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ABSTRACT
Heterogeneous Graphs (HetGs) that capture relationships among

different types of nodes are ubiquitous in real-world applications

such as academic networks and e-commerce. Although Heteroge-

neous Graph Neural Networks (HGNNs) have demonstrated supe-

rior performance in learning from these complex structures, dis-

tributed training of HGNNs on large-scale graphs with billions of

edges faces substantial communication overhead. This challenge

is exacerbated by heterogeneous characteristics such as varying

feature dimensions across node types and featureless nodes requir-

ing learnable parameters. Existing systems and communication

reduction techniques designed for homogeneous graphs become

suboptimal or even inapplicable for HetGs and HGNNs by over-

looking both these heterogeneous characteristics and the inherent

computational structure of HGNNs. We present Heta, a framework

designed to address the communication bottleneck in distributed

HGNN training. Heta leverages the key insight that HGNN aggre-

gation is order-invariant and decomposable into relation-specific

computations. Built on this insight, we introduce three key in-

novations: (1) a Relation-Aggregation-First (RAF) paradigm that

conducts relation-specific aggregations within partitions and ex-

changes only partial aggregations across machines, proven to re-

duce communication complexity; (2) a meta-partitioning strategy

that divides a HetG based on its graph schema and HGNN compu-

tation dependency while minimizing cross-partition communica-

tion and maintaining computation and storage balance; and (3) a

heterogeneity-aware GPU cache system that accounts for varying

miss-penalty ratios across node types. Through extensive evalu-

ation of billion-edge heterogeneous graphs, we demonstrate that

Heta achieves up to 5.3× and 4.4× speedup over state-of-the-art

systems DGL and GraphLearn while maintaining model accuracy.
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1 INTRODUCTION
Heterogeneous Graphs (HetGs) capture diverse semantic relation-

ships among different types of nodes and edges. Real-world het-

erogeneous graphs often operate at massive scale with billions of

interactions. For instance, Amazon links billions of users, products,

and sellers, while YouTube manages billions of interactions among

users, videos, and channels at a comparable scale. Heterogeneous

Graph Neural Networks (HGNNs) [3, 4, 11, 23, 46, 57, 59, 61, 63]

are tailored to learn from such graphs by encoding rich semantic

and structural information, consistently surpassing homogeneous

GNNs in tasks like recommendation systems [67], social network

analysis [13], and cybersecurity [20].

However, training HGNNs on large-scale HetGs with millions

of nodes and billions of edges remains challenging [21]. Similar to

distributed GNN training on homogeneous graphs, these graphs

must be partitioned across multiple machines for processing due

to their size, necessitating frequent communication between ma-

chines to gather neighbors and their node features along edges that

cross partition boundaries [62]. This inter-machine communication

becomes a crucial bottleneck in distributed HGNN training. Unlike

homogeneous graphs, HetGs exhibit heterogeneous characteris-

tics that complicate this process. Typically, homogeneous graphs

have nodes sharing a common feature space with uniform feature

dimensions [66]. In contrast, HetGs display significant variations

in feature dimensions across different node types. Feature dimen-

sions of node types can vary dramatically (e.g., 7 to 789 in Donor

dataset [26]). Moreover, some node types lack node features entirely.

In the MAG240M dataset [22], only the paper nodes have features,

while other types of nodes (approximately half of all nodes) do not.

A prevalent solution in HGNN learning is to assign trainable param-

eters (called learnable features) to such featureless nodes that are

updated during training [19, 27, 60, 65]. This introduces additional

complexity, as learnable features and their associated optimizer

states require frequent reads and writes between GPU and DRAM,

while read-only node features only require reading from DRAM to

GPU. Both the varying feature dimensions across node types and

the coexistence of static and learnable features further exacerbate

the communication bottleneck.

These fundamental challenges - communication bottleneck and

heterogeneous characteristics - are not well addressed by existing

distributed GNN systems. Most systems are tailored for homoge-

neous graphs, primarily focusing on communication reduction.

Transferring their solutions to heterogeneous graphs is either inap-

plicable or suboptimal. First, techniques like 𝑃3
[12] partition node

features along the feature dimension, assuming uniform feature

dimensions across all nodes – a method inapplicable to HetGs with

varying feature dimensions. Next, prior works propose caching
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Figure 1: Illustration of relation-specific aggregation in R-
GAT [3]. In an academic network, a target paper node aggre-
gates features separately along two different relations.

features of frequently accessed nodes on GPUs to reduce fetching

costs [25, 28, 35, 48, 58]. However, these caching methods only con-

sider the “hotness” of nodes and overlook variations in the cache

“miss penalty” across node types, such as different feature dimen-

sions and whether features are learnable. Feature dimensions affect

data retrieval cost, while cache misses for learnable features incur

higher penalties as both reads and writes are needed. Consequently,

these caching methods are suboptimal for heterogeneous graphs.

Moreover, current distributed GNN training frameworks such

as DGL [66] and GraphLearn [49], which technically support dis-

tributed training of HGNNs, also achieve suboptimal performance

by overlooking the unique characteristics of HGNNs. These sys-

tems train HGNNs in a manner similar to homogeneous GNNs,

adhering to the vanilla execution model (detailed in §2.2), which

employs data parallelism and edge-cut partitioning. DGL converts

a HetG topology (which includes multiple adjacency matrices for

different relations) into a single adjacency matrix and then applies

edge-cut-minimizing algorithms like METIS [30] for graph parti-

tioning. GraphLearn uses random edge-cut partitioning for nodes

of each node type. The rest of the HGNN training process remains

the same as homogeneous GNNs. This homogeneous-like treatment

in partitioning and computation leads to inefficient data placement

and processing, where nodes that should be processed together

based on their types and relationships often end up scattered across

partitions. As a result, these systems still suffer from significant

communication overhead due to a large amount of remote data

fetching and can be further optimized for HGNNs (§2.3).

To efficiently mitigate the communication bottleneck in dis-

tributed HGNN training on heterogeneous graphs, we propose

Heta, a novel framework for efficient distributed HGNN training.

The key insight behind Heta is that HGNN aggregation is order-

invariant (i.e., aggregation order does not affect results) and can

be decomposed into relation-specific aggregations, where each ag-

gregation processes node features along one type of relation in the

graph. As illustrated in Figure 1, in an academic network, a paper

node aggregates features separately from its author nodes (through

“Author-writes-paper” relation) and citation nodes (through “Paper-

cites-paper” relation). These features are then processed through

their respective homogeneous GNN layers (e.g., GATConv), and

their outputs are combined and activated by ReLU to generate the

node embedding of the target paper node. This decomposition ap-

plies to most HGNNs (§2.1) and has not been fully leveraged by

current distributed GNN systems.

We begin by rethinking the fundamental HGNN computation

model inspired by this insight, developing the Relation-Aggregation-
First (RAF) paradigm to minimize communication overhead (§4).

RAF employs model parallelism to conduct relation-specific ag-

gregations within each partition, exchanging only partial aggrega-

tions and their gradients across partitions to compute final node

embeddings. This approach substantially reduces communication

overhead by avoiding direct feature movement and leveraging the

smaller hidden dimensions of HGNN models. We prove that the

communication complexity under RAF depends on the maximum

number of boundary nodes (i.e., nodes with edges crossing par-

titions), which is lower than the number of cross-partition edges

(communication complexity of the vanilla execution model used

by existing systems) (Prop.2 &3). Built on this analysis, we develop

a novel graph partitioning strategy called meta-partitioning (§5)

that specifically minimizes the maximal number of boundary nodes.

