IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 8, AUGUST 2021

1947

DL?: A Deep Learning-Driven Scheduler
for Deep Learning Clusters

Yanghua Peng™, Yixin Bao™, Student Member, IEEE, Yangrui Chen,

Chuan Wu

, Senior Member, IEEE, Chen Meng, and Wei Lin

Abstract—Efficient resource scheduling is essential for maximal utilization of expensive deep learning (DL) clusters. Existing cluster
schedulers either are agnostic to machine learning (ML) workload characteristics, or use scheduling heuristics based on operators’
understanding of particular ML framework and workload, which are less efficient or not general enough. In this article, we show that DL
techniques can be adopted to design a generic and efficient scheduler. Specifically, we propose DL?, a DL-driven scheduler for DL
clusters, targeting global training job expedition by dynamically resizing resources allocated to jobs. DL? advocates a joint supervised
learning and reinforcement learning approach: a neural network is warmed up via offline supervised learning based on job traces
produced by the existing cluster scheduler; then the neural network is plugged into the live DL cluster, fine-tuned by reinforcement
learning carried out throughout the training progress of the DL jobs, and used for deciding job resource allocation in an online fashion.
We implement DL? on Kubernetes and enable dynamic resource scaling in DL jobs on MXNet. Extensive evaluation shows that DL?
outperforms fairness scheduler (i.e., DRF) by 44.1 percent and expert heuristic scheduler (i.e., Optimus) by 17.5 percent in terms of

average job completion time.

Index Terms—Deep learning, resource allocation, distributed training

1 INTRODUCTION

ECENT years have witnessed the breakthrough of DL-

based techniques in various domains, such as machine
translation [1], image classification [2], and speech recogni-
tion [3]. Large companies have deployed ML clusters
with tens to thousands of expensive GPU servers, and run
distributed training jobs on one or different distributed ML
frameworks (such as TensorFlow [4], MXNet [5], Pet-
uum [6] and PaddlePaddle [7]), to obtain DL models
needed for their Al-driven services. Even with parallel
training, training a DL model is commonly very time and
resource intensive. Efficient resource scheduling is crucial
in operating a shared DL cluster with multiple training
jobs, for best utilization of expensive resources and expe-
dited training completion.

Two camps of schedulers exist in today’s ML clusters. In
the first camp, general-purpose cloud/cluster schedulers
are applied, and possibly customized, for distributed ML
job scheduling. For example, Google uses Borg [8] as its DL
cluster scheduler; Microsoft, Tencent, and Baidu use custom
versions of YARN-like schedulers [9] for managing DL
jobs. Representative scheduling strategies used include

e Yanghua Peng, Yixin Bao, Yangrui Chen, and Chuan Wu are with the
University of Hong Kong, Hong Kong, China.
E-mail: {yhpeng, yxbao, yrchen, cwu}@cs.hku.hk.
o Chen Meng is with NAOC, Beijing 100012, China.
E-mail: mengchen.cas@foxmail.com.
o Wei Lin is with Alibaba Inc., Hanzhou, Zhejiang 311121, China.
E-mail: weilin.lw@alibaba-inc.com.

Manuscript received 9 Feb. 2020; revised 14 Jan. 2021; accepted 15 Jan. 2021.
Date of publication 19 Jan. 2021; date of current version 19 Feb. 2021.
(Corresponding author: Yanghua Peng.)

Recommended for acceptance by Y. Yang.

Digital Object Identifier no. 10.1109/TPDS.2021.3052895

First-In-First-Out (FIFO) and Dominant Resource Fairness
(DRF) [10]. These schedulers allocate resources according to
user specification and do not adjust resource allocation dur-
ing training. As we will see in Section 2.1, setting the right
amount of resources for a job is difficult and static resource
allocation leads to resource under-utilization in the cluster.

In the second camp, recent studies have proposed white-
box heuristics for resource allocation in ML clusters [11],
[12], [13]. Typically they tackle the problem in two steps: set
up analytical models for DL/ML workloads, and propose
scheduling heuristics accordingly for online resource alloca-
tion and adjustment. Designing heuristics requires a deep
understanding of ML frameworks and workloads, and the
analytical model is tightly coupled with workload patterns
(e.g., system threshold setting may mismatch job size distri-
bution) and ML framework implementations (e.g., a new
feature or optimization in evolving ML frameworks may
invalidate the analytical model) [12]. Manually adapting the
heuristic algorithms to workload or framework implemen-
tation changes is time-consuming. Further, the modeling
does not consider interference or can not capture it accu-
rately in a multi-tenant cluster, where in average 27.3
percent performance variation may happen (Section 2.1).

In this paper, we pursue a DL cluster scheduler that auto-
mates the learning process of scheduling policy and adapts
to workload changes and ML framework implementations.
Instead of relying on expert heuristics and explicit perfor-
mance model, we investigate a black-box end-to-end
approach enabled by modern learning techniques. We pro-
pose DL?, a deep learning-driven scheduler for deep learn-
ing clusters, that elastically adjusts resource allocation to
training jobs on the go. DL? learns resource allocation poli-
cies through experience using deep reinforcement learning
(DRL): the policy neural network takes the current system

1045-9219 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on June 15,2021 at 05:27:56 UTC from IEEE Xplore. Restrictions apply.

1948

12 —e— ResNet
—e— Seq2Seq
9{—— VGG

Speedup

3 6 9 12
of workers

Fig. 1. Training speed-up with different worker/PS numbers.

state as input, produces resource allocation decisions for
all the current training jobs and gradually improves the
decisions based on feedback. However, merely applying
off-the-shelf RL algorithms to schedule does not produce
high-quality decisions, and careful design according to the
problem nature is in need.

Existing DRL applications in resource scheduling scenar-
ios [14], [15], [16] (Section 8) use simulators to generate
training data for offline training, and apply trained models
for resource scheduling in a live system. The core of such a
simulator is typically an explicit performance model as
mentioned above, and hence the inaccuracy of the simulator
may lead to a low-quality trained model. Instead of exten-
sive offline training over large simulation, DL? takes a dif-
ferent approach: we bootstrap the model using minimal
offline supervised learning with any available historical job
traces and decisions of any existing scheduling strategy
employed in the cluster; then we use online training with
feedback from ongoing decision making in a live system,
with carefully designed techniques to guide model conver-
gence to high-quality decisions, which minimize average
job completion time in the cluster.

In summary, we make the following contributions in DL%:

> Incontrast to previous DL scheduling approaches that
require expert knowledge of workloads and ML
framework implementations, DL2 adopts a more
generic design, i.e., using DRL to automatically adapt
to environment changes and improve scheduling pol-
icy. To avoid inaccurate feedback from performance
model based simulation, we adopt online training
with real feedback from resource allocation (Section 2).

> To avoid poor decisions at the beginning of online
RL, we apply past decisions made by an existing
scheduler in the DL cluster in a preparatory offline
supervised learning stage. Our approach enables a
smooth transition from an existing scheduler, and
automatically learns a better scheduler beyond the
performance level of the existing one (Section 3). To
optimize online RL particularly for DL job schedul-
ing, we propose job-aware exploration for efficient
exploration in the action space (Section 4).

> We design and implement elastic scaling in
MXNet [5], to achieve dynamic worker/parameter
server adjustment (Section 5). We integrate DL? with
Kubernetes [17], and evaluate DL2 using testbed
experiments and controlled simulations, driven by
DL job traces collected from a production DL cluster.
Evaluation results show that DL? significantly outper-
forms representative schedulers in various scenarios,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 8, AUGUST 2021

1.00 N
© \:
@ 0.75 —
g —
o —
050 —
£ (4.8) \N—
20.25 (6,6) \N—
(8,4) \N—
0.00 ‘\—

Seq2Seq VGG

Fig. 2. Training speed under different PS-to-worker ratios

e.g., 44.1 percent improvement in average job comple-
tion time as compared to the widely adopted DRF
scheduler. We also demonstrate DL?'s overhead and
generality (Section 6). We have open-sourced DL? [18]
in GitHub.

2 BACKGROUND AND MOTIVATION

2.1 Motivation

We focus on the parameter server (PS) architecture [19],
which is widely adopted in distributed ML learning frame-
works for parallel training, such as in MXNet [5], Tensor-
Flow [4], PaddlePaddle [7] and Angel [20]. The typical
workflow for a user to train a model in a DL cluster is as fol-
lows: The user specifies how many PSs and workers she/he
wishes to use and the amount of resources (e.g., GPU, CPU)
each PS/worker needs, and then submits the job to the
scheduler (e.g., Borg [8], YARN [9], Mesos [21]). The sched-
uler allocates PSs and workers to the job according to both
user demand and its scheduling strategy, and the allocated
resources then remain fixed over the entire training course
of the job. This workflow has two limitations.

Difficulty in Setting the Right Worker/Ps Numbers. How
does a job’s training speed improve when more PSs and
workers are added to the job? We train 3 classical models,
i.e., ResNet-50 [22], VGG-16 [23] and Seq2Seq [24] and mea-
sure their training speeds (in terms of the number of sam-
ples trained per unit time), when increasing the number of
workers and keeping the number of PSs equal to the worker
number. In Fig. 1, the speed-up is calculated by dividing the
training speed achieved using multiple workers by the
training speed obtained using one worker. We observe a
trend of decreasing return, i.e., adding PSs/workers does
not improve the training speed linearly, due to increasing
communication overhead.

