
A Generic Communication Scheduler for Distributed
DNN Training Acceleration

Yanghua Peng
∗†
, Yibo Zhu

†
, Yangrui Chen

∗
, Yixin Bao

∗
, Bairen Yi

†
, Chang Lan

†

Chuan Wu
∗
, Chuanxiong Guo

†

{yhpeng, yrchen, yxbao, cwu}@cs.hku.hk
∗
, {zhuyibo, yibairen.byron, lanchang, guochuanxiong}@bytedance.com

†

The University of Hong Kong
∗
, ByteDance Inc.

†

Abstract
We present ByteScheduler, a generic communication sched-

uler for distributed DNN training acceleration. ByteSched-

uler is based on our principled analysis that partitioning and

rearranging the tensor transmissions can result in optimal

results in theory and good performance in real-world even

with scheduling overhead. To make ByteScheduler work gen-

erally for various DNN training frameworks, we introduce

a unified abstraction and a Dependency Proxy mechanism

to enable communication scheduling without breaking the

original dependencies in framework engines. We further in-

troduce a Bayesian Optimization approach to auto-tune ten-

sor partition size and other parameters for different training

models under various networking conditions. ByteScheduler

now supports TensorFlow, PyTorch, and MXNet without

modifying their source code, and works well with both Pa-

rameter Server (PS) and all-reduce architectures for gradient

synchronization, using either TCP or RDMA. Our experi-

ments show that ByteScheduler accelerates training with all

experimented system configurations and DNN models, by

up to 196% (or 2.96× of original speed).

CCS Concepts • Computer systems organization →

Distributed architectures; Neural networks.

Keywords ML frameworks, communication scheduling

1 Introduction
Deep Neural Networks (DNNs) have been extensively used

for a wide range of applications, such as Computer Vision,

The work of Yanghua Peng, Yangrui Chen and Chuan Wu was supported

in part by a ByteDance Research Collaboration Project. Yanghua Peng is

also supported by SOSP 2019 Student Scholarship from the ACM Special

Interest Group in Operating Systems.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6873-5/19/10. . . $15.00

https://doi.org/10.1145/3341301.3359642

Natural Language Processing, etc. Training DNNs, however,

are time-consuming tasks, mainly due to large volumes of

data and growing DNN model sizes. The most common way

to scale out and accelerate DNN training is data parallelism

(§2). Unfortunately, its performance is often far from linear

speed-up, due mainly to the communication overhead. As

a large online service provider, in many of our internal and

publicly available training workloads, communication often

consumes a significant portion of total training time. This is

also echoed by recent literature [9, 18, 39].

Consequently, many different communication accelera-

tion approaches have been proposed and integrated into pop-

ular frameworks, including TensorFlow [6], PyTorch [28],

MXNet [12], with drastically different implementations. For

example, one can use RDMA to replace TCP, while the RDMA

implementations are quite different among frameworks. Or,

one can use ring-based all-reduce, either from one of several

different MPI implementations or NCCL [4] by NVIDIA, to

replace Parameter Servers (PS). Nevertheless, they share the

same goal – speeding up each individual message.
Recently, a new direction to accelerate distributed DNN

training, i.e., communication scheduling, has been explored [18,

21]. The idea is to change the transmission order of differ-

ent DNN layers, in order to better hide the communication

overhead and achieve training speed improvement with-
out affecting computation results. For example, Jayarajan

et al. [21] empirically show that a speed-up of 25% − 66%

can be achieved with a certain framework (MXNet with PS

and 1Gbps to 10Gbps TCP network). Independently, we got

a similar observation with our own initial implementation

and deployment. We will further explain the details in §2.2.

In this paper, we will show that priority-based commu-

nication scheduling, combined with tensor partitioning, is

not only the theoretically optimal strategy (§4) assuming no

system overhead, but also generic. It can accelerate most, if

not all, popular frameworks, both PS (synchronous or asyn-

chronous) and all-reduce gradient synchronization, different

network transports (RDMA or TCP), and any combinations

of them. This could have allowed the whole community/in-

dustry to use the expensive GPU cycles more efficiently!