Drawing on the concept of a metagraph (a high-level abstraction

of a HetG, detailed in §2.1), we devise a novel graph coarsening

process tailored for efficiently partitioning HetG under RAF. Our

graph coarsening process is based on the computation dependency

of HGNN and assigns strongly connected relations to the same

partition, achieving efficient partitioning and balanced storage and

computation loads. To further optimize data movement, we design

a heterogeneity-aware GPU feature cache (§6) that considers varying
cache miss-penalty ratios across node types, influenced by both fea-

ture dimensions and whether features are learnable. Our primary

contributions are summarized as follows:

• We introduce the Relation-Aggregation-First (RAF) paradigm, a

novel computation method restructuring aggregation to prior-

itize relation-specific computations within each partition. We

prove RAF achieves lower communication complexity by depend-

ing on boundary nodes rather than cross-partition edges.

• We present meta-partitioning, a graph partitioning strategy tai-

lored for HetGs inspired by our communication complexity anal-

ysis. This approach minimizes the maximum number of bound-

ary nodes across partitions, ensuring balanced computation and

storage and maintaining constant communication complexity

regardless of sampling fanout or the number of HGNN layers.

• We design a heterogeneity-aware GPU cache that accounts for

the diverse characteristics of different node types in HetGs. Our

cache system distributes cache resources based on both node

hotness and their respective miss penalties, and employs a non-

redundant cache design for data consistency.

• We implement these methods in Hetawith DGL and PyTorch [41]
and demonstrate its effectiveness via extensive evaluation on

large-scale heterogeneous graphs with billions of edges. Results

show that Heta achieves up to 5.3× and 4.4× speedup over state-

of-the-art systems DGL and GraphLearn, respectively, when

training representative HGNN models while maintaining model

accuracy. Moreover, Heta’s meta-partitioning demonstrates supe-

rior efficiency in terms of time and memory footprint compared

to state-of-the-art graph partitioning methods such as METIS.

Heta is open sourced at https://github.com/jasperzhong/Heta.

2 BACKGROUND AND MOTIVATION
2.1 Heterogeneous Graph Neural Networks
Heterogeneous Graphs (HetGs). A HetG is denoted by 𝐺 =

(𝑉 , 𝐸,𝐴, 𝑅), where each node 𝑣 ∈ 𝑉 and each edge 𝑒 ∈ 𝐸 are associ-

ated with type mapping functions 𝜏 (𝑣) : 𝑉 → 𝐴 and 𝜙 (𝑒) : 𝐸 → 𝑅,

https://github.com/jasperzhong/Heta


Figure 2: Metagraph and decomposed mono-relation sub-
graphs of the ogbn-mag dataset [22].

respectively. The set 𝐴 represents the node types, while 𝑅 repre-

sents the edge types that connect the nodes. A relation 𝑟 on edge

𝑒 = (𝑢, 𝑣) is the triple (𝜏 (𝑢), 𝜙 (𝑒), 𝜏 (𝑣)), with R as the set of all such

relations. The reverse relation 𝑟−1
for 𝑟 is (𝜏 (𝑣), 𝜙¯ (𝑒), 𝜏 (𝑢)), where

𝜙¯ (𝑒) denotes the inverse edge type. A mono-relation subgraph can

be defined for each relation, containing nodes of types 𝜏 (𝑢) and
𝜏 (𝑣) and edges of type 𝜙 (𝑒). The HetG can be decomposed into a

collection of mono-relation subgraphs by relations. The structure

of a HetG can be further described by a metagraph𝑀 = (𝐴, 𝑅), and
metapaths represent semantic relations, which are sequences char-

acterized by the types of nodes and edges on the paths connecting

the nodes. Some nodes have dense feature vectors; each node type

may correspond to a feature vector of a different dimension; some

node types lack features entirely. One node type, called the target

node type, is of particular interest and is associated with labels;

they are also referred to as training nodes.

Figure 2 shows a concrete HetG and the metagraph from the

ogbn-mag dataset [22], consisting of four node types and four rela-

tions (plus three reverse relations). Figure 2 (c) shows the mono-

relation subgraphs decomposed from the HetG. Only the node type

“paper” is associated with node features, while other node types do

not. The target node type is “paper” associated with venue labels,

and the task of this dataset is to predict the venue of a given paper.

Heterogeneous Graph Neural Networks (HGNNs). Given a

HetG and node 𝑣 , the HGNN computation to generate node embed-

ding h(𝑙 )𝑣 at its layer 𝑙 is:

h(𝑙 )𝑣,𝑟 = AGG
(𝑙 )
𝑟

(︂{︂
h(𝑙−1)
𝑢 ,𝑢 ∈ 𝑁𝑟 (𝑣)

}︂)︂
h(𝑙 )𝑣 = AGG

(𝑙 )
all

(︂{︂
h(𝑙 )𝑣,𝑟 , 𝑟 ∈ R

}︂)︂ (1)

where AGG
(𝑙 )
𝑟 is a relation-specific aggregation function for re-

lation 𝑟 corresponding to a mono-relation subgraph in the HetG

(typically a GNN like GCN [33]), h(𝑙 )𝑣,𝑟 is the partial embedding of

relation 𝑟 using neighbors 𝑁𝑟 (𝑣) (i.e., the neighbors of node 𝑣 un-
der relation 𝑟 ), and AGG

(𝑙 )
all

is a cross-relation aggregation function

(typically a reduce function like summation). Both aggregation

functions are typically order-invariant, meaning the order of aggre-

gating neighbors or relations does not affect the final result. h0

𝑣 is

initialized using the feature vector of node 𝑣 or its learnable feature

vector w𝑣 (if node features are not available) [66].

Figure 3: Vanilla executionmodel of existing distributedGNN
training systems that support HGNN training.

Figure 4: Percentage of the epoch time spent on each stage:
training R-GCN on three datasets with DGL.

Eq. (1) suggests that the aggregation of a HGNN can be de-

composed into individual relation-specific aggregations for each

relation 𝑟 ∈ R, followed by a cross-relation aggregation. Two rep-

resentative HGNNs, R-GCN [46] and R-GAT [3], apply GCN [33]

and GAT [50], respectively, for relation-specific aggregation, and

then sum the embeddings. These models have a set of weight ma-

trices for each relation. HGT uses weight matrices for each node

and edge type instead of each relation [23], allowing it to perform

relation-specific aggregation using the parameters associated with

corresponding node and edge types.

2.2 Distributed Training of HGNNs
Existing systems like DGL [66] and GraphLearn [49] use edge-cut

partitioning and data-parallel training, termed vanilla execution
model. DGL supports learnable features for featureless nodes, while

GraphLearn does not. Optimizers (e.g., Adam [32]) keep states (mo-

ments and variances) equal in size to learnable features. All node-

related data are partitioned according to their associated nodes.

In this model (Figure 3), each worker processes a mini-batch of

training nodes ( 1 ) and samples their 𝑘-hop neighbors ( 2 ) [18].

Features of sampled nodes are fetched from the key-value store

(KVStore) in host memory, incurring network communication for

remote data. These features and topology are copied to the GPU

( 3 ) for computation. After model computation ( 4 ) and gradient

synchronization, optimizer states are fetched from the local KVStore

to the GPU, and both states and learnable features are updated and

written back to the local KVStore ( 5 ).

2.3 Opportunities & Challenges
Challenge 1: Communication Bottleneck. The vanilla execution
model (§2.2) shows each training iteration requires constructing



Figure 5: Heta’s design overview.

𝑘-hop neighborhoods for input target nodes and collecting graph

structures and feature vectors from different machines. HGNNs ex-

acerbate this by needing extra communication to update learnable

features for featureless nodes. Figure 4 shows that when training

R-GCN on three large-scale datasets with DGL and METIS [30] on

two Amazon EC2 g4dn.metal instances, communication-intensive

operations (sampling, feature fetching, and learnable feature up-

dates) consume over 60% of the epoch time. Existing communica-

tion reduction methods for homogeneous GNNs are insufficient:

𝑃3
[12] assumes uniform feature dimensions, a condition absent in

HetGs, while other approaches [10, 52–54] alter model computa-

tional equivalence.