On the other hand, is an equal number of PSs and work-
ers (as a general rule of thumb) always the best? We fix the
total number of PSs and workers to be 12 and measure the
training speed of two models under different combinations
of PS/worker numbers (i.e., 4:8, 6:6, 8:4) [12]. Fig. 2 shows
that Seq2Seq achieves the highest training speed when there
are 4 PSs and 8 workers, while VGG-16 is trained fastest
with 6 PSs and 6 workers.

From the above, we see that it is challenging to reason
about which job will have the largest marginal gain from
extra resources and what the best PS-to-worker ratio is, as
they are affected by many factors, e.g., allocated resources,
models. Existing schedulers side-step this problem and
leave it to the user to decide how many PSs/workers to use.

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on June 15,2021 at 05:27:56 UTC from IEEE Xplore. Restrictions apply.

PENG ETAL.: DL2: A DEEP LEARNING-DRIVEN SCHEDULER FOR DEEP LEARNING CLUSTERS

=
o
o

~
(6]

GPU Utilization(%)
N ul
u o

0 6 12 18 24
Time (hours)

Fig. 3. GPU utilization in a production DL cluster.

Static Resource Allocation. The GPU cluster resources are
often not fully utilized: when a training job is completed,
the resources it releases (e.g., expensive GPUs) may become
idle, rather than being exploited by remaining jobs that are
still running. Fig. 3 shows the GPU utilization (i.e., the num-
ber of allocated GPUs divided by the total number of GPUs)
during a 24-hour interval in a production DL cluster with
about 1000 P100 GPU cards (company name removed due
to anonymity requirement), whose job traces will be used in
our evaluation (Section 6). We see that the GPU utilization
level varies significantly over time, providing an opportu-
nity for dynamic resource scaling out/in in training jobs
when cluster load is low/high.

We advocate dynamic adjustment of worker/PS numbers
in jobs over time, to maximally utilize resources in the DL
cluster to expedite job completion. We further do not require
users to submit the number of workers/PSs they want to use
in their jobs (who nonetheless may not be at the best position
to decide that), but will decide the best worker/PS numbers
for users at each time based on both global resource availabil-
ity and individual jobs’ performance.

Expert Heuristics. There have been existing studies which
explicitly model detailed relationship between the training
speed and resources within jobs, and design scheduling heu-
ristics based on the resource-speed model, e.g., SLAQ [11],
Optimus [12] and OASIS [13]. They have two limitations.

First, in order to derive an accurate performance model,
the modeling process is coupled tightly with ML framework
implementations or workload patterns. Re-modeling is time-
consuming (at least weeks [25]) and is often needed when
the ML framework improves (e.g., adding new features or
adopting optimization) or parameter setting mismatches
workload pattern (e.g., job size distribution). For example,
Optimus models computation and communication as two
separate procedures during one training step; its model
needs to be rebuilt when new features are incorporated into
ML frameworks, e.g., overlapping backward computation
with communication, gradient compression [5].

Second, explicit performance models are built without
considering interference in multi-tenant GPU clusters. For
example, SLAQ [11] and Optimus [12] assume no network
congestion on PSs, and OASiS [13] and Optimus [12]
assume that the available bandwidth is a constant. How-
ever, we observe that the speed for training the same model
may change significantly. Fig. 4 shows the performance var-
iation (i.e., the standard deviation of completion time of a
training job divided by average completion time of the job
over its multiple runs) of 898 DL jobs from the production
ML cluster trace. The average variation is 27.3 percent and

1949

100

75

50

CDF (%)

25

10! 102

std/avg (%)

100

Fig. 4. Variation of training completion time.

the variation for some jobs (3.5 percent of all jobs) even
exceeds 100 percent. Besides, explicitly modeling interfer-
ence among ML jobs is also difficult [26], as adding an addi-
tional dimension (network structure, runtime isolation, etc.)
increases complexity.

In contrast to white-box heuristics, we resort to a generic
black-box approach and design an RL-based resource
scheduler: it automatically adapts to environment changes
and learns end-to-end resource allocation policy without
requiring expert heuristics and without explicitly modeling
the ML framework, the workload, and the interference.

2.2 Deep Reinforcement Learning

DRL has been widely used for sequential decision making
in an unknown environment, where the agent learns a pol-
icy to optimize a cumulative reward by trial-and-error inter-
actions with the environment [27]. In each iteration, the
agent observes the current state of environment and chooses
an action based on the current policy. The environment
moves to a new state and reveals the reward, and the policy
is updated based on the received reward.

Existing DRL-based schedulers for resource allocation [14],
[15], [16], [28] generate a large amount of traces for offline DRL
model training, typically by building an explicit resource-per-
formance model for jobs and using it to estimate job progress
based on the allocated resources, in the offline simulation envi-
ronment. The need for model rebuilding (due to ML system
changes) and inaccuracy (due to interference) of the perfor-
mance model degrade the quality of the DRL policy learned
(see Fig. 9). Another possibility is to use available historical
traces for offline DRL training. However, due to the large deci-
sion space of resource allocation (exponential with the amount
of resources), historical traces usually do not include feedback
for all possible decisions produced by the DRL policy [26].

Therefore, instead of offline training in a simulated envi-
ronment, we advocate online RL in the live cluster and
exploit true feedback for resource allocation decisions pro-
duced by the DRL agent, to learn a good policy over time.
Pure online learning of the policy network model from
scratch can result in poor policies at the beginning of learn-
ing (see Fig. 10). To avoid poor initial decisions and for the
smooth transition from an existing scheduler, we adopt off-
line supervised learning to bootstrap the DRL policy with
the existing scheduling strategy.

3 DL2 OVERVIEW

DL? targets the best resource allocation policy in a live DL clus-
ter, and minimize the average job completion time among all
concurrent jobs. An overview of DL? is given in Fig. 5.

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on June 15,2021 at 05:27:56 UTC from IEEE Xplore. Restrictions apply.

[| offine
;] [> Supervised
| Learning Dynamic
Trace : : Scaling in
"""""""""" | Online Reinforcement DL Cluster

Learning

Fig. 5. An overview of DL,

3.1 DL Cluster

In the DL cluster with multiple GPU servers, DL training
jobs are submitted over time. Upon submission of a job, the
user, i.e., job owner, provides her/his resource demand to
run each worker and each PS, respectively, as well as the
total number of training epochs to run. For example, a
worker often requires at least 1 GPU, and a PS needs many
CPU cores. The total training epoch number to achieve
model convergence can be estimated based on expert
knowledge or job history.

Depending on resource availability and training speeds,
each job may run over a different number of workers and
PSs from one time slot to the other (as decided by the sched-
uler). For synchronous training, to guarantee the same train-
ing result (model) while varying the number of workers, we
adjust the mini-batch size of each worker, so that the total
batch size in a job, as specified by the user, still remains
unchanged [12], [29]. For asynchronous training, the mini-
batch size of each worker remains the same while the num-
ber of workers varies (as the global batch size equals each
worker’s batch size).

3.2 DL*Scheduler

Offline Supervised Learning. For the warm-up, we use super-
vised learning to train the policy NN, to initialize scheduling
policy. The historical job runtime traces collected from the clus-
ter are used for training the NN to produce similar decisions as
made by the existing scheduler. This step is a must due to the
poor performance of applying online RL directly (see Fig. 10).

Online Reinforcement Learning. Online RL works in a time-
slotted fashion; each time slot is a scheduling interval, e.g., 1
hour. At the beginning of a scheduling interval, the policy NN
takes the information of all the concurrent jobs as input state,
and produces the numbers of workers and PSs for each job.
Jobs’ training progress is observed at the end of each time slot,
and used as the reward to improve the policy network.

Dynamic Scaling. Each job may need to adjust resources
according to the decisions of policy NN in each time slot. To
support dynamically adding or removing PSs/workers dur-
ing training, we design and implement dynamic scaling in
an ML framework, i.e., MXNet. It minimizes the resource
scaling overhead while guaranteeing training correctness.

4 LEARNING DESIGN

4.1 Policy Neural Network

We learn a neural network to produce resource allocation
decisions to concurrent DL jobs through joint offline super-
vised and online reinforcement learning.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 8, AUGUST 2021

State s; Policy
Job type

Policy Network ,,(al s:;0)

of time slots run

Remaining epochs

.‘.

Allocated resources

."

Allocated # of workers

Allocated # of PSs

Job 1 Jobn

Value

”(Stégl)

Fig. 6. Actor-critic reinforcement learning.

