
Deep Learning-based Job Placement in Distributed
Machine Learning Clusters

Yixin Bao∗, Yanghua Peng∗, Chuan Wu∗
∗Department of Computer Science, The University of Hong Kong, Email: {yxbao,yhpeng,cwu}@cs.hku.hk

Abstract—Production machine learning (ML) clusters com-
monly host a variety of distributed ML workloads, e.g., speech
recognition, machine translation. While server sharing among
jobs improves resource utilization, interference among co-located
ML jobs can lead to significant performance downgrade. Ex-
isting cluster schedulers (e.g., Mesos) are interference-oblivious
in their job placement, causing suboptimal resource efficiency.
Interference-aware job placement has been studied in the lit-
erature, but was treated using detailed workload profiling and
interference modeling, which is not a general solution. This paper
presents Harmony, a deep learning-driven ML cluster scheduler
that places training jobs in a manner that minimizes interference
and maximizes performance (i.e., training completion time).
Harmony is based on a carefully designed deep reinforcement
learning (DRL) framework augmented with reward modeling.
The DRL employs state-of-the-art techniques to stabilize training
and improve convergence, including actor-critic algorithm, job-
aware action space exploration and experience replay. In view
of a common lack of reward samples corresponding to different
placement decisions, we build an auxiliary reward prediction
model, which is trained using historical samples and used for
producing reward for unseen placement. Experiments using real
ML workloads in a Kubernetes cluster of 6 GPU servers show
that Harmony outperforms representative schedulers by 25% in
terms of average job completion time.

I. INTRODUCTION

Nowadays most leading IT companies operate machine
learning (ML) clusters of GPU servers. Various ML workloads
are run on the cluster, to support the company’s services.
For example, an online news headline company may run
language models for news parsing, text classification for fake
news detection, and personalized recommendation system for
advertisement display.

To train large datasets or large models, the ML workloads
are commonly run using distributed ML frameworks, e.g.,
TensorFlow [1], MXNet [2] and Caffe2 [3]. In a distributed
ML job, the dataset is divided and trained by separate workers,
which exchange calculated model parameters with each other
(either directly or through parameter servers (PSs)) to derive
the global parameters. The workers and PSs may well be
distributed onto different physical servers, when they cannot
be completely hosted on one server, or to maximize resource
fragment utilization on servers [4].

It is a fundamental challenge faced by cluster operators
how to efficiently place different ML jobs onto servers to
achieve high resource efficiency and training throughput.

This work was supported in part by grants from Hong Kong RGC under
the contracts HKU 17204715, 17225516, C7036-15G (CRF), grants NSFC
61628209 and HKU URC Matching Funding.

Many existing cluster schedulers (e.g., Borg [5], Mesos [6])
tend to allocate more resources to the jobs than server resource
capacity, in terms of resources such as CPU and memory, to
maximize resource utilization (assuming not all jobs use their
required resources fully at all time). However, even without
over-subscription of resources, co-located ML jobs on the
same server may interfere with each other negatively and
experience performance unpredictability. This is because the
jobs share underlying resources such as CPU caches, disk
I/O, network I/O and buses (e.g., QPI, PCIe), besides the
resources typically considered by modern cluster schedulers.
For example, when the GPU cards on a server are allocated
to different ML jobs, the PCIe bus is shared when the jobs
shuffle data between their allocated CPU and GPU; the QPI
bus is shared when two allocated GPUs are not attached to the
same CPU in the non-uniform memory access architecture.

Different levels of interference (i.e., resource contention)
occur when different types of ML jobs are co-located, de-
pending on the models being trained and behavior of the
training programs written by the users. Some ML jobs are
CPU intensive, e.g., CTC [7]; some are disk I/O intensive,
e.g., AlexNet [8], due to reading images for preprocessing; and
some have a high network bandwidth consumption level, due
to a large model size (number of parameters) and small mini-
batch sizes (leading to more frequent parameter exchanges
among workers), such as VGG-16 [9].