Meanwhile, with a unified scheduling module across dif-

ferent frameworks, future developers and researchers can

experiment with their ideas much easier in a wide range of

settings and achieve a larger impact.

https://doi.org/10.1145/3341301.3359642

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu, C. Guo

Unfortunately, the existing designs [18, 21] are far from

this vision because of two main reasons.

First, as mentioned above, there are many different com-

binations of frameworks and network stacks. However, ex-

isting communication scheduler designs are just for one:

P3 [21] modified several layers in MXNet framework and its

PS implementation, and TicTac [18] modified TensorFlow

and its PS implementation totally differently from P3. To use

them in another framework with different communication

methods, e.g., all-reduce, one may have to re-do everything.

In contrast, we design a generic communication schedul-

ing layer that presents a framework-agnostic and commu-

nication method-agnostic abstraction, benefiting a broader

audience. Building such a generic scheduling layer, however,

is non-trivial. For example, different frameworks decide the

order of both computation and communication by them-

selves. We must have a generic way to schedule the order of

communication, while complying with the framework en-

gines, without heavy modifications in the respective engines

(otherwise it cannot be generic). Also, some frameworks

introduce global barriers that prevent communication sched-

uling (e.g., TensorFlow, PyTorch). Thus, in addition to the

unified scheduling abstraction, we propose two designs, De-
pendency Proxy and layer-wise out-of-engine dependencies, to
address the above challenges, respectively.

Second, existing work does not adapt well to a wide range

of system setups. Different communication methods have

their own implications on system parameters, such as tensor

partition sizes. For PS architecture, it is better to slice tensors

into smaller pieces, so that push and pull can better utilize

bi-directional network bandwidth. However, for all-reduce,

each partition incurs a synchronization cost among all work-

ers, so small partition sizes may lead to performance penalty.

Moreover, different DNNs, bandwidths, and even the number

of workers also affect the optimal system parameters.

To address these issues, we present the analysis of how

different system setups may impact the final performance

and system parameter choices, and propose an auto-tuning

algorithm based on Bayesian Optimization. It automatically

searches for the best system parameters, like tensor partition

sizes and maximum sender credits. The auto-tuning helps

the core scheduling algorithm adapt to different models,

communication architectures and hardware configurations.

We evaluate our design with MXNet, TensorFlow, and Py-

Torch, with PS or all-reduce gradient synchronization, using

RDMA or TCP transports with different physical bandwidths.

Popular CNN and RNN models are tested. The results are

promising – the performance improvement is up to 196%,

for all different combinations of frameworks/networks/mod-

els. In addition, with the auto-tuning for different run-time

environments, our design outperforms P3 [21] (in its only

scenario, MXNet with PS TCP) by 28% to 43%. All these re-

quire zero or little code change to the framework engines,

and no more than 5-line change to the user code.

We summarize our contributions as follows:

▷Wedesign a generic tensor scheduling framework, ByteSched-

uler, that separates tensor scheduling and partitioning from

various training frameworks, gradient update architectures,

and network protocols, without modifying their implementa-

tions. Our design works for TensorFlow and PyTorch which

introduce global barriers between successive iterations.

▷ Our analysis shows that ByteScheduler’s scheduling al-
gorithm is optimal when there is no system overhead. The

insight is that assigning higher priority to the layers near

the DNN input maximizes the overlap with forward compu-

tation of the next iteration. With given system overhead, the

performance gap from the optimum is bounded.

▷We identify key system parameters, i.e., partition size and
credit size, and design Bayesian Optimization-based auto-

tuning. It makes ByteScheduler adapt to various training

models and system configurations.

