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a b s t r a c t

Graph neural network (GNN) is a powerful model for learning from graph data. However, existing GNNs
may have limited expressive power, especially in terms of capturing adequate structural and positional
information of input graphs. Structure properties and node position information are unique to graph-
structured data, but few GNNs are capable of capturing them. This paper proposes Structure- and
Position-aware Graph Neural Networks (SP-GNN), a new class of GNNs offering generic and expressive
power of graph data. SP-GNN enhances the expressive power of GNN architectures by incorporating
a near-isometric proximity-aware position encoder and a scalable structure encoder. Further, given
a GNN learning task, SP-GNN can be used to analyze positional and structural awareness of GNN
tasks using the corresponding embeddings computed by the encoders. The awareness scores can guide
fusion strategies of the extracted positional and structural information with raw features for better
performance of GNNs on downstream tasks. We conduct extensive experiments using SP-GNN on
various graph datasets and observe significant improvement in classification over existing GNN models.

© 2023 Elsevier Ltd. All rights reserved.
e

1. Introduction

Graphs are everywhere in modern Internet applications,
.g., social networks (Hamilton, Ying, & Leskovec, 2017; Kipf
Welling, 2017; Kwak, Lee, Park, & Moon, 2010), knowledge

raphs (Hamaguchi, Oiwa, Shimbo, & Matsumoto, 2017), and
itation networks (Sen et al., 2008; Wang et al., 2020). Graphs are
atural representations to model objects and their relationships.
ecent years have seen a surge of interest in applying deep
earning methods to graph-structured data. A number of Graph
eural Networks (GNNs) (Hamilton et al., 2017; Kipf & Welling,
017; Velickovic et al., 2018; Xu, Hu, Leskovec, & Jegelka, 2019)
e.g., GCN Kipf & Welling, 2017, GraphSAGE Hamilton et al., 2017
nd GAT Velickovic et al., 2018) have been proposed, which
utperform traditional graph analysis methods in various web
ata analytics domains, such as recommendation (Ying et al.,
018), web-link prediction (Zhang & Chen, 2018), and product
lassification (He & McAuley, 2016; Hu et al., 2020).
Although GNN is considered a powerful model for encoding re-

ational data, it has been proved that existing GNNs usually have
imited expressive power in terms of graph topology discrimina-
ion, upper-bounded by the 1-Weisfeiler–Lehman (1-WL) graph

∗ Corresponding author.
E-mail address: yrchen@cs.hku.hk (Y. Chen).
ttps://doi.org/10.1016/j.neunet.2023.01.051
893-6080/© 2023 Elsevier Ltd. All rights reserved.
isomorphism test (Xu et al., 2019). Concrete limitations of exist-
ing GNNs are two-fold: (1) the same computational ego-network1
of two nodes may correspond to different local neighborhood
structures, thus indistinguishable by GNNs; (2) two nodes that
reside in different parts of a graph but with the same local
neighborhood structures cannot be differentiated by GNNs. Fig. 2
gives an example. The computational graphs of existing GNNs
on d-regular graphs in Fig. 2(a) are identical, thereby generating
the same node embeddings. Similarly, GNNs cannot differentiate
computational graphs of the task that is strongly correlated to the
position either in Fig. 2(b). These limitations imply that existing
GNNs fall short in capturing adequate structural and positional
information in input graphs.

A few recent studies were devoted to developing heuristics
to acquire extra structure and position information, and to in-
crease the expressiveness and representation power of GNNs.
ID-GNN (You et al., 2021) is designed to extend the structural
information captured by existing GNN architectures by induc-
tively encoding node identities2 during heterogeneous message
passing. P-GNN (You, Ying, & Leskovec, 2019) overcomes the
position-expressiveness limitation of GNNs using anchor nodes

1 A computational graph specifies the procedure to produce a node’s
mbedding (You, Gomes-Selman, Ying, & Leskovec, 2021).
2 Identity denotes the number of the l-cycle starting from the root node.
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ampled randomly from the graph for encoding node position in-
ormation. These models are task-specific, i.e., usually of benefits
or structure- or position-aware tasks, and having poor scalabil-
ty due to high complexity in preprocessing. The calculation of
hortest path distance in P-GNN or long-hop cycles of identities
n ID-GNN involves considerable time and memory consumption,
hus inapplicable for analyzing large graphs with millions of
odes.
In addition, graph tasks differ in their needs for structural

nd positional information, making existing designs not generic
nough to different graph prediction tasks. For example, graph
lassification tasks often require graph structure information,
hile positional information usually plays a more important role

n node classification tasks. It is desirable to involve structural
nd positional information jointly but with different weights
o enhance the expressive power of GNN architectures, accord-
ng to their corresponding awareness for different tasks. This
s especially important for tasks that are not pure structure-
r position-aware, where the weighted awareness can benefit
ownstream tasks in both aspects.
This paper proposes Structure- and Position-aware Graph

Neural Network (SP-GNN), a new class of GNNs offering generic,
expressive GNN solutions to various graph-learning tasks. SP-
GNN empowers GNN architectures to capture adequate structural
and positional information, extending their expressive power
beyond the 1-WL test. SP-GNN analyzes the position and struc-
ture awareness of different GNN tasks, according to which graph
structure properties and node position information can be prop-
erly combined for augmenting downstream training, significantly
improving the performance. We make the following contributions
with SP-GNN.
▷ SP-GNN provides universal, efficient structure encoder and

position encoder to augment a GNN architecture. The position en-
coder generates position embeddings that minimize the
distortion over graph distance space. It avoids the expensive com-
putation of shortest-path-distance (SPD) used by most position-
related solutions, while effectively capturing positional relations
among nodes in the graph. Meanwhile, the structure encoder
computes structure embeddings of a given node by considering
both its ego-network structure and its identity.
▷ Given a GNN task, SP-GNN calculates positional and struc-

