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Abstract—Machine learning (ML) tasks are one of the major
workloads in today’s edge computing networks. Existing edge-
cloud schedulers allocate the requested amounts of resources
to each task, falling short of best utilizing the limited edge
resources flexibly for ML task performance optimization. This
paper proposes TapFinger, a distributed scheduler that minimizes
the total completion time of ML tasks in a multi-cluster edge
network, through co-optimizing task placement and fine-grained
multi-resource allocation. To learn the tasks’ uncertain resource
sensitivity and enable distributed online scheduling, we adopt
multi-agent reinforcement learning (MARL), and propose sev-
eral techniques to make it efficient for our ML-task resource
allocation. First, TapFinger uses a heterogeneous graph attention
network as the MARL backbone to abstract inter-related state
features into more learnable environmental patterns. Second, the
actor network is augmented through a tailored task selection
phase, which decomposes the actions and encodes the opti-
mization constraints. Third, to mitigate decision conflicts among
agents, we novelly combine Bayes’ theorem and masking schemes
to facilitate our MARL model training. Extensive experiments
using synthetic and test-bed ML task traces show that TapFinger
can achieve up to 28.6% reduction in the average task completion
time and improve resource efficiency as compared to state-of-the-
art resource schedulers.

I. INTRODUCTION

Edge computing is a distributed computing paradigm that
extends cloud capabilities to the edge for better quality of
service (QoS) and data privacy protection. Edge-based ML
applications, ranging from traffic prediction to production
workflow monitoring, commonly process online data streams
generated on the edge [1]. Due to resource limitation of
edge devices, these ML tasks have been deployed in edge
clusters [1], [2], e.g., NVIDIA EGX [3] and Microsoft Azure
Edge [4]. Managed by orchestration tools, they can be running
on sufficient CPUs and GPUs, as well as customized software
toolkits and network interface cards, e.g., for encrypted IoT
sensor data [3]. However, the resources at the edge clusters are
still limited. At the core of optimizing the QoS of edge-based
ML applications is efficient resource utilization while learning
the needed ML models timely.
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Fig. 1: Fine-grained allocation in a multi-cluster edge network.

With various models and datasets, ML training and in-
ference tasks have uncertain and diverse performance [5]–
[7], making it hard to achieve optimized resource efficiency.
Practical schedulers such as YARN [8], Kubernetes [9], and
KubeEdge [10] generally adopt pre-set rules for resource
allocation. Those policies rely on accurate resource estimation
of the tasks, while the resource demands of ML tasks are
typically elastic and uncertain (e.g., the amount of time needed
for model convergence), accommodating various performance-
resource tradeoffs [11]. Learning-based cloud-edge schedulers
have been proposed to address this uncertainty [11]–[15].
However, they cannot generalize to our scenario, where more
complex decision dependencies need to be better encoded,
e.g., for further addressing the high-dimensionality of problem
inputs and decision variables. In fact, fine-grained resource
allocation and strategic task placement are exceptionally im-
portant to maximize the aggregate performance of edge ML
tasks. As illustrated in Fig. 1, due to the data intensity and
low latency requirement, mobile edge devices need to offload
their ML tasks to the “right” edge clusters for achieving the
model convergence in the minimum time. Besides, different
resources, e.g., CPU and GPU, can affect task performance,
necessitating multi-resource allocation schemes. Considering
the complexity of dynamic network connectivity, job inter-
ference [16], and multi-resource contention, we ask: how



to design a scalable, fine-grained, and far-sighted resource
scheduler customized for edge ML?

To realize this, we propose a distributed scheduler to jointly
optimize task placement and fine-grained multi-resource allo-
cation across edge clusters, with a goal of minimizing total
completion time of ML tasks. To achieve this goal, we face
the following fundamental challenges.

Fine-grained resource allocation. Different from existing
edge-cloud schedulers which allocate the requested resource
amounts to each task [6], [12], fine-grained resource provi-
sioning [7] according to demand and supply can achieve better
resource efficiency and application QoS. The challenge is then
to predict the performance of each concurrently running task
and strategically choose the best resource amounts from a huge
solution space for maximizing the aggregate task performance.

Uncertain impact of different resources. Most ML task
schedulers allocate a single type of resource, e.g., GPU, in the
cloud [7], [14], [17] or edge settings [2], failing to capture the
effects of multiple types of resources on the task performance.
A multi-resource allocation problem is typically NP-hard even
with perfect knowledge of the problem input [18], which is
more challenging when the task performance is unknown given
the resources. Reinforcement learning (RL) can efficiently deal
with uncertainty [19]–[21] but is still under-explored for online
combinatorial problems with complex constraints.

Distributed scheduling across edge clusters. Practical
edge-cloud clusters are usually managed by a central coor-
dinator [8], [9]. However, centralized scheduling processes
the global information over multiple geographical regions and
often suffers from poor scalability. A decentralized approach
is therefore preferable to reduce the decision space and enable
better system reliability. Nonetheless, decentralized scheduling
may lead to sub-optimal task performance if self-optimizing
decisions in each edge cluster independently. Effective inter-
actions among the distributed schedulers are crucial for opti-
mizing global resource efficiency in the entire edge network.

To address these challenges, TapFinger adopts a multi-
agent reinforcement learning (MARL) approach. Compared to
rule-based distributed optimization, it can better generalize to
unseen task characteristics and different edge networks. To
achieve efficient MARL for our distributed resource schedul-
ing, we make the following technical contributions:

First, we propose a state abstraction technique to enable
efficient information interactions among distributed agents.
Conventional MARL approaches can be sub-optimal due to
the partial observability of each agent. We use a heterogeneous
graph attention network (HAN) [22] to encode rich semantic
information of different edge components and their depen-
dencies. The local observations are then passed as messages
among the agents and provide them with a global view. The
raw states are then mapped into a compressed space and
efficiently improve the learning ability of the agents.

Second, we propose several techniques to augment our
MARL actor network and the training method. To decompose
our actions on task placement and resource allocation, we de-
sign a task selection phase via a pointer network module [23],

[24], inspired by natural language processing (NLP) tech-
niques. We then construct a conflict resolution module based
on Bayes’ theorem to coordinate different agents’ decisions. In
addition, we use masking schemes to encode our constraints
and filter out the gradient propagation that is irrelevant to the
conflicts, which effectively speed up the MARL convergence.