State. The input state to the policy NN is a matrix s =
(z,d, €, 7,1, @), including the following (Fig. 6):

e z,aJ x L matrix representing the DL models trained
in the jobs, where .J is an upper bound of the maxi-
mal number of concurrent jobs in a time slot that we
are scheduling, and L is the maximal number of
training job types in the cluster. We consider DL jobs
training similar DNN architecture as the same type
in our input. For example, fine-tuning jobs based on
the same pre-trained model is common' and they
can be treated as the same type. Each vector Z; in z,
Vi=1,...,J,is an encoding of job i’s type.

o doalJ- dlmenswnal vector encoding the number of
time slots that each job has run in the cluster, for all
jobs. For example, d; is the number of time slots that
job ¢ has run.

e ¢, a J-dimensional vector encoding the remaining
number of epochs to train for each job. ¢; is the differ-
ence between user-specified total training epoch
number for job i and the number of epochs trained
till current time slot.

e 7, a J-dimensional vector representing the propor-
tion of dominant resource already allocated to each
job in the current time slot. For example, 7; is the pro-
portion of dominant resource (the type of resource
that job ¢ occupies most, divided by the overall
capacity of that resource in the cluster) allocated to
job i by resource allocation decisions already made
through inferences in this time slot.

e 0 and i, each of them is a J-dimensional vector
where the ith item is the number of workers (PSs)
allocated to job i in the current time slot.

Information of concurrent jobs in different com-
ponents of the state are ordered according to the
jobs” arrival times. The input state does not directly
include available resource capacities in the cluster;

1. Many computer vision jobs use pre-trained ResNet [22] model as
initialization for training on a target dataset. Similarly, natural language
understanding jobs use BERT [30] model to initialize training.

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on June 15,2021 at 05:27:56 UTC from IEEE Xplore. Restrictions apply.

PENG ETAL.: DL2: A DEEP LEARNING-DRIVEN SCHEDULER FOR DEEP LEARNING CLUSTERS

our scheduler can handle time-varying overall
resource capacities in the cluster.

Action. The NN produces a policy = : 7(a|s;6) — [0,1],
which is a probability distribution over the action space. a
represents an action, and 6 is the current set of parameters
(i.e., the training weights of the hidden layers) in the NN. A
straightforward design is to allow each action to specify the
numbers of workers/PSs to allocate to all concurrent jobs;
this leads to an exponentially large action space, containing
all possible worker/PS number combinations. A large
action space incurs significant training cost and slow
convergence [31].

To expedite learning of the NN, we simplify the action
definition, and allow the NN to output an action out of the
following 3 x J + 1 actions through each inference: (i) (,0),
meaning allocating one worker to job ¢, (ii) (¢,1), allocating
one PS to job i, (iii) (7,2), allocating one worker and one PS
to job 4, (iv) a void action which indicates stopping allocat-
ing resources in the current time slot (as allocating more
resources does not necessarily lead to higher training
speed [12]). Since each inference only outputs an incremen-
tal amount of resources to be allocated to one of J jobs, we
allow multiple inferences over the NN for producing the
complete set of resource allocation decisions in each time
slot: after producing one action, we update state s, and then
use the NN to produce another action; the inference repeats
until the resources are used up or a void action is produced.
The void action indicates that further resource allocation no
longer improves training speeds.

NN Architecture. The input state matrix s is connected to a
fully connected layer with the ReLU [32] function for activa-
tion. The number of neurons in this layer is proportional to
the size of the state matrix. Output from this layer is aggre-
gated in a hidden fully connected layer, which is then con-
nected to the final output layer. The final output layer uses
the softmax function [33] as the activation function. The NN
architecture is designed based on empirical training trials.

4.2 Offline Supervised Learning

In offline supervised learning, we use stochastic gradient
descent (SGD) [34] to update parameters 8 of the policy NN
to minimize a loss function, which is the cross entropy of
the resource allocation decisions made by the NN and deci-
sions of the existing scheduler in the traces [35]. The NN is
repeatedly trained using the trace data, e.g., hundreds of
times as in our experiments, such that the policy produced
by the NN converges to the policy of the existing scheduler.

4.3 Online Reinforcement Learning

Reward. DL? targets average job completion time minimiza-
tion in the entire cluster. Job completion time would be a
natural reward to observe, but it is only known when a job
is finished, which may well be hundreds of time slots later.
The significant feedback delay of the reward is unacceptable
for online RL, since the delayed reward provides little guid-
ance to improve the early decisions. We design a per-time-
slot reward to collect more reward samples through the job
running processes, for more frequent RL model updates to
expedite convergence. The per-timeslot reward is the sum

1951

of normalized number of epochs that the concurrent jobs
have trained in this time slot, where the number of epochs
trained in job i (;) is normalized over the overall number of
epochs to train for the job (£):

Ty =

o=, (1)
=

The rationale is that the more epochs a job runs in a time
slot, the fewer time slots it takes to complete, and hence
maximizing cumulative reward amounts to minimizing
average job completion time. The normalization is to pre-
vent bias towards large jobs.

Policy Gradient-Based Learning. In online RL, the policy
NN obtained through offline supervised learning is further
trained using the REINFORCE algorithm [36], to maximize
the expected cumulative discounted reward E[Y ;2 y'r],
where y € (0,1) is the discount factor. The algorithm
updates the policy network’s parameters, 6, by performing
stochastic gradient descent (SGD) on E[> 7, —'r,]. The
gradient is:

Vil | D ¥ | = Ba|~ vylos (x(al5:8)Q(a,5:8)),
t=0

(2

where the Q value, Q(a, s; 5), is the RL reward feedback, i.e.,
the “quality” of the action a taken in a given state s following
the policy 7(-;6), calculated as the expected cumulative dis-
counted reward to obtain after selecting action a at state s fol-
lowing 7(+; 6). To approximate the expectation, each Q value
can be computed empirically using a mini-batch of training
samples [34]. Each sample is a four-tuple, (s,a,s’,r), where s’
is the new state after action a is taken in state s.

Note that our system runs differently from standard RL:
we do multiple inferences (i.e., produce multiple actions)
using the NN in each time slot ¢; the input state changes
after each inference; we only observe the reward and update
the NN once after all inferences in the time slot are done.
We can obtain multiple samples in a time slot ¢, and set the
reward in each sample to be the reward (1) observed after
all inferences are done in ¢.

We further adopt a number of techniques to stabilize
online RL, expedite policy convergence, and improve the
quality of the obtained policy.

Actor-Critic. We improve the basic policy gradient-based RL
with the actor-critic algorithm [37] (illustrated in Fig. 6), for
faster convergence of the policy network. The basic idea is to
replac_g Q value in Eq. (2) with an advantage, Q(a, 5;5) -
V7 (s,0), where V™ (s,0) is a value function, representing the
expected reward over the actions drawn using policy
7(a| s;6) at all times starting from time slot #. The advantage
shows how much better a specific action is, as compared to
the expected reward of taking actions according to 7(a | s;6)
in the current state. Using the advantage in computing the
policy gradients ensures a much lower variance in the gra-
dients, such that policy learning is more stable.

The value function is evaluated by a value network,
which has the same NN structure as the policy network
except that its final output layer is a linear neuron without

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on June 15,2021 at 05:27:56 UTC from IEEE Xplore. Restrictions apply.

1952

any activation function [37], and it produces the estimate of
value function V" (s, §). The input state to the value network
is the same as that to the policy network. We train the value
network using temporal difference method [37].

Job-Aware Exploration. To obtain a good policy through RL,
we need to ensure that the action space is adequately explored
(i.e., actions leading to good rewards can be sufficiently pro-
duced); as otherwise, the RL may well converge to poor local
optimal policy [31], [37]. We first adopt a commonly used
entropy exploration method, by adding an entropy regulari-
zation term Bz H(n(-|s; 6)) in gradient calculation to
update the policy network [37]. In this way, parameters of the
policy network, 6, is updated towards the direction of higher
entropy (implying exploring more of the action space).

During training, we observe a large number of unnecessary
or poor explorations (e.g., allocating multiple workers but
0 PSto a job) due to unawareness of job semantics. To improve
exploration efficiency, we adopt job-aware exploration com-
bined with the e-greedy method [27]. At each inference using
the policy network, we check the input state: if the input state
belongs to one of the poor states that we have identified, with
probability 1 — ¢, we apply the resource allocation decisions
produced by the policy network, and with probability €, we
discard the output, but adopt a specified action and observe
the reward of this action.

The set of poor input states includes three cases: (i) there
exists one job to be scheduled which has been allocated
with multiple workers but no PS; (ii) there exists one job
which has been allocated multiple PSs but no workers; (iii)
there exists one job whose allocated numbers of workers (w)
and PSs (u) differ too much, i.e.,, w/u > threshold or u/w >
threshold (the threshold is 10 in our experiments). Our spec-
ified action upon each of these input states is: (i) allocate
one more PS to that job; (ii) allocate one more worker to the
job; (iii) allocate one more PS or worker to that job, to make
its worker/PS numbers more even.

Experience Replay. It is known that correlation among the
samples prevents convergence of an actor-critic model to a
good policy [27]. In our online RL, the current policy net-
work determines the following training samples, e.g., if the
policy network finds that allocating more workers improves
reward, then the following sample sequence will be domi-
nated by those produced from this strategy; this may lead
to a bad feedback loop, preventing the exploration of sam-
ples with higher rewards.

To alleviate correlation in the observed sample sequence,
we adopt experience replay [38] in the actor-critic frame-
work. Specifically, we maintain a replay buffer to store the
samples collected from a large time span. At the end of each
time slot, instead of using all samples collected during this
time slot, we select a mini-batch of samples from the replay
buffer to compute the gradient updates, where the samples
could be from multiple previous time slots.