tural awareness scores using its positional and structural embed-
dings. These awareness scores are useful to determine whether
the task is position or structure sensitive. The score can also guide
the fusion strategies of the extracted positional and structural in-
formation with raw features, as input to the GNN. Our theoretical
results show that SP-GNN has greater expressive power beyond
the 1-WL test, and is superior or comparable to state-of-the-art
GNNs with augmented structure and position embeddings.
▷ We compare SP-GNN against GNNs with extensive exper-

iments on various real-world graph datasets. We demonstrate
that SP-GNN outperforms existing GNNs by 0.7%–5.4% and 2.0%–
3.5% in node classification and graph classification tasks, re-
spectively. Additionally, as compared to other expressive graph
networks specifically designed for structure- or position-aware
tasks, SP-GNN shows improved or comparable performance, fur-
ther revealing the efficacy and generality of SP-GNN.

2. Background

2.1. Related work

Structure-aware node embeddings. Embedding network struc-
tures has been substantially studied over the past decades from
different perspectives, which is instrumental for various ma-
chine learning tasks over graph-structured data, such as node
506
classification and link prediction. Struc2Vec (Ribeiro, Saverese,
& Figueiredo, 2017) is a representative embedding method that
represents the structural information with multi-hop degree se-
quences, which builds structural similarity graphs using dynamic
time warping as the similarity function, and then performs Skip-
gram model with random walks over the similarity graphs to
obtain the node embeddings. Such a method incurs extensive
time and memory complexity, which limits its application to
small graphs only. More efficient methods to capture the struc-
ture information have been proposed. GNNs (Hamilton et al.,
2017; Kipf & Welling, 2017; Velickovic et al., 2018; Xu et al.,
2019) with variants of aggregation and message passing functions
have achieved significant success in encoding local neighborhood
structures of nodes in a given graph. ID-GNN (You et al., 2021)
extends the expressive power of GNNs beyond the 1-WL test
by encoding the identity information during message passing.
However, ID-GNN and other GNNs cannot model the relative
position information of nodes in the graph, and thus may perform
poorly in position-aware graph prediction tasks.

Position-aware node embeddings. The relative graph
distance between vertices in a graph has also been investigated
for improving GNN expressiveness. Position information plays
a crucial role in distinguishing topologically identical substruc-
tures in a graph. Graph kernel methods (Vishwanathan, Schrau-
dolph, Kondor, & Borgwardt, 2010; Yanardag & Vishwanathan,
2015), including random walk kernels (Sugiyama & Borgwardt,
2015) and Weisfeiler–Lehman kernels (Shervashidze, Schweitzer,
Van Leeuwen, Mehlhorn, & Borgwardt, 2011), are used to en-
code positional information for graph representation learning.
Traditional embedding learning methods also generate position-
aware node embeddings, forcing nodes within short graph dis-
tances to be close in the embedding space. For example, Deep-
Walk (Perozzi, Al-Rfou, & Skiena, 2014) and Node2Vec (Grover
& Leskovec, 2016) perform random walks over a graph and
use sampled sequences to learn embeddings with Skip-gram
objectives, while LINE (Tang et al., 2015) preserves first and
second orders of network proximity within the graph and the
embedding space. However, these embedding learning methods
are transductive and involve a large number of trainable param-
eters (i.e., node embeddings). Recent studies explore strategies
hat incorporate positional information with the GNN model.
-GNN (You et al., 2019) computes the shortest-path-distance
etween each node and the selected anchor nodes as positional
mbeddings, combined with the GNN representations before
eeding them into the classification layer. GraphReach (Nishad,
garwal, Bhattacharya, & Ranu, 2021) extends P-GNN with dif-
erent anchor selection methods, i.e., selecting anchor nodes by
aximizing reachability with a greedy hill-climbing algorithm.

t also suffers from high computation complexity, limiting its
sage on large graphs. Benchmark-GNN (Dwivedi, Joshi, Laurent,
engio, & Bresson, 2020) calculates Laplacian eigenvectors of the
raph for features augmentation, and GraphBert (Zhang, Zhang,
ia, & Sun, 2020) uses multiple positional embeddings (e.g., WL
ole embedding and hop-based distance embedding) as the input
f the graph transformer model. These methods using position-
ware node embedding are not applicable for structure-aware
raph prediction tasks, and also suffer from high preprocessing
omplexity (e.g., calculating the shortest-path-distance).

nifying positional and structural embeddings. Srinivasan and
ibeiro (2020) propose a unified theoretical framework for po-
itional embedding and structural representations according to
he invariant theory. However, it is unclear how this theoretical
ramework maps onto real-world graph mining methods (Rossi
t al., 2020; Zhu, Lu, Heimann, & Koutra, 2021). PhUSION (Zhu
t al., 2021) is a proximity-based unified framework for comput-
ng structural and positional node embeddings, but it does not
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nalyze the awareness difference for GNN tasks when combining
wo types of node embeddings. Furthermore, the above methods
an only be applied to small graph datasets due to high time and
emory complexity.

