
Rosevin: Employing Resource- and Rate-Adaptive
Edge Super-Resolution for Video Streaming

Xiaoxi Zhang∗, Haoran Xu∗, Longhao Zou†, Jingpu Duan§†, Chuan Wu‡, Yali Xue†, Zuozhou Chen†, Xu Chen§∗
∗School of Computer Science and Engineering, Sun Yat-sen University

†Department of Communications, Peng Cheng Laboratory
‡Department of Computer Science, The University of Hong Kong

Email: ∗{zhangxx89,chenxu35}@mail.sysu.edu.cn, ∗xuhr6@mail2.sysu.edu.cn
†{zoulh,duanjp,xueyl,chenzzh}@pcl.ac.cn, ‡cwu@cs.hku.hk

Abstract—Today’s video streaming service providers have
exploited cloud-edge collaborative networks for geo-distributed
video delivery. The existing content delivery network (CDN)
scheduling and adaptive bitrate algorithms may not fully utilize
edge resources or lack a global control to optimize resource shar-
ing. The emerging super-resolution (SR) approach can unleash
the potential of leveraging computation resources to compensate
for bandwidth consumption, by producing high-quality videos
from low-resolution contents. Yet the uncertain SR resource
sensitivity and its interplay with bitrate adaptation are under-
explored. In this work, we propose Rosevin, the first resource
scheduler that jointly decides the bitrates and fine-grained
resource allocation to perform SR at the edge, which can learn to
optimize the long-term QoE for distributed end users. To handle
the time-varying and complex space of decisions as well as a
non-smooth objective function, Rosevin realizes a novel online
combinatorial learning algorithm, which nicely integrates convex
optimization theories and online learning techniques. In addition
to theoretically analyzing its performance, we implement an SR-
assisted video streaming prototype of Rosevin and demonstrate
its advantages over several video delivery benchmarks.

I. INTRODUCTION

Video streaming applications including Netflix [1],
Youtube [2] and Tiktok [3] have generated over 65% of the
traffic across today’s Internet [4]. To enhance users’ quality
of experience (QoE) (low request latency and high video
quality), video streaming service providers have adopted
cloud-edge collaborative networks to serve geographical end
users [5]–[8]. Leveraging the storage capacity of edge clusters,
video chunks can be cached at the edge and delivered to users
with lower latency and potentially higher QoE, compared
with frequently fetching videos directly from the cloud.

To adapt to volatile and heterogeneous downlink bandwidth,
video streaming systems resort to adaptive bitrate (ABR)
algorithms such as BOLA [9] and MPC [10] and video caching

This work was supported by Key-Area Research and Development Pro-
gram of Guangdong Province (2021B0101400001), NSFC grants (62102460,
62201244, U20A20159), Guangdong Basic and Applied Basic Research
Foundation (2023A1515012982, 2021B151520008), Guangzhou Science and
Technology Plan Project (202201011392, 2024A04J6367), the Young Out-
standing Award under the Zhujiang Talent Plan of Guangdong Province, and
Hong Kong RGC under the contracts HKU 17208920 and C7004-22G (CRF).

§Co-corresponding authors: Jingpu Duan and Xu Chen.

2×.
 to 720p

2×.
 to 1080p

2×.
 to 1440p

2×.
 to 2160p

4×.
 to 1440p

4×.
 to 2160p

SR Upscaling Ratio

0

2000

4000

6000

8000

10000

12000

La
te

nc
y

(m
s)

Jockey with 1 CPU core
Jockey with 3 CPU cores
Jockey with 5 CPU cores
Honey Bee with 1 CPU core
Honey Bee with 3 CPU cores
Honey Bee with 5 CPU cores

Fig. 1: Latency varying SR upscaling ratios and the number
of CPU cores for two types of video chunks (2 seconds each).
E.g., 2x to 720p means enhancing a chunk from 360p to 720p.

at edge clusters [6] [11]. These ABR methods are client-based
and thus lack a global view in balancing the bitrates across
users who share the same network links. In addition, given
the cached videos, controlling bitrates alone merely adjusts
the content delivery to adapt to bandwidth limitations, which
affects user QoE. For instance, decreasing the bitrate of video
delivery when encountering bandwidth deficiency generally
means choosing a smaller resolution of the video frames,
which could compromise the user’s QoE.

The emerging deep neural network (DNN) based super-
resolution (SR) technology can convert low-resolution video
chunks into high-quality ones that recover the original sharp-
ness and texture details of a video via DNN inferences [12]. A
natural solution for fully exploiting edge resources and guar-
anteeing user QoE is then to simultaneously control bitrates
and enable SR services at the edge, exchanging computational
resources for improved video quality and communication
efficiency. Intuitively, with SR enabled at the edge, a high-
resolution video request can be addressed by fetching a low-
resolution content from the source to the edge, in proximity
to the end user, and using SR at the edge to enhance it to the
desired resolution with minimum quality degradation, before

sending it to the user. However, the choice of base resolution
(and equivalently base bitrate) of the video fetched from the
source to the edge impacts both the SR inference time and
cloud-to-edge transmission time. It is thus critical for reducing
the end-to-end latency and maximizing user QoE.

Balancing computation resources (e.g., CPU cores used for
SR at the edge) and communication efficiency (latency of serv-
ing user-requested video chunks) for multi-user SR-assisted
video delivery is still under-explored. Existing video streaming
systems either perform bandwidth or request scheduling [13]
[5] [14] without considering the use of SR, or ignore elastic
computation resource allocation for SR with bitrates sepa-
rately determined [15]–[18]. We observe that, fine-grained and
adaptive allocation of CPU cores for different SR processes
in tandem with bitrate selection can improve aggregate user
QoE. For instance, using more resources to upscale a video
chunk from a base to a target bitrate yields a smaller SR
processing time and thus a higher QoE, as end-to-end latency
is another component in the QoE [19]. However, given the
limited resource capacity in the edge cluster, maximizing total
QoE requires careful allocation of resources and selection of
input bitrates for the SR model. This work designs the first
online self-optimized and scalable framework that jointly op-
timizes bitrates and resource allocation for edge SR. This co-
optimization is complex due to the following key challenges:

• Uncertain impact of resource allocation on SR performance,
varying video types and bitrates. Our testbed results (Figure
1) suggest different functions of SR runtime with respect to
CPU core numbers and upscaling ratios for different videos.
This variability impedes proactive resource allocation, which
existing rule-based schedulers [20] cannot cope with.

• Heterogeneous and fluctuating streaming latency across
geo-locations that necessitates adaptive, fine-grained se-
lection of bitrates and resources. Unfortunately, the high-
dimensional temporal-spacial complexity greatly expands
the decision space of our optimization problem and inhibits
the convergence rate of classic learning algorithms such as
multi-armed bandits [19] [21] [22].

• Correlation between bitrates and resource demands for
SR under time-coupled objective function and constraints.
While learning-based approaches can make sequential de-
cisions under uncertainty, they generally rely on stationary
decision spaces and independent objective values over dif-
ferent times, falling short of handling our time-dependent
resource constraints and the non-smooth objective function.

To tackle the aforementioned challenges, we propose the
first online cloud-edge collaborative video streaming system
that co-optimizes bitrates and elastic resource allocation for SR
at the edge. We offer both a working prototype and theoretical
guarantees, through the following technical contributions.

First, we propose an optimization-based video streaming
system with edge-assisted super-resolution technologies. It
enables adaptive, fine-grained, and chunk-specific resource
allocation for super resolution, which elastically exploits com-
putational resources in proximity to end users to reduce the

latency of streaming high-resolution contents. Driven by our
testbed measurements that reveal heterogeneous and uncertain
performance relationships with resources, we also realize per-
sonalized bitrates and resource allocations for performing SR
of different types of requested videos and user geographical
regions. This framework can therefore yield higher aggregate
video streaming QoE than simply adopting existing ABR
algorithms or SR with fixed amounts of resources.