5 [ELASTIC SCALING

Though node addition and deletion are supported in system
design in the literature [19], [39], [40] , existing open-source
distributed machine learning frameworks (e.g., Tensor-
Flow [4], MXNet [5], Caffe [41]) do not support dynamic

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 8, AUGUST 2021

1 Registration

------ i «

"INC_SERVER"
Request

v

33;3 Training Resumpti

o > g Resumption

v Notification

Ez New Parameter PS
' Assignment and A
' Scaling Clock

v

’
;1 5 Parameter
Migration

EE , Worker
Update

Fig. 7. Steps for adding one PS into a running job.

worker/PS adjustment in a running job. To adjust the num-
ber of workers/PSs in a job, a simple and general approach
is checkpointing (e.g., Optimus [12]): terminate a training
job and save global model parameters as a checkpoint
image; then restart the job with a new deployment of PSs
and workers, and the saved model parameters. Checkpoint-
ing and restarting add additional delay to the training pro-
cess [40]. For example, it takes 1 minute to checkpoint the
training of a DSSM model [42], and another 5 minutes to
completely restore the training, due to data re-preprocess-
ing before training starts. The overhead is significant when
the frequency of resource scaling is high (e.g., every hour).
The other approach is to resize resources without terminat-
ing the training process. As an example, we improve
MXNet [5] to enable dynamic “hot” scaling.

Challenges. In PS architecture, each PS maintains a subset
of the parameters in the global model. In order to keep con-
sistent model parameters, when the number of PSs changes,
the global parameters need to be migrated among the PSs
(for load balancing), and workers should be informed in
time to send parameter updates to the correct PSs. When
the number of workers changes, the new connections
between new workers and the PSs should be established.
The key challenges are: (1) correctness, i.e., a consistent copy
of the global model parameters should be maintained while
parameters are moved across the PSs, and workers always
send gradients to correct PSs; (2) high performance, i.e., we
should ensure that interruption to training is minimized
and the PSs are load balanced.

Scaling Procedure. We add a coordinator module into
MXNet. For each job, we launch a coordinator, which works
with DL? scheduler to handle joining of new workers or PSs
and termination of existing ones. We demonstrate our
design using the case of adding a new PS into an existing
job. The steps are shown in Fig. 7.

1) Registration. When a new PS is launched, it registers
itself with the coordinator by sending an
“INC_SERVER” request message. The PS will then
receive its ID in the job, the global parameters it is
responsible to maintain, and the current list of

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on June 15,2021 at 05:27:56 UTC from IEEE Xplore. Restrictions apply.

PENG ETAL.: DL2: A DEEP LEARNING-DRIVEN SCHEDULER FOR DEEP LEARNING CLUSTERS

workers and PSs to establish connections with. After
that, the PS starts functioning, awaiting workers’
parameter updates and further instructions from the
coordinator (e.g., parameter migration).

2) Parameter assignment. Upon receiving a registration
request, the coordinator updates its list of workers
and PSs, and computes parameter assignment to the
new PS. A best-fit algorithm is adopted: move part
of the parameters on each existing PS to the new PS,
such that all PSs maintain nearly the same number
of parameters, while minimizing parameter move-
ment across the PSs. In order to keep a correct and
consistent copy of global model parameters (i.e., the
number and value of parameters are not affected by
scaling) when migrating parameters among PSs, we
maintain a version counter for parameters. For PSs,
the version counter is the number of parameter
updates; for workers, the version counter is received
from PSs when pulling updated parameters. To
decide when PSs should migrate parameters, we cal-
culate a scaling clock based on current version
counter and round trip time between the coordinator
and PSs/workers.

The coordinator sends new parameter assignment
among PSs and the scaling clock to all PSs and workers.

3) Parameter migration. At each PS, when the version
counter of parameters reaches the scaling clock from
the coordinator, the PS moves its parameters to the
new PS according to the parameter assignment deci-
sions received.” Once parameter migration among
all PSs is completed, the coordinator notifies all
workers to resume training.

4) Worker update. At each worker, once its version
counter equals the scaling clock received from the
coordinator, the worker suspends its push/pull
operations and awaits notification for completion of
parameter migration. Upon notification from the
coordinator, the workers update their parameter-PS
mapping, establish connections with the new PS,
and resume training.

In case of removing a PS, the scheduler chooses the PS to
be removed by keeping the load balanced among the physi-
cal machines. The chosen PS sends a removal request to the
coordinator. Similar steps as 2)3)4) above are then carried
out, except that parameters in the removed PS are moved to
other PSs, using the best-fit algorithm.

To add a new worker into an existing job, the coordinator
sends the current parameter-PS mapping in response to the
worker’s registration message. It also notifies all PSs the addi-
tion of the new worker for building connections. The worker
starts operation after training dataset is copied. For worker
removal, the scheduler chooses the worker to be removed by
keeping the load balanced across physical machines. The
coordinator receives a removal request from the worker, and
then broadcasts it to all workers and PSs for updating their
node lists. The coordinator should not be a scaling bottleneck
as the removal or registration requests of a job are not
frequent.

2. For asynchronous training, the PS buffers push or pull requests
from workers and redirects them to the new PS.

1953

100
045
2 _ 75
= S
g 30 L 50
2 5
(1]
815 25
5

Q0° 10T 102 10

MOTUWETH FR SA SU Duration (min)

(a) Job arrival rate in a week (b) CDF of job duration

Fig. 8. Trace sketch.

6 EVALUATION

6.1 DL’ Implementation
We implement DL? as a custom scheduler on Kuber-
netes [17]. Cluster users’” DL training scripts are written
using standard MXNet APIs and run on the elastic MXNet
framework (Section 5). Workers and PSs are running on
Docker containers. Training data of jobs are stored in HDFS
2.8 [43]. The scheduler constantly queries cluster resources
and job states (e.g., training speeds) and instructs deploy-
ment of a new job or resource adjustment in an existing job
via Kubernetes API server. Mapping the cluster and job
states to a scheduling decision (i.e., doing one inference)
takes less than 3ms. The average end-to-end scheduling
latency (i.e., the duration of job pending phase in Kuber-
netes) after integrating DL? into Kubernetes is about 700ms.
The RL model is trained and updated once every scheduling
slot. Since the duration of DL jobs is typically long (e.g.,
hours), DL2 is sufficiently fast for large-scale DL clusters.
For each new job, DL? launches its coordinator, workers,
and PSs on machines decided by the default placement
strategy of the cluster (i.e., load balancing). The coordinator
is informed of the workers and PSs in the job via Kubernetes
APL. When a worker/PS container is launched on a
machine, an agent in the container starts execution. It
queries the readiness of other containers of the same job via
Kubernetes API and starts user-provided training scripts
after all other containers are ready. The agent also monitors
the training status, e.g., the number of trained steps, accu-
racy, and training speed.

6.2 Methodology
Testbed. Our testbed includes 13 GPU/CPU servers con-
nected by a Dell Networking Z9100-ON 100GbE switch.
Each server has one Intel E5-1660 v4 CPU, two GTX 1080Ti
GPUs, 48GB RAM, one MCX413A-GCAT 50GbE NIC, one
480GB SSD, and one 4TB HDD. Each server runs Ubuntu
14.04 LTS and Docker 17.09-ce [44].
Trace. We use patterns from a 75-day real-world job trace
collected from a large production DL cluster with a few
thousands of GPUs and thousands of jobs, to drive our
testbed experiments and simulation studies. Fig. 8a shows
the job arrival rate (number of jobs arrived per time slot,
i.e., 20 minutes) during a typical week. Fig. 8b shows the
distribution of job duration: over a half of jobs run for
more than an hour and some for days; the average job
duration is 147 minutes.

Due to security and privacy concerns of the company, the
job source code is not available, and we do not know job

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on June 15,2021 at 05:27:56 UTC from IEEE Xplore. Restrictions apply.

1954

TABLE 1
DL Jobs in Evaluation

Model Application domain Dataset
ResNet-50 image classification ImageNet
VGG-16 image classification ImageNet
ResNeXt-110 image classification CIFAR10
Inception-BN image classification Caltech
Seq25Seq machine translation WMT17
CTC sentence classification mr
DSSM word representation text8
WLM language modeling PTB

details (e.g., model architecture). So we select 8 typical cate-
gories of ML models for experiments, from official MXNet
tutorials [45], with representative application domains, dif-
ferent architectures and parameter sizes [45], as shown in
Table 1. Each worker in different jobs uses at most 2 GPUs
and 1-4 CPU cores, and each PS uses 1-4 CPU cores.

In both testbed experiments and simulations, the jobs are
submitted to the cluster following the dynamic pattern in
Fig. 8a (with arrival rates scaled down). Upon an arrival
event, we randomly select a model from Table 1 and vary
its number of training epochs (tens to hundreds) to generate
a job variant, following job running time distribution of the
real-world trace (scaled down). For models training on large
datasets (e.g., ImageNet [46]), we downscale the datasets so
that the training can be finished in a reasonable amount of
time. In experiments, 30 jobs are submitted to run in our
testbed; in simulations, 500 servers are simulated, and 200
jobs are submitted.