Third, we conduct extensive experiments on synthetic and
test-bed ML task traces. We observe a significant reduction
in terms of the average task completion time, compared to
representative scheduling algorithms. The experiments also
show that our algorithm can capture the diverse resource
sensitivities of different types of ML tasks and effectively
improve resource efficiency. TapFinger also demonstrates its
scalability as it maintains significant superiority with varying
numbers of edge clusters, system span, and task arrival rates.

II. RELATED WORK

Resource scheduling for DL workloads. Although
general-purpose task scheduling algorithms such as Domi-
nant Resource Fairness [25], Tetris [26], and their improved
variants [27]–[29] have been extensively studied, the strate-
gies tailored to machine learning (ML) workloads remain
premature [30]. Peng et al. [5] design Optimus to schedule
distributed DL training tasks by training speed predictions. To
exploit the cyclic patterns in DL tasks, Xiao et al. [17] imple-
ment efficient time-slicing and profiling-driven introspection.
Tiresias [6] combines least-attained service scheduling and
multilevel feedback queues to design a preemptive scheduling
algorithm. A few recent works achieve elastic GPU cluster
scheduling for DL tasks using novel profiling methods [2],
[31] or new performance metrics [7], [32]. In general, these
are rule-based algorithms that rely on accurate estimations
of task characteristics. This paper, instead, aims to enable a
self-optimization framework without hand-crafting prediction
models for capturing uncertain task performance.

Task scheduling with deep reinforcement learning. Deep
Reinforcement learning (DRL) has demonstrated its effec-
tiveness in online decision making including task scheduling
and resource allocation [20], [21]. Several works [20], [33],
[34] leverage the pointer network mechanism [23] for task
placement. However, they have not considered ML workloads
or fine-grained resource allocation. In [11], a DRL method that
fuses rule-based policies is proposed for ML task placement.
Peng et al. [13] propose a trace-driven task scheduler for DL
clusters using offline supervised learning to boost the DRL
training. Recent works have also extended DRL for resource
allocation in edge clusters. For instance, Tuli et al. [12]
decide the allocation of edge-cloud resources by regarding the
distributed resources as a large number of independent hosts.
Different tasks and hosts are divided among multiple agents
for DRL training. These works adopt single-agent DRL and
do not consider fine-grained resource allocation for ML tasks
or jointly optimize task placement and resource allocation.

GNN-based DRL methods for task scheduling. Beyond
applying DRL approaches with standard formulation of the
environmental states and actions, there is a trend of designing



state abstraction to boost DRL training. Graph neural network
(GNN) is a promising model that can encode the dependencies
across state features. We have identified that two recent
works are similar to ours methodology-wise. First, Zhao et
al. [14] adopt GNN to encode cluster topology and server
configurations, motivated by the interference of co-located DL
tasks. They design an MARL algorithm for scheduling among
GPU clusters. Each agent decides either to serve the task or
to forward it to other agents. Second, Han et al. [15] propose
a two-timescale scheduler for Kubernetes-oriented edge-cloud
clusters. They introduce GNN-base DRL for request dispatch
and MARL scheduling for service orchestration. However,
the above works do not consider instant fine-grained resource
allocation, hence being detrimental to resource efficiency.

III. PROBLEM DESCRIPTION

In what follows, we describe our system infrastructure and
formulate the task placement and resource allocation problem.
We define [X] ≜ {1, 2, · · · , X} in our description.

A. Edge Clusters
We consider that N geo-distributed edge clusters provide

low-latency machine learning services to local edge devices.
Today’s edge clusters are equipped with sufficient compu-
tational ability to train and run deep neural network (NN)
models [3], [4]. For compliance requirements and restrictive
data policies, ML training and inference tasks may be required
to run on certified edge clusters. We consider a total of R
types of computation resources, e.g., CPU, GPU, and memory,
offered by each edge cluster to perform ML tasks. The clusters
are not necessarily homogeneous in real-world settings. Each
resource r ∈ [R] has a distinct smallest unit δr that can be
allocated, and the resource capacity Cr,n is equal to the total
amount of δr available in cluster n. The tasks that come online
may occupy resources for various task durations. Therefore,
the maximum amount of each type-r resource at n that can
be allocated at t, defined to be Br,n,t, can be time-varying.

Edge computing networks are distributed in nature, and
provides basic data exchange functions via low-cost network
connections among edge clusters [35], unlike the stable net-
work condition and sufficient bandwidth in cloud datacen-
ters. It is then impracticable to conduct a large number of
distributed parallel training and inference processes across
multiple edge clusters [36]. Therefore, we consider in-cluster
GPU-level parallel training and inference for better QoS of
user applications. Further, to fully utilize the resources of the
entire network, we allow edge devices to simultaneously send
offloading requests to all accessible edge clusters, as in Fig. 1.

B. Task Arrivals, Scheduling Orders, and Placement
Since we aim to optimize the aggregate QoS over any

exogenously determined workload, we consider a total of T
timesteps, each of which is evenly partitioned based on the
system requirements1. We consider a total of J ML tasks that

1We assume this time-slotted fashion for ease of implementation. In fact,
our scheduler can be adjusted to execute task scheduling at non-uniform
timesteps, e.g., upon the arrival of each task.

arrive at arbitrary times in t ∈ [T ]. For instance, we have image
classification training tasks over ConvNets, speech recognition
inference tasks using transformers, etc. In edge computing
scenarios, tasks generated locally on resource-scarce edge
devices need to be offloaded to an edge cluster. Due to network
limitations, the edge devices may only connect to a subset of
the edge clusters. We define Dj to be the set of edge clusters
that task j can be offloaded to and Qn,t to be the set of tasks
in the queue of cluster n at t. We allow edge devices to send
requests to all the edge clusters in Dj to avoid the long wait for
being scheduled, but restrict that one task can only be finally
offloaded to one edge cluster, as shown in Fig. 3.