We have open-sourced our implementation, including the

core scheduler and plugins for different frameworks [2]. We

hope to continue evolving it with the community, since

many future directions can be investigated. Examples in-

clude variable tensor partition sizes, supporting dynamic

models, cross-job co-scheduling, etc. ByteScheduler decou-

ples communication scheduling from the computation frame-

works, so that it can be made framework-agnostic and op-

timized separately. We believe that ByteScheduler, being

open-sourced and widely generic, can significantly facilitate

future research and development in related directions.

2 Background and Motivation
2.1 DNN Training and Data Parallelism
In deep learning, a DNN model is trained by iterating a large

dataset many times (or “epochs”), to minimize a loss function.

Forward and backward propagation. Within each epoch,

the dataset is partitioned into mini-batches. In each iteration,

one mini-batch travels through the DNN model layer-by-

layer and generates a loss. This process is called forward
propagation (FP). After FP, the gradients are calculated from

the last layer to the first layer, and this process is called back-
ward propagation (BP). The gradients are then used to update

model parameters based on some optimization algorithm,

e.g., Stochastic Gradient Descent (SGD). Then, the training
moves on to the next mini-batch, starting from FP again.

Data parallelism. Due to the complexity of DNN mod-

els and large datasets, the training is often not able to be

finished within a short time, e.g., it takes 115 minutes to

finish training ResNet50 [19] on a DGX-1 machine with 8

V100 GPUs [3]. Data parallelism is a popular strategy for

scaling DNN training across many devices. It partitions the

dataset onto multiple compute devices (“workers”), where

each worker shares the same model parameters. Gradients

from all workers are then aggregated before applied to up-

date model parameters. Network communication is involved

A Generic Communication Scheduler for Distributed DNN Training Acceleration SOSP '19, October 27�30, 2019, Huntsville, ON, Canada

Figure 1. Layer-wise computation and communication in dis-
tributed DNN training,e.g., MXNet PS.

Figure 2. A contrived example showing performance gain with a
better scheduling strategy (than FIFO) and tensor partitioning.

in this process, usually using the parameter server architec-
ture [15, 24] or collective routines (e.g., all-reduce) [32].
Parameter Server. A parameter server (PS) is a logically
separate device that stores global parameters and provides a
key-value interface to workers. Typically, data parallelism
with PS has the following steps: (a) each worker computes
the gradients using its local data partition and sends them
to PS (push); (b) PS sums the gradients across workers and
updates its parameters (update); (c) Workers synchronize
parameters with PS (pull). A PS architecture enables better
fault tolerance and more �exible parameter synchronization.
All-reduce. All-reduce is a collective operation that reduces
the target arrays with a speci�ed binary operator (e.g., sum,
max) in all processes to a single array and broadcasts the
result to all processes. In DNN training, all-reduce computes
the sum of gradients across workers, and then each worker
updates its parameters accordingly locally.
2.2 Communication Scheduling

Computation-communication dependency DAG. In dis-
tributed DNN training, computation and communication of
tensors form a dependency DAG (Directed Acyclic Graph).
In the DAG, the forward and backward propagation is or can
be linearized as a chain of computation across layers (e.g., by
grouping or coalescing multiple operators or tensors [36]).
Let f i ,bi ,pushi andpulli be the FP, BP, push and pull of layer
i , respectively. Figure 1 shows the layer-wise dependencies
of MXNet with PS architecture between two iterations:f i
depends onf i � 1 andpulli , pulli depends onpushi , pushi de-
pends onbi , andbi depends onbi +1. To �nish DNN training
is to �nish such a DAG (spanning all iterations).
Scheduling the order of communication. By default, ML
framework engines execute communication operations in
a FIFO order, because the underlying communication stack,
either PS or all-reduce, TCP or RDMA, is inherently based
on FIFO queues. This is shown in Figure 1: sincepush0 and

push1 both require upload bandwidth,push1 gets executed
beforepush0; similarly,pull1 could be executed beforepull0.

