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Abstract

Human pose estimation in videos has wide-ranging
practical applications across various fields, many of which
require fast inference on resource-scarce devices, neces-
sitating the development of efficient and accurate algo-
rithms. Previous works have demonstrated the feasibil-
ity of exploiting motion continuity to conduct pose esti-
mation using sparsely sampled frames with transformer-
based models. However, these methods only consider the
temporal relation while neglecting spatial attention, and
the complexity of dot product self-attention calculations
in transformers are quadratically proportional to the em-
bedding size. To address these limitations, we propose
MixSynthFormer, a transformer encoder-like model with
MLP-based mixed synthetic attention. By mixing synthe-
sized spatial and temporal attentions, our model incorpo-
rates inter-joint and inter-frame importance and can accu-
rately estimate human poses in an entire video sequence
from sparsely sampled frames. Additionally, the flexi-
ble design of our model makes it versatile for other mo-
tion synthesis tasks. Our extensive experiments on 2D/3D
pose estimation, body mesh recovery, and motion predic-
tion validate the effectiveness and efficiency of MixSynth-
Former. The code is available at https://github.
com/ireneesun/MixSynthFormer.git

1. Introduction

Human pose estimation is a crucial task in computer vi-
sion which aims to estimate the keypoint locations of a hu-
man body from visual inputs. It has a wide range of appli-
cations in virtual/augmented reality, healthcare, and secu-
rity surveillance [23, 5]. In recent years, there has been a
growing demand for real-time pose estimation in many of
these applications. However, the computational burden of
deep learning models makes their real-time estimation on
resource-constrained devices (e.g., CPU, mobile devices)
challenging. How to estimate human poses in videos ef-
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Figure 1: Pipelines of keyframe-based pose estimation frame-
works. The recover process is similar to interpolation. (a) is the
feature-based pipeline [40, 7], which selects 30% to 40% of frames
based on input features and recovers the whole sequence. (b) is
the existing sampling-based pipeline [38], which uses a sampler to
select frames and conducts keyframe refinement, whole sequence
recovery and whole sequence refinement. (c) is our proposed sim-
plified sampling-based pipeline excluding keyframe refinement.

ficiently remains an open research problem.
Conventional pose estimators [3, 22, 41, 29, 4, 37, 27] es-

timate poses frame-by-frame, and the efficiency depends on
the model design. Recent methods [40, 7, 38] have proven
the viability of estimating poses in sequences based solely
on keyframes. By leveraging the temporal redundancy in
videos, poses in the remaining frames can be reconstructed
from keyframe poses, similar to motion completion, which
can significantly reduce the cost of resource-intensive pose
estimators.

In current keyframe-based pose estimation frameworks,
keyframes are selected using a feature-based selector or a
sampler, as illustrated in Figures 1a and 1b. Feature-based
keyframe selectors [40, 7] select “good” frames based on
features extracted from inputs. The final poses in the whole
sequence are recovered from the estimated poses in those
frames without further refinements. A more effective ap-
proach is to sample a portion of frames directly from inputs



[38]. Without knowing the quality of selected frames in
advance, poses detected from them may be noisy. To tackle
this issue, the current design employs a refine-recover-refine
pipeline to obtain the final pose sequence.

Is there a way to simplify the pipeline and further re-
duce the computational cost? The two refinement mod-
ules for keyframe poses and recovered poses appear repeti-
tive and unnecessary, as the poses in keyframes are refined
twice. To address this, we propose a simplified recover-
refine pipeline, as shown in Figure 1c. Within our frame-
work, keyframes are selected using a sampler, and the pose
sequence is recovered from detected poses in keyframes us-
ing an interpolator. The rough sequence is then refined us-
ing a single refinement module.

We present a novel framework for sampling-based pose
estimation utilizing a lightweight transformer encoder-like
structure. The scaled dot product self-attention mechanism
in the transformer network [34] is used to determine the rel-
ative importance of a token with respect to other tokens.
However, the computational cost can be prohibitively high
when using a large embedding size. To mitigate this prob-
lem, we replace the standard key-query attention with a syn-
thetic self-attention module that generates attention weights
using linear layers. To improve the quality of refinements,
we synthesize both spatial and temporal attention matrices,
which dynamically capture the inter-joint and inter-frame
relationships. The features from both dimensions are com-
bined and passed forward for further processing. We name
our model MixSynthFormer. The main contributions of this
work are summarized as follows:

▷ We propose a highly-efficient keyframe-based pose es-
timation model MixSynthFormer following the transformer
encoder structure. It can effectively estimate poses from
sampled keyframe poses in a recover-refine pipeline.