The task requests continuously arrive from the edge de-
vices into the queue of each connectable edge cluster. The
scheduler of each cluster then independently decides which
task j ∈ Qn,t to serve when t starts. Since multiple clusters
may choose the same task at the same time, a coordinator
is needed to choose one of the clusters to serve the task. We
define a binary variable yj,n,t to denote whether j is scheduled
by cluster n in timestep t, and require

∑
j∈Qn,t

yj,n,t ≤ 1,
i.e., the task is only scheduled to at most one cluster at each
timestep. Note that in modern container orchestration tools like
Kubernetes, the scheduler first collects all feasible nodes in the
cluster, then scores these candidates according to a series of
factors, including hardware/software constraints, data locality
requirements, etc., and finally binds the node with the highest
score to the pod [9]. Multi-thread scheduling can schedule
tasks concurrently but still needs a transaction commit process.
In essence, this is a sequential operation for one scheduler.
Therefore, it is consistent with our problem setting where each
scheduler only schedules at most one task at any timestep
instead of a batch of independent tasks.

C. Multi-Resource Allocation

Once selecting a task j ∈ Qn,t, the scheduler needs to
decide its resource allocation. As shown in Fig. 2, we identify
that the completion time of a representative ML task has
various sensitivities under different combinations of CPU and
GPU resources. For instance, the completion time first de-
creases with the number of CPU cores and then becomes rather
flat. Improper resource allocation, e.g., 1 CPU and 8 GPUs,
may lead to a rebound in the completion time. Motivated by
our observations, we consider that the scheduler in each cluster
decides the allocation of resources. We define an integer deci-
sion variable xj,n to represent the amount of type-r resource
in cluster n allocated to j. Let t̂j , t∗j , and ϕj denote the arrival
time, start time of execution, and completion time of task j,
respectively, where t∗j is decided by our scheduling decisions
and ϕj is affected by both t∗j and our resource allocation.
Since the tasks may arrive at different times and occupy the
resources for various periods of time, we have a time-coupling
capacity constraint

∑
j:t∈[t∗j ,t̂j+ϕj)

xj,r,n ≤ Cr,n for each r,
n, and t. In addition, we define bj,r as the minimum amount
of type-r resource required by task j. Thus, each xj,r,n has to
be at least bj,r if positive.



Here we assume that our resource allocation cannot be
modified once decided. Although preemptive schedulers may
achieve better resource utilization and reduce completion
time [6], [7], they are not widely implemented in real-world
ML clusters [37]. One of the main reasons is that pausing
and resuming ML tasks using the checkpointing mechanism
frequently incurs overhead, increases system complexity, and
introduces potential failures, especially for training tasks [38].
Distributed DL training frameworks like PyTorch and Horovod
provide elastic training functions that allow users to scale
the number of workers during the training process. However,
that might need dynamically adjusted hyper-parameters e.g.,
learning rate and batch sizes [32], which requires extra cod-
ing from task owners and still incurs unpredictable system
overhead. These uncertainties prevent reproducing the training
convergence results and contradict the original intention of
using edge computing to guarantee the QoS of ML tasks.

We now formalize our joint task placement and multi-
resource allocation problem. The goal is to minimize the total
completion time of all tasks that arrive in [T ], while satisfy-
ing the resource capacity constraints and the tasks’ resource
requirements. In practice, a training task is completed when
a certain accuracy or convergence is met. The completion
time of an inference task is also hard to predict due to
network instability and fluctuations in available resources [39].
Therefore, the completion time of each task (ϕj(·)) is unknown
a priori and affected by our task placement y and resource
allocation x decisions for all the tasks that co-exist with j.
Finally, we formulate the optimization problem as follows.

Minimize
x,y

J−1∑
j=0

ϕj(x,y) (1)

S.t.
∑

j∈Qn,t

yj,n,t ≤ 1, ∀n, t (2)

∑
n∈Dj

∑
t∈[T ]

yj,n,t ≤ 1, ∀j (3)

yj,n,t ∈ {0, 1}, ∀j, n, t (4)∑
j:t∈[t∗j ,t̂j+ϕj)

xj,r,n ≤ Cr,n, ∀r, n, t (5)

t∗j = maxn,t (t · yj,n,t) , ∀j (6)

xj,r,n ≤ maxt (yj,n,tCr,n) , ∀j, r, n (7)
xj,r,n ∈ {0} ∪ {Z ∩ [bj,r, Cr,n]},∀j, r, n (8)

Here, since the task scheduling decision yj,n,t is binary
(constraint (4)), (2) ensures that at most one task can be
added from the queue onto each cluster n in each timestep
t. For each task j, yj,n,t is only positive (= 1) at the timestep
when j is scheduled by n and remains zero in other timesteps,
indicating that task j will be processed by cluster n until it
completes (inequality (3)). Our definition of yj,n,t requires
that our placement decision for task j cannot be modified and
yields a simpler way to model the resource allocation problem,
although other modeling choices can also work. Further, (5)
requires that each type of resource occupied by all the alive
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Fig. 2: Testbed results on the completion time of training a
language modeling task using a transformer network [40] by
varying the combination of allocated resources.

tasks {j
∣∣t ∈ [t∗j , t̂j + ϕj)} in any time t cannot exceed the

corresponding capacity. Equation (6) defines the start time that
j is scheduled, which is the only time that yj,n,t is positive
for task j. Finally, (7) and (8) define the time-varying feasible
region of x in each time t.

Our formulation (1)–(8) mathematically models the depen-
dencies between the decisions of task placement and resource
allocation across co-existing tasks. It provides insights to our
algorithm design, e.g., its impact factors that need to be
observed as environmental states and the feasible region of our
actions. However, this formulation captures a centralized opti-
mization and needs to be factorized for distributed scheduling
based on MARL, which we will elaborate in Section IV.

IV. ALGORITHM

We next walk through the designs of our proposed algo-
rithm that jointly optimizes the task placement and resource
allocation for ML tasks across multiple edge clusters.