Training Setting. We use TensorFlow [4] to build and train
the policy neural network of DL?. The neural network is
trained using Adam optimizer [47] with a fixed learning
rate of 0.005 for offline supervised learning and 0.0001 for
online reinforcement learning, mini-batch size of 256 sam-
ples, and reward discount factor y = 0.9. The network has 2
hidden layers with 256 neurons each. These hyper-parame-
ters (neural network structure, learning rate, mini-batch
size, etc.) are chosen based on a few empirical training trials.
We refer to one update of the neural network at the end of
each time slot as one step in this section. It takes about half
an hour to finish offline training in our setup.

Baselines. We compare DL? with the following baselines.

e Dominant Resource Fairness (DRF) [10]: It allocates
resources to jobs based on the fairness of dominant
resources. By default, we use DRF policy to guide
supervised learning in DL? since it is widely
adopted in existing cluster schedulers, e.g., YARN [9],
Mesos [21].

o Tetris [48]: It preferentially allocates resources to jobs
with the shortest remaining completion time and
highest resource packing efficiency.

e Optimus [12]: It is a customized scheduler for DL
workloads, which builds a performance model for
deep learning jobs to estimate remaining training
time and adopts a greedy heuristic to schedule jobs.

o OfflineRL [14], [16]: Several recent studies [14], [16]
adopt offline RL method for single-task job scheduling

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 8, AUGUST 2021

=
I 250

2 .

V' aRF (S L aus . oRL
OV Dvntte Op{\(g«\\(\e
Fig. 9. Performance comparison.

or execution order scheduling. We adapt their meth-
ods to compare with them. Our offline reinforcement
learning algorithm adopts same training techniques
(e.g., experience replay, actor-critic) as [14], [16], and
also uses the training data generated by an analytical
performance model [12] in a simulation environment.
Wherever appropriate, we use separate training dataset
and validation dataset. Both include job sequences gener-
ated using the job arrival and duration distributions from
the trace. The random seeds are different when generating
the datasets, to ensure that they are different.

6.3 Performance

We first compare the performance of DL? with baselines
and show the overhead of dynamic scaling in our testbed.

Comparison. Fig. 9 shows that DL? improves average job
completion time by 44.1 percent when compared to DRF. Tet-
ris performs better than DRF but worse than DL?: once it
selects a job with the highest score in terms of resource pack-
ing and remaining completion time, it always adds tasks to
the job until the number of tasks reaches a user-defined
threshold. When compared to Optimus, DL? achieves
17.5 percent higher performance, since Optimus’ estimation
of training speed is inaccurate due to cluster interference and
evolved MXNet framework (e.g.,, communication does not
overlap with backward computation in Optimus’ model).
DL? also outperforms OfflineRL by 37.9 percent due to its
online training using realistic feedback.

For a better understanding of DL*'s performance gain,
Fig. 10 shows how the validated performance keeps
improving during the training process, when the policy NN
is trained using offline supervised learning only (green
curve), online RL only (cyan curve), and offline supervised
learning followed by online RL (green+blue). The average
job completion time shown at each time slot (i.e., step) is
computed over job sequence in the validation dataset, using

<

ic_’ SL

.g 400 — RL

= —— DRF

2-300 + Online RL

@]

o

Qo

=}

o

z 0.0 04 08 12 1.6
Step le3

Fig. 10. Training progress comparison.

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on June 15,2021 at 05:27:56 UTC from IEEE Xplore. Restrictions apply.

PENG ETAL.: DL2: A DEEP LEARNING-DRIVEN SCHEDULER FOR DEEP LEARNING CLUSTERS

10

—e— workers
—— PSs

of tasks

o N B O

0 40 80 120 160
Time (min)

Fig. 11. Resource allocation of a Seq2Seq job.

the policy network trained (on the training dataset) at the
current step. We see that with pure online RL, it takes hun-
dreds of steps to achieve the same performance of DRF;
with offline supervised learning, the performance quickly
converges to the point that is close to DRF's performance
within tens of steps (i.e., model updates); as we continue
training the NN using online RL, the performance further
improves a lot. The performance of DRF is fixed as its strat-
egy does not change over time. Besides smaller average job
completion time, we also observe that DL? has smaller clus-
ter makespan (i.e., the total time elapsed from the arrival of
the first job to the completion of all jobs), which indicates
that DL? has higher resource efficiency [48]. For example,
compared to DRF, DL? has 16 percent higher average GPU
utilization (increased from 62 to 78 percent).

To understand DL%'s superior performance intuitively, we
examine its decisions of resource allocation. Fig. 11 further
shows how the numbers of PSs and workers of a Seq2Seq [24]
job are adjusted by DL? during training. It shows that DL? tries
to allocate twice the number of workers than the number of
PSs, a good resource configuration for Seq2Seq (Fig. 2 in Sec-
tion 2.1). We see that DL? is aware of the characteristics of a spe-
cific workload and learns a good policy for scheduling it.

Scaling Overhead. Fig. 13 compares the average training
suspension time among all workers when checkpointing
and our scaling approach is used respectively, when differ-
ent numbers of PSs are added to a ResNet-50 [22] job. The
training suspension duration at a worker in DL? is from
when all the received iteration counts from PSs becomes
equal to the scaling clock the worker received from the coor-
dinator, to when the worker resumes training. The check-
point-based approach takes tens of seconds due to model
saving, container relaunching, and initialization before
restarting training. The overhead in DL? is very small (i.e.,
tens of milliseconds), even if the time increases linearly

()

£

';12— B Optimus

2 | mew D2

] |

g’ t
N

N B

< \

£ % Uniform Poisson

Fig. 12. Different arrival patterns.

1955

5
Il Checkpointing
20+ DL?2

1455 1515

13.95

of PS added

Fig. 13. Scaling overhead comparison.

with the number of PSs (since we add PSs one by one). We
observe similar overhead when removing PSs.

We examine detailed time cost for the 4 steps during the
scaling process (Section 5) for adding a PS when training
different models. In Fig. 14, the models are listed in increas-
ing order of their model sizes. We observe that the scaling
process spends most time in step 3 and step 4, while the
time for step 1 and step 2 is negligible. The larger a model
is, the more time is spent on parameter movement (step 3).
Note that only step 4 blocks worker training and is consid-
ered as overhead when compared to checkpointing. Step 3
and step 4 may happen concurrently.

We also measured the overall resource adjustment over-
head. Similar to Optimus [12], we define the overhead as
the percentage of time spent on adjusting resources for
training jobs. In our experiments, the overall overhead is
0.4 percent, as compared to 2.54 percent in Optimus. The
overhead is much less because DL? adopts elastic scaling
instead of checkpointing to adjust job resources.

In the following, we carry out controlled large-scale sim-
ulations to examine various aspects of DL? design.

6.4 Generality

Job Arrival Patterns. We first investigate how job arrival
patterns affect job completion time under two other job
arrival processes: a uniform random process and a Poisson
process. Fig. 12 shows the result when compared to Opti-
mus. We see that DL? outperforms Optimus by about 20
percent in terms of average job completion time.

Training Completion Time Variation. To see how
DL? handles practical performance variation (which white-
box schedulers may not handle well), we vary the training
speeds in each type of jobs to simulate variation in the training
completion time of the same type of jobs (the total numbers of
epochs to train remain the same). In Fig. 15, the variation indi-
cates how the training speed deviates from the average speed
(which can be faster or slower by the respective percentage).

Time (ms)

P NI RN N R LI C R
I I R N A C A C
Q‘—\ Q\e‘?‘v ?\e"v 86$ 6$e 09$ s
\(\(' « (Z «

Fig. 14. Timing of scaling steps.

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on June 15,2021 at 05:27:56 UTC from IEEE Xplore. Restrictions apply.

1956

[
o

—— DI2
—_— Optiinus/‘/‘
:;:/_/

5 10 15 20 25
Variation (%)

U O N 0 ©

Avg. Job Completion Time

Fig. 15. Training completion time variation.

The average job completion time shown in all simulation fig-
ures is in time slots. We see that Optimus is more sensitive to
the variation, as it can be easily stuck in local optimum: its
scheduling relies on the convexity of the performance model,
but training speed variation often breaks convexity. A further
look at the completion time of each model (Table 1) reveals
that Optimus has similar performance as DL? for small mod-
els (e.g., CTC and DSSM) but performs worse than DL? when
the scale of job is large. This is due to the inaccurate perfor-
mance estimation in Optimus when the numbers of PSs and
workers are large.

Total Training Epoch Estimation. DL? uses the total number
of training epochs of jobs as input, estimated by users. The
estimated total number of epochs may well be different from
the actual numbers of epochs the jobs need to train to achieve
model convergence. We examine how DL? performs under
different estimation errors: suppose v epochs is fed into
DL? as the total epoch number that a job is to train, but v - (1 +
error) or v - (1 — error) is the actual number of trained epochs
for the job’s training convergence. Fig. 16 shows that the aver-
age job completion time increases slightly when the estima-
tion error is larger. It still outperforms DRF (which is
oblivious of the estimation errors) by 28 percent when the
error is 20 percent.