Second, leveraging the structure of the optimization prob-
lem, we tackle two main algorithm design challenges: expo-
nential growth of the solution space with streaming requests
and temporal dependency in both the objective function and
constraints. We first identify a property of the optimal source
location-bitrate combinations. Based on this, we reduce the
solution space without compromising the algorithm optimal-
ity incurred in the problem transformation. We then design
a novel window-based combinatorial learning algorithm to
manage over-time dependencies in the optimization constraints
and non-smoothness in the objective function. Employing a
linearly-expanded time window, during which we use the same
decisions, mitigates the non-smoothness penalty. Moreover,
we integrate primal-dual theories into our learning framework,
effectively addressing the global resource constraint over time.
Rigorous theoretical analysis is also performed to upper-bound
our performance gap against the expected offline optimum.

Third, we implement a prototype of video streaming system
with bitrate adaptation and elastic resource supports for real-
time SR processes. A light-weight FSRCNN-enabled [23]
upscaling scheme of only key-frames is developed at CPU
edge servers for SR acceleration. To further realize real-
time SR-assisted chunk-level video streaming in the wild,
we modify the H.265 encoder based on the HEVC Test
Mode [24] and integrate the neural network inference ca-
pability of OpenCV [25]. Our prototype provides real-time
video SR with various resolutions. It achieves higher streaming
quality and aggregate QoE than state-of-the-art systems.

II. RELATED WORK

Cloud-edge collaborative video streaming. The resource
efficiency and user experience in video streaming are largely
improved by leveraging cloud-based content delivery networks
(CDN) [26] and edge caching strategies [6] [27]. Existing
works have proposed various algorithms for associations be-
tween viewers and content sources [14] [28] [29], and opti-
mized solutions for caching, video transcoding, and content
sharing in cloud and edge based CDNs [8] [27] [6] [7]. On
the client side, adaptive bitrate (ABR) algorithms [9] [21] [6]
are one of the core deployments to improve video quality by
adapting to bandwidth fluctuations, with both rule-based [9]
[30] [6] [15] and learning-based [21] [19] methods. All the
above works do not consider the utilization of SR technologies.
Our work capitalizes on the computational resources at the
edge to perform SR processes, further improving the QoE
of end users especially when encountering bandwidth bottle-
necks, which adjusting bitrates solely is insufficient to achieve.

SR-assisted video delivery. Super resolution (SR) espe-
cially deep neural network (DNN)-based SR [16] [12] has
demonstrated its remarkable performance in image restoration
and video enhancement. SR decodes a low-resolution im-
age/video, up-samples it to achieve higher resolutions through
DNN inference, and then encodes it before streaming to the
end users. Prominent video delivery frameworks NAS [17]
and LiveNAS [16] have applied SR on top of video deliv-
ery, demonstrating the effectiveness of using pre-trained SR
models and performing online SR model training, respectively.
Other inspiring systems such as VISCA [6], FlexSRVC [15],
and SRAVS [31] integrate SR with new bitrate adaptation or
video coding strategies for QoE maximization, assuming SR
is performed under fixed and uniform resources for all users.
This work instead strikes a balance between SR computation
and communication efficiency, considering both fine-grained
resource allocation and bitrate adaption for edge-based SR.

Cloud and edge resource schedulers such as YARN [32],
Kubernetes [33] and KubeEdge [34] have been extensively
studied. In particular, KubeEdge extends the capabilities of
Kubernetes to address edge-specific requirements, enabling
holistic resource management in heterogeneous edge envi-
ronments. However, it adopts pre-set rules without capturing
unique properties of DNN inference tasks such as DNN-based
SR. A number of scheduling systems have been proposed for
elastic resource provisioning to machine learning jobs, e.g.,
Optimus [20], Tiresias [35] and MArk [36]. SR-assisted video
streaming systems, such as NEMO [37] and NeuroScaler [18],
propose novel video codec design and select the most benefi-
cial anchor frames for SR-based video enhancement. They do
not deal with fine-grained resource allocation to perform SR.

Online learning for video streaming. Video streaming
systems have adopted reinforcement learning to adjust bitrates
not considering SR [21] [19], or select base [17] or target
resolutions [31] of videos constructed by SR, balancing band-
width usage and SR quality. Multi-armed bandits have also
been leveraged to select the portion of the panoramic scene
delivered to users in interactive video delivery applications
to maximize system throughput [38] or choose the network
in a multi-home streaming scenario [39]. Due to the time-
varying solution space and non-smooth objective function, our
problem cannot be solved by existing online learning methods.
We augment the learning framework with expanding-window
control and integration with online primal-dual optimization.

III. PROBLEM MODEL

We consider a three-tier video streaming system (Figure 2)
with a cloud, an edge cluster comprising multiple servers de-
ployed in one geo-location, and geo-distributed users sending
a total of N video requests. Owing to the commoditization of
transcoding technologies [7], replicas in multiple resolutions
can be generated for an uploaded video and stored in the
cloud.1 For brevity, we define [Z] ≜ {1, 2, · · · , Z}. A set

1We assume that videos in all feasible bitrates are stored in the cloud; but
our method works if the cloud only has a subset of bitrates.

Ri,j of video bitrates, directly mapped to the video resolu-
tions (according to the function that bitrate equals frame rate
multiplied by a constant compression ratio and the number
of bits per frame determined by resolution), are accessible
from the cloud for each chunk (i, j), aka the jth chunk
of video request i ∈ [N]. Within the edge cluster, video
contents can be dynamically stored into an edge cache, and SR
services are applied when needed. In practice, an edge cluster
is responsible for serving users’ video requests from different
geographical regions (e.g., a region can be a city’s area).

Rosevin serves users’ video requests in a time-slotted fash-
ion, with a total of arbitrarily large and possibly unknown
T time intervals. The length of each interval t ∈ [T] can
be tens to hundreds of milliseconds. We define Φ(t) as the
set of video chunk replicas stored in the edge cache in each
timeslot t ∈ [T]. The video of request i is divided into a set
Ji of chunks, each of which usually consists of 1.5-4 seconds
of successive frames. According to the DASH protocol [40],
each chunk is of a uniform time duration. Given a codec and
compression format, the size in bits of a chunk equals the
chunk duration times bitrate. The user client predetermines
a customized target bitrate rtargeti,j to retrieve for video chunk
(i, j) (as supported by Netflix [1] and YouTube [2]). The video
requests are handled by the edge cluster in Rosevin: if the
edge cache stores video chunk (i, j) of target birate rtargeti,j , it
is served directly to the user from the edge; otherwise, SR is
performed at the edge on the chunk of a lower bitrate retrieved
from the edge cache or the cloud (if not cached, and the chunk
retrieved from the cloud will be cached at the edge), enhancing
its resolution to meet rtargeti,j and then sending it to the user,
e.g., increasing the resolution from 540p to 1080p using one
or more CPU cores if rtargeti,j is the bitrate that matches the
1080p resolution. Specifically, Rosevin dynamically controls
the following variables in the edge cluster.

Video chunk bitrates and SR resource allocation. For
each chunk (i, j) with target bitrate rtargeti,j , a base bitrate ri,j ,
with ri,j ≤ rtargeti,j , is decided. Then the video chunk of ri,j
will be pulled from the edge cache or the cloud, and SR will
be performed to enhance the chunk from ri,j to rtargeti,j . We
define si,j as the number of CPU cores we choose to allocate
for performing SR on chunk (i, j) in the edge cluster2.