A. Algorithm Overview

Driven by the complexity of co-optimizing the decision
variables in our offline optimization (1)–(8), we propose to
enable a distributed optimization where x and y can be first
independently and preliminarily decided by each cluster, and
then coordinated by a central coordinator residing in one of
the edge clusters. In addition, the unknown completion time
ϕj(x,y) can be optimized through trials and errors if we
can learn the statistical patterns of tasks’ resource sensitivities
and their dependencies. These design intuitions fit into the
basic idea of MARL. Our goal is then to push the limit
of MARL towards solving dependent decisions under time-
varying constraints, which drives the design of TapFinger.
Fig. 3 shows our system components, illustrating the task
placement and multi-resource allocation based on the actor-
critic architecture [19] across at least two edge clusters. We
introduce several techniques to the MARL algorithm, e.g.,
state representation through GNN, action decomposition, and
loss function design based on masking schemes. We brief
the concepts of state, action, and reward in this section. The
technical specifics of our design are elaborated in Sections
IV-B and IV-C.
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State space. Intuitively, the dynamics of task arrivals,
connectivity between devices and clusters, and resource sen-
sitivity of each task will all affect our objective function and
constraints in (5)–(8). The challenge is that it is inefficient
either to stack all these factors across the entire edge network
into a global state or to split the state space into sub-spaces
for each individual agent. We adopt a heterogeneous graph
attention (HAN) network [22] to encode our features and
their interrelation semantics. The output of HAN serves as
the abstracted states for each agent, which compress the raw
states and deliver learnable global environmental patterns. This
design will be detailed in Section IV-B.

Action space. Even using MARL, the action space of each
agent will be huge if directly concatenating our decisions xn

and yn as a vector with a dimension of (|Qn,t|×
∏R

r=1 Cr,n).
To reduce this space, we design an action decomposition
technique that combines the pointer network and decision
conflict resolution. Each agent n takes the HAN embedding of
the pending tasks corresponding to cluster n as the input of its
actor network, and outputs both the task selection and resource
allocation actions. For task selection, we use transformer
layers to further encode the HAN embedding and introduce
a pointer mechanism [23] to decode the task selection actions.
Then a conflict resolution module takes control to resolve
task selection conflicts. Finally, the HAN embedding of the
selected task is input into our invalid action masking module
which encodes the constraints and outputs the final resource
allocation. Technical details are shown in Section IV-C.

Reward. Note that the total completion time equals the
sum of the total number of alive tasks over all timesteps, i.e.,∑

j ϕj(x,y) =
∑T

t Rt(x,y). Rt(x,y) is the total number of
all tasks in the system in t including the ones that are waiting
or running at any edge cluster. We define rn,t = −Rn,t as the
reward for n in timestep t. Similar to Rt, Rn,t is the number
of tasks associated with the edge cluster n in timestep t.

B. State Representation via GNN Design

Reviewing the structure of our optimization problem, a good
scheduler should account for the workload on each cluster and
their currently allowed allocation choices, i.e., the minimum
required and maximum available resource amounts based on
(5)–(8). It should also adapt with learned resource sensitivity
of different tasks which determine ϕj(x,y). A key insight
is that the running tasks can continuously provide resource
sensitivity information, and the waiting tasks indicate their
increased completion times and future contention. Therefore,
each edge cluster needs to constantly monitor resource utiliza-
tion, running tasks, waiting tasks, and newly submitted tasks.
To speed up the action searching, we define a set of pending
tasks Pn,t with a fixed size as the input of our task selection
phase. Each scheduler n appends up to |Pn,t| tasks that have
the earliest arrival times from the queue (i.e., ∈ Qn,t) to its
pending set. First, we define the features of raw states for the
agent n, namely sn,t = {On,t,Pn,t, en,t, qn,t}, which serves
as the input of our HAN and is formalized as follows.
• Running task feature set On,t consists of entities oj,n,t ∈
RR+J+1, each of which is the concatenation of the resource
allocation, task type and elapsed time for a running task in
n and t. These running tasks not only provide real-time
feedback on resource sensitivity but also indicate the future
available resources that they will release.

• Pending task feature set Pn,t contains entities pj,n,t ∈
RR+J , each of which encodes the concatenation of the
minimum resource requirement and the type of task j. We
pad the pending set with dummy entities p0, differentiated
from the real entities by an extra binary digit for indication.

• Resource feature vector en,t ∈ ZR represents the available
resources of cluster n in timestep t.

• Queuing task feature qn,t is a scalar of the remaining
number of tasks in the queue excluding those in the pending
set. It reflects the current system workload and thus has a



strong correlation with the objective value.
In our MARL framework, if each agent n can only observe

the inner-cluster features {On,t,Pn,t, en,t, qn,t}, they will be
more prone to being trapped in their local optima. A global
representation of features in all clusters is thus needed. How-
ever, we cannot simply stack sn,t over all n into a global state
matrix and feed it to each agent’s model. The main drawbacks
are: 1) the graph structure of the states will be lost; 2) the
state space is not compact due to duplicate information such
as the tasks shared in multiple Pn,t and Qn,t. Our solution
instead embeds the entire graph into a neural network and
enables iterative state interaction across clusters, with inter-
cluster information reinforced over time based on importance.

Since HAN is designed to embed heterogeneous nodes, link
relations, and their semantics [22], it fits well with our state
representations. As shown in Fig. 3, we design our HAN to be
a graph Gt(Vt, Et), where the node set Vt consists of Ot, Pt,
cluster nodes N , and a shortcut node. We abuse the notation of
the task and cluster indices to denote the corresponding nodes
as well. The edges in Et are defined as follows. A running task
node j ∈ Ot connects with a cluster node n ∈ N only if task
j is running on cluster n. Analogously, a pending task node
j ∈ Pt connects with the cluster node n when task j is in
the pending set, i.e., j ∈ Pn,t. Each j can connect to multiple
cluster nodes since they can be in the queues of multiple n,
and we construct each Pn,t by dequeuing tasks in Qn,t until
Pn,t is full or Qn,t is empty. The information propagation
of our HAN follows the update steps in [22] by passing the
features as messages from the neighbors to each node u ∈ Vt

and aggregating them with the features of u using a two-level
attention network in a configurable number of interactions. To
speed up the message propagation between nodes that are far
from each other, we add a shortcut node that connects all the
cluster nodes to better adapt to a large number of agents. The
propagation model of our HAN is formalized below.