Unseen Job Types. We investigate whether DL? can adapt
to jobs training new models. We train the neural network
using the first four categories of models (Table 1) in the
supervised learning phase and the first 1000 steps of the
online RL phase. At step 1000 and step 2000 of the RL phase
(i.e., the red dots in Fig. 17), we submit jobs training two
new categories of models. In the case of the “ideal” baseline,
we train the NN using all categories of jobs in Table 1 from
the beginning. Fig. 17 shows the average job completion
time achieved using the trained NN at each time respec-
tively, for decision making over the validation dataset.
DL? gradually achieves the same performance as the “ideal”

[
o
o

N
U

N
w

o
o

Avg. Job Completion Time
ul
o

5 10 15 20 25
Error (%)

Fig. 16. Performance under different epoch estimation errors.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 8, AUGUST 2021

[

S

=

c 9

Qo

@

26/

€

83

ﬁ —==- |deal

£9% 1 2 3
Step le3

Fig. 17. Handling new types of jobs.

baseline, showing its capability to handle new types of DL
jobs coming on the go.

Other Scheduling Strategies for Supervised Learning. We
change the default DRF used in supervised learning of
DL? to two other heuristics, First-In-First-Out (FIFO) and
Shortest-Remaining-Time-First (SRTF). Fig. 18 shows aver-
age job performance when DL? uses each of these strate-
gies in its supervised learning phase, when the NN trained
only using supervised learning, or using both supervised
learning and online RL, is evaluated on the validation
dataset. In both cases, the performance is significantly
improved with DL?, beyond what the existing scheduling
strategy in the cluster can achieve (41.3 percent speedup in
the case of SRTF).

6.5 Deep Dive
6.5.1 Neural Network Architecture

Concurrent Job Number. We investigate how the maximal
number of concurrent jobs to schedule in a time slot, .J spec-
ified in the NN input, affects the performance of DL? when
applying the trained NN (after supervised learning and
reinforcement learning) on the validation dataset. The maxi-
mal number of uncompleted jobs in all time slots is around
40; when the concurrent job number is larger than J, we
schedule the jobs in batches of J jobs, according to their
arrival sequence. In Fig. 19a, we observe that the perfor-
mance suffers when .J is small, possibly because the NN is
not trained on a global view when jobs are fed into the NN
in batches in each time slot. Setting J to be large enough to
accommodate the maximal number of concurrent jobs gives
better results.

Number of Neurons. We fix the number of hidden layers in
DL%s NN to 1 and vary the number of neurons in the

FIFO SRTF

Fig. 18. Different existing scheduling strategies.

Q

£

224 /. SL
'-8 I SL+DRL
s’ 1 1
S gl ~

1A 7
o

Z

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on June 15,2021 at 05:27:56 UTC from IEEE Xplore. Restrictions apply.

PENG ETAL.: DL2: A DEEP LEARNING-DRIVEN SCHEDULER FOR DEEP LEARNING CLUSTERS

Q (4]
= =
75 [
S S6
@590 o
o o
£ g4
(o] o
O25 o
Q a?
o =3
$0.0 90
z 20 40 60 80 100 2: 32 64 96 128 256
(a) J (b) # of neurons
() (4]
£ £
= =75
575 5
< Zs
Q Q
g0 £
S Ss5
253 o’
° °
0.0 ©0.0
3: 1 2 3 4 5 3: MS CE AD
(c) # of hidden layers (d) SL loss
Q
£
'_
C
26
Q
g4
o
O
o?2
(=}
£071 2 3 4 s

(e) # of clusters

Fig. 19. Deep dive.

hidden layer. Fig. 19b shows that the best performance is
achieved when there are 128 neurons. The performance
degrades once the number exceeds 256. Since the size of the
input layer is 180, it shows that the number of neurons
should be a bit smaller than the input size to achieve good
performance.

Number of Hidden Layers. Next, we fix the number of neu-
rons to 128 and vary the number of hidden layers. As shown
in Fig. 19¢, the neural network of 2 hidden layers yields the
best performance and minimal variance. Note that we use a
fixed number of neurons for each layer and the learning
rate is fixed. Further tuning these hyper-parameters for
deeper networks may improve performance, though it gen-
erally takes longer training time.

Bundle Action. We remove the bundle action, i.e., allocat-
ing a worker/PS pair to a job, from our network, and rerun
the training. As shown in Table 2, the job completion time is
35.1 percent worse than the case with bundle actions (row 3
in Table 2). Introducing the bundle actions can reduce the
number of decisions (inferences) made in a time slot in gen-
eral, which enables more efficient action space exploration.

6.5.2 Training Design

SL Loss Function. We evaluate three common loss functions
for supervised learning, i.e., Mean Square, Cross Entropy (the
default) and Absolute Difference [49] and use them to retrain
our scheduler, respectively. We observe similar performance
with these loss functions, while adopting Cross Entropy

1957

TABLE 2
Effectiveness of Training Techniques

Without Avg. Job Completion Time Slowdown (%)
- 5.724 +0.844 0
Bundle action 7.734 £+ 0.339 35.1
Actor-critic 6.929 £ 0.477 21.1
Exploration 7.372 £0.548 28.8
Experience replay 7.988 £0.102 39.6

achieves the best performance (Fig. 19e). This is because Mean
Square or Absolute Difference emphasize incorrect or subop-
timal output, while only the correct or optimal output contrib-
utes to the loss when using Cross Entropy.

Reward Function. We evaluate another reward function
with DL?, which sets the reward of each action (that adds
some worker/PS to a job) as the normalized number of
epochs trained by that job in the time slot. We find that its
performance is 29.1 percent worse. Our default reward
function considers all jobs’ progress, enabling the policy
network to learn to schedule from a global perspective.

Actor-Critic. To see how the actor-critic algorithm affects
training, we remove the value network but only train the
policy network. As widely adopted in RL community, we
use the exponential moving average of rewards as a base-
line in place of the output of the value network in gradient
computation of the policy network. As shown in Table 2,
with the value network, the performance is 21.1 percent bet-
ter. This is because the average reward is not always an
effective baseline; in some cases, even the optimal action
leads to a lower reward than the average reward.

Job-Aware Exploration. We examine how exploration con-
tributes to the performance. We find that without explora-
tion, the performance is 28.8 percent worse (Table 2), as
online RL is stuck in a local optimal policy.

Experience Replay. To examine the effectiveness of our pri-
oritized experience replay, We disable experience replay
and see how performance changes. Table 2 shows that the
average job completion time is degraded by 39.6 percent,
indicating that experience replay is critical for training.

Federated Training. Federated training enables multiple
clusters to learn a global DL* model collaboratively. We study
how the number of clusters affects the policy training, by
implementing the A3C [37] algorithm, which trains a global
policy NN using multiple DL? schedulers with different train-
ing datasets, each for one cluster. Fig. 19e shows that the
global performance remains stable when we increase the
number of clusters. We have also observed that with more
clusters, the policy NN converges much faster due to the use
of more training datasets: if there are x clusters, the NN con-
verges almost x times faster. The preliminary result also sug-
gests the possibility of dividing a single massive cluster into
loosely coupled sub-clusters where each runs a DL? scheduler
for resource allocation, if scalability issue arises.

7 DiscuUsSION AND FUTURE DIRECTIONS

More Scheduling Features. Besides average job completion
time, DL? can implement other scheduling features by

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on June 15,2021 at 05:27:56 UTC from IEEE Xplore. Restrictions apply.

1958

adjusting the learning objective. For example, we can incor-
porate resource fairness by adding a quantified fairness
term in the reward function.

All-Reduce Architecture. All-reduce architecture [50],
where workers train model replicas and exchange updated
model parameters directly with each other, is supported in
Caffe2 [41], CNTK [51], etc. In this paper, we consider all-
reduce as a special PS architecture without parameter servers,
and hence we do not need to build another policy network for
all-reduce jobs. Instead, we use the same policy neural net-
work to schedule PS and all-reduce jobs, with the neural net-
work trained using both PS and all-reduce traces. Specifically,
when training the policy network using all-reduce traces, the
input states of parameter servers (e.g., the number of allocated
parameter servers «) are padded with zeros and the output
actions of parameter servers are masked.

Job Placement. While we use the default placement policy
in this work, the placement of workers and PSs can poten-
tially be decided by RL too. Using one NN to produce both
resource allocation and placement decisions is challenging,
mainly because of the significantly larger action space. RL
using a hierarchical NN model [52] might be useful in mak-
ing resource allocation and placement decisions in a hierar-
chical fashion.

Practical Deployment. In practical deployment, the follow-
ing two issues may need to be considered: (1) adversarial
attacks that fool a neural network with malicious input;
(2) neural network monitoring that detects exceptional
scheduling. These are interesting directions to explore, with
progress in security research and more in-depth under-
standing of neural networks.

AutoML for Better Performance. We adopted a simplified
approach for setting hyper-parameters and neural network
architecture in DL?. Tuning hyper-parameters or network
architecture to ensure the best performance is always a chal-
lenging and tedious task. Without careful hyper-parameter
or network architecture tuning, DL? already achieves
good performance; we seek automated machine learning
(AutoML) methods [53] [54] to tune the neural network to
further improve the performance of DL? in the future.