Video delivery approach. We define pi,j as the decision of
the source location (either the cloud or edge cache) of chunk
(i, j) and whether to apply SR to enhance the chunk from ri,j
to rtargeti,j , formalized as a two-digit representation:

pi,j =

00 Cloud to edge → edge to client, no SR
01 Cloud to edge → SR → edge to client
10 Edge cache to client, no SR
11 Edge cache with SR → edge to client

2Currently our prototype only schedules CPU cores and already signifi-
cantly improves user QoE. Commodity edge servers in practice use CPUs for
decoding, inference, and (re)encoding in SR processes. Although the inference
part can be run on GPUs, the single-GPU inference latency is already very
small, negating the need of allocating multiple GPUs for an SR process.

3 6 0 p
7 2 0 p

1 0 8 0 p
1 4 4 0 p

C a c h e

S R f or c h u n k 1

S R f or c h u n k 2

Us er-r e p ort e d
st atisti cs

 L at e n c y

Vi d e o 1

Vi d e o 2

rij,
s ij

...

3 6 0 p
1 0 8 0 p

7 2 0 p
3 6 0 p

P D W- C U C B

s c h e d ul er

E n d us e rsE d g e cl ust e rCl o u d

Us e r

g r o u p 1

Us e r

g r o u p 2

Us e r

g r o u p 3

1 4 4 0 p

2 1 6 0 p
2 1 6 0 p

B a n dits
Pri m al-

d u al

al g orit h m

...

Vi d e o

c h u n ks

M e as ur e d
l o c all y

Vi d e o 3

...

Fig. 2: System architecture of Rosevin.

The first bit of pi,j represents whether chunk (i, j) is fetched
from the edge cache (=1) or from the cloud (=0), and the
second bit denotes whether SR is applied (=1) or not (=0). For
instance, pi,j = 01 indicates that chunk (i, j) is obtained from
the cloud in bitrate ri,j to the edge cache and then enhanced to
rtargeti,j through SR before transmitted to the client. pi,j = 00
means that chunk (i, j) is fetched from the cloud, cached at
the edge for potential future reuse by other users, and then
transmitted to the client, without using SR.

Let q(ri,j , si,j) represent the video quality of chunk (i, j)
achieved by applying SR on the chunk in base bitrate ri,j ,
supported by a total of si,j CPU cores. An illustration of SR
processes concurrently performed in the edge cluster for two
video chunks is shown in our system architecture diagram
Figure 2. We use VMAF [41] as the quality metric, which
can estimate user perceptual video quality levels. Since no
study has provided a concrete model on the effectiveness of
SR under varying numbers of CPU cores, q(ri,j , si,j) is an
unknown function that may vary over different i and j. We
define the QoE of each chunk (i, j) as the weighted sum of
video quality q(ri,j , si,j), latency l(pi,j , ri,j , si,j) (from the
time when the edge cluster receives the video chunk request
to when the chunk that meets the target rate is successfully de-
livered to the user), and non-smoothness between chunks [15]
[19] (i, j) and (i, j − 1) for penalizing the abrupt changes
of qualities between successive chunks of the same requested
video. The QoE of each user i is formalized as follows, and
the goal of Rosevin is to maximize the total QoE of all users.

QoEi(pi, ri, si) =
∑
j∈Ji

(
αq(ri,j , si,j)− βli,j (pi,j , ri,j , si,j)

−γ
∣∣q(ri,j , si,j)− q(ri,(j−1), si,(j−1))

∣∣) (1)

In (1), α, β, and γ are tunable importance coefficients chosen
by the video streaming service provider. Latency l(·, ·, ·)
consists of the delays of transmission and propagation, and
SR execution time if SR is used. Let τ(ri,j , si,j) be the total
SR processing time due to waiting in the queue, decoding, SR
inference, and (re)encoding. More resources or a higher base
bitrate could lead to a smaller τ(ri,j , si,j) (Figure 1), but the
actual function forms of τ(ri,j , si,j) and li,j are uncertain. We
define Bedge

ti,j (and Bcloud
ti,j) as the average bandwidth from the

edge to client i (and that on the bottleneck link from the cloud
to the edge) starting from time ti,j to the time that the delivery
of chunk (i, j) is completed. We use RTT oc

ti,j and RTT ec
ti,j to

denote the round-trip time (propagation delay) between the
cloud and the client via the edge, and between the edge and
the client, respectively. Formally, with πi,j(r) denoting the file
size of chunk (i, j) at rate r, the latency function is:

li,j =

πi,j(r
target
i,j)

Bcloud
ti,j

+RTT oc
i,t , if pi,j = 00

hχ

(
transi,joc , τ(ri,j , si,j)

)
+RTT oc

i,t , if pi,j = 01
πi,j(r

target
i,j)

Bedge
ti,j

+RTT ec
i,t , if pi,j = 10

hχ(trans
i,j
ec , τ(ri,j , si,j)) +RTT ec

i,t , if pi,j = 11

Here, hχ(·) is a χ-norm function with an unknown factor
χ ≥ 1, which captures the time of performing SR once on each
group of pictures (GOP) within a chunk that have arrived at the
edge and then transmitting the enhanced portion to the client
(rather than waiting for the entire chunk). transi,jec denotes the
transmission time of delivering chunk (i, j) from the edge to
the client. transi,joc is the transmission time from the cloud to
the client via the edge, which is more complex if using SR,
due to chunk size changes at the edge after being processed
through SR. Note that this formulation is just for rigorous
presentation and showing the uncertainty of latency, but not
to complicate the problem. Our algorithm is agnostic to the
latency formulation, achieving the design goal of bypassing
this complexity and uncertainty of different terms in li,j .

Our optimization goal is to maximize the total QoE of serv-
ing N video requests subject to the constraints characterizing
the dependency between our three sets of control variables.

maximize :
p,r,s

∑
i∈[N]

QoEi(pi, ri, si) (2)

s.t.: pi,j ∈ {00, 01, 10, 11} , ∀i, j (3)
pi,j ∈ {00, 01} , if: ri,j /∈ Φ(ti,j), ∀i, j (4)

ri,j = rtargeti,j , if: pi,j ∈ {00, 10}, ∀i, j (5)

si,j = 0, if: pi,j ∈ {00, 10} , ∀i, j (6)
ri,j ∈ Ri,j , ∀i, j (7)
si,j ∈ {0, 1, 2, · · · , C}, ∀i, j (8)∑

i∈[N],j∈Ji:
ti,j≤t≤li,j+ti,j

si,j ≤ C, ∀t (9)

Here, ∀i, j represents ∀i ∈ [N], j ∈ Ji, for brevity. Constraint
(4) indicates that any chunk in our chosen base bitrate ri,j must
be fetched from the cloud, if it is unavailable in Φ(ti,j). We
must also choose ri,j = rtargeti,j (constraint (5)) if selecting a
pi,j that indicates no SR, and thus no SR resource is allocated
(constraint (6)). Further, (7) and (8) define the full sets of
ri,j and si,j . Constraint (9) requires that the total number of
allocated CPU cores for all the alive SR processes cannot
exceed the resource capacity C. The duration of occupying
the CPUs to preform SR for each (i, j) starts from ti,j until
its completion time li,j + ti,j , both depending on the bitrate
ri,j , streaming approach pi,j , and resources si,j .

When each time slot t starts, Rosevin decides the base
bitrates of video chunks that need to be served in the interval
[t, t + 1), where to get the chunks, and how many CPU
cores to use if performing SR to enhance the chunks to
meet user’s target bitrate. Since there might be thousands
of concurrent requests from end users, it is exceptionally
hard to simultaneously co-optimize the bitrates for individual
users. For better scalability, we categorize the users into Ñ
co-existing groups, where users in the same group might
have similar communication quality towards the edge cluster
and the same requested video currently. Grouping users can
be achieved by existing methods, e.g., clustering or graph
matching algorithms [14], [28], which is not the focus of
this paper. We introduce in Section IV the core design of
Rosevin, a new combinatorial learning framework to solve
online optimization with a non-smooth objective function that
penalizes the changing decisions over time and the complex
dependencies between different variables.