Opportunity 1: Relation-Aware Model Parallelism. Eq. (1)
indicates that HGNN computation is splittable by relation type

𝑟 , allowing workers to aggregate embeddings within each rela-

tion before communicating. This amounts to model parallelism for

HGNN training. We leverage this insight to propose the Relation-

Aggregation-First (RAF) paradigm, which reduces communication

overhead while preserving model mathematical equivalence (§4).

Challenge 2: Lack of Effective Partitioning Strategy forHetGs.
The most common graph partitioning scheme in distributed GNN

systems is edge-cut partitioning, especially METIS [30, 65]. These

and other classical algorithms [2, 5, 14] target homogeneous graphs,

treating all neighbors equally and ignoring that HGNNs process

different types of neighbors separately based on their relations. For

example, in an academic network, a paper node aggregates features

from its authors and citing papers separately, as they represent

distinct relations. This type-blind partitioning causes inefficient

data placement where nodes that should be processed together

often end up in different partitions. Thus, a largely unexplored

frontier remains in graph partitioning for HetGs.

Opportunity 2: Relation-Aware Partitioning. By considering

relations and HGNN computation dependency, relation-aware par-

titioning can better place connected node types and their links

within the same partition. This requires new partitioning objectives

and methods. We propose meta-partitioning, using the metagraph

and HGNN computation dependency for HetG partitioning (§5).

Challenge 3: Feature Heterogeneity in GPU Caching. Prior
works [35, 48, 58] suggest caching frequently accessed node fea-

tures on GPUs but overlook the heterogeneity of features in HetGs.

Different node types have varying feature dimensions that affect

retrieval costs, and some have learnable features requiring frequent

host-device communication, rendering existing methods subopti-

mal for HetGs.

Opportunity 3:Heterogeneity-AwareGPUCache.Cachemisses

for different node types incur varying time penalties based on their

feature dimensions and types (static vs. learnable). This variance

highlights the need for careful cache resource allocation in HetGs.

We propose a caching strategy that considers these heterogeneous

traits to optimize efficiency (§6).

3 SYSTEM OVERVIEW
Heta is a distributed framework for efficiently training HGNN on

HetGs. Figure 5 presents an overview of the design. Heta uses meta-

partitioning (§5), a relation-aware scheme that decomposes the

heterogeneous graph into balanced partitions via its metagraph

and HGNN computation dependency. Each partition contains one

or more complete mono-relation subgraphs (§2.1). Before training,

Heta profiles node access frequencies and cache miss-penalty ratios

for different node types, accordingly calculates cache sizes for each

type, and initializes the GPU feature cache using these frequencies

(§6). Heta uses mini-batch sampling-based, iterative GNN training

and introduces the novel Relation-Aggregation-First (RAF) para-

digm. This paradigm aggregates partial results to generate node

embeddings across partitions without moving features (§4). After

each training iteration’s backpropagation, model parameters and

learnable features are updated.

4 RAF HGNN COMPUTATION
As §2.1 shows, HGNN aggregation is inherently decomposable by

relations, a property current distributed systems fail to exploit.

This observation, and that HGNN communication overhead stems

mainly from cross-partition feature collection, motivates a funda-

mental redesign of the distributed execution model. Rather than

treating HGNNs as homogeneous GNNs, we propose aligning the

system design with HGNN’s computational structure by prioritiz-

ing relation-specific processing. Moreover, we prove our proposed

method achieves lower communication complexity than the vanilla

execution model of existing systems.

RAF Paradigm.We present the Relation-Aggregation-First (RAF)
paradigm inAlgorithm 1, which fundamentally reduces communica-

tion by exploiting HGNN’s relation-specific computation structure.

RAF operates on partitioned HetGs, with each partition holding one

or more complete mono-relation subgraphs. In RAF, each worker



Algorithm 1: RAF Execution Paradigm

Input: Partitioned heterogeneous graph𝐺 based on relations

{𝐺1,𝐺2, . . . ,𝐺𝑝 }; set of target nodes𝑉target; the 𝑘-layer
HGNN; designated worker 𝑤𝑑

Output: Updated model parameters 𝜃 of the HGNN

1 foreach batch 𝐵 ⊆ 𝑉target do
2 𝑆𝐿

𝐵
← Sample 𝑘-hop neighbors for nodes in 𝐵

3 for 𝑙 = 1 to 𝑘 do
/* Relation-specific aggregation */

4 for each worker 𝑖 do in parallel
5 h(𝑙 )

𝑖
← Aggregate neighbor features/embeddings of

𝑆𝑙
𝐵
for the 𝑖-th partition’s relations

6 Send partial aggregations h(𝑙 )
𝑖

to worker 𝑤𝑑

7 on worker 𝑤𝑑 do
/* Cross-relation aggregation */

8 h(𝑙 ) ← AGG
(𝑙 )
all
({h(𝑙 )

𝑖
})

9 if 𝑙 = 𝑘 then
10 Compute loss and backpropagate

11 Send gradients ∇h(𝑙 )
𝑖

to workers

12 for each worker 𝑖 do in parallel
13 if 𝑙 = 𝑘 then
14 Backpropagate with ∇h(𝑙 )

𝑖
and update local model

parameters 𝜃𝑖

maintains an input HetG partition and holds only the model param-

eters for the relations in its partition. This enables local relation-

specific aggregations (partial aggregations) without cross-machine

feature fetching. A randomly assigned designated worker handles

cross-relation aggregation. Specifically, each worker aggregates

features or previous-layer embeddings from the sampled neighbor-

hood of the target nodes for its local relations (line 5, Algorithm 1)

without network communication. The designated worker then col-

lects all partial aggregations from other workers (line 6, via network

transmissions), combines embeddings from different relations (line

8), and performs loss computation and backpropagation (line 10).

Gradients of partial aggregations are sent back to the correspond-

ing workers (line 11). These workers then compute gradients and

update their local model parameters (line 14). Learnable features

in a worker’s partition are part of its model parameters and are

updated together.

Communication Reduction. RAF significantly reduces commu-

nication in two ways. First, it dramatically cuts the message count

by eliminating inter-machine feature fetching. In the vanilla exe-

cution model of existing GNN systems, features of sampled 𝑘-hop

neighbors must be fetched. In RAF, each partition holds complete

mono-relation subgraphs, enabling local aggregation of outer-hop

features. Only inner-hop partial aggregations might need communi-

cation if they span partitions. Second, RAF reduces message sizes by

sending partial aggregations instead of high-dimensional features.

These partial aggregations match the model’s hidden layer dimen-

sions, which are typically much smaller than feature dimensions.

To quantify these benefits, consider training a 2-layer R-GCN

model [46] with a hidden dimension 64 and fanouts {25, 20} on the

MAG240M dataset [21], where paper nodes have 768-dimensional

features and other nodes use 64-dimensional learnable features, all

in float16 format. Suppose a batch of 1024 training nodes is sampled

and the graph partitioned onto two machines using METIS [30].

In total 289,986 neighbor nodes are sampled in layer 0 (2-hop),

with 66,772 stored on remote machines. Fetching features of these

remote nodes and their topology with the vanilla execution model

requires transmitting 92.3 MB of data. RAF, however, only requires

exchanging partial aggregations and their gradients of 14,568 nodes

in layer 1 (1-hop) and 1024 nodes in layer 2 (input), totaling 8.0 MB.

Our meta-partitioning approach (§5) further optimizes commu-

nication by enabling the combination of aggregation messages from

multiple relations within the same partition. This approach is highly

effective in multi-hop or metapath-based sampling with hierarchi-

cal aggregations. In the previous example, only partial aggregations

and their gradients of 1024 nodes in layer 2 need to be exchanged,

not those in layer 1, as meta-partitioning limits cross-partition de-

pendencies (i.e., boundary nodes) to the target nodes (i.e., “paper”

nodes), reducing the communication volume to just 0.5 MB.