8 RELATED WORK

Deep Reinforcement Learning in System Research. Apply-
ing deep reinforcement learning to resource allocation or job
scheduling is not new. Many recent studies use DRL for
resource allocation, device placement, video streaming and
IoT. Mao et al. [14] and Chen et al. [28] use offline DRL for
job scheduling in cloud clusters, to minimize average job
slowdown. Their NNs select the jobs (single-task jobs) to
run with static resource allocation. The NNs are trained off-
line: multiple job arrival sequences are used as training
examples; each example is repeatedly trained for multiple
epochs. Bao et al. [26] use DRL for job placement to mini-
mize runtime interference. Adjustment of resources during
job execution is not in the scope of the above studies. Mao
et al. [15], [16] learn an NN to schedule acyclic dataflow
graphs in Spark, in terms of parallelism level and execution
order of dependent tasks in the jobs, using offline training.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 8, AUGUST 2021

For distributed ML jobs that we consider, PS and worker
tasks are started at the same time (hence no need of execu-
tion ordering among them) and the dependency is not acy-
clic among the tasks. Besides, Decima [16] slots resources
into homogeneous pieces to allocate to tasks. This cannot be
applied to DL jobs, as workers and PSs usually require dif-
ferent resource configurations. We adapt their offline RL
methods to our scenario and show that offline RL methods
are worse than DL? (Section 6).

Mirhoseini ef al. [52], [55] use DRL to optimize placement
of a computation graph, to minimize running time of an
individual TensorFlow job. Xu et al. [56] use DRL to select
routing paths between network nodes for traffic engineer-
ing. Mao et al. [57] dynamically decide video streaming
rates in an adaptive streaming system with DRL. All these
studies resort to offline RL training, using data generated
by analytical models or simulators. In contrast, we use off-
line supervised learning to prepare our NN and then online
RL with job-aware exploration to further improve the NN.

Cluster Scheduling. SLAQ [11] adopts online fitting to esti-
mate the training loss of convex algorithms, for scheduling
jobs training classical ML models. Dorm [58] uses a utiliza-
tion-fairness optimizer to schedule ML jobs. These work do
not focus on distributed DL jobs using the parameter server
architecture. Optimus [12] proposes a dynamic resource
scheduler based on online-fitted resource-performance mod-
els. Bao et al. [13] design an online scheduling algorithm for
DL jobs. These studies rely on detailed modeling of DL jobs
and simplified assumptions in their design, and can not adapt
to workload changes or framework changes automatically.
Gandiva [59] exploits intra-job predictability to time-slice
GPUs efficiently across multiple jobs, and dynamically
migrate jobs to better-fit GPUs. They do not consider resource
allocation adjustment and resource allocation with GPU shar-
ing will be an intriguing future direction to explore. Tire-
sias [60] schedules jobs with partial information to minimize
job completion time, but the scheduler does not resize job
resources during runtime. ByteScheduler [61] and P3 [62]
schedule network communication in DL clusters by exploit-
ing the communication patterns of distributed DL training.
These projects are complementary to DL?.

Instead of DRL, some classical studies adopt different feed-
back control methods (e.g., fuzzy control theory [63], genetic
algorithm [64]) in cluster resource scheduling. For example,
Chen et al. [65] divide user requirements and available resour-
ces into several fuzzy levels and process user fuzzy require-
ments to improve the QoS of cloud computing. Fuzzy logic
theory requires human-designed fuzzy rules and expert
knowledge on cluster workloads and resources. Mona et
al. [66] propose a genetic algorithm based scheduler for
computational grids. These methods are rarely applied in
recent cluster schedulers (e.g., Yarn [9], Mesos [21], Kuber-
netes [67]). Compared to DL?, they rely on heuristics or rules,
which cannot automatically embed workload-specific charac-
teristics or adapt to workload changes.

9 CONCLUSION

We present DL?, a DL-driven scheduler for DL clusters, which
expedites job completion globally with efficient resource utili-
zation. DL? starts from offline supervised learning, to ensure

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on June 15,2021 at 05:27:56 UTC from IEEE Xplore. Restrictions apply.

PENG ETAL.: DL2: A DEEP LEARNING-DRIVEN SCHEDULER FOR DEEP LEARNING CLUSTERS 1959

basic scheduling performance comparable to the existing
cluster scheduler, and then runs in the live DL cluster to make
online scheduling decisions, while improving its policy
through reinforcement learning using live feedback. Our
testbed experiments and large-scale trace-driven simulation
verify DL%'s low scaling overhead, generality in various sce-
narios and outperformance over hand-crafted heuristics.

ACKNOWLEDGMENTS

This work was supported by Alibaba Group through Ali-
baba Innovative Research (AIR) Program, and grants from
Hong Kong RGC under the contracts HKU 17204619 and
17208920.

REFERENCES

[1] D.Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation
by jointly learning to align and translate,” in Proc. Int. Conf. Learn.
Representations, 2015.

[2] A.Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifi-
cation with deep convolutional neural networks,” in Proc. Advan-
ces Neural Inf. Process. Syst., vol. 25,2012, pp. 1097-1105.

[3] A. Graves, A.-R. Mohamed, and G. Hinton, “Speech recognition
with deep recurrent neural networks,” in Proc. IEEE Int. Conf.
Acoust. Speech Signal Process., 2013, pp. 6645-6649.

[4] M. Abadi et al., “TensorFlow: A system for large-scale machine
learning,” in Proc. 12th USENIX Conf. Operating Syst. Des. Imple-
mentation, 2016, pp. 265-283.

[5] T. Chen et al., “MXNet: A flexible and efficient machine learning
library for heterogeneous distributed systems,” in Proc. Neural Inf.
Process. Syst. Workshop Mach. Learn. Syst., 2016.

[6] E.P.Xingetal.,, “Petuum: A new platform for distributed machine
learning on big data,” in Proc. 21th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2015, pp. 1335-1344.

[7]1 “PaddlePaddle,” 2019. [Online]. Available: http://www.
paddlepaddle.org/

[8] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune,
and J. Wilkes, “Large-scale cluster management at Google with
Borg,” in Proc. 10th Eur. Conf. Comput. Syst., 2015. pp. 1-17.

[91 V. K. Vavilapalli ef al., “Apache hadoop YARN: Yet another
resource negotiator,” in Proc. 4th Annu. Symp. Cloud Comput.,
2013, pp, 1-6.

[10] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker,
and I. Stoica, “Dominant resource fairness: Fair allocation of mul-
tiple resource types,” in Proc. 8th USENIX Conf. Netw. Syst. Des.
Implementation, 2011, pp. 323-336.

[11] H. Zhang, L. Stafman, A. Or, and M. J. Freedman, “SLAQ: Qual-
ity-driven scheduling for distributed machine learning,” in Proc.
Symp. Cloud Comput., 2017, pp. 390-404.

[12] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: An effi-
cient dynamic resource scheduler for deep learning clusters,” in
Proc. 13th EuroSys Conf., 2018, pp. 1-14.

[13] Y. Bao, Y. Peng, C. Wu, and Z. Li, “Online job scheduling in dis-
tributed machine learning clusters,” in Proc. IEEE Conf. Comput.
Commun., 2018, pp. 495-503.

[14] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource
management with deep reinforcement learning,” in Proc. 15th
ACM Workshop Hot Topics Netw., 2016, pp. 50-56.

[15] H. Mao, M. Schwarzkopf, S. Venkatakrishnan, and M. Alizadeh,
“Learning graph-based cluster scheduling algorithms,” in Proc.
ACM Special Interest Group Data Commun., 2018, pp. 270-288.

[16] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and
M. Alizadeh, “Learning scheduling algorithms for data processing
clusters,” in Proc. ACM Special Interest Group Data Commun., 2019,
pp- 270-288.

[17] “Kubernetes,” 2019. [Online]. Available: https://kubernetes.io

[18] “Source code,” 2021. [Online]. Available: https://github.com/
pengyanghua/DL2

[19] M. Liet al., “Scaling distributed machine learning with the param-
eter server,” in Proc. 11th USENIX Conf. Operating Syst. Des. Imple-
mentation, 2014, pp. 583-598.

[20] J.Jiang, L. Yu,]. Jiang, Y. Liu, and B. Cui, “Angel: A new large-scale
machine learning system,” Nat. Sci. Rev., vol. 5, pp. 216236, 2017.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]
[43]

[44]
[45]

[46]
[47]

[48]

[49]

B. Hindman et al., “Mesos: A platform for fine-grained resource
sharing in the data center,” in Proc. 8th USENIX Conf. Netw. Syst.
Des. Implementation, 2011, pp. 295-308.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2016, pp. 770-778.

K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” in Proc. Int. Conf. Learn.
Representations, 2015.

J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin,
“Convolutional sequence to sequence learning,” in Proc. 34th Int.
Conf. Mach. Learn., 2017, pp. 1243-1252.

L. Chen, J. Lingys, K. Chen, and F. Liu, “AuTO: Scaling deep rein-
forcement learning for datacenter-scale automatic traffic opti-
mization,” in Proc. Conf. ACM Special Interest Group Data Commun.,
2018 pp. 191-205.