.2. Preliminaries

NN definition. Graph neural networks are neural networks that
earn meaningful node embeddings over graphs. We focus on
opular GNN tasks (e.g., node classification and graph classifi-
ation tasks) which train a GNN over node features in an input
raph, as described by G = (V , E, F ): V and E denote the node set
nd edge set of the graph, respectively, and F = {fv, v ∈ V } is the
et of feature vectors of the nodes. GNN embedding computing
ollectively aggregates information following the graph structure
nd performs various feature transformations. Following the defi-
ition of GNN in Xu et al. (2019), the computation in the kth layer

of a GNN can be expressed as:

m(k)
u = MSG(k)(hk

u),

h(k)
v = AGG(k)({m(k)

u , u ∈ N(v)},h(k−1)
v ), (1)

h(0)
v = fv,

where N(v) is the neighbor set of vertex v, m(k)
v denotes message

mbedding and h(k)
v represents the node embedding. GNNs vary

n the message function MSG(·) and aggregation functions AGG(·).
or instance, the message passing function of GraphSAGE (Hamil-
on et al., 2017) can be represented as:
(k)
u = RELU(W (k)hk−1

u ),
(k)
v = U(k)CONCAT(MAX({m(k)

u , u ∈ N(v)}),h(k−1)
v ), (2)

(0)
v = fv

here W k and U(k) are trainable parameters. The output node
epresentations of the GNN are then fed into a classification
etwork for downstream prediction tasks.

tructure- and position-awareness. P-GNN (You et al., 2019)
ives definitions of structure-aware and position-aware node em-
eddings:

efinition 2.1. A node embedding zi = fp(vi),∀vi ∈ V , is
position-aware if there exists a function gp(·, ·) such that
dsp(vi, vj) = gp(zi, zj), where dsp(·, ·) is the shortest path distance
in G.

Definition 2.2. A node embedding zi = fsq (vi),∀vi ∈ V , is
structure-aware if it is a function involving up to q-hop network
neighborhood of node vi. Specifically, zi = gs(N1(vi), . . . ,Nq(vi)),
where Nk(vi) is the set of nodes k hops away from node vi, and gs
can be any function.

Following the definitions of structure-aware and position-
aware node embeddings, we refer to a graph prediction task as
being position- or structure-aware, if the label distance of two
nodes in the graph is strongly correlated to the distance of their
position- or structure-aware node embeddings. There are multi-
ple optional metrics for quantifying the awareness, which can be
roughly categorized into two types: (1) non-parametric metrics
(e.g., Kendall’s Tau Kendall, 1948, Pearson correlation Benesty,
Chen, Huang, & Cohen, 2009 and KNN Fix & Hodges, 1989), which
directly measure the statistical correlation between embeddings
and labels; and (2) parametric metrics (e.g., MLP Gardner &
Dorling, 1998), which construct a neural network with embed-
dings as input to predict the pairwise label equivalence. Though
non-parametric metrics do not make strong assumptions on the
data distribution, they are slow and require large quantities of
507
Algorithm 1 The SP-GNN training framework

Input: Graph G = (V , E, F ); trainable functions MSG(·) and AGG
for message passing and aggregation; Sampler(·) extracts the
L-hop computational graphs, Layer L; PosEncoder(·) and
tructEncoder(·) are functions that compute position and
tructure embeddings, respectively; AnalyzeAware(·) generates
the awareness scores
Output: Node embeddings hv for all v ∈ V .

1: fpos(v)← PosEncoder(v)
2: fstruct (v)← StructEncoder(v)
3: wpos ← AnalyzeAware(fpos(v))
4: wstruct ← AnalyzeAware(fstruct (v))
5: wraw ← AnalyzeAware(fv)
6: h0

v ← CONCAT(wraw · fv, wpos · fpos(v), wstruct · fstruct (v)),∀v ∈ V

7: for l← 1, . . . , L do
8: for v ∈ V do
9: m(k)

u = RELU(W (k)hk−1
u )

0: h(k)
v = U(k)CONCAT(MAX({m(k)

u , u ∈ N(v)}),h(k−1)
v )

1: hv ← hk
v

data to estimate the unknown function without over-fitting (Kan-
odia, Wolfgang, Stefansson, Ning, & Mahadevan, 2019). Thus, we
adopt parametric metrics (i.e., neural networks) to analyze the
wareness of given graph tasks (see Section 4.2).
GNN tasks differ in their structure and position awareness.

hough substantial efforts have been devoted to enhancing the
xpressive power of GNNs, there is no generic framework that
nalyzes both structure and position awareness of tasks, to our
est knowledge. Most existing studies apply either structure-
r position-aware methods for all tasks. Our goal is to ana-
yze awareness of the GNN tasks on local network structures
nd global positions of nodes, in order to further boost the ex-
ressive power of GNNs as well as the downstream prediction
erformance.

. SP-GNN Design

.1. Overview of sp-gnn

SP-GNN incorporates position and structure awareness into
xisting GNNs, to enhance their expressive power. Fig. 1 illus-
rates the overall architecture of SP-GNN. There are two stages in
P-GNN: (1) awareness scoring stage, where SP-GNN computes
he structure and position embeddings using respective encoders
nd calculates the awareness score for each type of features;
2) feature fusion stage, where SP-GNN fuses the position and
structure embeddings with raw features, weighted with calcu-
lated awareness scores. Algorithm 1 describes the workflow.

Given a graph prediction task, SP-GNN first pre-processes the
graph to extract the structural and positional information. The
position encoder learns the positional node embeddings with
the position loss, minimizing the distance between embedding
similarity and graph distance similarity. The structure encoder
computes the structural node embeddings by extracting the multi-
hop neighborhood sequence and identity information. SP-GNN
then uses a neural network (e.g., MLP) to analyze the structure
awareness and position awareness by predicting the pairwise
label equivalence. Such awareness reflects the correlation be-
tween position or structure embeddings and labels, which are
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Fig. 1. An overview of SP-GNN.
o

t

d

ask-specific and model-agnostic. Then we exploit early fusion for
ll types of features to improve the performance of downstream
NN learning. Specifically, we employ CONCAT operation to fuse
ositional and structural embeddings, together with raw features,
f any, using pre-calculated awareness scores as the regularization
eights.
The computation of two encoders is independent, which cap-

ures the positional and structural information, respectively. Dur-
ng training, the output embeddings are connected with the
wareness scores, indicating their respective importance to the
ownstream tasks. The universal framework of SP-GNN benefits
ifferent types of tasks, while existing work can usually only
nhance either structure-aware or position-aware GNN tasks.