IV. DESIGN LOGIC AND ALGORITHM FRAMEWORK

Solving (2)–(9) on the fly is harder than handling com-
binatorial optimizations such as Multiple Choice Knapsack
Problem due to: (i) unknown functions of q(ri,j , si,j) and
li,j(pi,j , ri,j , si,j); (ii) high-dimensionality in the decision
space; (iii) the temporal correlation of decisions in both the
objective function (non-smoothness part) and the resource
capacity constraint in (9). To address challenges (i) and (ii),
we propose to leverage the combinatorial multi-armed bandits
(CMAB) framework to learn unknown functions/parameters
through sequential online feedbacks and cope with combi-
natorial decisions (arms). However, CMAB is still prone to
slow convergence under complex decision space [22], e.g.,
with multiple interrelated variables pi,j , ri,j , and si,j . There-
fore, we conduct a problem transformation in Section IV-A
for solution space reduction. To address challenge (iii), we
build a novel framework, which greatly extends the capability
of CMAB by integrating online primal-dual theories and a
window-based control strategy into the algorithm design and
theoretical analysis. We prove that Rosevin achieves a sub-
linear performance gap against the expected optimum. Our
theoretical framework and analysis can also be generalized to
multi-resource cases, which will be shown in our future work.

A. Problem Transformation

We first show that our decision space can be simplified by
removing the decisions {pij}i,j and then map the problem into
the combinatorial bandit framework.

Mapping pi,j from ri,j . Revisiting the original latency
function li,j , we observe that: given a decided base bitrate
ri,j , if the chunk (i, j) in ri,j is available in the edge cache,
we must use the chunk in the edge rather than the cloud,
no matter if we apply SR (if ri,j < rtargeti,j) or not (if
ri,j = rtargeti,j). The reason is that transmitting video chunks
from the cloud to the client needs to traverse the link from
the cloud to the edge first and thus incurs a latency that is
at least that of transmitting the same chunk from the edge

to the client; SR is also performed at the edge. Moreover, if
ri,j = rtargeti,j , indicating no SR needed, then we have τi,j = 0.
Let τi,j(r, r) ≜ 0,∀r, indicating zero SR time incurred if
ri,j = rtargeti,j . Our latency function can be simplified as: li,j =
hχ

(
transec, τi,j(ri,j , r

target
i,j)

)
+ RTTec if ri,j ∈ Φ(ti,j), and

it equals hχ

(
transoc, τi,j(ri,j , r

target
i,j

)
+ RTToc otherwise.

Hence, we do not need to jointly optimize pi,j with ri,j ;
instead, the optimal pi,j can be decoded given a chosen ri,j :

pi,j =

00 if ri,j = rtargeti,j and ri,j /∈ Φ(ti,j)

01 if ri,j < rtargeti,j and ri,j /∈ Φ(ti,j)

10 if ri,j = rtargeti,j and ri,j ∈ Φ(ti,j)

11 if ri,j < rtargeti,j and ri,j ∈ Φ(ti,j)

(10)

Next, we map the problem with our reduced decision space to
the CMAB framework and address the temporal dependencies.

Decision space mapping. We define R ≜ maxi,j |Ri,j |
and C to denote the maximum number of possible discrete
values of the bitrates and resource units, respectively. We then
formalize the decision space as {∆R×C×Ñ

i }i∈[Ñ] (recall that
Ñ represents the number of user groups). Here, {∆R×C

i } is an
(R× C)-dimensional one-hot vector, e.g., ∆i = (1, 0, · · · , 0)
represents the first combination of ri,j and si,j values (bitrate
mapped from resolution of 360p and 1 CPU core) for the
chunk of request i that arrives at the current time. We then con-
struct a total of 2RCÑ base-arms, each of which represents a
combination of a feasible value of ri,j and that of si,j , as well
as whether chunk (i, j) is in the cache (ri,j ∈ Φ(t)) or in the
cloud (ri,j /∈ Φ(t)). We call each base-arm a rate-resource
configuration. We define M ≜ 2RC and use m ∈ [M] to
index the base-arms for each group i ∈ [Ñ]. For instance, in
Figure 3, there are a total of 2×2 rate-resource configurations
for the chunk of group 1 that needs to be processed in the
current timeslot, with (360p, 1 CPU), (360p, 2 CPUs) available
if fetching the chunk from the edge cache, while (360p, 1
CPU), (360p, 2 CPUs), (720p, 1 CPU), (720p, 2 CPUs) are
available if the scheduler takes the chunk from the cloud. The
idea of our algorithm is to maintain an estimated QoE for
each of the 2RC configurations and leverage these estimates
to solve our optimization problem (Section IV-B).

C h e c k m ar ks i n t h e cir cl es r e pr es e nt t h e r at e-r es o ur c e
c o nfi g ur ati o ns t h at ar e c urr e ntl y a v ail a bl e i n t h e e d g e

T h e 1st r o w:
e d g e

T h e 2 n d r o w:
cl o u d

C h e c k m ar ks n ot i n t h e cir cl es r e pr es e nt t h e r at e-r es o ur c e
c o nfi g ur ati o ns t h at ar e c urr e ntl y a v ail a bl e i n t h e cl o u d

Fig. 3: An illustration of base-arms of three user groups
(shown in three colors) and four rate-resource configurations.
A configuration (ri,j , si,j) labeled by a check mark in the
circle means that a chunk in bitrate ri,j is in the cache, and a
total of si,j CPU cores are allocatable on the edge servers.

Reward design. Revisiting (1), using our problem trans-
formation and the CMAB framework, we need not measure
or predict different terms in li,j (such as SR processing times
and RTTs) separately. Let ri,j,m and si,j,m denote the base
bitrate and the allocated resource number in the mth rate-
resource configuration. We have si,j,m = 0 if and only if
ri,j,m = rtargeti,j , meaning no SR needed with configuration
m. For each m of group i, we construct a reward as:

µi,j,m = αq(ri,j,m, si,j,m)− βli,j(ri,j,m, si,j,m) (11)

We also define the expected reward and latency of each
request group i, when choosing the mth configuration, as µi,m

and li,m, respectively. Note that we have excluded the non-
smoothness term (see (1)) from (11). This is due to the poten-
tial of introducing estimation biases when a term, dependent
on decisions at two successive time slots, is included in (11). In
order to account for the non-smoothness, we instead propose a
window-based algorithm with a consistent configuration within
each window. But how to set the window size affects our
algorithm performance and will be elaborated in Section IV-B.

B. A New Online Algorithm PDW-CUCB

Recall that our problem entails two types of temporal depen-
dency across decisions, i.e., a global resource constraint over
time and the non-smoothness penalty, which online learning
algorithms (e.g., bandits, FTRL [42]) do not capture. We
propose a novel online learning algorithm that can (i) regulate
non-smoothness using an expanding time window with stable
rate-resource configurations within each window (see Section
IV-B2), and (ii) solve an online combinatorial problem that
involves global resource constraints, using a primal-dual based
algorithm facilitated by learned parameters (Section IV-B1).