Y. Bao, Y. Peng, and C. Wu, “Deep learning-based job placement
in distributed machine learning clusters,” in Proc. IEEE Conf. Com-
put. Commun., 2019, pp. 505-513.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. Cambridge, MA, USA: MIT Press, 1998.

W. Chen, Y. Xu, and X. Wu, “Deep reinforcement learning for
multi-resource multi-cluster job scheduling,” in Proc. IEEE Int.
Conf. Netw. Protocols, 2017. [Online]. Available: https:/ /iqua.ece.
toronto.edu/icnp17/program.html

P. Goyal et al., “Accurate, large minibatch SGD: Training imageNet
in 1 hour,” 2017, arXiv: 1706.02677 .

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language under-
standing,” in Proc. Conf. North Amer. Chap. Assoc. Comput. Linguis-
tics, Hum. Lang. Technol., vol. 1, 2019, pp. 4171-4186.

O. Vinyals et al., “StarCraft II: A new challenge for reinforcement
learning,” 2017, arXiv: 1708.04782.

V. Nair and G. E. Hinton, “Rectified linear units improve
restricted boltzmann machines,” in Proc. 27th Int. Conf. Int. Conf.
Mach. Learn., 2010, pp. 807-814.

I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learn-
ing. Cambridge, MA, USA: MIT Press, 2016.

R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour,
“Policy gradient methods for reinforcement learning with func-
tion approximation,” in Proc. 12th Int. Conf. Neural Inf. Process.
Syst., vol. 99, 2000, pp. 1057-1063.

S.Mannor, D. Peleg, and R. Rubinstein, “The cross entropy method for
classification,” in Proc. 22nd Int. Conf. Mach. Learn., 2005, pp. 561-568.
R. J. Williams, “Simple statistical gradient-following algorithms
for connectionist reinforcement learning,” Mach. Learn., vol. §,
pp- 229-256, 1992.

V. Mnih et al., “Asynchronous methods for deep reinforcement
learning,” in Proc. 33rd Int. Conf. Int. Conf. Mach. Learn., 2016,
pp. 1928-1937.

V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, pp. 529-533, 2015.

A. Harlap, A. Tumanov, A. Chung, G. R. Ganger, and P. B. Gibbons,
“Proteus: Agile ML elasticity through tiered reliability in dynamic
resource markets,” in Proc. 12th Eur. Conf. Comput. Syst., 2017,
pp- 589-604.

A. Qiao et al., “Litz: Elastic framework for high-performance dis-
tributed machine learning,” in Proc. USENIX Conf. Usenix Annu.
Tech. Conf., 2018, pp. 631-643.

“Caffe2,” 2019. [Online]. Available: https://caffe2.ai/

Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil, “A latent semantic
model with convolutional-pooling structure for information retrieval,”
in Proc. 23rd ACM Int. Conf. Inf. Knowl. Manage., 2014, pp. 101-110.
“HDFS,” 2014. [Online]. Available: https://wiki.apache.org/
hadoop/HDFS

“Docker,” 2019. [Online]. Available: https:/ /www.docker.com/
“MXNet official examples,” 2019. [Online]. Available: https://
github.com/apache/incubator-mxnet/tree/master /example
“ImageNet dataset,” 2019. [Online]. Available: http://www.
image-net.org

D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” in Proc. Int. Conf. Learn. Representations, 2015.

R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and
A. Akella, “Multi-resource packing for cluster schedulers,” in
Proc. ACM Conf. SIGCOMM, 2014, pp. 455-466.

“TFLearn objectives,” 2019. [Online]. Available: http://tflearn.
org/objectives/

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on June 15,2021 at 05:27:56 UTC from IEEE Xplore. Restrictions apply.

1960

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]
[64]

[65]

[66]

[67]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 8, AUGUST 2021

P. Watcharapichat, V. L. Morales, R. C. Fernandez, and P. Pietzuch,
“Ako: Decentralised deep learning with partial gradient exchange,”
in Proc. 7th ACM Symp. Cloud Comput., 2016, pp. 84-97.

“CNTK,” 2019. [Online]. Available: https://github.com/
Microsoft/CNTK

A. Mirhoseini, A. Goldie, H. Pham, B. Steiner, Q. V. Le, and
J. Dean, “A hierarchical model for device placement,” in Proc. Int.
Conf. Learn. Representations, 2018.

T. Swearingen, W. Drevo, B. Cyphers, A. Cuesta-Infante, A. Ross,
and K. Veeramachaneni, “ATM: A distributed, collaborative, scal-
able system for automated machine learning,” in Proc. IEEE Int.
Conf. Big Data, 2017, pp. 151-162.

M. Feurer, A. Klein, K. Eggensperger,]. Springenberg, M. Blum,
and F. Hutter, “Efficient and robust automated machine
learning,” in Proc. 28th Int. Conf. Neural Inf. Process. Syst., 2015, pp.
2755-s2763.

A. Mirhoseini et al., “Device placement optimization with
reinforcement learning,” in Proc. 34th Int. Conf. Mach. Learn., 2017,
pp- 2430-2439.

Z.Xu et al., “Experience-driven networking: A deep reinforcement
learning based approach,” in Proc. IEEE Conf. Comput. Commun.,
2018, pp. 1871-1879.

H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video
streaming with pensieve,” in Proc. Conf. ACM Special Interest
Group Data Commun., 2017, pp. 197-210.

P. Sun, Y. Wen, N. B. D. Ta, and S. Yan, “Towards distributed
machine learning in shared clusters: A dynamically-partitioned
approach,” in Proc. IEEE Int. Conf. Smart Comput., 2017, pp. 1-6.
W. Xiao et al., “Gandiva: Introspective cluster scheduling for deep
learning,” in Proc. 13th USENIX Conf. Operating Syst. Des. Imple-
mentation, 2018, pp. 595-610.

J. Gu et al., “Tiresias: A GPU cluster manager for distributed deep
learning,” in Proc. 16th USENIX Conf. Netw. Syst. Des. Implementa-
tion, 2019, pp. 485-500.

Y. Peng et al., “A generic communication scheduler for distributed
DNN training acceleration,” in Proc. 27th ACM Symp. Operating
Syst. Princ., 2019, pp. 16-29.

A. Jayarajan,]. Wei, G. Gibson, A. Fedorova, and G. Pekhimenko,
“Priority-based parameter propagation for distributed DNN
training,” in Proc. Mach. Learn. Syst., vol. 1, 2019, pp. 132-145.
“Fuzzy logic,” 2020. [Online]. Available: https://en.wikipedia.
org/wiki/Fuzzy logic

“Genetic algorithm,” 2020. [Online]. Available: https://en.
wikipedia.org/wiki/Genetic_algorithm

C. Zhijia, Z. Yuanchang, D. Yangiang, and S. Feng, “A dynamic
resource scheduling method based on fuzzy control theory in cloud
environment,” J. Control Sci. Eng., vol. 2015,2015, Art. no. 34.

M. Aggarwal, R. D. Kent, and A. Ngom, “Genetic algorithm based
scheduler for computational grids,” in Proc. 19th IEEE Int. Symp.
High Perform. Comput. Syst. Appl., 2005, pp. 209-215.

Google, “Kubernetes,” 2019. [Online]. Available: https://
kubernetes.io/

Yanghua Peng received the BEng degree from
the Department of Computer Science and Tech-
nology, Wuhan University, China, in 2015, and the
PhD degree from the Department of Computer
Science, The University of Hong Kong, in 2020.
His research interests include cloud computing,
cluster scheduling, and machine learning
systems.

Yixin Bao (Student Member, IEEE) received the
BEng degree from the Department of Automa-
tion, Xi'an Jiaotong University, in 2015, and the
PhD degree from the Department of Computer
Science, The University of Hong Kong, in 2020.
Her research interests include cloud computing,
machine learning systems, and online learning
algorithms.

Yangrui Chen received the BE degree from the
Department of Automation, Tsinghua University,
China, in 2017. He is working toward the PhD
degree with the Department of Computer Sci-
ence, University of Hong Kong. His research
interests include distributed machine learning
and graph neural networks.

Chuan Wu (Senior Member, IEEE) received the
PhD degree from the Department of Electrical
and Computer Engineering, University of Toronto,
Canada, in 2008. Since September 2008, she
has been with the Department of Computer Sci-
ence, University of Hong Kong, where she is cur-
rently a professor. Her current research interests
include the areas of cloud computing, distributed
machine learning systems, network function vir-
tualization, and intelligent elderly care
technologies.

Chen Meng received the BE degree in computer
science and technology from Jilin University, in
2011, and the PhD degree from the Supercom-
puting Center of Chinese Academy of Sciences,
in 2016. She joined NAOC as a postdoctoral
research fellow in 2019. Her research interests
include massive heterogeneous parallel comput-
ing in deep learning and science simulations.

Wei Lin is currently the senior director of PAl &
chief architect of big-data computation platform
at Alibaba. He has more than 15 years of experi-
ence specializing in backend/infrastructure, dis-
tributed system development, storage and a
large scale computation system include batch,
streaming and machine learning. He has pub-
lished many papers in top computer system con-
ferences, such as NSDI, SoCC, and OSDI.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on June 15,2021 at 05:27:56 UTC from IEEE Xplore. Restrictions apply.