.2. Position encoders

The positional information, which reflects the distance be-
ween nodes in the graph, can benefit numerous GNN applica-
ions (Dwivedi et al., 2020; Nishad et al., 2021; You et al., 2019).
he shortest-path-distance (SPD) matrix of the graph is widely
sed to encode distance information of nodes (e.g., P-GNN You
t al., 2019). Although this encoder may work well with small
raphs, its time and memory complexity makes it unsuitable
or large graphs. Another natural idea is to embed the graph
pace into a lower-dimensional Euclidean space isometrically that
aintains the distance of two nodes. Unfortunately, it has been
hown that isometric embeddings often do not exist (Charikar,
018; Walker, Yan, Xiao, Wang, & Acharya, 2020). Our goal is to
enerate feasible embeddings with low complexity and distortion
o that they can fully maintain the positional information. The
istortion here is defined as follows Charikar (2018):

efinition 3.1. A mapping f : X → Y from a metric space (X, dX )
to a metric space (Y , dY ) is an embedding with distortion α if
there exists a constant r ≥ 0 such that for every x1, x2 ∈ X ,

r · dX (x1, x2) ≤ dY (f (x1), f (x2)) ≤ αr · dX (x1, x2)

The Bourgain Theorem (Bourgain, 1985) provides a theoretical
guarantee that there exist low-dimension embeddings with low
distortion.

Theorem 3.1 (Bourgain Theorem). Given any finite metric space
(V , d) with |V | = n, there exists an embedding of (V , d) into Rk
508
under any lp metric,3 where k = O(log2n), and the distortion of the
embedding is O(logn).

Inspired by IGNN (Walker et al., 2020), we design a posi-
tion encoder that learns the position embedding respecting the
distances in the original graph. The position loss function is as
follows:

Lpos =
∑
vi ̸=vj

[(1− dcos(fpos(vi), fpos(vj)))/2− (1− 1/dspd(vi, vj))]2

Here dcos(·, ·) measures the cosine similarity of two position em-
beddings, fpos(vi) and fpos(vj); dspd(·, ·) denotes the shortest-path-
distance of two nodes. The position loss function describes the
gap between the similarity of two nodes in the embedding space
and that in the graph space. When the loss value approaches
zero during training, the position embedding is a near-isometric
embedding of the original graph space. IGNN incorporates the po-
sition loss function with downstream task loss function, instead
of building a position encoder to compute position embedding of
given graphs. SP-GNN is task-agnostic, hence more generic than
IGNN.

The complexity to sample all pairs of nodes and calculate
their shortest-path-distance for the loss function is high. We
apply a sampling strategy for faster embedding learning. For each
node, instead of forming training pairs with all other nodes, we
sample its k-hop neighbors to avoid directly computing the graph
distance. Further, we apply random sampling for nodes residing
in very different parts of the graph, where the distance is set to
be a large number (e.g., the diameter of the graph). The choice of
sampling depth k reflects the trade-off between the complexity
and the quality of the learned position embedding. We show that
the distortion is bounded with the k-hop sampling method.

Proposition 1. Suppose the positional embedding with 1-hop sam-
pling satisfies L1pos ≤ r, where 0 ≤ r ≤ 1 is a constant, i.e.,
(dcos(fpos(vi), fpos(vj)) − 1)2 ≤ r,∀(vi, vj) ∈ E. Then the distortion
f the embedding over graph space is 1+

√
r

1−
√
r .

Proof. Suppose for any two nodes vi and vp with (k − 1)-hop
shortest path distance in the graph space, i.e., dspd(vi, vp) = k−1,
he corresponding positional embeddings satisfy

cos(fpos(vi), fpos(vp)) ≤ (k− 1)(1+
√
r) (3)

3 l metric on Rk is defined as d (x− y) = (
∑k

|x − y |p)1/p , x, y ∈ Rk .
p p i=1 i i
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hen, for any two vertices vi and vj with k-hop shortest path
istance in the graph space, there must exist a k-length path
vi, . . . , vp, vj} and a node vp whose shortest path distance to vi
and vj is (k−1) and 1, respectively. According to the triangle rule,
the cosine distance between fpos(vi) and fpos(vj) can be bounded by

dcos(fpos(vi), fpos(vj)) ≤dcos(fpos(vi), fpos(vp))

+dcos(fpos(vp), fpos(vj)) (4)

Plugging assumption L1pos ≤ r and Eq. (3) into Eq. (4), we have

dcos(fpos(vi), fpos(vj)) ≤(k− 1)(1+
√
r)+ (1+

√
r)

=k(1+
√
r) (5)

y induction, we have dcos(fpos(vi), fpos(vj)) ≤ k(1 +
√
r) for any

ode pair vi and vj with k-hop shortest path length. Similarly,
e can prove that dcos(fpos(vi), fpos(vj)) ≥ k(1 −

√
r). Thus, the

istortion of fpos(·) is
1+
√
r

1−
√
r . □

The above proposition builds the relationship between the
training loss of the position encoder and the corresponding dis-
tortion. It indicates that when the training loss of position en-
coder approaches 0, the distortion of the position encoder is close
to 1. In addition, the proposition helps us to set the stopping
criteria of the embedding learning. And with more sampling hops,
the position encoder can capture more positional information,
and may provide more performance gains (see Section 4.3).