▷ We design an MLP-based mixed synthetic attention
matrix generation module, MixSynth Attention, which gen-
erates attention matrices spatially and temporally from in-
put representations. This design enables our model to dy-
namically fuse channel-wise and token-wise features and
refine poses effectively. To speed up the computation, we
introduce a reduction factor in the attention matrix genera-
tion, which further saves computation without compromis-
ing performance.

▷ We validate our model on 2D and 3D pose estimation
and body recovery tasks with four datasets and five estima-
tors. Experimental results demonstrate that our model out-
performs all keyframe-based pose estimation frameworks in
terms of accuracy and efficiency. Additionally, our model
can adapt to other motion synthesis tasks by indicating dif-
ferent keyframes. We conduct experiments on short-term
motion prediction as a sub-task, and results show that it is
also competitive compared to state-of-the-art motion pre-
diction models.

2. Related Work

2.1. Human Pose Estimation

Pose estimation models can be categorized into two
types based on how frames are fed into the model: frame-
by-frame and keyframe-based estimators. Common pose
estimation frameworks estimate poses in every frame and
optimize efficiency through knowledge distillation [22, 27]
or model structure design [3, 41, 29, 4, 37]. However, the
computational costs are still high due to the frame-by-frame
estimation. Besides, these methods are sensitive to occlu-
sion cases in which partial joints are invisible in the cam-
era view due to complex poses or interactions with envi-
ronments, resulting in incoherent poses regardless of incor-
porating temporal information. In contrast, keyframe-based
pose estimation frameworks exploit human motion continu-
ity and can produce smoother sequences. Only keyframes
are used for heavy single-frame estimation, while poses in
the rest of the frames are recovered by a lightweight mod-
ule. Thus, they can boost the efficiency of single-frame pose
estimators in different tasks, such as SimplePose [36] for
2D poses, FCN [25] for 3D poses, and SPIN [20], PARE
[19] and EFT [17] for body recovery.

Keyframe-based methods can be further divided into two
categories depending on how the keyframes are selected:
feature-based and sampling-based. Feature-based meth-
ods [40, 7] select “good” keyframes relying on intermedi-
ate feature representations and recover the whole sequence
without refinement. KFPN [40] selects frames that capture
global context based on image features extracted from in-
puts. MAPN [7] uses the internal motion signals and resid-
ual errors to determine whether the heavy pose estimation
needs to be conducted on a frame. Nevertheless, the cost of
feature extraction cannot be ignored.

Sampling-based methods [38] select keyframes using a
uniform, random or customized sampling strategy. As se-
lected frame may not be “good”, these frameworks add
a refinement module to clean noisy poses. Deciwatch
[38] uses a standard transformer encoder to refine the uni-
formly sampled poses and a decoder to refine the recov-
ered pose sequence based on denoised poses. The refine-
ment on sampled keyframe poses is redundant and can be
merged with the subsequent refinement module in the de-
coder. Moreover, Deciwatch [38] focuses on the temporal
aspects and does not take spatial dependencies into consid-
eration, which reflect interdependence among joints. Un-
derstanding the patterns of how joints are moving together
can facilitate the refinement of incorrectly estimated joints.

2.2. Motion Completion and Prediction

Motion completion aims to fill the motion of missing
frames with specified keyframe constraints, presenting both
past and future frames. Traditional methods utilize lin-
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Figure 2: Overview of MixSynthFormer. MixSynthFormer recovers and refines poses from sparsely sampled keyframes. It consists of L
blocks of MixSynthEncoder blocks and two linear projection layers. MixSynthEncoder follows a standard transformer encoder structure
but replaces multi-head self-attention with MixSynth Attention. MixSynth Attention synthesizes spatial and temporal attention via SynthAt-
tention operations (depicted in Figure 3). The output from the two branches are combined and forwarded to a linear layer for feature fusion.
(Detected poses in keyframes are colored, and recovered poses by interpolators are in gray.)

ear, cubic-spline, Lagrange, and low-rank matrix comple-
tion, producing smooth transitions but lacking details [13].
Early learning-based methods employ RNN [9, 10] and
convolutional models [12, 18]. Transformer-based models
[6, 28, 30] are also adopted due to their exceptional perfor-
mance in sequence-to-sequence problems. The aforemen-
tioned motion completion models are prevalent in the ani-
mation field and utilize ground-truth joint rotations and po-
sitions. However, in our case, the inputs are detected poses
that can be noisy and aperiodic.