However, this is sub-optimal. Becausef0 must be executed
beforef1, it is better to �nish pull0 as soon as possible. In
the case thatpull1 takes a long time and blockspull0, FIFO
strategy delayspull0, and hence delays the start time off0
and the whole iteration process.

Communication scheduling [18, 21] is a good solution to
this problem. In the example above, we can prioritizepushi
overpushj if i < j , and do the same for pull operations. Then
the forward propagation of the next iteration can start earlier,
and potentially speed up the training.
Tensor partitioning. In DNNs, each layer includes one or
multiple tensors (e.g., the �pushed� gradients and �pulled�
parameters). Communication scheduling is commonly car-
ried out for such tensors, while tensors in the same layer can
have the same scheduling priority (i.e., push tensors have
the same priority and the same for all pull tensors) and are
scheduled sequentially on the respective resource (e.g., up-
load and download bandwidth). The tensor sizes can vary
signi�cantly (e.g., the smallest tensor is 256B and the largest
tensor is over 400MB for VGG16 model [33]). A very large
tensor, once en-queued in the communication stack, would
block other tensors even if they have higher priorities. Thus,
a more e�cient scheduling strategy is to partition the ten-
sors before en-queuing, and allow higher-priority tensors to
jump ahead of the queue once they arrive.

Tensor partitioning also improves bandwidth utilization
of bi-directional network in PS architecture. Without parti-
tioning, the pull �ow of a large tensor can start only after
the push �ow of the whole tensor is done. Given that the
network today is usually duplex, this implies50%bandwidth
waste. Finally, partitioning tensors can mitigate load imbal-
ance in PS architecture, especially when one or a few tensors
are very large and dominate the total model size.
Potential bene�ts. To demonstrate the potential bene-
�ts of communication scheduling (with tensor partitioning),
we show a simple and contrived illustrative example (Fig-
ure 2). The DNN has three layers of di�erent sizes, with
FP and BP consuming di�erent time. Compared with the
default FIFO transmission scheduling, the better schedule
can lead to44:4%training speed-up. Jayarajanet al. [21]
have implemented similar scheduling strategies on MXNet
PS and shown an up-to-66%training speed improvement
with 10Gbps (or less) TCP networks, than FIFO.

2.3 The Opportunities and Challenges

We believe that communication scheduling is valuable to
general DNN training, not just MXNet with PS and TCP. We
explain the rationale and challenges below.
Opportunity 1: one uni�ed scheduler for all. Though
there are several di�erent ML frameworks and DNN models,
the most popular training jobs have similar DAG structures

SOSP '19, October 27�30, 2019, Huntsville, ON, Canada Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu, C. Guo

Figure 3. Distributed DNN training with an inter-iteration barrier.
TensorFlow with PS is shown. PyTorch also has this barrier.

(a) Di�erent partition sizes (b) Di�erent credit sizes

Figure 4. Training VGG16 using MXNet (PS, TCP) with FIFO
communication scheduling at di�erent network bandwidth levels.

as shown in Figure 1. Most DNN models have layered struc-
tures, and computation takes place one layer after another.
Even though the training frameworks have di�erent features,
they essentially run the same DAG for the same model, just
with di�erent ways (e.g., APIs) of implementing the DAG.

In addition, di�erent communication methods also �t in
this DAG model � the network transport (TCP or RDMA)
does not change the DAG, and an all-reduce architecture
simply replaces a push and a pull in the DAG by the all-
reduce operation. Intuitively, the same scheduling algorithm
should also apply.

We envision a generic scheduler that can accelerate the
execution of DAG by changing the order of communication
operations, no matter which frameworks, which commu-
nication patterns and which network transports. Also, for
the best generality and easier adoption, we seek minimal-
to-none modi�cation to existing framework engines and
communication libraries.
Opportunity 2: one uni�ed analytical foundation for
scheduling algorithms. Once we realize the uni�ed sched-
uler, we essentially decouple the algorithm design from the
framework-related implementation details. This gives us the
opportunity to formulate the scheduling problem across all
system setups. In contrast, previous work was deeply cou-
pled with speci�c framework implementations, and only
focused on empirical results. In this paper, we show that our
scheduling algorithm is not only empirically e�ective, but
also theoretically guaranteed even with system overhead.