3.3. Structure encoders

Structural information is important in many GNN applications.
For example, collaborative filtering signals (Wang, He, Wang,
Feng, & Chua, 2019) in long-hop neighbors have been demon-
strated to be effective for the recommendation (Wu, Sun, Zhang,
& Cui, 2020). Our goal of designing the structure encoder is to
capture the missing structural information in existing GNNs.
he structure embeddings can be used to differentiate isomor-
hic graphs that are indistinguishable by traditional GNNs. In
tructure-aware tasks, labels are strongly correlated to local
eighborhood structures (Yanardag & Vishwanathan, 2015). Com-
ared to traditional GNNs, our structure encoder seeks to capture
onger-hop distance information. Training longer-hop subgraphs
ay lead to the over-smoothing problem with traditional GNNs

Li, Han, & Wu, 2018; Yan, Hashemi, Swersky, Yang, & Koutra,
021), while encoding them as structure embeddings does not
ave such a problem.
The structure encoder of SP-GNN focuses on two types of

tructural information that are missing in traditional GNNs:
ulti-hop neighbor sequence and identities. The former em-
eds the computational ego-network of each node into a fixed
ector, while the latter counts the cycle number starting from
he root node of the computational ego-network, representing the
ode clustering property. The two types of structure information
re complementary and important to improve the discrimination
apability of nodes with similar structures. The computation of
P-GNN’s structure encoder is simple and efficient as follows:

neigh = [A · 1, A · (A · 1), . . .]T ,

identity = [diag(A), diag(A2), . . .],

struct = CONCAT (fneigh, fidentity),
(6)

here A ∈ Rn×n denotes the adjacency matrix of the graph and
iag(·) is a vector containing the diagonal elements of the matrix.
P-GNN’s structure encoder scales well with the depth of the
tructure, and can easily encode tens of hops without neighbor
xplosion issues that other methods may encounter. Though the
omputation of identities may be time-consuming in large graphs,
e calculate the identity information in the sampled subgraphs

uring training to minimize the overhead.
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3.4. Awareness-based embedding fusion

Awareness scoring. With positional and structural embeddings,
SP-GNN uses an MLP model to analyze the structure awareness
and position awareness by predicting the pairwise label equiv-
alence. We randomly select a certain number of positive and
negative samples for each node to construct pairwise dataset, of
which the 80% and 20% splits are used for training and testing. We
then train MLP model with a cross-entropy loss function to pre-
dict the pairwise label equivalence using positional or structural
embeddings. The testing results of the MLP model represents the
corresponding awareness scores.

Having elaborated position and structure encoders and their
awareness scoring method, we continue to propose two fusion
strategies for combining both embeddings for GNN training: early
fusion and late fusion.

Early fusion. The early fusion fuses information in feature space.
It is natural to use classic feature fusion methods such as CONCAT
or SUM to fuse position embedding and structure embedding
with the raw feature vector (Barnum, Talukder, & Yue, 2020;
Dwivedi et al., 2020). The message passing function can be rewrit-
ten as follows:

m(k)
u = MSG(k)(hk

u),
(k)
v = AGG(k)({m(k)

u , u ∈ N(v)}, h(k−1)
v ),

(0)
v = Fuse(wpos · fpos(v), wstruct · fstruct (v), wraw · fv),

here the Fuse function can be CONCAT or SUM. wpos, wstruct and
raw denote the weights of each sort of embedding. In particular,
pos and wstruct can also be regarded as structure and position
wareness scores, respectively. The values of wpos and wstruct
epend on how sensitive the task is to positional and structural
mbeddings. There are various methods to calculate awareness
core, and we will defer introducing our methods to Section 4.2.
The advantage of early fusion is that the neighborhood struc-

ural and positional embeddings can be aggregated during mes-
age passing, providing more information for GNNs to learn.

ate fusion. The other scheme is late fusion. It aims to combine
he outputs of GNN, position encoder and structure encoder, and
hen construct them as input of the downstream task, e.g., a clas-
ifier. Under such a setting, we have two training strategies. The
irst is a 2-stage training: (1) separately training GNN, position
ncoder and structure encoder; (2) training the downstream task.
he other training method is to perform joint training using a
omposite loss function that combines the task loss with po-
ition encoder and structure encoder losses, weighted by their
wareness scores.
Our experiments show that no training strategy can always

erform better than the other on different tasks. However, the
arly fusion works slightly better than the late fusion. Therefore,
e use early fusion in the experiments.

.5. SP-GNN analysis

.5.1. Expressive power

P-GNN has more expressive power than classical GNNs. It
as been proved that the expressive power of classical GNNs
s bounded by the 1-WL test (Xu et al., 2019), while GIN is as
owerful as the 1-WL test and thus the most expressive GNN.
ollowing the proof of ID-GNN (You et al., 2021), we show that
P-GNN is more expressive than classical GNNs.

roposition 2. Using GIN as the base model, SP-GNN can differ-
ntiate any graphs that GIN can differentiate, while distinguishing
ertain structures that GIN fails to distinguish.
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Fig. 2. The concrete graph examples of expressiveness of existing GNNs and SP-GNN.
Source: Adapted from You et al. (2021, 2019).
Proof. By setting the same message passing functions and aggre-
gation functions as GIN, SP-GNN can be identical to GIN without
augmented position and structure embeddings. This proves the
first part of the proposition. For different d-regular graphs, both
IN and the 1-WL test fail to distinguish them, while SP-GNN can
enerate different outputs with the help of structural information.
ig. 2(a) shows that though the topology of two computational
raphs is identical, SP-GNN captures the identity information
nd generates different structure embeddings ({1, 0, 2, 2} for 3-
egular graph and {1, 0, 2, 0} for 4-regular graph). Thus, different
-regular graphs can be differentiated by SP-GNN. This proves the
atter part. □

SP-GNN has more expressive power than pure structure- or
osition-aware GNNs. We next show that SP-GNN is also more
xpressive than pure structure-aware or position-aware GNNs.
ig. 2(b) gives a failure example of pure structure-aware GNNs,
here two nodes in very different parts of the graph differ in the

abel. Extra structural properties (e.g., identities in ID-GNN You
t al., 2021) offer no help in this case due to identical structures
see Fig. 2(b)), such that the pure structure-aware GNNs fail to
ifferentiate the computational graphs. Similarly, pure position-
ware GNNs (e.g., P-GNN You et al., 2019) cannot discriminate the
xample graphs in Fig. 2(a), as the node position information can-
ot reflect the dissimilarity of nodes between graphs. By unifying
tructural and positional information, SP-GNN can differentiate
oth cases, thus more expressive than pure structure-aware and
osition-aware GNNs.