G
shortcut,(0)
t = 0

G
N,(0)
t = ∪N

n=1{(en,t, qn,t)}
G

P,(0)
t = ∪N

n=1Pn,t

G
O,(0)
t = ∪N

n=1On,t

(9)

We concatenate en,t and qn,t for all the clusters as the
input features of the cluster nodes, and assign pj,t and
oj,t to every pending and running tasks node respec-
tively. We denote the initial global state input as G

(0)
t =

{Gshortcut,(0)
t , G

N,(0)
t , G

P,(0)
t , G

O,(0)
t }, as in (9). The node

embedding is propagated in each layer l, i.e., G
(l)
t =

g(G
(l−1)
t ), where g(·) represents the two-level attention net-

work aggregating the features of each node with its neighbors.
After L layers of graph message passing, we get the final
graph embedding G

(L−1)
t . We then map G

P,(L−1)
t to the

corresponding agents as the input of their actor networks.

C. Action Decomposition and Constraint Encoding
Now we formalize our design of the NN architecture and

functions for our actor network. The basic idea is to de-

compose the task placement and resource allocation decisions
since naively concatenating them together yields a much larger
action space. Instead, we leverage their dependencies, i.e., we
only need to allocate resources to the selected task (in (7)). The
challenges are using NN modules to encode such dependencies
and enable them to learn our optimization constraints. We
finally propose our training methods that can boost the agents
to avoid conflicts and the decisions that violate constraints.

Pointer module. We design a pointer network inspired by
the architecture of sequence-to-sequence NNs for natural lan-
guage processing. The key insight is that we both need to solve
problems in that the vocabulary of the output sequence will
change with the length of the input sequence. Combinatorial
problems like the traveling salesman problem usually have this
trait [23], [24]. In our task selection phase, although we can
fix the length of the input sequence with dummy entities, we
cannot fix the vocabulary length since the size of the pending
set changes with time, and scheduling a dummy entity is
illegal. So we implement a pointer network for decoding task
selection actions by a functionally simplified attention layer.
We formulate our pointer module for agent n as follows.

h̄n,t =
1

|Pn,t|

|Pn,t|∑
j:pj,n,t∈Pn,t

hj,n,t

ûj,n,t =

{
−∞, ∀j : pj,n,t = p0

vT tanh(W1hj,n,t +W2h̄n,t), otherwise.

ẑj,n,t = softmax(ûj,n,t) (10)

Here, hj,n,t is the output of task j of the transformer encoder.
W1, W2, and vT are model parameters. We design attention
scores of the model, ẑj,n,t, to represent the probability of
scheduling a pending task i, shown as the output of the second
Attn in Fig. 3. We then sample the initial task selection action
for the scheduler from the probability distribution constructed
by ẑj,n,t, i.e., zj,n,t ∼ {ẑj,n,t}j∈Pn,t

. E.g., the task labeled
by a is sampled by agent 1 in Fig. 3. We mask ûj,n,t

of the dummy entities as −∞ so that the corresponding
ẑj,n,t will be 0 and thus the dummy entities will never be
sampled. Since zj,n,t is the task selection action chosen by
the agent n before being coordinated with other agents, we
have zj,n,t ≥ yj,n,t,∀j, n, t where yj,n,t is defined as our final
task placement decisions.

Task selection conflicts. Edge devices can submit of-
floading requests to multiple edge clusters and this is where
conflicts may arise. We do not consider the scenario where
each task is served by multiple edge clusters simultaneously,
for the unstable network condition between the edge clusters.
To resolve task selection conflicts, we transform the attention
scores in the output of the task selection phase, into task-
conditioned probabilities using Bayes’ theorem. Our attention
scores ẑj,n,t can be interpreted as the probability of selecting
task j in the task selection phase by the agent n, which means
task j was selected with a Pr(j|n) chance. For every agent
that chooses task j, we consider the maximum number of task
j that can be held in the cluster with the minimum required



resource satisfied, as the marginal probabilities of choosing
agents. The intuition is that considering load-balancing, we
hope that the clusters with more available resources can more
possibly get the conflicted task. Finally, the agent with the
largest task-conditioned probability can schedule the task.

Pr(j|n) = zj,n,t, Pr(n|j) = Pr(j|n)Pr(n)∑N
n=1 Pr(j|n)Pr(n)

yj,n,t =

{
1, n = argmaxn′ Pr(n′|j)
0, otherwise.

(11)

Invalid action masking. We do not use the reward penalty
to constrain the agents not to take invalid actions, because
we observe an unstable training curve by giving a large
negative reward to the agents predicting invalid actions, which
is consistent with the findings of [41]. Besides, adding penalty
terms into rewards needs careful tuning of the associated
parameters. Intuitively, the penalty should be large enough
since invalid actions violate our constraints and thus need
to be prohibited. But the value functions of different actions
are approximated through an NN. Large penalties may also
decrease the value estimates of other actions, especially those
that are close to the invalid actions but turn out good or even
optimal resource allocations. To overcome this, we implement
a different approach, which is to use an invalid action masking
module to identify and mask all the invalid actions in the com-
binatorial action space to prevent our actors from predicting
invalid resource allocation. We assign 0 probability to all the
actions that either exceed the resource capacity or are less than
the minimum required amount of resources.

Loss function and training method. In our algorithm,
the granularity of the scheduling intervals is relatively small
compared to the long-running ML tasks. As a result, in
some timesteps, the edge clusters may either be idle or lack
resources to schedule. We skip all those timesteps for training
since they contain little information for the agents to learn
and bring noise and instability to the training. We use the
multi-agent proximal policy optimization (MAPPO) [42] to
train our MARL model. The main reason why we use PPO is
that we prefer a stable on-policy learning algorithm that can
easily handle the large combinatorial action space. To design
our training loss function, we adopt the clipped surrogate
loss function of PPO as the base and customize it for our
optimization problem. First, we mask all the invalid resource
allocations. Then the scheduling policy can be derived from
the chain rule of conditional probabilities. We further mask
the final resource allocation predictions Pr∗(xj,n|j, n) of the
conflict agents that fail to schedule the task, while keeping the
task selection predictions Pr(j|n) in the loss function.