Motion prediction generates future motion given only
historical frames. RNN [8, 24] and transformer-based [2, 1]
methods are proposed to capture temporal dynamics. GCN-
based methods, such as STSGCN [31] and STGAGCN [42],
further model the spatial relationships among joints, obtain-
ing high performance by closely combining spatio-temporal
modeling.

Despite a range of frameworks, none of them treat mo-
tion completion and prediction as two mutually dependent
tasks. Rather, each approach is specialized for one particu-
lar motion synthesis task. Notably, the sole distinction be-
tween motion completion and motion prediction pertains to
the keyframe constraints. In this work, our model can han-
dle both tasks with a unified structure.

3. Method
Problem Definition. Given an input video of T frames,
a sampler samples one frame out of every K frames (T
is a multiple of K). The sampled frames are regarded as
keyframes where poses will be estimated by a pose esti-

mator. The detected poses from sampled frames may be
unreliable due to complex poses or occlusion. We denote
poses detected from sampled frames as X̂sampled

noisy ∈ R T
K ×P

which serves as the input to our framework. P is the num-
ber of pose parameters, which can denote joint positions
(2D/3D) or rotations (6D) and may vary depending on the
dataset and body representation. The objective of sampling-
based pose estimation is to recover all the poses X̂ ∈ RT×P

in the original sequence from detected poses X̂sampled
noisy in

the sampled frames (referred to as sampled detected poses).
Model Overview. Figure 2 provides an overview of our
proposed model. The goal of MixSynthFormer is to re-
cover and refine the poses to obtain accurate estimations
efficiently. Initially, the entire pose sequence is recovered
through linear interpolation or a linear layer from the sam-
pled detected poses. Those recovered poses are transformed
into pose embeddings using linear projection and are fed
into L blocks of MixSynthEncoder. Each MixSynthEncoder
comprises an attention block and a feed-forward network
with residual connection, followed by a layer normalization
layer. The attention block MixSynth Attention synthesizes
spatial and temporal attention matrices concurrently. By in-
tegrating the spatial and temporal information, our model
can refine the entire pose sequence in a simultaneous man-
ner. Finally, the recovered poses are output via another lin-
ear layer.

We next present details of MixSynthFormer, starting with
an overview of the structure and then proceeding to the
design of MixSynth Attention and the detailed operations
within it. Finally, we describe the settings of using our



model on motion prediction tasks, showcasing its adaptabil-
ity to other motion synthesis tasks.

3.1. Design of MixSynthFormer

We adopt a recover-refine pipeline in our framework.
The whole pose sequence is preliminarily recovered along
the temporal dimension by a traditional or a learned inter-
polator based on the detected poses X̂sample

noisy in keyframes,
denoted as X̂recover

noisy ∈ RT×P :

X̂recover
noisy = Interp(X̂sampled

noisy ) (1)

Recovering poses from sparse and noisy inputs results in
inaccurate estimates, which necessitates additional process-
ing to obtain a clean output. Moreover, traditional interpo-
lation methods tend to produce overly smooth motion se-
quences that lack details. Hence, a refinement step is neces-
sary to generate a more precise pose sequence, which can be
formulated as a sequence-to-sequence problem. Transform-
ers have shown remarkable success in solving such prob-
lems owing to their ability to capture global correlations
among tokens. We design MixSynthFormer following the
workflow of a standard transformer encoder, except for re-
placing the self-attention module with MixSynth Attention.
Following are the high-level operations of MixSynthFormer.

All poses in X̂recover
noisy are transformed to the pose em-

beddings Z0 ∈ RT×C through a linear layer with weights
W0 ∈ RP×C , where C is the dimension of the embedding
space. Attention layers in transformers need position em-
beddings to specify the locations of input tokens, whereas
our MLP-based MixSynth Attention is sensitive to the order
of tokens in temporal attention synthesis like [33] and does
not require additional position embeddings.

Z0 = X̂recover
noisy W0 (2)

The pose embeddings are then passed to L blocks of
MixSynthEncoder. The model conforms to the conventional
transformer encoder design, consisting of stacked MixSynth
Attention module and feed-forward network (FFN) which
is a two-layer point-wise fully connected layer with GELU
activation [11]. Residual connection and layer normaliza-
tion (LN) are applied sequentially after every block.