.5.2. Complexity analysis
Besides forward and backward computation of downstream

NN training, SP-GNN’s complexity mainly lies in the position
nd structure encoders. To learn the position embeddings, the
nitial position encoder visits all pairs of nodes in the graph,
ncurring a cost of O(|V |2) in each training epoch and O(|E||V | +
V |2log|V |) for calculating the shortest path with Johnson’s algo-
ithm (Johnson, 1977). To scale to large graphs, we optimize the
osition encoder by sampling k-hop neighbors for each node to
onstruct training pairs, which reduces the complexity to O(k|V |).
The structure encoder encodes the m-hop structural information
using adjacency matrix multiplication as in Eq. (6), of which the
complexity is O(m|V |3). This can be accelerated with parallel
computation using GPUs.
510
4. Experiments

4.1. Methodology

Datasets. We evaluate SP-GNN on seven datasets with different
graph sizes, graph types and graph tasks. For node classification
tasks, we use citation network datasets (1) Cora (Sen et al.,
2008), (2) CiteSeer (Giles, Bollacker, & Lawrence, 1998) and (3)
Ogbn-arxiv (Wang et al., 2020), where nodes correspond to pub-
lications and edges to citations. Each publication in Cora and
CiteSeer is described by a one-hot word vector indicating the
presence of the corresponding word from the dictionary, while
node features of Ogbn-arxiv are obtained by averaging the em-
beddings of words in its title and abstract. We also use (4)
Ogbn-products (Hu et al., 2020) dataset, a large Amazon prod-
uct co-purchasing network with bag-of-words features from the
product descriptions. For graph classification tasks, three social
network datasets, (5) IMDB-BINARY (Yanardag & Vishwanathan,
2015), (6) IMDB-MULTI (Yanardag & Vishwanathan, 2015) and (7)
COLLAB (Yanardag & Vishwanathan, 2015), are adopted, without
raw features. In IMDB-BINARY and IMDB-MULTI, nodes represent
actors/actresses, and an edge exists if they appear in the same
movie. Each graph in COLLAB corresponds to a researcher’s ego
network. We summarize the detailed statistics of the datasets in
Table 1.

We follow the default dataset splitting from the dataset
sources of all node classification tasks. For graph classification
tasks, random splits of 80%, 10%, 10% of the dataset are used
for training, validation and testing, respectively. We train all the
models until loss converges and report the testing performance
of the best model on the validation set.

Experimental Setup. We use a three-layer GAT (Velickovic et al.,
2018) model with four attention heads as the base model of SP-
GNN. The number of hidden units is 256 and 64 for node and
graph classification tasks, respectively. Ogbn-products dataset
is too large for full-batch training (DGL, 2020), and hence we
adopt mini-batch training with neighbor sampling size {5, 10,
15}. We use full batch training on all other datasets. For large
graphs, Ogbn-arxiv and Ogbn-products, the structure encoder of
SP-GNN encodes 8-hop neighbor sequence and 3-hop identity
information. We calculate 8-hop structural information for all



Y. Chen, J. You, J. He et al. Neural Networks 161 (2023) 505–514

s
W
d

B
G
e
2
c
u
e
2
a
e
e

4

w
c
S

N
i
f
i
p
i

G
t
a
e
a
m
t
f
i

A
t
T

Table 1
Statistics of the real-world datasets.
Dataset Node classification Graph classification

Cora CiteSeer Ogbn-arxiv Ogbn-products IMDB-BINARY IMDB-MULTI COLLAB

#Nodes per graph 2708 3327 169343 2449029 19.77 13.00 74.49
#Edges per graph 10556 9228 1166243 123718280 193.062 131.871 4914.43
#Graphs 1 1 1 1 1000 1500 5000
Avg. degree 3.90 2.77 6.89 50.52 9.77 10.143 65.97
#Raw feats 1433 3703 128 100 0 0 0
#Labels 7 6 40 47 2 3 3
Table 2
Comparing SP-GNN with baselines.

Node classification Graph classification

Ogbn-arxiv Ogbn-products Cora CiteSeer IMDB-BINARY IMDB-MULTI COLLAB

GCN 0.717 ± 0.003 0.756 ± 0.002 0.867 ± 0.002 0.743 ± 0.010 0.723 ± 0.029 0.471 ± 0.019 0.775 ± 0.038
GraphSAGE 0.715 ± 0.003 0.783 ± 0.002 0.873 ± 0.008 0.743 ± 0.012 0.717 ± 0.005 0.491 ± 0.016 0.777 ± 0.043
GAT 0.732 ± 0.001 0.795 ± 0.006 0.872 ± 0.014 0.746 ± 0.005 0.763 ± 0.025 0.536 ± 0.006 0.818 ± 0.010
GIN 0.707 ± 0.002 0.781 ± 0.004 0.869 ± 0.011 0.731 ± 0.003 0.750 ± 0.041 0.469 ± 0.006 0.755 ± 0.011