Pr∗(xj,n|j, n) = MASK(Pr(xj,n|j, n), bj,r, Cr,n) (12)
πθn(an|sn) = Pr(j|n)Pr∗(xj,n|j, n)m (13)

m =

{
1, yj,n,t = 1,

0, otherwise.
(14)

We train our MARL model offline because online training
is time-consuming and may easily lead to poor performance if
not well tuned [13]. For every policy update step, we collect
a batch of trajectories (s,a, r) from the environment, each
representing the concatenation of the states, the actions and
the rewards for all the agents. Every agent learns a policy
πθn(an|sn), which is a joint distribution of the combinatorial
actions giving the states.

V. EVALUATION

We evaluate TapFinger using both synthetic and test-bed
ML tasks. TapFinger achieves considerable average comple-
tion time reduction in both environments. Experiments also
demonstrate the scalability of TapFinger, as it outperforms
baselines with increasing network scale and system workload.

A. Experiment Settings

Model configurations. We implement TapFinger with Py-
Torch and use Tianshou [43], an RL library based on Py-
Torch, to manage the model training process. Our simulation
environment implements the Gym [44] standard interface to
communicate with MARL agents. For the HAN implementa-
tion, we use PyTorch Geometric library [45] to accelerate the
data loading, training, and inference for HAN. We use 6 HAN
layers with 4 heads for multi-head attention to generate the
HAN embedding with a hidden size of 256. By default, we set
the size of the pending set as 10. The pointer network module
has a 2-layer transformer encoder with 4 heads for multi-
head attention, and a functionally simplified attention layer
to predict task selection actions. We use a 2-layer perceptron
for resource allocation actions. As for the critic, we use a 2-
layer perceptron that accepts the flattened HAN embedding of
all the pending tasks in the system as the input. A server with
1× Intel i9-12900K CPU and 1× NVIDIA RTX 3080 GPU is
sufficient to train our MARL model with 32 parallel training
environments for either synthetic or test-bed ML tasks.

Baselines. We consider two representative ML task schedul-
ing algorithms and two heuristics as our baselines.
• Optimus. It uses curve-fitting performance models to esti-

mate training speed as a function of the number of parameter
servers and workers, and batch size in each task. It allocates
1 parameter server and 1 worker for each task initially, and
then incrementally chooses the allocation decision with the
largest marginal gain. To tailor Optimus to our problem, we
consider the CPU and GPU as the two resource types and
fix the batch size variable in the function to a constant.

• Tiresias. It is a preemptive scheduling algorithm based on
the least-attained service and multi-level feedback queue.
It divides the queue according to the GPU time thresholds
and has the tasks of each queue sorted in a First-in First-out
order of their start times. In our implementation, we use a
2-level feedback queue as the original paper recommended,
and use the median GPU time as the threshold.

• Random/Minimum allocation. They randomly choose a task
from the pending set and allocate a random/minimum but
valid amount of resources to the tasks.
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(c) 6 agents, 384 tasks.
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(d) 6 agents, 384 tasks.
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(h) 6 agents, 2000 tasks.

Fig. 4: Completion time and task accumulation comparison on synthetic (first row) and test-bed (second row) ML workloads.

Synthetic ML tasks. To capture the heterogeneous and
non-stationary resource sensitivity of the ML tasks, we define
two types of synthetic ML tasks that vary greatly in duration
time and resource sensitivity. We fix the progress gain of the
resource-insensitive tasks for every resource allocation. The
resource-insensitive tasks can be accomplished in 4 timesteps
as long as the minimum resource requirement is met. Con-
versely, the resource-sensitive tasks can be accomplished from
2 to 17 timesteps under different resource allocations. The
speed of the resource-sensitive tasks grows sub-linearly with
the number of GPUs. We use the hyperbolic tangent function
as the speed function, which shares some functional properties
with the formulation of Amdahl’s law [46].

ML phase Task Model Batch size Duration
Training Image classification ConvNet 1024 34-262s
Training Language modeling Transformer 16384 (tokens) per GPU 75-264s
Inference Speech recognition Wav2Vec2 1 17-18s

TABLE I: Test-bed ML tasks.

Test-bed ML task traces. We run the test-bed ML training
and inference workloads in a server with 4× Intel Xeon Gold
6348 CPU and 8× NVIDIA RTX 3090 GPU. We implement
distributed data parallelism for 3 ML training or inference
tasks with PyTorch, as shown in Table I. We run the tasks in an
ML task workload with every resource allocation combination
from the minimum resource requirement of 2 CPU cores and
1 GPU, to 16 CPU cores and 8 GPUs. We use the PyTorch
interface to control the number of GPU devices for the tasks.
To control the CPU allocation with low overhead, we set
the thread affinity policy according to the CPU allocation to
constrain the OpenMP threads and the data loader threads on
the designated CPU cores. We downsize the running time of
the tasks in the trace data. The tasks are accomplished when
the validation loss reaches the preset target for the training

tasks, or the outputs of all the samples are calculated for the
inference tasks. We collect the validation loss of the tasks and
the elapsed time for every epoch and later use these data to
shape the progress functions of the tasks over time.

Task arrivals. Our MARL models are trained with finite-
size ML task workloads. We set the number of tasks in the
ML workloads to be 64 times the number of agents in the
environment. The simulated workloads follow a Poisson dis-
tribution with an arrival rate λ = 2. We assign the bandwidth
uniformly at random from [0, 10] Mbps to each connection
between the edge devices and the edge clusters. The edge
device can be considered connectable to an edge cluster only
if the bandwidth and the latency of their connection meet the
minimum requirement for offloading, e.g., 5 Mbps.

B. Performance

We train our MARL models for 8 million steps and save the
models that achieve the best evaluation results. The scheduling
interval is set to be 10 seconds. We add ±0.1 randomness to
the normalized progress gains to simulate the unstable network
condition between the edge devices and the edge clusters. The
minimum resource requirements of both synthetic and test-bed
ML tasks are 2 CPU cores and 1 GPU. Given that Fig.s 4
and 5 in [6] demonstrate at least 5 seconds in pausing and
resuming a data-parallel ML task. We set the overhead of
adjusting the resource allocation to be 5 seconds, which is
equal to 0.5 timesteps. But even if we ignore the switching
overhead, TapFinger can still outperform Tiresias and maintain
comparable performance as Optimus.