Theoretical Analysis.We now establish the theoretical founda-

tions of RAF’s effectiveness via three key propositions. Proofs are

available in [70]. First, we prove that RAF maintains mathematical

equivalence with the vanilla execution model, ensuring that our

optimization preserves model accuracy:

Proposition 1 (Mathematical Eqivalence). Let h(vanilla)
𝑣

and h(RAF)
𝑣 be the embedding of a target node 𝑣 obtained with the

vanilla execution model and the RAF paradigm, respectively. It holds
that h(RAF)

𝑣 = h(vanilla)
𝑣 .

Next, we analyze communication complexity for a HetG divided

into two partitions, 𝐺1 and 𝐺2. The results can be readily extended

to multiple partitions.

Proposition 2 (Communication Complexity). With RAF, the
number of communication messages from the worker with partition
𝐺1 to the worker with partition 𝐺2 is proportional to the number of
boundary nodes in𝐺1 (nodes with neighbors in the other partition), i.e.,
Θ( |B(𝐺1) |). The communication complexity in the reverse direction
is Θ( |B(𝐺2) |). B(𝐺𝑖 ) denotes the boundary nodes of partition 𝐺𝑖 .

While the vanilla execution model’s communication scales with

cross-partition edges E(𝐺1,𝐺2), we show:
Proposition 3 (Communication Reduction).

max{ |B(𝐺1 ) |, |B(𝐺2 ) | } ≤ E(𝐺1,𝐺2 ) .

Proposition 3 proves RAF’s boundary-node complexity is strictly

better than the vanilla model’s edge-count complexity. With equiva-

lence guarantees, this shows RAF’s communication efficiency with-

out accuracy loss.

5 META-PARTITIONING OF HETG
Our analysis in §4 shows that RAF’s communication complexity de-

pends on the maximal number of boundary nodes across partitions.

This insight leads to a new graph partitioning objective directly tar-

geting this property. Suppose there are 𝑝 machines used for HGNN

training. The proposed 𝑝-way graph partitioning problem is:

Minimize max

{︁
|B(𝐺1 ) |, |B(𝐺2 ) |, . . . , |B(𝐺𝑝 ) |

}︁
subject to 𝐺 ⊆ 𝐺1

⋃︂
𝐺2

⋃︂
. . .

⋃︂
𝐺𝑝 ,

with balanced partitions.

(2)



Figure 6: Workflow of meta-partitioning on the ogbn-mag dataset. ‘P’ - paper, ‘A’ - author, ‘F’ - field of study, ‘I’ - institute.

Proposition 4. The partitioning problem defined in Eq. (2) is
NP-hard.

This formulation is theoretically sound: Proposition 3 proves that

the boundary node count (our system’s communication complexity)

is always upper-bounded by the cross-edge count (communication

complexity in existing systems). Proposition 4 establishes that the

optimization problem is NP-hard (the proof is available in [70]),

thus needing an efficient heuristic solution. Traditional graph par-

titioning often uses graph coarsening [30] to reduce complexity by

merging nodes to form a smaller graph while preserving essential

structural properties. For heterogeneous graphs, the metagraph

(§2.1) offers a natural coarsening mechanism by grouping nodes

and edges by type.
1
However, as wemention in §2, directly applying

this approach faces two key challenges:

First,HGNN computation dependenciesmust be considered. Naively

randomly assigning relations to partitions ignores that some rela-

tions have stronger computational dependencies. Our key insight

is leveraging HGNN’s computational structure: for any target node,

computations across different relations in the same neighborhood

are inherently parallel. Since HGNN training typically focuses on a

specific node type as training targets (§2.1), we can represent the

computation dependencies as a tree-structured graph—which we

call ametatree—rooted at this target node type. Figure 6 (Step 1)

illustrates this concept using the ogbn-mag dataset [22] with 2-hop

sampling. The metatree abstraction effectively captures structural

relationships and computation paths, enabling partitioning that

aligns with HGNN processing.

Second, balanced workload distribution is vital for efficient paral-

lel processing. In mini-batch training with neighborhood sampling,

each target node has a fixed computational cost set by the sampling

fanout (e.g., {25, 20}) [36]. Thus, balancing target nodes across parti-

tions is key for computational load balance. Additionally, we need to

consider storage requirements: we augment our metatree approach

with weights where vertex weights represent node counts of each

type and link weights capture edge counts of each type, allowing

the partitioning process to achieve balanced storage distribution

across workers.

This design transforms our original optimization problem de-

fined in Eq. (2) into a weighted metatree partitioning problem that

1
To avoid confusion, we use the terms vertex” and link” for the metagraph, and node”

and edge” for the HetG.

operates on a significantly smaller scale (based on node and edge

types rather than individual nodes and edges). Below, we detail this

partitioning procedure and illustrate it with a concrete example.

Algorithm. The meta-partitioning procedure (Detailed Algorithm

is available in [70]) consists of four steps.

Step 1: Build metatree.We build the metatree via BFS from the target

node type as the root vertex, which naturally aligns with multi-hop

sampling patterns. For 𝑘-hop sampling, we use 𝑘-depth BFS, though

users can also provide specific metapaths. Figure 6 (Step 1) shows

the metatree for ogbn-mag built with 2-depth BFS from the target

node type “paper” (P).

Step 2: Split metatree. We create sub-metatrees based on the root’s

children, each containing the root vertex, a child, and its descen-

dants. This design ensures every partition contains all target nodes,

restricting boundary nodes to target nodes only (since other nodes

in each partition do not relate to nodes in other partitions). The

weight of each sub-metatree is computed from its leaf vertices (node
types) (i.e., vertices in the outmost hop of the metatree) and links

to guide load balancing, as retrieving node features of the outmost

hop from host memory to GPU and learnable feature updates incur

substantial host-device data copies. When a leaf node type appears

in multiple partitions, its features are duplicated to enable local

access. This way, HGNN aggregations defined by the sub-metatrees

can be performed within each partition. Splitting the metatree from

the root vertex also helps balance the computational load since all

partitions contain all target nodes, and the computation load for

each worker is primarily determined by the number of target nodes

in the partition. In Figure 6 (Step 2), the metatree splits into three

sub-metatrees 𝑆1, 𝑆2, and 𝑆3, with weights of 16, 17, and 27 million,

respectively. Paper node features are duplicated since node type

‘Paper’ is the leaf node type in 𝑆1, 𝑆2, and 𝑆3.

Step 3: Assignment. Assigning sub-metatrees to 𝑝 partitions is a

𝑝-way number partitioning problem that minimizes the largest

sum of weights among partitions to ensure load balance. We use a

greedy longest-processing-time-first (LPT) approach [17], assigning

“heavier” sub-metatrees first to the least loaded partitions. As shown

in Figure 6 (Step 3), 𝑆1 and 𝑆2 are assigned to Partition 1, while 𝑆3

goes to Partition 2.

Step 4: Deduplication. As the metatree may contain duplicated re-

lations from metagraph cycles, we must remove duplicates within



Figure 7: Hybrid parallelism strategy when partitions ex-
ceed sub-metatrees. With 4 machines and 2 sub-metatrees
(S1, S2), we adopt data parallelism by duplicating each sub-
metatree across two machines and splitting target nodes (‘Pa-
per’ nodes). The partial aggregations of corresponding target
nodes are combined using RAF.

each partition to improve storage efficiency. This deduplication pre-

serves computational correctness by removing redundant copies

while keeping all unique relation instances. Each final HetG parti-

tion thus contains the complete mono-relation subgraph for each

unique relation, including all nodes of the two node types connected

by that relation and all edges of that edge type. Figure 6 (Step 4),

Partition 2’s duplicate "Paper-cites-paper" relation is removed, re-

sulting in final partitions: Partition 1 with five unique relations,

1.9 million nodes, and 30 million edges; and Partition 2 with three

unique relations, 1.9 million nodes, and 25 million edges.