Ẑl = LN(MixSynthAtt(Zl−1) + Zl−1) (3)

Zl = LN(FFN(Ẑl) + Ẑl) (4)

Here l ∈ [1, L] denotes the l-th block. Zl−1 is the out-
put from the previous encoder block, Ẑl is the intermediate
representation and Zl is the output of the current encoder
block. Zl and Ẑl have the same dimension in RT×C .

After L blocks of operations, the features in the embed-
ding space ZL are transformed back to the pose dimension

via another linear layer with weights Wp ∈ RC×P . The
use of the residual connection can expedite model conver-
gence and yield more stable results. The final recovered
pose sequence X̂ is thereby the summation of the output
from MixSynthEncoder blocks and the preliminarily recov-
ered noisy poses X̂recover

noisy :

X̂ = (LN(ZL))Wp + X̂recover
noisy (5)

3.2. MixSynth Attention

Transformers are effective in capturing global correla-
tions among tokens, but they may not be sufficient for re-
fining noisy sequences. Token-wise attention primarily fo-
cuses on the temporal aspect, while local attention that cap-
tures the correlation among joints is also essential, par-
ticularly for recovering complex motions. To learn both
global and local features, we propose MixSynth Attention,
which mixes spatial and temporal synthetic attention matri-
ces. The weights in these matrices reflect the relative inter-
joint and inter-frame importance. The spatial matrix re-
veals the correlation among joints. When performing some
motion patterns, joints that move together are highly cor-
related. It is helpful in locating a wrongly-detected joint
from its related joints with accurate detection. The tempo-
ral matrix determines the impact of a frame with respect to
other frames in the sequence, signifying the extent to which
a frame affects the remaining frames.

We explain the MixSynth Attention operations in detail.
For simplicity, we eliminate the block index l in the fol-
lowing explanation. The synthetic attention operation (Syn-
thAttenOP) operates on Z ∈ RT×C and outputs feature
Yi ∈ RT×C , which can be spatial or temporal, denoted
as Ys and Yt, respectively.

Yi = SynthAttenOPi(Z), i ∈ {s, t} (6)

The spatially and temporally attended features are generated
simultaneously. Inspired by [39], we apply split attention to
re-balance the contribution of the two branches. Different
motions may have different emphases. Inter-joint relations
are more important for certain motions, while others may
be more influenced by inter-frame relations. The weights
Ay ∈ R2×C of Ys and Yt are calculated as

Ay = Softmax(FFN(GAP (Ys +Yt))) (7)

where GAP denotes the global average pooling function,
FFN contains two fully connected layers with ReLU ac-
tivation [26] and Softmax is for normalization. The
weighted sum Yout ∈ RT×C is the summation of the
element-wise product of the concatenated representations
from two branches with the re-balancing weights Ay:

Yout = Sum(Ay ◦ [Ys;Yt]) (8)



The output of the MixSynth Attention block is attained by
linearly transforming Yout with weights Wo ∈ RC×C :

MixSynthAtt(Z) = YoutWo (9)

3.3. SynthAttention Operation

The self-attention module in transformers utilizes the
pairwise dot product to calculate attention weights. The
computation of the query-key matrix multiplication expands
quadratically as the embedding size increases. To allevi-
ate the impact of embedding size on computational cost,
we propose synthetic attention operation (SynthAttenOp),
whose computation grows linearly with the increase of em-
bedding size, as a substitute for the standard attention. We
discuss this part in detail in supplementary materials. Syn-
thAttenOP generates attention matrices using linear layers.
Details of its operation are described below.

SynthAttenOp operates spatially and temporally. In spa-
tial attention synthesis, input and output are transposed.
Here we use Z ∈ RN×D to illustrate the general case,
where N and D can be substituted with either C or T . The
coarse synthetic attention matrix As ∈ RN×N is generated
by a linear layer with weights Wz ∈ RD×N :

As = ZWz (10)

As different frames or joints have different contributions,
we apply the Squeeze-and-Excitation layer (SELayer) [14]
to regulate the influence. It can amplify critical channels
while mitigating the effect of less important ones. The fine-
grained attention matrix Asynth ∈ RN×N is obtained by

SELayer(As) = As ◦ σ(Weδ(WsGAP (As))) (11)

Asynth = Softmax(SELayer(As)) (12)

where GAP denotes global average pooling and
GAP (A) ∈ RN , δ and σ are Sigmoid activation and
ReLU functions [26]. The reduction ratio (rse) is an em-
pirically found hyperparameter that limits model complex-
ity [14]. Ws ∈ R

N
rse

×N is for dimension reduction, and
We ∈ RN× N

rse is for expanding to the original dimension.
The output of SELayer is a re-scaled input after channel-
wise multiplication with calculated weights. Softmax is
inherited from the standard transformer, which normalizes
the attention weights.