SP-GNN-Structure 0.733 ± 0.001 0.803 ± 0.003 0.873 ± 0.011 0.794 ± 0.007 0.780 ± 0.016 0.542 ± 0.011 0.833 ± 0.003
SP-GNN-Position 0.736 ± 0.001 0.816 ± 0.001 0.878 ± 0.009 0.775 ± 0.009 0.777 ± 0.013 0.558 ± 0.008 0.816 ± 0.002
SP-GNN-Both 0.739 ± 0.002 0.816 ± 0.005 0.880 ± 0.009 0.800 ± 0.005 0.783 ± 0.005 0.571 ± 0.006 0.839 ± 0.004
Over best GNN 0.7% 2.2% 0.7% 5.4% 2.0% 3.5% 2.2%
other datasets. The position encoder computes 128-dimensional
position embedding using a 3-hop sampling method, i.e., con-
tructing pairs for each node from neighbors within three hops.
e also randomly sample 5 negatives for each node, setting the
istance as the diameter of the graph.

aseline models. We compare SP-GNN with four widely adopted
NN models: GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton
t al., 2017), GAT (Velickovic et al., 2018) and GIN (Xu et al.,
019). We set the same hyper-parameters for all models for a fair
omparison. Other state-of-the-art methods are also used to eval-
ate the efficacy of encoders of SP-GNN, including two structure
ncoders (Struc2Vec Ribeiro et al., 2017 and ID-GNN You et al.,
021) and four position encoders (shortest-path-distance with
nchor nodes You et al., 2019, Laplacian eigenvectors Dwivedi
t al., 2020, Node2Vec Grover & Leskovec, 2016 and LINE Tang
t al., 2015).

.2. Overall performance

Table 2 shows the test accuracy of baselines and SP-GNN
hen training on various node classification and graph classifi-
ation tasks. The results demonstrate significant improvement of
P-GNN over existing GNNs.

ode Classification. For node classification, we observe accuracy
mproved by positional and structural information. Also, the gain
rom positional information is noticeably larger than structural
nformation. The best performance result is achieved when both
ositional and structural embeddings are used, with a significant
mprovement of 0.7% to 5.4% across datasets.

raph Classification. Graph classification tells the other side of
he story: structural information plays a more important role. On
ll three datasets, the test accuracy of SP-GNN with the structure
ncoder outperforms the ones with the positional encoder. It is
lso worth noting that position encoder provides little improve-
ent compared to structure encoder. We believe, for graph-level

asks, the position information inside each graph may not re-
lect the relative relation between graphs, thus providing less
mprovement than node-level tasks.

wareness Analysis. We derive the awareness scores of posi-
ion and structure for various datasets and tasks, with results in
ables 3, 4 and Fig. 3. In each dataset, we randomly sample 5
511
Table 3
Structure and position awareness scores for real-world graph classification
tasks.
Dataset Structure Position

IMDB-BINARY 0.6424 0.5040
IMDB-MULTI 0.5618 0.4992
COLLAB 0.7589 0.4109

positives and 5 negatives for each data sample and adopt a 3-
layer MLP (Gardner & Dorling, 1998) as the classifier to predict
the label equivalence given pairwise embeddings. Test data sam-
ples are masked out during the training process. Since the label
equivalence of pairwise data samples is agnostic to the number
of classes, the awareness metric is universal to different tasks.

On graph classification datasets, we observe high structure
awareness, indicating that structural information outweighs po-
sitions. Position embeddings only reflect the distance of nodes
within each graph instead of between disjointed graphs. This
explains the larger improvement with the structure encoder over
the position encoder in Table 2 on graph classification tasks.

On node classification tasks, we see that most graphs are
position-aware, and the highest position awareness score, 0.9369,
is achieved on Ogbn-products. The high position awareness score
aligns with the results in Table 2, where the overall performance
is greatly boosted by positional information.

Convergence. We also compare training convergence of SP-GNN
that contains extra structural and positional information with
baseline model GAT on Ogbn-arxiv and Ogbn-products datasets.
In Fig. 4, we observe that SP-GNN not only achieves higher test
accuracy over the baseline when the model has converged, but
also has a faster convergence rate. This motivates the usage of
SP-GNN in training a large graph with a limited time budget.

4.3. Deep dive of the results

Structure Encoders. We compare the structure encoder of SP-
GNN with other methods that also capture the structure infor-
mation of graphs: (1) Struc2Vec (Ribeiro et al., 2017), which
represents the structural information with multi-hop degree se-
quences, (2) GraphSAGE (Hamilton et al., 2017), a classic GNN
to aggregate neighborhood information, and (3) ID-GNN (You
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Table 4
Structure, position and raw feature awareness scores for real-world node
classification tasks.
Dataset Structure Position Raw Feature

Cora 0.5075 0.8708 0.8133
CiteSeer 0.5214 0.7525 0.8373
Pubmed 0.5133 0.8299 0.9075
Ogbn-arxiv 0.6769 0.8508 0.7691
Ogbn-products 0.5287 0.9369 0.8017

Fig. 3. Task awareness.

t al., 2021), which incorporates GNN architectures with identity
nformation. Two structure-aware datasets, USA air-traffic net-
ork (Ribeiro et al., 2017) (with 1190 nodes and 13599 edges
epresenting commercial flights between airports) and actor co-
ccurrence network (Ma, Qin, Qiu, Zheng, & Wang, 2019) (with
779 nodes and 26752 edges indicating actors co-occurrence in
ilms), are used for comparison.