Complexity.Meta-partitioning operates on the metagraph (few

vertices and links), not the full HetG. The BFS algorithm’s complex-

ity is at most 𝑂 ( |𝑅 |) when traversing all links. With at most |𝐴|
sub-metatrees (if all node types connect to the target node type),

the time complexity of sorting and deduplication is 𝑂 ( |𝐴| log |𝐴|).
Thus, the overall time complexity of the meta-partitioning algo-

rithm is 𝑂 ( |𝐴| log |𝐴|) +𝑂 ( |𝑅 |), far lower than graph partitioning

algorithms in existing GNN training systems (at least𝑂 ( |𝑉 |), where
|𝑉 | is the number of nodes in the HetG [2]).

Large Mono-Relation Subgraph. All existing benchmark HetG

datasets [19, 21, 22, 26] have mono-relation subgraphs fitting a sin-

gle machine with 200 GB host memory, making our designs ideal

for these cases. If a mono-relation subgraph is too large for one

machine, we can use a heuristic to find a balanced vertex-cut [45],

referring to the problem Eq. (2). Then, we can still adapt the RAF

paradigm (§4) to work across these partitions: each partition per-

forms local aggregations on its portion of the subgraph, exchanges

partial aggregation results for the cut vertices, and combines the

local and received partial results to complete the relation-specific

aggregation. After processing all relations spanning multiple ma-

chines, we proceed with the cross-relation aggregation as in the

original RAF paradigm.

Balance Partitions and Sub-metatrees. When balancing sub-

metatrees across available partitions, two scenarios arise: (1) If sub-

metatrees substantially outnumber partitions, we assign multiple

sub-metatrees to one partition via ourweighted LPT algorithm (Step

3). This algorithm accounts for relation size differences by assigning

larger relations (with more nodes and edges) first, ensuring storage

balance across partitions. Each partition contains all target nodes,

ensuring an even distribution of the computational workload in

mini-batch training, as noted earlier. (2) If partitions significantly

outnumber sub-metatrees (e.g., in graphs with few relations like co-

author networks), we use a hybrid parallelism strategy combining

model and data parallelism. As shown in Figure 7, with 4 machines

and only 2 sub-metatrees, we can assign the first sub-metatree to

machines 1 and 2, and the second sub-metatree to machines 3 and

4. Each data-parallel group (e.g., machine 1&2) processes the same

relations but different subsets of target nodes (‘Paper’ nodes). Each

model-parallel group (e.g., machine 1&3) processes the same subset

of target nodes and aggregates their partial results using RAF. This

hybrid approach maintains the optimization objective in Eq. (2) by

minimizing boundary nodes while distributing the computational

load. Note that the sub-metatree count is determined by the number

of relations connected to the target node type, making it necessarily

smaller than the total number of relations in the graph.

Extending to Multiple Target Node Types.While our presen-

tation focused on single target node type scenarios, Heta can be

extended to support multiple target node types. For such cases,

we can adapt meta-partitioning in two ways: (1) build multiple

metatrees, one rooted at each target node type, and assign them to

partitions while maintaining load balance; or (2) add a virtual “super

root” in the metagraph connected to all target node types and build

a single metatree from it. The RAF paradigm naturally extends to

multiple target types by processing relation-specific aggregations

for each target type within each partition. Our communication com-

plexity analysis remains valid as the boundary nodes would now

include nodes of all target types. This extension preserves Heta’s
key advantages of reduced communication overhead, enabling the

system to handle more complex heterogeneous graph tasks.

6 HETEROGENEITY-AWARE GPU CACHE
GPU feature caching is crucial for efficient HGNN training. How-

ever, heterogeneous graphs pose unique challenges that traditional

caching strategies fail to address: node types have varying feature di-

mensions (tens to thousands), and features can be static (read-only)

or learnable (needing extra optimizer states and frequent updates).

This heterogeneity demands a more sophisticated caching strat-

egy considering both node access patterns and diverse cache miss

costs. To address this, we allocate cache space using pre-profiled

access frequencies and miss penalties. We propose a static cache

allocation where cached features remain in GPU memory with-

out replacement or updates during training. We choose this static

design for two reasons: (1) The inherent randomness in neighbor

sampling—essential for preventing overfitting [18]—creates non-

deterministic feature access patterns, making exact access patterns

impossible to pre-determine; (2) Dynamic replacements incur run-

time overhead for metadata tracking and eviction, which can negate

latency savings [36].

Miss-Penalty-Aware Cache Size Allocation. Our design’s key
insight is that cache effectiveness depends on both access frequency

and the cost of cache misses, which varies across node types. We

quantify this with a miss-penalty ratio, measuring the time penalty

per unit cache size for a non-cached feature. This ratio varies with

feature traits (dimension size, read-only vs. learnable) and system

factors (e.g., PCIe transaction overhead).



(a) Donor dataset (b) ogbn-mag dataset

Figure 8: Miss-penalty ratio for different node types in
Donor [26] and ogbn-mag [22] datasets.

To determine node access patterns, we adopt pre-sampling [58],

tracking node access frequencies over one training epoch. To pro-

file miss penalties, we measure DRAM-to-GPU transfer times for

read-only features, and read/write times for learnable features and

their optimizer states. This profiling has a modest overhead (13-57%

of one epoch time) but is done once per hardware and sampling con-

figuration, making it negligible over hundreds of training epochs.

Figure 8a shows that smaller feature dimensions often incur

larger miss-penalty ratios due to fixed transfer overheads [48]. Fig-

ure 8b shows that learnable features have higher miss penalties

from write operations and optimizer state management. These ob-

servations lead to our hierarchical caching strategy that balances

both access patterns and miss penalties. Rather than computing in-

dividual node scores, which would introduce substantial overhead,

we first allocate cache sizes to node types based on their aggregate

statistics, then prioritize frequently accessed nodes within each

type. Specifically, we allocate the cache size to each node type 𝑎 on

each partition in proportion to the product of the total visit count

𝑐𝑜𝑢𝑛𝑡𝑎 of nodes of type 𝑎 (obtained from pre-sampling) and the

miss-penalty ratio 𝑜𝑎 : given the total cache size (e.g., 4GB per GPU

as in our experiments), the percentage of the cache size allocated

to node type 𝑎 is
𝑐𝑜𝑢𝑛𝑡𝑎×𝑜𝑎∑︁

𝑎′ ∈𝐴′ 𝑐𝑜𝑢𝑛𝑡𝑎′×𝑜𝑎′
, where 𝐴′ is the set of all node

types in the HetG partition.

Cache Consistency. Learnable features introduce cache consis-
tency challenges in multi-GPU settings. While replication seems

appealing for read performance, it requires complex synchroniza-

tion for updates. We instead adopt a non-replicative cache split

strategy: each learnable feature resides in one GPU cache or host

memory, eliminating consistency issues. Features are distributed

across GPUs using the modular hashing scheme: the learnable fea-

ture of node 𝑛𝑖𝑑 is cached in GPU rank 𝑛𝑖𝑑 mod 𝑛𝑢𝑚_𝑜 𝑓 _𝑔𝑝𝑢𝑠 ,

leveraging efficient CUDA peer-to-peer operations [39] for cross-

GPU access.

7 IMPLEMENTATION
Heta is implemented on DGL 1.1 and PyTorch 1.3.1 with 2.8K lines

of Python code, including minor DGL modifications to enable GPU

caching and load meta-partitioned graphs. We leverage PyTorch’s

distributed package[34] with Gloo [9] and NCCL [40] to imple-

ment the RAF paradigm. The meta-partitioning algorithm uses

NetworkX [8], while the GPU cache is built using PyTorch tensors

for node ID tracking and presence indication. In multi-GPU setups,

each machine handles one partition with intra-machine workers

performing data-parallel training on evenly split target nodes. Heta

Table 1: Dataset information. # Node T. and # Edge T. repre-
sent the number of node types and edge types, respectively.