In alignment with the standard transformer encoder, the
output is the product of the attention matrix and the value:

Y = AsynthV (13)

where V = Z ∈ RN×D and Y ∈ RN×D .
The method described above is applicable for cases when

N is relatively small. When N is large, the computation
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Figure 3: The procedure of reduced SynthAttenOp

cost grows quadratically owing to the matrix multiplication
in Eqn. 13. We apply a reduction factor r to the last di-
mension D, saving the computation in Eqn. 13 by r2 times.
We denote the reduced dimension as d = ⌊N/r⌋. Figure 3
shows the process of reduced attention matrix generation
and feature fusion. The reduced coarse attention matrix
Ar

s ∈ RN×d and reduced value Vr ∈ Rd×D are obtained
through

Ar
s = ZWr

z,V
r = WvZ (14)

where weights for reduced attention matrix generation and
for reducing the value are Wr

z ∈ RD×d and Wv ∈ Rd×N ,
respectively.

3.4. Efficiency Calculation

The overall cost of the model per frame combines the
cost of a pose estimator and the cost of MixSynthFormer:

FLOPs =
1

K
∗ f(Est.) + f(MSF ) (15)

f(·) evaluates the FLOPs of a model per frame. As one
frame out of K frames is sampled for estimation, the per-
frame cost of the estimator is 1

K ∗f(Est.). MixSynthFormer
operates on every frame, recovering and refining poses on
the whole sequence, and its FLOPs per frame is f(MSF ).
In particular, f(MSF ) is at least 104 times smaller than
f(Est.) and is negligible compared to the heavy pose esti-
mator. With 10% sampling ratio (K = 10), our framework
can speed up the computation by ten times.

3.5. Loss Function

Following [38], we apply L1 loss to minimize the er-
ror between the finely recovered pose sequence X̂ and the
ground-truth pose sequence X:

L =
1

T

T∑
t=1

|X̂t −Xt| (16)

3.6. Motion Prediction Setting

Motion prediction and motion completion are two sub-
fields in conditional motion generation with the only differ-
ence lying in the keyframe constraints. We include short-
term motion prediction as a sub-task and demonstrate the
versatility of our model on this task.

The input of motion prediction to our model is a histor-
ical ground-truth motion sequence X1:Th

∈ RTh×P , where



Th is the number of consecutive historical frames and P
is the size of pose parameters (i.e., 3D positions of human
body joints). The goal is to predict the future sequence
XTh+1:Th+Tf

∈ RTf×P given X1:Th
, where Tf is the num-

ber of frames to be predicted. Similar to the pose estimation
settings, the future poses are coarsely generated by inter-
polation, and then MixSynthFormer refines and outputs the
future poses.

We adopt the L2-norm between the predicted sequence
and the ground-truth sequence calculated only on future
frames as the loss function, which is equivalent to the Mean
Per Joint Position Error (MPJPE) in [31, 42]:

Lf =
1

Tf

Th+Tf∑
t=Th+1

||X̂t −Xt||2 (17)

We will test the above model in experiments, which
showcases our model’s adaptability to other synthesis tasks.

4. Experiments
Datasets. We evaluate MixSynthFormer on four datasets for
three tasks. For 2D pose estimation (to locate the 2D co-
ordinates of joints from images), we use the Sub-JHMDB
dataset [16] that contains daily and sports actions. For 3D
pose estimation (to extend 2D pose data with depth infor-
mation prediction), we use the widely-used Human3.6M
indoor dataset [15]. For 3D body recovery (to estimate hu-
man shape and joint angles), we use the in-the-wild dataset
3DPW which includes videos taken by a moving phone
camera [35] and AIST++ [21] with diverse dancing actions
shot indoors.
Evaluation Metrics. We adopt the same evaluation met-
rics as in [38]. For 2D pose estimation, Percentage of
the Correct Keypoints (PCK) is used, and three thresholds
(20%, 10% and 5% of the bounding box size under the pixel
level) are set. For 3D tasks, Mean Per Joint Position Error
(MPJPE) is utilized to report distance error and the mean
Acceleration error (Accel) is adopted to reflect the smooth-
ness of the estimated pose sequence. Mean Floating Point
Operations (FLOPs (G)) per frame are also reported to show
the computation costs.
Implementation Details. We use the same single-frame
pose estimators and sampling strategy as in [38]. The uni-
form sampling ratio is set to 10% (K = 10) in all exper-
iments. The presence of the first and last frames is vital
in recovery. In practice, we sample Q frames with index
K×q, q ∈ [0, . . . , Q−1] from the input of length K×Q+1
and additionally include the last frame of the input sequence
as keyframes. The number of keyframes Q, the embedding
dimension C and the number of MixSynthEncoder blocks
L vary among datasets and tasks. We train the model on a
single A100 GPU with testing performed on an 8-core CPU
Apple M1 Pro chip to obtain the inference time. Due to