However, the opportunities come with challenges.
Challenge 1: be generic to di�erent frameworks. Al-
though the DAGs are similar in the end, how the frameworks
build such DAGs and execute them is very di�erent. Engines
that supportdeclarativemode decide the execution order
based on DAG dependencies, whileimperativeengines run

in a FIFO manner. A generic scheduler must be able to work
with both types of engines, manipulating the transmission
order without breaking the properties of the original engines.

In addition, existing engines are not designed with com-
munication scheduling in mind. Therefore, some engines,
like TensorFlow and PyTorch, introduce a global barrier be-
tween iterations, as Figure 3 shows. This would make any
scheduling of push/pull (or all-reduce) ine�ective.
Challenge 2: adapt to di�erent run-time environments.
In the real-world, scheduling and tensor partitioning have
networking-related overhead. For example, there is certain
overhead for sending a tensor regardless of the size of the
tensor. Consequently, tensor partitioning has a performance
penalty, especially if the partition size is too small. In Fig-
ure 4(a), we show the training speed with di�erent partition
sizes, with FIFO transmission scheduling. We see that the
partition size a�ects training speed, especially in networks
with larger bandwidth. P3 [21] uses a default partition size
of 160KB (the leftmost points in Figure 4(a)). Such a partition
size is far from optimal in a 10Gbps network when FIFO
scheduling is used, though P3's scheduling out-weighs the
non-optimality of partition size and delivers positive gains
in the end. The same goes forcredit size(Figure 4(b)), which
is de�ned by us (Ÿ4.2) for �lling the sending bu�er in the
network stack. P3 essentially uses a credit size equal to the
partition size, which is again not the best.

The question is, what are the sweet spots for these pa-
rameters? They are likely to vary with many factors. For
example, in Figure 4, we show that the impact of overhead
is very di�erent in 1Gbps and 10Gbps networks. In practice,
the physical network bandwidth can range from 1Gbps to
200Gbps, and users use either PS or all-reduce as gradient
synchronization method, and TCP or RDMA as the trans-
port. Furthermore, we �nd that various DNN models have
di�erent optimal partition/credit size values because they
have di�erent model structures and sizes. We will further
show its analytical complexity in Ÿ4.1.

A generic scheduling framework must be able to adapt to
all these di�erent run-time environments.

3 Design
3.1 Architecture

To make ByteScheduler generic, the key question is �
Which layer should ByteScheduler be implemented in?
From the closest to user to the lowest level, ML frameworks
and communication stacks include: 1) user code that declares
DNN models, 2) framework frontend with high-level API
(e.g., Python frontend), 3) framework engine (which decides
how to execute the DAG), 4) message-level communication
library, and 5) TCP or RDMA stack. To be generic, we can
not modify user code and framework engines heavily. Im-
plementing the scheduler in message-level communication
library is a good choice if in a clean slate. Unfortunately, in
reality, the communication libraries are quite diverse (e.g.,

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 DNN Training and Data Parallelism
	2.2 Communication Scheduling
	2.3 The Opportunities and Challenges

	3 Design
	3.1 Architecture
	3.2 Unified Abstraction for Communication Tasks
	3.3 Interaction with Framework Engines
	3.4 Crossing the Global Barrier

	4 Scheduling in the Wild
	4.1 The Analysis of ByteScheduler Algorithm
	4.2 Credit-based Preemption
	4.3 Auto-Tuning Partition Size and Credits

	5 Implementation Details
	6 Evaluation
	6.1 Methodology
	6.2 Speedup in Different Setups
	6.3 Auto-tuning's Contribution and Overhead

	7 Discussion and Future Directions
	8 Related work
	9 Conclusion
	References