In Table 5, the numbers are test accuracy. The structure en-
oder of SP-GNN achieves the best performance on both datasets,
utperforming the best baseline model by 0.8% and 0.7%, re-
pectively. We also observe the unsteady performance of the
aselines, while the improvement brought by SP-GNN is stable.

osition Encoders. We compare the position encoder of SP-
NN with the following position-aware baselines: (1) two non-
arametric methods: shortest-path-distance with 1024 anchor
odes (You et al., 2019) and Laplacian eigenvectors (Dwivedi
t al., 2020), and (2) two parametric embedding learning meth-
ds: Node2Vec (Grover & Leskovec, 2016) and LINE (Tang et al.,
015). For the shortest-path-distance method, we use PCA (Pear-
on, 1901) to reduce the embedding dimension to 64. For the
aplacian eigenvectors encoder, we use the same hyper-
arameter setting as in the original paper (Dwivedi et al., 2020).
wo position-aware datasets, Ogbn-arxiv and Ogbn-products, are
sed to test the position encoders. Positional embeddings of each
osition encoder are computed with the given graphs, which are
hen fused with the raw features and applied to the GAT model
or node classification. The test accuracies of the GAT model in
ifferent cases are given in Table 6.
The position encoder of SP-GNN performs the best on two

osition-aware graphs, improving the test accuracy by up to
.25% and 1.15% over the best baselines, respectively. Compared
o embedding learning methods, SP-GNN achieves better per-
ormance because it is less distorted with respect to the graph
istance metric. SP-GNN also outperforms the shortest-path-
istance encoder by 0.33% on Ogbn-arxiv, since the random se-
ection of anchor nodes may affect position information encoding.
alculating the shortest path distances on larger datasets such as
512
Table 5
Comparison of structure encoders.
Methods USA airports Actor

Struc2Vec 0.6438 0.4748
GraphSAGE 0.5994 0.4936
ID-GNN 0.479 0.6350

SP-GNN-Struct 0.6513 0.6414

Table 6
Comparison of position encoders.
Methods Ogbn-arxiv Ogbn-products

Shortest-path-distance 0.7323 >10 h
Laplacian eigenvectors 0.7231 OOM
Node2Vec 0.7331 0.7978
LINE 0.7313 0.8045

SP-GNN-Pos 0.7356 0.8160

Table 7
Comparison of different methods unifying position and structure information.
Methods Cora CiteSeer

PPMI 0.8641 0.7367
CGNN 0.726 0.7210
MC-SVD 0.672 0.7370

SP-GNN 0.8801 0.8003

Table 8
SP-GNN with different base GNN models on Cora dataset. ‘‘Baseline’’ de-
notes original GNN models without position and structural information
augmentation.
Methods GCN GAT GraphSAGE GIN

Baseline 0.8662 0.8721 0.8776 0.8579
SP-GNN 0.8782 0.8801 0.8813 0.8616

Ogbn-products (with over two million nodes) is time-consuming,
and Laplacian matrix decomposition becomes impossible due to
memory constraints. Hence, the two non-parametric methods fail
to run on Ogbn-products. On the other hand, SP-GNN can scale
well on large datasets, and outperform the best baseline by 1.15%.

Comparison with other unifying methods. We compare SP-
GNN with the methods that are also unifying positional and
structural embeddings: PPMI (Zhu et al., 2021), CGNN (Srinivasan
& Ribeiro, 2020) and MC-SVD (Srinivasan & Ribeiro, 2020). We use
the same hyper-parameters as in the original papers. Since these
methods cannot scale to large graphs (e.g., Ogbn-arxiv and Ogbn-
products) due to out-of-memory (OOM) and large preprocessing
time (>10 h), we train them on Cora and CiteSeer datasets.
Table 7 gives the results. SP-GNN achieves the best performance
among all schemes. Compared to other methods that also unify
positional and structural embeddings, SP-GNN uses shadow en-
coders and non-parametric methods to augment state-of-the-art
GNNs, which has a different training manner and involves no
duplicate information.

Different base models. We evaluate SP-GNN with four base
models on Cora dataset (see Table 8). SP-GNN is not model-
dependent and can benefit different GNNs with extra positional
and structural information. Overall, SP-GNN increases the accu-
racy by 0.37% to 1.2% with different base models.

Case study: Efficacy of Computing Position and Structure
Awareness. Finally, we want to show that the computed posi-
tional and structure awareness scores are highly indicative for
GNN architecture design. Applying a high-quality position en-
coder to a position-aware task is likely to be useful, but applying
it to a structure-aware task is likely not. To validate this argu-
ment, we pick two tasks, Ogbn-arxiv and Ogbn-products, which
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Table 9
Impact of positional information.
#Dim Ogbn-arxiv Ogbn-products

32 0.7340 0.7827
64 0.7330 0.7965
128 0.7356 0.8156

#sampled hop Ogbn-arxiv Ogbn-products

1 0.7313 0.8045
2 0.7333 0.8056
3 0.7356 0.8156

have high position awareness scores. Since we know these tasks
are highly position-aware, we choose to devote more computa-
tional resources on the positional encoder, by increasing the hop
size and embedding dimension of the positional encoder. As is
shown in Table 9, the final accuracy is indeed improved by up to
0.5% and 3.3% on Ogbn-arxiv and Ogbn-products, respectively.

5. Conclusion

In this paper, we propose SP-GNN, a powerful GNN frame-
ork that incorporates position and structure information to
nhance existing GNN models. SP-GNN employs a near-isometric
roximity-aware position encoder and a scalable structure en-
oder to improve the expressiveness of GNN architectures be-
ond the 1-WL test. Further, SP-GNN can be used to analyze
he positional and structural awareness of given GNN tasks. The
wareness scores can guide optimizations in position encoder or
tructure encoder, depending on the analyzed awareness. Exten-
ive experiments on comprehensive graph datasets demonstrate
ignificant improvement of SP-GNN over existing GNN models.
ur proposed model is generic and scalable, best to be used in
arious Web applications such as recommendation systems or
ocial network analysis. The influence of more base models in SP-
NN on different types of GNN tasks is our future work, together
ith larger scale graph datasets.
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