
Poster: Swift: Expedited Failure Recovery for

Large-scale DNN Training

Yuchen Zhong1, Guangming Sheng1, Juncheng Liu2, Jinhui Yuan2, Chuan Wu1
1The University of Hong Kong, China, 2OneFlow Inc., China

{yczhong,gmsheng,cwu}@cs.hku.hk,{liujuncheng,yuanjinhui}@oneflow.org

Abstract

As the size of deep learning models gets larger and larger,
training takes longer time and more resources, making fault
tolerance critical. Existing state-of-the-artmethods like Check-
Freq and Elastic Horovod need to back up a copy of the
model state in memory, which is costly for large models and
leads to non-trivial overhead. This paper presents Swift,
a novel failure recovery design for distributed deep neural
network training that significantly reduces the failure re-
covery overhead without affecting training throughput and
model accuracy. Instead of making an additional copy of
the model state, Swift resolves the inconsistencies of the
model state caused by the failure and exploits replicas of the
model state in data parallelism for failure recovery. We pro-
pose a logging-based approach when replicas are unavailable,
which records intermediate data and replays the computa-
tion to recover the lost state upon a failure. Evaluations show
that Swift significantly reduces the failure recovery time
and achieves similar or better training throughput during
failure-free execution compared to state-of-the-art methods
without degrading final model accuracy.

CCSConcepts: •Computingmethodologies→Distributed

artificial intelligence.

Keywords: Distributed DNN Training; Failure Resilience

1 Introduction

Large deep neural networks (DNNs) have recently been
shown to improve model performance [2], but training these
models is prone to failures due to the use of many machines
(e.g., hundreds of GPU machines) and long training time
(e.g., days to months). Currently, the most common method
for fault tolerance in deep learning frameworks is global
checkpointing, which periodically saves the entire model
state (i.e., parameters and optimizer states) and restarts from
the latest checkpoint in the event of a failure. Depending

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0015-6/23/02.
https://doi.org/10.1145/3572848.3577510

on the checkpointing frequency, this often results in several
hours of lost computation time [8]. CheckFreq [9] achieves
more frequent checkpoints by splitting the operation into
two phases: first, the model state is copied into the GPU
memory, called a snapshot, or to the CPU memory if the
GPU memory is insufficient; next, the snapshot is written to
the disk asynchronously. Elastic Horovod [1], a framework
for elastic training, adopts a similar approach but without the
second phase. The reason is that Elastic Horovod assumes
distributed data-parallel training, where each worker main-
tains a replica of the model state; during failure recovery, one
of the surviving workers broadcasts the snapshot to other
workers, and all workers restart training from the snapshot.
Taking a snapshot is necessary for Elastic Horovod to pre-
vent a corrupted state: if a failure occurs during the model
update, the surviving workers are in an awkward situation -
some parameters are updated while the others are not. We
identify this problem as the crash-consistency problem. How-
ever, we found that both methods can slow down training
due to the overhead of snapshotting, as shown in Figure 1.

This paper studies a better failure resilience design for dis-
tributed DNN training that significantly reduces the recov-
ery overhead without affecting training throughput and final
model accuracy. Swift uses a combination of replication-
based recovery and logging-based recovery to achieve this
goal. We implement Swift in PyTorch [10] and the code is
publicly available at https://github.com/jasperzhong/swift.

2 Swift Design

First, Swift uses a novel method called update-undo that
resolvesmodel state inconsistencies caused by the failure and
thus enables replication-based recovery using replicas of the
model state in data parallelism without creating additional
snapshots. Second, Swift proposes logging-based recovery
to achieve expedited failure recovery in pipeline parallelism.
2.1 Update-undo