Attribute ogbn-mag Freebase Donor IGB-HET MAG240M

# Nodes 1.9e6 1.2e7 9.7e6 2.6e7 2.4e8

# Node T. 4 8 7 4 3

# Edges 4.2e7 1.3e8 2.5e7 4.9e8 3.4e9

# Edge T. 7 64 14 7 5

# Node T.

w/ Feat.

1 0 7 4 1

Feat. dim 128 N/A 7-789 1024 768

# Classes 349 8 2 2983 153

Storage (GB) 0.86 1.2 22 104 202

provides three main APIs: Partition for graph partitioning with

optional metapath specification, FetchFeature for efficient node

feature retrieval, and HGNN for model definition through relation-

specific and cross-relation aggregation functions.

8 EVALUATION
8.1 Methodology
Testbed. All experiments use Amazon EC2 g4dn.metal instances,

each with 8 NVIDIA 16 GB T4 GPUs, 96 vCPU cores, and 384

GB DRAM. Instances are connected with a 100 Gbps network. By

default, each experiment uses two instances.We also use anAmazon

EC2 X1.32xlarge instance with 2 TB DRAM for graph partitioning.

Datasets.We evaluate our system on five diverse heterogeneous

graph datasets (Table 1) spanning various scales, domains, and

structures. The ogbn-mag dataset [22] is a heterogeneous academic

citation network (Figure 2), where only paper nodes have features.

The Freebase dataset [19], extracted from Freebase [16], is a com-

plex knowledge graph with 64 edge types but no initial node fea-

tures, thus requiring learnable features for all nodes. The Donor

dataset [26], built withmethods from [6], models DonorsChoose.org

project proposal approvals, capturing complex relationships be-

tween teachers, schools, and project applications. It has rich at-

tributes across all node types (dimensions varying from 7 to 789)

and aims to predict proposal approval. The IGB-HET dataset [31] is a

large-scale citation network where all nodes have high-dimensional

features (1024) and many labeled nodes for training across 2983

classes. The MAG240M dataset [21], derived from the Microsoft

Academic Graph [55], is one of the largest known heterogeneous

graphs (240M nodes, 3.4B edges). Like ogbn-mag, only paper nodes

have features, but they are high-dimensional (768) and consume

significant storage (about 175 GB in float16).

HGNNs.We train three representative HGNNmodels: R-GCN [46],

R-GAT [3], and HGT [23]. Following OGB leaderboard settings [22],

all models use 2 layers and 64 hidden neurons per layer. We also

evaluate Heta on a more recent HGNN model - SeHGNN [59] (re-

sults and discussion are available in [70]). For nodes without initial

features (e.g., all nodes in Freebase), we use learnable embeddings of

dimension 64. We set the minibatch size to 1024 for all datasets and

sample two-hop neighbors with fanout {25, 20} in all experiments.

We allocate a 4 GB cache size per GPU in Heta, providing a good
balance between cache size and GPU memory needed for training.



Figure 9: Overall performance on various HGNN models and datasets. Heta achieves significant speedup over baselines.

Baselines.We compareHetawith these baselines: (1)DGL-Random:

uses random partitioning; (2) DGL-METIS: uses traditional edge-
cut minimization; (3) DGL-METIS-VOL [29]: uses METIS 5.0+’s

communication volume minimization (objtype=‘vol’). Unlike stan-

dard edge-cut, this heuristic directly minimizes the total communi-

cation volume by considering both boundary node count and the

number of partitions each boundary node connects to; (4) DGL-
Opt: our optimized version of the best-performing METIS variant

(DGL-METIS/DGL-METIS-VOL) with GPU node feature caching.
2

It is inapplicable to featureless Freebase, as caching non-replicative

learnable features gives DGL little benefit since remote workers

still need network communication for fetching; (5) GraphLearn
(PyTorch): uses its native caching and runs only on feature-rich

datasets (Donor, IGB-HET) as it lacks learnable feature support.

We apply the same 4 GB cache size per GPU and cache allocation

method (§6) from Heta to DGL-Opt and GraphLearn.

8.2 Overall Performance
We first evaluate end-to-end distributed training performance by

comparing epoch time (time for a complete training dataset pass)

across systems. Figure 9 shows Heta’s superior performance in all

scenarios, with speedups of 1.9× to 5.3× over DGL and 1.5× to 4.4×
over GraphLearn. Heta’s advantages are especially clear against

DGL variants. It achieves its highest speedup (up to 5.3×) over
DGL-Random, which suffers from low data locality and frequent

cross-partition communication from its random partitioning. While

DGL-METIS improves this by minimizing edge-cuts to reduce com-

munication, and DGL-Opt further boosts performance with node

feature caching, Heta still holds significant advantages, with up to

3.1× and 2.6× speedup over these optimized versions, respectively.

GraphLearn performs well among baselines on the Donor and IGB-

Het datasets with its asynchronous graph sampling and feature

cache. Still, Heta achieves up to 4.4× speedup over GraphLearn,

mainly from its RAF computation paradigm and meta-partitioning,

which effectively reduce cross-partition communication.

When examining performance across different model architec-

tures,Heta demonstrates consistent advantageswith average speedups

of 2.8×, 2.6×, and 2.4× over baselines for R-GCN, R-GAT, and HGT,

respectively. The variation in speedup factors can be attributed to

the different computation-communication characteristics of these

models. R-GCN shows the highest performance improvement as

it is more communication-intensive. In contrast, R-GAT and HGT

2
DGL-Opt uses DGL-METIS-VOL for Donor/IGB-HET/MAG240M (superior perfor-

mance) and DGL-METIS for others.

Figure 10: Time breakdown of training stages of R-GCN.

are more computation-bound due to their attention mechanisms,

resulting in a higher ratio of computation over communication.

This leaves a relatively smaller improvement space for Heta as the
communication bottleneck is less pronounced in these models.

8.3 Training Time Breakdown
We analyze time distribution across training stages using the R-

GCN model. Figure 10 details results on IGB-HET and MAG240M

datasets. Other models and datasets showed similar patterns. The

breakdown reveals Heta’s key innovations significantly reduce time

in most training stages. Specifically, RAF and meta-partitioning

cut cross-machine communication for sampling, feature fetching,

and learnable feature updates by constraining operations to local

partitions. The GPU cache further optimizes feature operations

by holding frequent data in high-speed memory. While forward

computation slightly increases due to aggregating relation-wise

partial embeddings under RAF, backpropagation time is substan-

tially reduced by avoiding cross-machine gradient synchronization,

needing only fast intra-machine synchronization for multi-GPU

cases. The model update stage also benefits from cross-machine

model parallelism, as each machine holds only part of the model.

To quantify the communication benefits, Table 2 compares the

inter-machine communication volume per epoch between Heta and
baselines when training R-GCN on two machines. Other models

show similar results. The results demonstrate thatHeta dramatically

reduces communication across all datasets, achieving total commu-

nication reductions ranging from 47.22% to 98.42%. This significant

reduction stems from two key factors: First, meta-partitioning elimi-

nates sampling and feature transfer communication by constraining

cross-partition dependencies to only target nodes, as evidenced by



Table 2: Inter-machine communication volume comparison
(GB per Epoch) when training R-GCN on two machines. Heta
significantly reduces the communication by up to 98.42%
compared to baselines from RAF and meta-partitioning.