1) Managing the long-term capacity constraint: Let xi,j,m

be a variable that equals 1 if the mth base-arm is chosen for
chunk (i, j) and equals 0 otherwise. Our goal is to maintain
estimated rewards defined in (11) of each mth base-arm and
solve (2)–(8). We further identify that, if we know the true
expectations of reward and latency of each base-arm and
exclude the non-smoothness term, the online Multiple Choice
Knapsack Problem (MCKP) can be reduced to our problem
(2)–(8) (the proof on this reduction will be shown in our
future long version of this work). We formulate the MCKP
problem by lifting the resource constraint to the objective
function (−f(·)). Let At denote the set of alive chunks at
t, satisfying ti,j ≤ t ≤ ti,j + li,j,m, our optimization problem
with expected rewards µi,j,m defined in (11) is:

maximizex
∑
i∈[Ñ]

∑
j∈Ji

∑
m∈[M]

µi,j,mxi,j,m − f(yt) (12)

s.t.
∑

m∈[M]

xi,j,m = 1,∀i ∈ [Ñ], j ∈ Ji (13)

∑
(i,j)∈At

∑
m∈[M]

si,j,mxi,j,m ≤ yt,∀t ∈ [T] (14)

xi,j,m ∈ {0, 1},∀i ∈ [Ñ], j ∈ Ji,m ∈ [M] (15)

Here, function f(yt) is a virtual penalty function defined as

f(yt) =

{
0 if yt ∈ [0, C]

+∞ if yt > C
, where yt is the total number

of CPU cores used by SR processes in t, such that we prohibit
exceeding the resource capacity by adding an infinitely large
penalty in the objective function. Besides, l+i,j,m ≜ ti,j+ li,j,m
denotes the expected time that the SR process of chunk (i, j)
is completed. To solve (12)–(15), we adopt the primal-dual
theories. We define dual variables λi,j and σt associated with
(13) and (14), respectively. f∗(σt) is the conjugate of f(·),
which equals supyt≥0

(∑
t ytσt−

∑
t f(yt)

)
. We further relax

xi,j,m to be xi,j,m ≥ 0 and derive the dual problem as follows:

minimizeλ,σ
∑
t∈[T]

∑
i∈[Ñ],j∈Ji

λi,j + f∗(σt) (16)

s.t. λi,j ≥ µi,j,m −
l+i,j,m∑
t=ti,j

si,j,mσt,∀i, j,m (17)

λi,j ≥ 0, σt ≥ 0,∀i ∈ [Ñ], j ∈ Ji, t ∈ [T] (18)

Arm selection. To solve for the integer programming problem
with binary variables xi,j,m, we leverage the KKT condi-
tion [43] which implies to choose the configuration m∗

i,j for
(i, j) that yields the largest right hand side of constraint
(17) among all m. Formally, xi,j,m∗

i,j
= 1 for each (i, j),

where m∗
i,j = argmaxm

{
µi,j,m −

∑l+i,j,m
t=ti,j si,j,mσt

}
, and

xi,j,m = 0 for all m ̸= m∗
i,j (line 8 of Alg. 1). To realize

this, we also need a feasible solution of σt, for which we
use σt = Umin

2 (2Umax/Umin)
yt
C (line 4), inspired by [44],

[45]. Here, Umax and Umin are the maximum and minimum
rewards when allocating one CPU core to support SR, and we
suppose that we can estimate these from history.

2) Regulating the non-smoothness: Recall that the non-
smoothness term −λ

∣∣q(ri,j , si,j)− q(ri,(j−1), si,(j−1))
∣∣ in (1)

was not captured in (12). But we need to reduce the penalty of
choosing different configurations for successive chunks of the
same request. To achieve bounded long-term non-smoothness,
we maintain a window consisting of one or more timeslots
and only update ri,j , σt, and si,j using the approach specified
in Section IV-B1 when each new window starts. Our scheme
is agnostic of the potentially unknown total system timespan
T , by increasing the length of the current window to be the
number of windows that have passed. Formally, we define
w ∈ {0, · · · ,W} to index the window. We design the length
of each window w, denoted by ηw, to be ηw = max{1, w},
and we will explain the rationale in Lemma 1.

Algorithm workflow. To learn the expected rewards (11),
we define ūi,m,t and l̄i,m,t as the empirical means of µi,m and
li,m, under base-arm m ∈ M for group i, updated in timeslot
t. Let Θi,m,t denote the number of times that base-arm m is
chosen for i until timeslot t. For ease of presentation, we use
the subscription t in Θi,m,t and ūi,m,t, but our Algorithm 1
only needs to maintain a single value of Θi,m, ūi,m, and l̄i,m
for each base-arm m of group i at any timeslot, so we omit
the t subscription in Algorithm 1. Let ûi,m,t and l̂i,m,t denote

Algorithm 1: A Primal-dual and Window Control
aided Combinatorial UCB Algorithm (PDW-CUCB)

Input : Ñ , {Ri}i∈[Ñ], {Ck}k∈[K], Umax, Umin

Output : xi, ∀i ∈ [Ñ]
Initialize: ū = 0,Θ = 0, t = 0, w = 0, tw = 0

1 while the video streaming service is running do
2 t + = 1;
3 Update the total allocated resource yt;
4 Update the dual variable:

σt =
Umin

2 (2Umax/Umin)
yt
C ;

5 if t > tw + w then
6 tw = t;
7 w + = 1 ;
8 For each i ∈ Ñ , choose configuration m∗

i,j :
xi,j,m∗

i,j
= 1, where

m∗
i,j = argmaxm

{
µ̂i,m −

∑l̂i,j,m
t=ti,j

si,j,mσt

}
,

and set xi,j,m = 0 for all m ̸= m∗
i,j ;

9 Obtain instantaneous reward µi,m∗
i,j
,∀i defined

in (11) by measuring the quality and latency;
10 Update averaged reward ūi,m and latency l̄i,m;

11 Update µ̂i,m∗
i,j

= µ̄i,m∗
i,j

+ Umax

√
3 lnw

2Θi,m∗
i,j

;

12 Update l̂i,m∗
i,j

= l̄i,m∗
i,j

+ Lmax

√
3 lnw

2Θi,m∗
i,j

;

13 Update Θi,m∗
i,j

+ = 1, ∀i ;

the upper confidence bounds (UCBs) [22] of ui,m and li,m up-
dated in t. The logrithmic regularizer balances the exploration-
exploitation tradeoff, encouraging a higher UCB for under-
explored base-arms. Umax and Lmax are maximum values of
reward and latency, serving as scalars of the regularizers in
UCB. We solve for the bitrate and resource allocation using
the strategy elaborated in Arm selection of this section at the
beginning of each window w (lines 3–8), and the scheduler
continuously updates the estimated reward and latency under
each base-arm for future timeslots (lines 11, 12).

Intuition of our adaptive window scheme. We show the
idea of designing the window length through the follow-
ing lemma and theorem. Basically, we wish to construct a
small number of windows (W) in order to guarantee a non-
smoothness sublinear with T , as the total non-smoothness is
upper-bounded by O(W). However, there’s a trade-off: a small
number of windows comes with a large window length, and
wrong decision made at the beginning of a window will be
used for the entire window. To navigate this trade-off, we
first set ηw = max{1, wα}, α > 0, which expands as times
goes on to cope with the unknown T , and then we tune α
in the analysis. Other choices such as using window sizes
exponentially growing with the time-slot t is too aggressive
for our form of objective function, based on our analysis. Our
final choice ηw = w for Algorithm 1 is a special case with
α = 1, which is optimized through our theoretical performance

analysis by minimizing the aggregate errors per window over
all windows and non-smoothness. Here, we provide the proof
of Lemma 1 with ηw = max{1, wα} rather than ηw = w, to
better indicate how to apply our window scheme into other
scenarios that share the similar optimization structure with
ours. We finally tune the factor α in proving Theorem 1.

Lemma 1. If using ηw = max{1, wα}, α > 0, the total
number of windows that our Algorithm 1 maintains is at most
(T (α+ 1))

1
α+1 , while T can be oblivious to the algorithm.