Many update operators in optimizers like SGD and Adam [6]
are mathematically invertible, meaning that there is an in-
verse operator that can reverse the operation of the original
operator. For example, linear operators like element-wise
addition and scalar multiplication are all invertible. How-
ever, some optimizers involve non-linear operators, such as
the LAMB optimizer [13] which scales gradients with the
L2 norm of the parameters. In this case, it is necessary to
save the L2 norm as a scalar for recovery purposes. In the

https://doi.org/10.1145/3572848.3577510
https://github.com/jasperzhong/swift


PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada Yuchen Zhong
1
, Guangming Sheng

1
, Juncheng Liu

2
, Jinhui Yuan

2
, Chuan Wu

1

event of a failure during model updates, if some parameters
at the workers have been updated and others have not, the
surviving workers can undo the update for the updated pa-
rameters. In addition to restoring the model parameters, it is
also necessary to restore optimizer states such as momentum
to ensure consistency across all workers. With update-undo,
replicas of the model state can be used for failure recovery
in data parallelism, called replication-based recovery.
2.2 Logging-based Recovery

We propose logging-based recovery for pipeline parallelism.
This involves logging the inter-machine communication (i.e.,
intermediate activations in the forward pass and the gradi-
ents in the backward pass), as well as metadata such as the
sender and the receiver and the timestamp (i.e., the current
training iteration and the current micro-batch being trained).
Our logging method is similar to upstream backup [5], where
the sender rather than the receiver logs the message to en-
sure that the intermediate data needed for recovery is not
lost upon a failure. Logging is done asynchronously in the
background using a dedicated CUDA stream. A queue is set
up for each worker. The worker keeps pushing outgoing
tensors into the queue during training, while another back-
ground thread keeps reading tensors from the queue and
doing the logging. In addition, we perform logging during
the bubble time in synchronous pipeline-parallel training.
In this way, logging is off the critical path. Note that global
checkpointing is still used to limit the logging size because
all logging files are obsoleted after a global checkpointing.

In the event of a failure, the surviving upstream workers
flush the queue of uncompleted logging tasks when detecting
a failure in the training job. The upstream workers then
upload their logging files to global storage (e.g., HDFS). The
replacement workers for the failure workers then download
the necessary logging files from the global store, load the
latest checkpoint, and replay previously received tensors
from the logging file in the exact order of their timestamps.
If necessary, the survivingworkers will undo the update. This
method allows for a more limited scope of recovery, focusing
on the local computation graph on the failed machine rather
than the entire computation graph compared to pure global
checkpointing, resulting in faster recovery. Note that logging
requires the computation to be deterministic (i.e., the same
input leads to the same output).
Parallel recovery. To further improve the recovery process,
we utilize the surviving workers to assist in the recovery of
the failed workers. By logging the intermediate results of all
micro-batches, we can use data-parallel training based on
the logged data to expedite the recomputation of lost states.
Selective logging. We next investigate a trade-off between
the storage space and the recovery time with selective log-
ging. Our idea is to group machines and log inter-group
communication but not intra-group communication. The
original approach is a particular case where each machine

Figure 1. Replication-based recovery for Wide-ResNet-50.

Figure 2. Logging-based recovery for BERT-128.

forms a group. If one machine in a group fails, training on
the entire group of machines needs to be rolled back from
the latest checkpoint, and the recovery time will be longer.