page limit, other detailed training settings and qualitative
results are provided in supplementary materials.

4.1. Comparison on 2D Pose Estimation

Existing keyframe-based pose estimation methods use
SimplePose [36] as the pose estimator. We follow the same
experiment settings as in [40, 7, 38]. Table 1 presents the
detailed PCK@0.2 results of each joint, the average perfor-
mance of all three metrics and computation costs.

Compared with feature-based methods, KFP [40] and
MAPN [7], our method improves the accuracy by over 4.6%
in PCK@0.2. The improvements on fast-moving joints,
such as elbows, wrists and ankles, are significant with a
maximum increase of 14.8%. Those joints often cause im-
age blur, leading to wrong detection results. Our sampling-
based method incorporates a refinement module and can
mitigate the effects of incorrect detection.

Compared to the sampling-based model DeciWatch [38],
our model features a lighter design with 0.4M FLOPs com-
putation, yet achieving a superior accuracy of 99.3% under
PCK@0.2. Notably, our model achieves almost 100% in
predicting the head and torso positions, which can be at-
tributed to the integration of spatial dependencies. While
the attention mechanism in [38] only considers inter-frame
relations, our method also leverages inter-joint relations,
which is particularly useful for limb position estimation.
The accuracy of ankle increases from 96.5% to 97.8%. By
fusing information from highly-correlated joints, our model
also outperforms DeciWatch in strict metrics PCK@0.1 by
1% and PCK@0.05 by 1.3%.

4.2. Comparison on 3D Pose Estimation

We next compare our method on 3D keypoint estima-
tion and body recovery tasks against single-frame estima-
tors [25, 20, 19, 17] and the sampling-based model Deci-
Watch [38]. Results on localization error and acceleration
error are in Table 2.

Compared with DeciWatch [38], our model is signifi-
cantly smaller with no performance degradation, thanks to
SynthAttention. Our model achieves a 1-2mm reduction in
MPJPE on Human3.6M and 3DPW without compromising
smoothness. Notably, the FLOPs of the model trained on
3DPW are 0.03M, which is more than ten times smaller
than DeciWatch. The inference time is less than 0.1 ms per
frame on CPU. There are two main reasons for this: first,
we only do refinements once; second, the attention matrix in
our model is generated by the cost-efficient SynthAttenOp.

On AIST++, our model reduces the acceleration error
by 33% compared to DeciWatch and 86% compared to the
single-frame estimator SPIN. We attribute the acceleration
reduction to the integration of spatial and temporal atten-
tion. AIST++ contains poses with fast movements and di-
verse dancing actions. Due to the complexity of these poses,



Table 1: Comparison with keyframe-based pose estimation methods on Sub-JHMDB dataset [16] for 2D pose estimation. R means ResNet
[39]. Ratio represents the sampling ratio. Sho., Elb., Wri., Ank., Avg. stand for shoulder, elbow, wrist, ankle and average PCK, respectively.

Sub-JHMDB dataset - 2D Pose Estimation PCK@0.2 PCK@
0.1

PCK@
0.05Methods Head Sho. Elb. Wri. Hip Knee Ank. Avg. FLOPs(G) Ratio

KFP(R18) [40] 94.7 96.3 95.2 90.2 96.4 95.5 93.2 94.5 7.19 40.8% - -
MAPN(R18) [7] 98.2 97.4 91.7 85.2 99.2 96.7 92.2 94.7 2.70 35.2% - -
SimplePose [36] 98.6 97.3 96.5 98.6 90.3 95.4 86.5 94.0 11.96 100% 81.6 57.3
DeciWatch [38] 99.8 99.5 99.7 99.7 98.7 99.4 96.5 98.8 1.196+0.0005 10.0% 94.1 79.4
Ours 99.9 99.9 99.8 100.0 99.2 99.9 97.8 99.3 1.196+0.0004 10.0% 95.1 80.7

Table 2: Comparison for 3D pose estimation and body recovery on
Human3.6M [15], 3DPW [35] and AIST++ [21]. The estimators
in keyframe-based frameworks are the same as the corresponding
single-frame pose models.

