
and ECN are widely employed for congestion control in
an RDMA environment, but they do not support ML flow
acceleration. Our prototype is implemented upon TCP stack,
and our designs are fully compatible with RDMA techniques.

The flows generated in the communication phase of dis-
tributed training jobs are similar to coflows [56], where all
flows in a collective group share a common finish time.
Sincronia [57] employs a centralized coordinator and solves an
ILP to decide the order of different coflows, with the objective
of minimizing the makespan. Swallow [58] jointly considers
coflow scheduling and compression in the shuffle stage of a
MapReduce job. It leverages the idle CPU during the network
transmission to compress data, and uses shortest-remaining-
first algorithm to order contending coflows. Shafiee et al. [15]
optimize the weight completion time of coflows, consider the
whole data center as a logical switch and relax the original
rate control problem to priority ordering of coflows. Tan et
al. [16] consider the routing path of coflows and decide the
rate for each coflow in an online manner. However, it neglects
the dependency and solves the global optimization problem
assuming the knowledge of all flows are well known to the
controller. Tian et al. [18] study scheduling of coflows with
dependency. It summarizes the potential dependency into two
types, i.e., “start-after” and “finish-before”, and controls the
explicit flow rate in a centralized manner. Shafiee et al. [14]
abstract each job as a directed acyclic graph (DAG) and
the topology as a matrix (with sources/destinations as the
rows/columns). It determines which packets of coflows should
be sent at each time slot. However, it does not further extend
the dependencies.

As have been stated in Echelonflow [28], existing coflow
abstraction cannot handle the dependency in both data-parallel
and pipeline-parallel ML jobs. We design a distributed frame-
work to tune the flow rate dynamically, in order to cater to
the unique dependencies.

IX. CONCLUSION

This paper proposes a fully distributed scheduler frame-
work to expedite distributed training jobs and enhance overall
throughput in a data center. On each server hosting DL
tasks, a scheduler runs in the user space, interacts with the
DL communication libraries, and exchanges information with
switches to achieve congestion-avoiding flow rate control. We
implement a prototype system with a software solution to
emulate programmable switches. Experiments conducted on
GPU clusters demonstrate that our schedulers can leverage
the unique traffic patterns of distributed training and stagger
transmissions of bursty ML flows to accelerate training. When
compared to conventional TCP algorithms and state-of-the-
art learning-based congestion control schemes, our approach
achieves significant improvements in performance across var-
ious settings.
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