3 Evaluation

We experiment on 16 DGX-2 machines, each equipped with
eight 32 GB V100 GPUs connected via 40Gbps Ethernet. We
compare the performance of Swift with CheckFreq and
Elastic Horovod for training a scaled-up version of the Wide-
ResNet-50 model [14] (base channel size 320, 1.23 billion
parameters) on the ImageNet dataset [12] using data paral-
lelism, and with synchronous logging (i.e., saving a tensor
before sending it) and global checkpointing for training a
BERT-128 model [3] (128 transformer layers, 1.11 billion
parameters) on the Wikipedia dataset [3] using pipeline par-
allelism. We simulate a failure by killing one machine at
iteration 100. Figure 1 shows that Swift’s replication-based
recovery significantly reduces recovery time by 98.1% com-
pared to CheckFreq and Elastic Horovod forWide-ResNet-50.
Figure 2 shows that Swift’s logging-based recovery achieves
similar throughput while reducing recovery time by up to
76.3% compared to global checkpointing for BERT-128. In ad-
dition, Swift demonstrates no loss of accuracy in end-to-end
finetuning tasks for BERT-Large on the SQuAD dataset [11]
and ViT-Base/32 [4] on the CIFAR-100 dataset [7], compared
to its failure-free counterparts.
Simulation study. We calculate the expected end-to-end
training time using traces collected in our experiments. We
inject failures uniformly randomly during training, assum-
ing a 17-hour median-time-between-failure [8]. Our results
show that Swift can speed up end-to-end training for Wide-
ResNet-50 and BERT-128 by 1.16x and 1.10x, respectively.

Acknowledgments

This work was supported in part by the Major Scientific
Research Project of Zhejiang Lab (No.2019KD0AD01) and
grants from Hong Kong RGC (HKU 17204619, 17208920).



Poster: Swift: Expedited Failure Recovery for Large-scale DNN Training PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada

References

[1] The Horovod Authors. 2022. Elastic Horovod. https://horovod.

readthedocs.io/en/stable/elastic_include.html.
[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D

Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. 2020. Language Models are Few-Shot Learners. In
Proceedings of Advances in Neural Information Processing Systems.

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2019. BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In Proceedings of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies.

[4] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. 2020. An Image is Worth 16x16 Words: Trans-
formers for Image Recognition at Scale. In Proceedings of International
Conference on Learning Representations.

[5] Jeong-Hyon Hwang, Magdalena Balazinska, Alex Rasin, Ugur
Cetintemel, Michael Stonebraker, and Stan Zdonik. 2005. High-
availability Algorithms for Distributed Stream Processing. In Proceed-
ings of International Conference on Data Engineering.

[6] Diederik P Kingma and Jimmy Ba. 2015. Adam: A Method for Stochas-
tic Optimization. In Proceedings of International Conference on Learning
Representations.

[7] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning Multiple
Layers of Features from Tiny Images. (2009).

[8] Kiwan Maeng, Shivam Bharuka, Isabel Gao, Mark Jeffrey, Vikram
Saraph, Bor-Yiing Su, Caroline Trippel, Jiyan Yang, Mike Rabbat, Bran-
don Lucia, and Carole-Jean Wu. 2021. Understanding and Improving
Failure Tolerant Training for Deep Learning Recommendation with
Partial Recovery. In Proceedings of the 4th Conference on Machine Learn-
ing and Systems.

[9] Jayashree Mohan, Amar Phanishayee, and Vijay Chidambaram. 2021.
CheckFreq: Frequent, Fine-Grained DNN Checkpointing. In Proceed-
ings of the 19th USENIX Conference on File and Storage Technologies.

[10] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In
Proceedings of Advances in Neural Information Processing Systems.

[11] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang.
2016. SQuAD: 100,000+ Questions for Machine Comprehension of
Text. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing.

[12] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. 2015. Imagenet
Large Scale Visual Recognition Challenge. In Proceedings of Interna-
tional Journal of Computer Vision.

[13] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Sri-
nadh Bhojanapalli, Xiaodan Song, James Demmel, Kurt Keutzer, and
Cho-Jui Hsieh. 2020. Large Batch Optimization for Deep Learning:
Training BERT in 76Minutes. In Proceedings of International Conference
on Learning Representations.

[14] Sergey Zagoruyko and Nikos Komodakis. 2016. Wide Residual Net-
works. arXiv preprint (2016).

https://horovod.readthedocs.io/en/stable/elastic_include.html
https://horovod.readthedocs.io/en/stable/elastic_include.html

	Abstract
	1 Introduction
	2 Swift Design
	2.1 Update-undo
	2.2 Logging-based Recovery

	3 Evaluation
	Acknowledgments
	References