Method

Inter-machine Comm. Breakdown Comm.
Sample Feature Fetch/ Grad. Total Reduction

Partial Aggr. Sync. Comm.

ogbn-mag

DGL-METIS 0.32 18.55 14.9 33.76 96.80%

DGL-METIS-VOL 0.38 22.38 19.9 42.66 97.47%
Heta 0 0.32 0.76 1.08 –

Freebase

DGL-METIS 0.01 0.2 0.87 1.08 47.22%

DGL-METIS-VOL 0.01 0.2 1.25 1.45 60.69%
Heta 0 0.02 0.56 0.57 –

Donor

DGL-METIS 0.04 4.12 2.64 6.8 92.50%

DGL-METIS-VOL 0.04 3.44 5.28 8.76 94.18%

GraphLearn 0.1 12.77 2.64 15.51 96.71%
Heta 0 0.25 0.25 0.51 –

IGB-HET

DGL-METIS 2.72 1391.87 308.35 1702.93 95.29%

DGL-METIS-VOL 2.07 1061.66 616.69 1680.43 95.23%

GraphLearn 8.9 4557.14 308.35 4874.39 98.36%
Heta 0 3.07 77.09 80.16 –

MAG240M

DGL-METIS 0.56 95.15 13.16 108.87 98.42%
DGL-METIS-VOL 0.36 61.69 17.4 79.45 97.84%

Heta 0 0.57 1.15 1.72 –

zero communication volume in these stages. Second, RAF’s relation-
specific processing requires only exchanging compact partial aggre-

gations rather than high-dimensional features. For example, on the

MAG240M dataset, while DGL-METIS transfers 95.15GB of features

betweenmachines,Heta only communicates 0.57GB of partial aggre-

gations of target nodes. The benefits are particularly pronounced

on datasets with large feature dimensions - for IGB-HET (1024-

dimensional features), Heta reduces the total communication from

4874.39GB to just 80.16GB per epoch. Even for Freebase, which only

has learnable features, Heta still achieves up to 60.69% reduction

in communication volume. These results provide strong empirical

validation of the theoretical communication complexity advantages

of RAF and meta-partitioning. Note that despite drastically reduced

inter-machine I/O cutting time in communication-heavy stages

(Figure 10), stage-level speedups are not proportional, as local costs

within each stage (e.g., host-device transfers via PCIe) become dom-

inant when inter-machine I/O shrinks.

8.4 Meta-Partitioning Efficiency
Table 3 compares Heta’s meta-partitioning to DGL’s random and

METIS partitioning on the MAG240M and IGB-HET dataset (2

parts). We ignore METIS-VOL’s results as they are similar to METIS.

Both random and METIS demand hours for partitioning, mainly

from splitting the original HetG and shuffling nodes/edges for con-

tiguous ID ranges [66]. In contrast, our meta-partitioning can be

done in just 20.6 minutes. GraphLearn assumes all nodes have fea-

tures for partitioning, making it unsuitable for MAG240M. When

Table 3: Partitioning performance comparison on MAG240M
and IGB-HET datasets.

Method
MAG240M IGB-HET

Time Peak Time Peak
Memory Memory

Random 3.9 hr 917.3 GB 1131 s 253.0 GB

METIS 7.2 hr 847.7 GB 3014 s 261.9 GB

GraphLearn - - 611 s 175.4 GB

Meta-partitioning 20.6 min 406.3 GB 549 s 132.8 GB

Table 4: Partition storage comparison across all ddatasets. MP
(Meta-Partitioning) consistently achieves the lowest topology
storage through its relation-aware approach.

Dataset Strategy Storage Consumption (GB)

Topology Features Total

ogbn-mag

MP (2-hop) 1.10 0.70 1.80
MP (3-hop) 1.60 0.70 2.30

METIS 1.32 0.57 1.89

Random 1.78 0.57 2.35

Freebase

MP (2-hop) 1.95 0 1.95
MP (3-hop) 2.08 0 2.08

METIS 4.70 1.07 5.77

Random 5.50 0.02 5.52

Donor

MP (2-hop) 0.46 23.78 24.24

MP (3-hop) 1.10 42.23 43.33

METIS 0.86 23.17 24.03

Random 1.23 21.95 23.18

GraphLearn 1.13 33.37 34.50

IGB-HET

MP (2-hop) 9.22 198.15 207.37

MP (3-hop) 18.63 198.15 216.78

METIS 15.43 105.59 121.02

Random 20.93 101.67 122.60

GraphLearn 11.16 226.69 241.76

MAG240M

MP (2-hop) 59.13 348.55 407.68

MP (3-hop) 98.49 348.55 447.04

METIS 106.71 207.65 314.45

Random 150.14 179.75 329.89

partitioning IGB-HET into two parts, GraphLearn’s random parti-

tioning takes 611 seconds, while random and METIS partitioning

of DGL take 1131 and 3014 seconds, respectively. Heta is the fastest,
completing the task in 549 seconds: most of the time is spent saving

partitioned graphs to disk while building/splitting/assigning meta-

trees takes less than 1 second. Moreover, meta-partitioning reduces

peak memory usage by over 50% compared to traditional methods

(406.3 GB vs. 917.3 GB on MAG240M) by avoiding the need to load

and maintain the full graph structure in memory and eliminating

intermediate data copies during node/edge shuffling. Instead, our

approach only requires storing and manipulating the lightweight

metatree structure during the partitioning process.

Table 4 details storage consumption comparison across partition-

ing strategies. We ignore METIS-VOL as its storage use is nearly

identical to METIS. For graph topology, meta-partitioning (MP)

with 2-hop consistently uses the least storage on all datasets, with



Figure 11: Comparison of
GPU cache methods.

Figure 12: Cache hit rate com-
parison on IGB-HET.

reductions of up to 58.5% versus METIS (on Freebase) and 64.5% ver-

sus random partitioning (on Freebase). This efficiency comes from

meta-partitioning’s relation-aware approach, which eliminates ex-

tensive edge replication (1-hop replication [44]) across partitions—a

common need in edge-cut methods like those used by DGL and

GraphLearn. Moreover, unlike DGL, which converts heterogeneous

graphs into homogeneous ones requiring additional feature storage

for type information, or GraphLearn, which maintains costly parti-

tion assignment tables (nearly doubling their feature storage sizes),

our approach eliminates such auxiliary storage overhead. While

meta-partitioning may incur higher feature storage due to duplica-

tion of some node features across partitions to enable local access,

this storage-communication tradeoff in our framework design leads

to substantially reduced communication overhead during training

compared to existing frameworks like DGL and GraphLearn (up to

98.42% reduction, Table 2). The total storage consumption remains

competitive, with meta-partitioning even achieving lower overall

storage than competitors (on ogbn-mag and Freebase). Furthermore,

deeper models (3-hop vs. 2-hop) only increase total storage by 25%

on average (up to 78%) because meta-partitioning deduplicates

repeated relations (Step 4 in §5).

8.5 GPU Cache
Figure 11 shows the effectiveness of Heta’s cache design via epoch

timemeasurements in R-GCN training across various datasets. Com-

pared to a no-cache baseline, our approach considering both hotness

and miss-penalty achieves up to 1.6× training speedup. This design

also surpasses a simpler hotness-only allocation by up to 15%, with

the largest gains on MAG240M (15%) and Donor (13%). These gains

are most pronounced on datasets with varied feature dimensions

and learnable features (as in MAG240M), whereas datasets with

uniform feature dimensions like IGB-HET show modest gains. The

influence of feature dimensions and learnable features on miss-

penalty ratios directly impacts cache performance by affecting data

retrieval efficiency (§6).