Methods MPJPE Accel FLOPs(G)

Human3.6M - 3D Pose Estimation

FCN [25] 54.6 19.2 6.21
DeciWatch [38] 52.8 1.5 0.621+0.0007
Ours 50.9 1.5 0.621+0.0001

3DPW - 3D Body Recovery

SPIN [20] 96.6 34.7 4.13
DeciWatch [38] 93.3 7.1 0.413+0.0004
Ours 91.2 6.8 0.413+0.00003
EFT [17] 90.3 32.8 4.13
DeciWatch [38] 89.0 6.8 0.413+0.0004
Ours 88.1 6.3 0.413+0.00003
PARE [19] 78.9 25.7 15.51
DeciWatch [38] 77.2 6.9 1.551+0.0004
Ours 76.5 6.7 1.551+0.00003

AIST++ - 3D Body Recovery

SPIN [20] 107.7 33.8 4.13
DeciWatch [38] 71.3 7.1 0.413+0.0007
Ours 71.2 4.7 0.413+0.0005

original detections may contain erroneous estimations. By
mixing spatial and temporal attention, we can effectively
refine incorrect joints while maintaining the smoothness.

4.3. Comparison on Motion Completion

Our model recovers and refines poses in a completion-
like manner. We compare our model with traditional in-
terpolation methods and a transformer-encoder based Mo-
tion Completion Model (MCT) [6] from the animation field.
MCT can handle different motion completion tasks, and
uses the concatenation of positional and rotational data as
input. To be consistent with the pose estimation task, we
re-implement the MCT model and tune it on our datasets.
Our recover-refine process is similar to the in-filling task
in MCT. Both are to recover missing poses from uniformly
sampled keyframes.

Table 3: Comparison with motion completion methods on Hu-
man3.6M [15], 3DPW [35] and AIST++ [21] with estimators
stated inside brackets. Nearest, linear, quadratic, cubic-spline
methods are used for traditional interpolation. MPJPE (Accel) of
different recovery methods are reported. The results from tradi-
tional interpolators with the lowest MPJPE are underlined.

Data Nea. Lin. Qua. Cub. MCT Ours

H36M
(FCN)

57.0
(10.2)

54.8
(1.9)

54.6
(1.6)

54.6
(1.5)

54.5
(2.1)

50.9
(1.5)

3DPW
(SPIN)

100.5
(19.9)

97.2
(6.7)

97.5
(6.2)

97.7
(6.3)

91.9
(8.0)

91.2
(6.8)

AIST
(SPIN)

114.7
(28.5)

105.9
(5.7)

107.1
(4.6)

107.6
(4.6)

72.0
(6.9)

71.2
(4.7)

The results are presented in Table 3. Traditional inter-
polators tend to smooth the sequence but lack the ability
to correct noisy poses, resulting in low acceleration errors
and high position errors. MCT can reduce position errors
at the expense of reduced smoothness. Our model sur-
passes all other methods. It can produce smooth sequences
like interpolation but with more detailed and accurate mo-
tions. Specifically, when applied to Human3.6M, our model
achieves the same smoothness as cubic-spline interpolation
and decrease MPJPE by 7%. When evaluated on AIST++,
our model reduces MPJPE by over 30%. The significant
improvement in position errors without tradeoffs in smooth-
ness shows the superiority of MixSynthFormer in recovering
noisy sequences.

4.4. Comparison with Motion Prediction Methods

We evaluate our model on the sub-task short-term mo-
tion prediction (Sec. 3.6) under four testing intervals rang-
ing from 80 ms to 400 ms, using 400 ms input sequences.
Table 4 gives the results.

Our model outperforms STSGCN [31] and STGAGCN
[42]. Taking advantage of motion continuity, our model can
predict short-term poses that conform to the motion pattern
of the historical input poses. It reduces error by 17% in
an 80 ms interval while the improvement is less than 3%
in a 400 ms interval. Limited by refinement on the overly-
smoothed interpolation results, our model cannot learn spe-



Table 4: Comparison for short-term motion prediction. Average
MPJPE across frames on Human3.6M [15] are reported.