Proof. Let W = (T (α+ 1))
1

α+1 . Taking the integral of the
number of timeslots over all windows up to W , we have:∫ (T (α+1))

1
α+1

w=0

wαdw ≥ T −→
W∑

w=0

ηw ≥ T, (19)

meaning that W = (T (α+ 1))
1

α+1 windows sufficiently cover
the entire system span T if using window size wα.

Lemma 1 upper-bounds the total number of windows W
with respect to T without knowing T in each t (we omit
the time slots without request arrivals), which is crucial in
bounding the overall QoE gap (shown in Theorem 1). Given
Lemma 1 with α = 1 (lines 5–7), we provide the following
performance guarantee of Algorithm 1 in Theorem 1. Let ϵ
represent the competitive ratio [45], i.e., the QoE achieved
by PDW-CUCB under perfectly estimated rewards, against
the offline optimum. We adopt the performance metric of
CUCB, by defining the Regret as the gap between an ϵ-fraction
(ϵ ∈ (0, 1]) [22] of the expected total reward using the optimal
decisions and the expected total reward achieved with our
chosen xi,∀i (under imperfectly estimated rewards):

Regret = ϵ max
{x′

i}i∈[N]

E

 ∑
i∈[N]

QoEi(x
′
i)

−E

 ∑
i∈[N]

QoEi(xi)

Theorem 1. If q(ri,j,m, si,j,m) and li,j(ri,j,m, si,j,m) are
identically and independently distributed over j (allowed to
be different across i and m), the regret incurred by PDW-
CUCB is at most O((ÑRC∆max + λmax)T

1
2), where ∆max

is the maximum reward per time, λmax is the maximum penalty
λ|q(ri,j , si,j)− q(ri,(j−1), si,(j−1))| over all possible choices
of si, si,(j−1), ri,j , and ri,(j−1) for all i, j. Besides, PDW-
CUCB has a time complexity at most O(RCÑ) per timeslot.

Theorem 1 shows that our Regret is sub-linear with the
system makespan T , even when T is oblivious to PDW-CUCB
before the streaming service ends.

Proof Sketch. Recall M ≜ ÑRC. Our achieved expected QoE
of N users requesting video chunks in T timeslots is at least:

ϵQ∗ −

M

W̃∑
w=1

ηw +

W∑
w=1

2M

w2

∆max −Wλmax (20)

The first term ϵQ∗, guaranteed by a ϵ ≤ O(log(Ñ)) com-
petitive ratio [45], is not our main concern. The last term

Wλmax is upper-bounded by λmax(T (α + 1))
1

α+1 (Lemma
1). The middle part with W̃ = 6 lnW

(f−1(∆min))2
, arises from error

accrued before window W̃ , capped by Mηw per window, and
with a maximum error incidence probability of 1

w2 (Hoeffding-
Azuma inequality [42]). Minimizing the orders of these terms
by tuning α = 1 yields the regret bound. As PDW-CUCB is
model-free and threshold-based, its time-complexity is linear
in the number of base-arms per timeslot.

V. IMPLEMENTATION AND EXPERIMENTS

We implement a prototype of Rosevin on a local testbed and
evaluate its performance with real-world experiments.

A. Prototype implementation

1) Testbed: Our end-to-end SR-assisted video streaming
system implements the cloud-edge-user architecture in Fig-
ure 2. The cloud servers are built with 3 VM instances rented
from a public cloud, which use FFmpeg to stream different
video chunks to the edge. The edge cluster is hosted on 4
servers, each equipped with 32 CPU cores and 128GB RAM.
The physical resources of these edge servers are managed with
Kubernetes [46]. The average RTT and bandwidth between
the cloud and the edge cluster are measured to be 43.4ms and
186.04Mbps, respectively.

We separate the SR-assisted video service on the edge
cluster into 3 collaborating services and deploy each service as
containers. The cache service receives video chunks streamed
from the cloud servers and uses LRU caching policy to update
the cached chunks. The cache capacity is set to 8GB. A
scheduler service performs QoE measurement of the streamed
chunks (Sec. V-A3) and runs the PDW-CUCB algorithm. At
the beginning of each time slot, the scheduler generates new
decisions for all the incoming chunk requests collected from
the users. In case that SR is needed to boost the chunk
resolution, the scheduler launches a container occupying a
certain amount of CPU resources to execute the real-time
SR task (Sec. V-A2). The streaming service pushes the video
chunks with the target resolutions back to the users.

Five additional servers are used to emulate the end users.
On each server, we launch 100 DASH-based video players to
emulate users from the same group, generate the streaming
requests with varying target resolutions for 50 available video
clips. The RTT values between these servers and the edge
cluster are enforced using Linux TC according to the real-
world measurements from [47].

2) Real-time super-resolution system: We implement our
real-time super-resolution system in the edge cluster by up-
grading the state-of-the-art key-frame-based SR pipeline [15],
[37] via extra implementation with libavcodec and libavformat
in FFmpeg (i.e., version=5.0). In order to accelerate the key-
frame-based SR using neural network inference, we integrate
the interfaces of DnnSuperReslmpl modules of OpenCV [25]
(i.e., version=4.5.2) that can invoke the TensorFlow inference
function efficiently. We also exploit the light-weight pre-
trained SR model FSRCNN [23]. Our real-time SR system

is developed as container images with different resource con-
figurations. Generally, up-scaling to 4K resolution, i.e., ×4 of
540p requires only 5-8 CPU cores to achieve real-time chunk-
level decoding, inference, and (re)encoding. So the resource
configurations of the container images are limited to 1 CPU
core, 3 CPU cores, and 5 CPU cores in our evaluation.

3) QoE measurement and evaluation set-up: To calcu-
late the QoE in (1), the edge scheduler first measures the
VMAF [41] of each video chunk before transmitting it to the
users. The emulated users are then instrumented to report their
latency measurements to the edge through remote RPCs. The
coefficients α, β, and γ of the QoE function (1) are set to 3.0,
4.0, and 5.0, respectively. Each timeslot lasts 100ms.

We source raw videos from the UVG 4K Video dataset [48]
and a public dataset [49], and encode them to resolutions
{360, 540, 720, 1080, 1440, 2160}p, or the corresponding
bitrates R={0.5, 1, 1.5, 2, 15, 60}Mbps. Each chunk is 2
seconds long, and the target bitrate of each request is randomly
sampled from R. The number of video chunks per requested
video is randomly generated from [30, 150], and the video is
played on repeat [48], [49]. Streaming requests generated from
the emulated users follow a Poisson process with a default
(varying in Fig. 4c) expected inter-arrival time of 1 second.

B. Baselines

We combine representative bitrate and resource allocation
methods for DNN-based tasks as our baselines, as there’s no
existing co-optimization of computational resource allocation
and bitrate adaptation. These baselines under-perform Rosevin,
demonstrating the value of joint optimization and online learn-
ing leveraged by Rosevin. Especially, we use combinations of
the following, i.e., each paring a resource allocation method
with a bitrate adaptation strategy, as baselines that jointly
select the numbers of CPU cores for each chunk of SR process
and the base bitrate of the chunk.
• Resource allocation method I: Optimus [20] represents

prediction-model-based scheduling for ML tasks, requiring
precise estimated task execution speeds.

• Resource allocation method II: Random uniformly at
random chooses CPU core number for each SR process.

• Bitrate adaptation method I: FlexSRVC [15] extends
the MPC algorithm [10] by solving the best bitrates using
predicted throughputs.

• Bitrate adaptation method II: D-UCB [50] uses dis-
counted UCB scores to learn the best bitrates for each group.