The superior performance of Heta’s caching strategy is further

explained by the cache hit rates shown in Figure 12. When training

R-GAT on IGB-HET, Heta achieves substantially higher cache hit

rates across all node types compared to DGL-Opt and GraphLearn,

a pattern that holds consistent across other datasets. This advan-

tage stems from our meta-partitioning approach, which limits node

types in each partition and allows GPU caches to focus exclusively

on locally needed node types. In contrast, traditional approaches

like DGL and GraphLearn must cache all node types due to their

type-blind graph partitioning. The practical impact of this differ-

ence is striking: while DGL-Opt achieves only a 1.1× speedup over

Figure 13: Performance under
different GPU numbers. Heta
scales well with more GPUs.

Figure 14: Meta-partitioning
significantly enhances RAF’s
effectiveness.

DGL-METIS (no cache DGL variant, as shown in Figure 9), Heta
delivers a 1.6× speedup compared to no-cache configurations. This

performance gap is directly attributable to cache efficiency - for

instance, with the “paper” node type in MAG240M, Heta achieves a
67% cache hit rate compared to DGL-Opt’s mere 11%, significantly

reducing feature fetching overhead.

8.6 Scalability
We evaluate the training epoch time of R-GAT on the Donor dataset

with 16, 24, and 32 GPUs across 2, 3, and 4 Amazon EC2 g4dn.metal

instances (2, 3, and 4 partitions), keeping a global batch size of

1024. Figure 13 shows Heta’s robust scalability with more GPUs;

other models showed similar results. In contrast, DGL-Opt and

GraphLearn performance degrades when scaling from 24 to 32

GPUs. This divergence stems from different distributed data ap-

proaches: while all systems benefit from reduced per-GPU compu-

tation workload, DGL-Opt and GraphLearn face escalating com-

munication overhead as graph data spreads across more machines,

requiring more inter-machine data fetching. Heta overcomes this

with its meta-partitioning strategy, which constrains boundary

nodes to target nodes, maintaining constant communication com-

plexity regardless of partition count.

8.7 Ablation Study
Component Ablation. To isolate RAF and meta-partitioning con-

tributions, we run experiments using RAF with vanilla relation-

based partitioning (without relation duplication) and compare it

to both DGL (the best-performing variant) and full Heta (RAF +

meta-partitioning) with R-GCN on various datasets. Other models

show similar results. Figure 14 shows RAF alone achieves 1.2×-2×
speedup over DGL on ogbn-mag, Freebase, and MAG240M datasets,

but limited improvement (≤5%) on IGB-HET and Donor. This dis-

crepancy stems from two key factors: (1) Without topology repli-

cation in relation-based partitioning, RAF requires intensive P2P

communication (5× to 22× more messages than the full Heta sys-
tem) for partial aggregations and their gradients, increasing for-

ward/backward propagation time by 38%-100% compared to the ful

Heta system; (2) Remote sampling operations for cross-partition

edges increase sampling time by 3.4× to 9.9× compared to Heta’s
local-only sampling. After integrating meta-partitioning, Heta elim-

inates all remote sampling operations through relation replication

and reduces P2P messages by up to 22× by constraining bound-

ary nodes to target types only. This synergistic combination deliv-

ers a 1.5×-2.3× speedup over standalone RAF, demonstrating that

meta-partitioning is essential for maximizing RAF’s potential by



Figure 15: Performance un-
der different hidden dimen-
sion sizes.

Figure 16: Performance
under different sampling
fanouts and hops.

(a) IGB-HET dataset (b) MAG240M dataset

Figure 17: Heta achieves the same model accuracy as DGL.

fundamentally reconfiguring the graph layout to align with HGNN

computation patterns.

Hidden Dimension. In Figure 15, we evaluate the training epoch

time of R-GCN on the ogbn-mag dataset while increasing the hidden

dimension from 64 to 1024. As the hidden dimension increases,

Heta’s epoch time grows due to increased network communication

from larger partial aggregations. Nevertheless, Heta maintains a

1.7× speedup over DGL-Opt even at a hidden dimension of 1024,

though it’s worth noting that HGNN models typically use smaller

hidden dimensions than feature dimensions [56].

Sampling. Figure 16 shows our experiments with varying sam-

pling fanouts and neighborhood hops when training R-GCN on

the IGB-HET dataset. Heta achieves 2.3× to 4.9× speedups over

DGL-Opt with larger fanout and more neighborhood hops, while

GraphLearn encounters out-of-memory issues with fanouts of {25,

20, 20} for three sampling hops. This performance advantage stems

from Heta’s meta-partitioning, which maintains constant cross-

partition communication, while baselines require increasing net-

work communication when sampling larger neighborhoods.

8.8 Model Accuracy
Figure 17a and Figure 17b show training accuracy curves for R-GAT

on IGB-HET and HGT on MAG240M, respectively. Heta matches

training accuracies of baselines on both datasets. For test accu-

racy, Heta and DGL both reach 0.66 on MAG240M, matching the

leaderboard results [1]. All three systems reach 0.68 on IGB-HET,

consistent with its original paper’s reported accuracy [31]. These

results validate our theoretical analysis (§4) that Heta preserves the
mathematical equivalence of the model.

9 RELATEDWORK
Other Communication Reduction Methods in Distributed
and Out-of-core GNN Training. BNS-GCN [53] drops a sub-

set of boundary nodes to reduce communication. PipeGCN [54]

introduces staleness to overlap communication and computation.

AdaQP [52] quantizes transmitted features to low-precision integers.

Sancus [42] and FreshGNN [24] cache historical node embeddings

for reuse. Disk-based, single-machine solutions such as Marius-

GNN [51] and OUTRE [47] reduce overhead by reusing sampled

neighbors, reordering samples, and caching embeddings. All these

techniques alter the computational equivalence, whereas Heta’s
RAF maintains it (Prop.1 in §4). These methods are orthogonal and

can be combined with Heta to reduce communication further.

Graph Partitioning in Graph Processing and GNN Systems.
Early systems like Pregel [37] and GraphX [15] use edge-cut par-

titioning, while PowerGraph [14] applies vertex-cut, and Power-

Lyra [5] combines both. However, they treat property graphs ho-

mogeneously, ignoring node/edge types. For Resource Description

Framework (RDF) graphs, Minimum Property-Cut (MPC) [44] and

Minimum Motif-Cut (MMC) [43] improve partitioning to reduce

inter-partition joins and optimize SPARQL queries. Modern GNN

systems commonly adopt METIS [30] for partitioning [48, 53, 66,

68, 71]. DistGNN [38] uses vertex-cut. BGL [36] and ByteGNN [64]

consider multi-hop connectivity to preserve local structures within

partitions. Still, these approaches ignore relations and node/edge

types during partitioning, leading to inefficient data placement for

heterogeneous graphs. Heta’s meta-partitioning overcomes this by

relation-aware partitioning tailored for HetGs (§5).

GPU Feature Cache. PaGraph [35] and GNNLab [58] implement

GPU caching for read-only node features. BGL [36] uses FIFO-

based dynamic node feature caching. Legion [48] unifies caching

for node features and topology. GNNFlow [69] and TASER [7]

extend dynamic caching to edge features. These approaches neither

consider varying cache miss penalties across node types nor handle

updatable learnable features. Our heterogeneity-aware cache design

addresses both challenges (§6).

10 CONCLUSION
Heta is a distributed framework for efficient HGNN training on het-

erogeneous graphs. At its core, the RAF computation paradigm elim-

inates feature movement across machines, while meta-partitioning

further reduces communication by minimizing boundary node

count. The heterogeneity-aware GPU cache considers varying cache

miss-penalty ratios across node types to further optimize data

movements. Our comprehensive evaluation demonstrates that Heta
achieves superior performance, delivering up to 5.3× speedup in

epoch time without loss of accuracy compared to state-of-the-art

systems DGL and GraphLearn. Notably, Heta’s performance ad-

vantages become more pronounced as the sampling neighborhood

size increases, and its meta-partitioning demonstrates superior

efficiency in both time and memory footprint compared to state-of-

the-art graph partitioning methods such as METIS.
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