Methods 80 160 320 400

STSGCN [31] 10.1 17.1 33.1 38.3
STGAGCN [42] 10.1 16.9 32.5 38.5
Ours 8.4 15.8 30.5 37.4

Table 5: Comparison with different attention matrix generation
methods on 3DPW [35]

Methods MPJPE Accel #Param FLOPs

Vanilla 92.6 6.8 0.14M 0.12M
Random 92.6 6.9 0.12M 0.09M
Dense 92.5 6.8 0.13M 0.11M
Ours 92.1 6.8 0.10M 0.09M

cific periodic motion patterns and high-frequency motions.
The uncertainty of human motions grows as the prediction
interval increases, leading to a downgraded performance in
longer intervals. Nevertheless, it yields improvements on
complex actions or actions with occlusion like sitting and
taking photos. Action-wise results are reported in supple-
mentary materials.

4.5. Ablation Study

We conduct the ablation study on attention matrix gen-
eration, reduction factor r and model structure. The input
sequences are linearly interpolated from keyframe poses.
Attention Matrix Generation. The attention matrix in our
model is generated by a linear layer followed by a SELayer.
It can also be generated by a FFN or is a learnable matrix
as proposed in [32], referred to as Dense and Random. We
compare our generation method with these two methods,
together with the vanilla self-attention in transformers. To
ensure a fair evaluation, we exclusively focus on the tempo-
ral attention matrix. Table 5 presents a comparative analysis
of various attention methods, among which our generation
approach stands out with the lowest number of parameters
(0.1M) and minimum FLOPs (0.09M), owing to the reduc-
tion factor. Importantly, our method achieves the lowest
MPJPE of 92.1 mm.
Effect of Reduction Factor. We examine the impact of the
reduction factor r which is introduced for computation sav-
ing in SynthAttention. Specifically, we investigate how r in
spatial (rs) and temporal (rt) dimensions affects the model
size and its performance. As shown in Table 6, overall, ap-
plying r on one dimension saves 8% of the computation and
up to 25% of parameters. When r is applied in temporal at-
tention synthesis, we observe a smoother motion sequence
with a decrease in MPJPE by 0.8 mm. Applying reduction
on both dimensions further reduces the model parameters
by 30% compared to a non-reduced one at the expense of
slightly increased MPJPE.

Table 6: Effects of the reduction factor r on Human3.6M [15]

rt rs MPJPE Accel #Param FLOPs

1 1 52.2 1.7 0.26M 0.13M
4 1 51.4 1.6 0.21M 0.12M
1 4 51.8 1.7 0.23M 0.12M
4 4 51.8 1.6 0.18M 0.11M

Table 7: Effects of components in MixSynth Attention block on
Sub-JHMDB [16]. w/o means that the component is removed.

PCK@0.2 PCK@0.1

Ours 99.3 95.1
w/o SE Layer 99.0 94.2
w/o weighted sum 98.9 94.7
w/o temporal attention 98.8 94.4
w/o spatial attention 98.6 92.9

Components in MixSynth Attention Block. MixSynth At-
tention blocks mix synthesized spatial and temporal atten-
tion. SELayer is incorporated to augment feature efficacy
by emphasizing salient features while suppressing uninfor-
mative ones during attention matrix generation. The final
output is the weighted sum of spatial and temporal repre-
sentations. To evaluate the contribution of each component,
we conduct ablation experiments by removing one of the
components.

Results under different settings are summarized in Ta-
ble 7. Removing any component in MixSynth Attention
leads to worse performance. When SELayer is removed,
PCK@0.1 decreases by 0.9%, indicating its crucial role in
re-calibrating attention weights. The most significant per-
formance decrease is observed when the spatial attention
component is excluded: PCK@0.1 drops from 95.1% to
92.9%. This finding highlights the usefulness of the inter-
joint relation from spatial attention generation in refine-
ment. Moreover, combining spatial and temporal attention
through a weighted sum further improves the performance
by 0.4%. These results demonstrate the effectiveness of all
components in MixSynth Attention.

5. Conclusion
In this paper, we propose MixSynthFormer, a transformer

encoder-like structure with mixed synthetic attention for ef-
ficient human pose estimation in videos. The MLP-based
synthetic attention module generates spatial and temporal
matrices simultaneously, allowing fast and accurate recov-
ery and refinement. The flexible model design also en-
ables it to easily adapt to other motion synthesis tasks such
as short-term motion prediction. Comprehensive experi-
ments demonstrate the superior performance of our model
in 2D/3D pose estimation, body mesh recovery, and motion
prediction tasks, making it a promising solution for practi-
cal use cases.
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