C. Performance evaluation

In Figure 4, we examine the performance of Rosevin on
various metrics. Figure 4a shows that Rosevin achieves 7.95%,
20.29%, 6.17%, and 21.71% higher QoE than Optimus +
FlexSRVC, Optimus + D-UCB, Random + FlexSRVC, and
Random + D-UCB, respectively. Figure 4e further demon-
strates that Rosevin also effectively reduces the percentages
of video streaming requests with lower QoEs. Diving deeper
into other performance metrics, we observe a significantly
lower CPU usage of Rosevin as shown in Figure 4b, mainly

0 250 500 750 1000 1250 1500
Timeslot

-1

0

1

2

Q
oE

Rosevin
Optimus + FlexSRVC
Optimus + D-UCB
Random + FlexSRVC
Random + D-UCB

(a) QoE comparison

0 250 500 750 1000 1250 1500
Timeslot

0%

20%

40%

60%

80%

100%

C
PU

 U
sa

ge

Rosevin
Optimus + FlexSRVC
Optimus + D-UCB
Random + FlexSRVC
Random + D-UCB

(b) CPU usage

0.01 0.02 0.1 0.2 1 2 5 10
Expected Interarrival Time (s)

0%

10%

20%

30%

40%

50%

60%

Q
oE

 Im
pr

ov
em

en
t

Rosevin - (Random + D-UCB)
Rosevin - (Random + FLexSRVC)
Rosevin - (Optimus + D-UCB)
Rosevin - (Optimus + FlexSRVC)

(c) QoE vs interarrival time

0.1 1 10
Expected Interarrival Time (s)

0

1000

2000

3000

4000

A
ve

ra
ge

 L
at

en
cy

 (m
s)

Rosevin
Optimus + FlexSRVC
Optimus + D-UCB
Random + FlexSRVC
Random + D-UCB

(d) Latency vs interarrival time

0.0 0.5 1.0 1.5 2.0 2.5 3.0
QoE

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Rosevin
Optimus + FlexSRVC
Optimus + D-UCB
Random + FlexSRVC
Random + D-UCB

(e) CDF of QoE

0.0 0.5 1.0 1.5
Non-Smoothness Reduction

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Rosevin - (Optimus + FlexSRVC)
Rosevin - (Optimus + D-UCB)
Rosevin - (Random + FLexSRVC)
Rosevin - (Random + D-UCB)

(f) CDF of non-smoothness

0 1 2 3 4
Average Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Rosevin
Optimus + FlexSRVC
Optimus + D-UCB
Random + FlexSRVC
Random + D-UCB

(g) CDF of latency

50 60 70 80 90 100
VMAF

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Rosevin
Optimus + FlexSRVC
Optimus + D-UCB
Random + FlexSRVC
Random + D-UCB

(h) CDF of video quality

Fig. 4: Rosevin achieves higher average QoE than baselines that jointly optimize bitrates and the allocation of CPU cores

360p 540p 720p 1080p 1440p 2160p
Target Resolution

0

1000

2000

3000

4000

5000
Cloud
Edge
Cloud + SR
Edge + SR

(a) Rosevin

360p 540p 720p 1080p 1440p 2160p
Target Resolution

0

1000

2000

3000

4000

5000

6000
Cloud
Edge
Cloud + SR
Edge + SR

(b) Optimus + FlexSRVC

360p 540p 720p 1080p 1440p 2160p
Target Resolution

0

1000

2000

3000

4000

5000 Cloud
Edge
Cloud + SR
Edge + SR

(c) Optimus + D-UCB

360p 540p 720p 1080p 1440p 2160p
Target Resolution

0

1000

2000

3000

4000

5000

6000
Cloud
Edge
Cloud + SR
Edge + SR

(d) Random + FlexSRVC

Fig. 5: Fine-grained evaluation of Rosevin and baselines

due to the reduced latencies of transmission, queuing, and
SR decoding, which constitute the CPU occupation duration
of alive video transmissions. Figure 4c shows a persistently
higher QoE of Rosevin. Figure 4d also depicts that with shorter
request interarrival times (e.g., higher arrival rates), that lead to
more intensive competition in edge CPU cores and cloud-edge
network bandwidth, Rosevin provides higher latency reduction
compared to the baselines. Combining the results shown in
Figure 4f and Figure 4g, we observe that Rosevin not only
ensures better smoothness in video playback but also achieves
a lower end-to-end latency. Its final video quality is also
comparable to the baselines (Fig. 4h), indicating that applying
SR to enhance videos to desired bitrates does not undermine
the average video quality over all the requests.

Fine-grained comparison of algorithms’ decisions. We
further conduct in-depth examination of the advantages of
Rosevin by comparing the numbers of times of choosing
different pi,j configurations (indicating source location of
each chunk and whether to apply SR) against the baselines.
In Fig. 5, Cloud, Edge, Cloud+SR, Edge+SR correspond
to pi,j = 00, 10, 01, 11, respectively. Rosevin makes more
proactive use of edge caching and SR than all the baselines
(Random + D-UCB is relatively similar to Optimus + D-UCB
and omitted), reducing the potentially high latencies caused by
limited bandwidth. The higher CPU usage of baselines shown
in Figure 4b can be explained by that the baselines use cloud
and cloud + SR more often, incurring a high latency as well
(Fig. 4g). Furthermore, we observe that D-UCB tends to select
cloud + SR more frequently even for medium resolutions
(Fig. 5d), resulting in a large end-to-end latency.

VI. CONCLUSION AND FUTURE WORK

This work proposes Rosevin, the first system designed to
jointly optimize bitrate and fine-grained resource allocation
for edge super-resolution to enhance video streaming. By en-
abling SR in an edge cluster, Rosevin can mitigate bandwidth
insufficiency by generating high-resolution videos using edge
computation resources. To achieve the online algorithm for
Rosevin, we introduce multiple techniques into the combina-
torial multi-armed bandits framework. We design an adaptive
window-based strategy with primal-dual theories integrated, to
address the temporal dependencies in the resource constraint
and QoE non-smoothess. In the future, we would explore
the impact of caching strategies and multi-cluster correlations
to further generalize our proposed algorithm. We would also
study the resource allocation for multiple types of resources
and augment our prototype accordingly.

REFERENCES

[1] “Netflix,” http://www.netflix.com, 2023.
[2] “Youtube,” http://www.youtube.com, 2023.
[3] “Tiktok,” http://www.tiktok.com, 2023.
[4] “Global internet phenomena report,” https://www.sandvine.com/global-

internet-phenomena-report-2023, 2023.
[5] P. K. Mu, J. Zheng, T. H. Luan, L. Zhu, Z. Su, and M. Dong, “Amis-

mu: Edge computing based adaptive video streaming for multiple mobile
users,” IEEE Transactions on Mobile Computing, 2022.

[6] A. Zhang, Q. Li, Y. Chen, X. Ma, L. Zou, Y. Jiang, Z. Xu, and G.-
M. Muntean, “Video super-resolution and caching—an edge-assisted
adaptive video streaming solution,” IEEE Transactions on Broadcasting,
vol. 67, no. 4, pp. 799–812, 2021.

[7] G. Gao and Y. Wen, “Video transcoding for adaptive bitrate streaming
over edge-cloud continuum,” Digital Communications and Networks,
vol. 7, no. 4, 2021.

[8] X. Zhang, C. Wu, Z. Li, and F. C. Lau, “Online cost minimization for
operating geo-distributed cloud cdns,” in Proc. of IEEE/ACM IWQoS,
2015.

[9] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, “Bola: Near-optimal
bitrate adaptation for online videos,” IEEE/ACM Transactions on Net-
working, vol. 28, no. 4, pp. 1698–1711, 2020.