1) Evaluation on synthetic data.: We first evaluate TapFin-
ger on the synthetic ML tasks. We assume that each edge clus-
ter has 16 CPU cores and 16 GPUs. Fig.s 4a and 4b show the
completion times and the task accumulation of TapFinger as
well as the baselines in a 3-agent environment. Because of the
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Fig. 5: Varying arrival rates.
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Fig. 7: Compared with the vanilla MARL on synthetic data.

pre-run estimation of the progress function, Optimus performs
better than other baselines. Tiresias assumes unknown task
characteristics and only schedules tasks given the minimum
resource requirements, resulting in inferior performance. We
observe a 28.6% reduction in the median completion time and
25.1% reduction in the average completion time of TapFinger,
in comparison with Optimus. Fig. 4b also shows that TapFin-
ger achieves the least task accumulation.

We scale TapFinger to an environment with 6 edge clus-
ters and an arrival rate of 4. As shown in Fig.s 4c and
4d, TapFinger still shows at least 20.5% improvement on
the completion time compared with the baselines. We then
decrease the arrival rate from 4 to 2, while keeping other
settings unchanged. Fig. 5 shows that the task accumulation
of TapFinger also outperforms other algorithms significantly,
demonstrating that TapFinger is robust to varied environments
once trained with sufficient workloads. We also observe a
performance degradation of Optimus and Tiresias in these
less heavy workloads. It can be explained as that frequently
reassigning resource allocation for each task leads to severe
overhead due to preemptions.

We compare TapFinger with a vanilla MARL algorithm
without HAN and the pointer network, which uses stacking
state features and chooses the task from the queue in a first-
in-first-out manner and predicts the resource allocation with
our invalid action masking design. As implied in Fig. 7,
the vanilla MARL algorithm struggles to recognize the task
characteristics and avoid task selection conflicts.

2) Evaluation on test-bed data.: We further conduct several
long-running experiments on test-bed ML workloads and eval-
uate the overhead incurred by running the MARL algorithm.
We have measured that the total data size that needs to be
transmitted in each timestep as follows. The state observa-
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Fig. 8: TapFinger in long-running test-bed workloads.

tion and the action information take up 2KBs and 800Bytes
respectively for each agent. We simulate the communication
overhead using NetEm Linux kernel module [47]. We set
the bandwidth between the coordinator and edge clusters as
1Mbps, and vary the network latency by increasing geo-
graphical distances according to the measurements of Alibaba
Cloud edge clusters [35]. Fig. 6 shows that the inference and
communication time of TapFinger is negligible compared to
the scheduling interval.

The 3-agent and 6-agent TapFinger are trained with an
arrival rate of 4 and 6, respectively. Each edge cluster has 16
CPU cores and 8 GPUs. We evaluate the algorithms in longer
workloads than that in the training stage, and raise the resource
capacity of each edge cluster to 32 CPU cores and 16 GPUs
per agent. The arrival rates of the 3-agent and 6-agent test-bed
environments are 1.5 and 3, respectively. Fig.s 4e-4h show that
TapFinger still holds a scalable performance and a consider-
able average completion time reduction of 13.7% and 10.4%
over the baselines in the corresponding environment settings.
TapFinger is also applicable to various lengths of workloads.
As shown in Fig. 8a, with the increasing workload scale, the
6-agent TapFinger maintains 14.5% and 10% reduction on
average completion time compared with Tiresias and Optimus.
The result indicates that trained TapFinger can be stably
deployed on online edge clusters. We also look into the GPU
usage of the 6-agent TapFinger in the 2000-task workload.
Fig. 8b shows that TapFinger strikes a good balance between
resource efficiency and completion time performance.

VI. CONCLUSION

We propose TapFinger, a distributed scheduling framework
that jointly optimizes task placement and fine-grained multi-
resource allocation for ML tasks in distributed edge clusters.
TapFinger uses a MARL method based on HAN to encode the
states of the edge components and their interrelation semantics.
We integrate the pointer network and the conflict resolution
module into our actor network to decompose our actions. To
mitigate the decision conflicts problem in MARL and to yield a
valid resource allocation decision, we combine Bayes’ theorem
and masking schemes to construct the loss function for our
model training. Our experiments show that TapFinger can
reduce average completion times by up to 28.6% and 14.5%
compared with the state-of-the-art scheduling algorithms on
synthetic and test-bed ML workloads, respectively.



REFERENCES

[1] S. Noghabi, L. Cox, S. Agarwal, and G. Ananthanarayanan, “The
emerging landscape of edge-computing,” in Proc. of ACM SIGMOBILE
GetMobile, 2020.

[2] R. Bhardwaj, Z. Xia, G. Ananthanarayanan, J. Jiang, Y. Shu, N. Kar-
ianakis, K. Hsieh, P. Bahl, and I. Stoica, “Ekya: Continuous learning
of video analytics models on edge compute servers,” in 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
22), 2022, pp. 119–135.

[3] “Aws outposts,” https://nvidia.com/en-us/data-center/products/egx/.
[4] “Azure stack edge,” https://azure.microsoft.com/en-us/products/azure-

stack/edge/.
[5] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: an efficient

dynamic resource scheduler for deep learning clusters,” in Proc. of the
Thirteenth EuroSys Conference, 2018, pp. 1–14.

[6] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon, J. Qian, H. H.
Liu, and C. Guo, “Tiresias: A gpu cluster manager for distributed deep
learning,” in Proc. of NSDI, 2019.

[7] C. Hwang, T. Kim, S. Kim, J. Shin, and K. Park, “Elastic resource
sharing for distributed deep learning,” in Proc. of NSDI, 2021.

[8] V. K. V. et al., “Apache hadoop yarn: Yet another resource negotiator,”
in Proc. of SoCC, 2013.

[9] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,
omega, and kubernetes,” Communications of the ACM, vol. 59, no. 5,
pp. 50–57, 2016.

[10] “Kubernetes native edge computing framework (project under cncf),”
https://github.com/kubeedge/kubeedge.

[11] Y. Bao, Y. Peng, and C. Wu, “Deep learning-based job placement in
distributed machine learning clusters,” in IEEE INFOCOM 2019-IEEE
conference on computer communications. IEEE, 2019, pp. 505–513.

[12] S. Tuli, S. Ilager, K. Ramamohanarao, and R. Buyya, “Dynamic schedul-
ing for stochastic edge-cloud computing environments using a3c learning
and residual recurrent neural networks,” IEEE Transactions on Mobile
Computing, 2020.