[10] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic
approach for dynamic adaptive video streaming over http,” in Proceed-
ings of the 2015 ACM Conference on Special Interest Group on Data
Communication, 2015, pp. 325–338.

[11] H. Pang, J. Liu, X. Fan, and L. Sun, “Toward smart and cooperative
edge caching for 5g networks: A deep learning based approach,” in
2018 IEEE/ACM 26th International Symposium on Quality of Service
(IWQoS). IEEE, 2018, pp. 1–6.

[12] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop,
D. Rueckert, and Z. Wang, “Real-time single image and video super-
resolution using an efficient sub-pixel convolutional neural network,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 1874–1883.

[13] P. K. Mu, J. Zheng, T. H. Luan, L. Zhu, M. Dong, and Z. Su,
“Amis: Edge computing based adaptive mobile video streaming,” in
IEEE INFOCOM 2021-IEEE Conference on Computer Communications.
IEEE, 2021, pp. 1–10.

[14] R.-X. Zhang, C. Yang, X. Wang, T. Huang, C. Wu, J. Liu, and L. Sun,
“Aggcast: Practical cost-effective scheduling for large-scale cloud-edge
crowdsourced live streaming,” in ACM MM, 2022.

[15] Q. Li, Y. Chen, A. Zhang, Y. Jiang, L. Zou, Z. Xu, and G.-M. Muntean,
“A super-resolution flexible video coding solution for improving live
streaming quality,” IEEE Transactions on Multimedia, vol. early access,
2022.

[16] J. Kim, Y. Jung, H. Yeo, J. Ye, and D. Han, “Neural-enhanced live
streaming: Improving live video ingest via online learning,” in Proceed-
ings of the Annual conference of the ACM Special Interest Group on
Data Communication on the applications, technologies, architectures,
and protocols for computer communication, 2020, pp. 107–125.

[17] H. Yeo, Y. Jung, J. Kim, J. Shin, and D. Han, “Neural adaptive content-
aware internet video delivery,” in 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), 2018, pp. 645–661.

[18] H. Yeo, H. Lim, J. Kim, Y. Jung, J. Ye, and D. Han, “Neuroscaler: Neural
video enhancement at scale,” in Proc. of ACM SIGCOMM, 2022.

[19] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video stream-
ing with pensieve,” in Proceedings of the conference of the ACM special
interest group on data communication, 2017, pp. 197–210.

[20] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: An efficient
dynamic resource scheduler for deep learning clusters,” in ACM EuroSys,
2018.

[21] Z. Akhtar, Y. S. Nam, R. Govindan, S. Rao, J. Chen, E. Katz-Bassett,
B. Ribeiro, J. Zhan, and H. Zhang, “Oboe: Auto-tuning video abr algo-
rithms to network conditions,” in Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication, 2018, pp.
44–58.

[22] W. Chen, “Combinatorial multi-armed bandit: General framework, re-
sults and applications,” in In Proc. of ICML, 2013.

[23] C. Dong, C. C. Loy, and X. Tang, “Accelerating the super-resolution
convolutional neural network,” in Computer Vision – ECCV 2016, 2016.

[24] “Hevc,” https://hevc.hhi.fraunhofer.de/, 2023.
[25] “Opencv,” https://docs.opencv.org/3.4/d6/d0f/group dnn.html, 2023.

[26] G. Peng, “Cdn: Content distribution network,” arXiv preprint
cs/0411069, 2004.

[27] A. Asheralieva and D. Niyato, “Combining contract theory and lya-
punov optimization for content sharing with edge caching and device-
to-device communications,” IEEE/ACM Transactions on Networking,
vol. 3, no. 28, 2020.

[28] R.-X. Zhang, M. Ma, T. Huang, H. Li, J. Liu, and L. Sun, “Leveraging
qoe heterogeneity for large-scale livecast scheduling,” in ACM MM,
2020.

[29] Y. Niu, B. Luo, F. Liu, J. Liu, and BoLi, “When hybrid cloud meets
flash crowd: Towards cost-effective service provisioning,” in Proc. of
IEEE INFOCOM, 2015.

[30] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson,
“A buffer-based approach to rate adaptation: Evidence from a large
video streaming service,” in Proceedings of the 2014 ACM conference
on SIGCOMM, 2014, pp. 187–198.

[31] Y. Zhang, Y. Zhang, Y. Wu, Y. Tao, K. Bian, P. Zhou, L. Song, and
H. Tuo, “Improving quality of experience by adaptive video streaming
with super-resolution,” in Proc. of IEEE INFOCOM, 2020.

[32] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth et al., “Apache hadoop
yarn: Yet another resource negotiator,” in Proceedings of the 4th annual
Symposium on Cloud Computing, 2013, pp. 1–16.

[33] “Kubernetes,” http://kubernetes.io/, 2023.
[34] “Kubeedge,” http://kubeedge.io/, 2023.
[35] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon, J. Qian, H. H.

Liu, and C. Guo, “Tiresias: A gpu cluster manager for distributed deep
learning,” in Proc. of NSDI, 2019.

[36] C. Zhang, M. Yu, W. Wang, and F. Yan, “{MArk}: Exploiting cloud
services for {Cost-Effective},{SLO-Aware} machine learning inference
serving,” in 2019 USENIX Annual Technical Conference (USENIX ATC
19), 2019, pp. 1049–1062.

[37] H. Yeo, C. J. Chong, Y. Jung, J. Ye, and D. Han, “Nemo: enabling neural-
enhanced video streaming on commodity mobile devices,” in Proc. of
MobiCom, 2020.

[38] H. Gupta, J. Chen, B. Li, and R. Srikant, “Online learning-based rate
selection for wireless interactive panoramic scene delivery,” in IEEE
INFOCOM, 2022.

[39] A. Hodroj, M. Ibrahim, Y. Hadjadj-Aoul, and B. Sericola, “Enhancing
dynamic adaptive streaming over http for multi-homed users using a
multi-armed bandit algorithm,” in IWCMC, 2019.

[40] T. Stockhammer, “Dynamic adaptive streaming over http– standards and
design principles,” in Proceedings of the second annual ACM conference
on Multimedia systems, 2011, pp. 133–144.

[41] Z. Li, A. Aaron, I. Katsavounidis, A. Moorthy, and M. Manohara,
“Toward a practical perceptual video quality metric,” The Netflix Tech
Blog, vol. 6, 2016.

[42] E. Hazan et al., “Introduction to online convex optimization,” Founda-
tions and Trends® in Optimization, vol. 2, no. 3-4, pp. 157–325, 2016.

[43] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[44] D. Chakrabarty, Y. Zhou, and R. Lukose, “Online knapsack problems,”
in Workshop on internet and network economics (WINE), 2008.

[45] X. Zhang, Z. Huang, C. Wu, Z. Li, and F. C. Lau, “Online auctions
in iaas clouds: Welfare and profit maximization with server costs,”
IEEE/ACM Transactions on Networking, vol. 25, no. 2, 2017.

[46] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,
omega, and kubernetes,” Communications of the ACM, vol. 59, no. 5,
pp. 50–57, 2016.

[47] B. Charyyev, E. Arslan, and M. H. Gunes, “Latency comparison of cloud
datacenters and edge servers,” in GLOBECOM 2020-2020 IEEE Global
Communications Conference. IEEE, 2020, pp. 1–6.

[48] “Uvg 4k video dataset,” https://github.com/ultravideo/UVG-4K-Dataset,
2023.

[49] 2023. [Online]. Available: https://openi.pcl.ac.cn/OpenDatasets/PP8K-
CRFV/datasets

[50] H. Wang, K. Wu, J. Wang, and G. Tang, “Rldish: Edgeassisted qoe
optimization of http live streaming with reinforcement learning,” in
Proc. of IEEE INFOCOM, 2020.