[13] Y. Peng, Y. Bao, Y. Chen, C. Wu, C. Meng, and W. Lin, “Dl2: A deep
learning-driven scheduler for deep learning clusters,” IEEE Transactions
on Parallel and Distributed Systems, vol. 32, no. 8, pp. 1947–1960, 2021.

[14] X. Zhao and C. Wu, “Large-scale machine learning cluster scheduling
via multi-agent graph reinforcement learning,” IEEE Transactions on
Network and Service Management, 2021.

[15] Y. Han, S. Shen, X. Wang, S. Wang, and V. C. Leung, “Tailored
learning-based scheduling for kubernetes-oriented edge-cloud system,”
in IEEE INFOCOM 2021-IEEE Conference on Computer Communica-
tions. IEEE, 2021, pp. 1–10.

[16] Q. Hu, P. Sun, S. Yan, Y. Wen, and T. Zhang, “Characterization and
prediction of deep learning workloads in large-scale gpu datacenters,”
in Proc. of SC, 2021.

[17] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra, Z. Han,
P. Patel, X. Peng, H. Zhao, Q. Zhang, F. Yang, and L. Zhou, “Gandiva:
Introspective cluster scheduling for deep learning.” in Proc. of OSDI,
2018.

[18] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang, “Multi-resource allocation:
Fairness-efficiency tradeoffs in a unifying framework,” in Proc. of
INFOCOM, 2012.

[19] R. S. Sutton and A. G. Barto, “Reinforcement learning: An introduction,”
IEEE Transactions on Neural Networks, vol. 16, pp. 285–286, 2005.

[20] A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner, R. Larsen, Y. Zhou,
N. Kumar, M. Norouzi, S. Bengio, and J. Dean, “Device placement
optimization with reinforcement learning,” in International Conference
on Machine Learning. PMLR, 2017, pp. 2430–2439.

[21] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource man-
agement with deep reinforcement learning,” in Proc. of the 15th ACM
workshop on hot topics in networks, 2016, pp. 50–56.

[22] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu,
“Heterogeneous graph attention network,” in Proc. of The world wide
web conference, 2019, pp. 2022–2032.

[23] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” Advances
in neural information processing systems, vol. 28, 2015.

[24] W. Kool, H. Van Hoof, and M. Welling, “Attention, learn to solve routing
problems!” arXiv preprint arXiv:1803.08475, 2018.

[25] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, “Dominant resource fairness: Fair allocation of multiple

resource types,” in 8th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 11), 2011.

[26] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella,
“Multi-resource packing for cluster schedulers,” ACM SIGCOMM Com-
puter Communication Review, vol. 44, no. 4, pp. 455–466, 2014.

[27] W. Wang, B. Li, B. Liang, and J. Li, “Multi-resource fair sharing for
datacenter jobs with placement constraints,” in Proc. of the International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 2016, pp. 1003–1014.

[28] M. Chowdhury, Z. Liu, A. Ghodsi, and I. Stoica, “HUG: Multi-Resource
fairness for correlated and elastic demands,” in 13th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 16), 2016, pp.
407–424.

[29] J. Khamse-Ashari, I. Lambadaris, G. Kesidis, B. Urgaonkar, and Y. Zhao,
“An efficient and fair multi-resource allocation mechanism for heteroge-
neous servers,” IEEE Transactions on Parallel and Distributed Systems,
vol. 29, no. 12, pp. 2686–2699, 2018.

[30] W. Gao, Q. Hu, Z. Ye, P. Sun, X. Wang, Y. Luo, T. Zhang, and Y. Wen,
“Deep learning workload scheduling in gpu datacenters: Taxonomy,
challenges and vision,” arXiv preprint arXiv:2205.11913, 2022.

[31] A. Jajoo, Y. C. Hu, X. Lin, and N. Deng, “A case for task sampling
based learning for cluster job scheduling,” in 19th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 22), 2022, pp.
19–33.

[32] A. Qiao, S. K. Choe, S. J. Subramanya, W. Neiswanger, Q. Ho,
H. Zhang, G. R. Ganger, and E. P. Xing, “Pollux: Co-adaptive cluster
scheduling for goodput-optimized deep learning,” in Proc. of OSDI,
2021.

[33] M. Cheong, H. Lee, I. Yeom, and H. Woo, “Scarl: Attentive rein-
forcement learning-based scheduling in a multi-resource heterogeneous
cluster,” IEEE Access, vol. 7, pp. 153 432–153 444, 2019.

[34] H. Lee, J. Lee, I. Yeom, and H. Woo, “Panda: Reinforcement learning-
based priority assignment for multi-processor real-time scheduling,”
IEEE Access, vol. 8, pp. 185 570–185 583, 2020.

[35] M. Xu, Z. Fu, X. Ma, L. Zhang, Y. Li, F. Qian, S. Wang, K. Li, J. Yang,
and X. Liu, “From cloud to edge: a first look at public edge platforms,”
in Proc. of the 21st ACM Internet Measurement Conference, 2021, pp.
37–53.

[36] L. Luo, P. West, J. Nelson, A. Krishnamurthy, and L. Ceze, “Plink:
Discovering and exploiting locality for accelerated distributed training
on the public cloud,” in Proc. of Machine Learning and Systems, vol. 2,
2020, pp. 82–97.

[37] W. Xiao, S. Ren, Y. Li, Y. Zhang, P. Hou, Z. Li, Y. Feng, W. Lin,
and Y. Jia, “AntMan: Dynamic scaling on GPU clusters for deep
learning,” in 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), 2020, pp. 533–548.

[38] A. Eisenman, K. K. Matam, S. Ingram, D. Mudigere, R. Krishnamoorthi,
K. Nair, and M. Smelyanskiy, “Check-n-run: a checkpointing system for
training deep learning recommendation models,” in Proc. of NSDI, 2022.

[39] Z. Fang, D. Hong, and R. K. Gupta, “Serving deep neural networks at
the cloud edge for vision applications on mobile platforms,” in Proc. of
the 10th ACM Multimedia Systems Conference, 2019, p. 36–47.

[40] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.
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