It is a natural idea to co-locate jobs with low levels of inter-
ference to optimize performance. However, existing schedulers
used in practical ML clusters (e.g., Yarn [10], Mesos [6]) are
largely interference-oblivious, due mainly to the difficulty of
obtaining potential interference levels of many jobs. In the
literature, a number of work have showcased the potential and
effectiveness of interference-aware scheduling, e.g., consider-
ing network contention in MapReduce jobs [11] [12], cache
access intensity of HPC jobs [13]. These studies build an
explicit interference model of the target performance based
on certain observations/assumptions and rely on hand-crafted
heuristics for incorporating interference in scheduling [11]
[13] [14]. They often require detailed application profiling
under tens of interference sources, and careful optimization
of coefficients in the performance model or thresholds in
the heuristics accordingly. Generality is an issue with these
white-box approaches: when the workload type or hardware
configuration changes, the heuristics may not work well.

In this paper, we pursue a black-box approach for ML job
placement that embraces interference while not relying on

detailed analytical performance modeling. Inspired by recent
good results of deep reinforcement learning (DRL) in the
game of Go [15] and video streaming [16], we adopt DRL in
our scheduler design, and present Harmony, a deep learning-
driven scheduler for ML clusters. Harmony encodes workload
interference implicitly in a neural network (NN) that maps raw
cluster and job states (e.g., available resources, jobs’ resource
demands) to job placement decisions (in terms of which server
to place each worker/PS of a job onto). Specifically, we make
the following contributions in developing Harmony.
. We identify severe performance degradation when sharing

resources among ML workloads, which has not been revealed
in the existing literature. In contrast to previous heuristics
that require operator insight and application knowledge, we
propose a general design, i.e., using DRL to schedule ML
workloads, which can adapt to unknown dynamics (e.g.,
interference not experienced before) automatically.
. We adopt a number of training techniques to resolve issues

that may prevent DRL from converging to a good ML job
placement policy, including actor-critic algorithm, job-aware
action space exploration and experience replay. In view of a
common lack of reward samples corresponding to different
placement decisions, we build an auxiliary reward prediction
model, which is trained using limited historical samples and
used for producing reward for unseen placement.
. We have implemented a prototype of Harmony on Ku-

bernetes [17] and evaluated Harmony on a GPU cluster, with
real ML jobs running on MXNet [2], training models from dif-
ferent application domains. Our experiment results show that
Harmony outperforms commonly adopted scheduling policies
(e.g., multi-resource bin packing) by 25% in terms of average
job completion time under various settings.

II. BACKGROUND AND MOTIVATION

A. Distributed Model Training

An ML job trains a model (i.e., a deep NN) using a
large amount of data to minimize a loss function iteratively.
It is typically computation intensive and hence many ML
frameworks have been designed for distributed training [1]
[2] [3]. Most of them adopt PS architecture [4]: the training
dataset is split among workers which train a local copy of
the model parameters using allocated data, respectively (i.e.,
data parallel training); the global model is partitioned to be
updated by multiple PSs. At the beginning of each training
iteration, each worker pulls the latest parameters from PSs to
update its local copy; then it calculates gradients (parameter
updates) over a small number of samples (i.e., a mini-batch)
and pushes the gradients to PSs. After receiving the gradients
from all workers,1 PSs use stochastic gradient descent (SGD)
method (or its variants) to update global parameters. One mini-
batch after another, a worker trains its data and pulls/pushes
parameters/gradients from/to the PSs. After the entire training

1We focus on synchronous training, which are more widely deployed in
real-world ML clusters, due to higher stability and model accuracy that
synchronous training can achieve as compared to asynchronous training [18].

TABLE I: DL Jobs

Model Application domain Dataset
ResNet-50 image classification ImageNet
VGG-16 image classification ImageNet

ResNeXt-110 image classification CIFAR10
Seq2Seq machine translation WMT17

CTC sentence classification mr
WLM language modeling PTB

ResN
et

VGG

ResN
eX

t

Se
q2

Se
q
CTC WLM

0

20

40

60

Sl
ow

do
wn

 (%
)

Fig. 1: Performance
degradation: bin packing
vs. standalone

Re
sN
et
VG
G

Re
sN
eX
t

Se
q2
Se
q
CT
C
WL
M

WLM
CTC

Seq2Seq
ResNeXt

VGG
ResNet 0.0

0.1
0.2
0.3
0.4
0.5

Fig. 2: Pair-wise interference
(darker color indicates more
severe interference)

dataset has been processed once, one training epoch is done.
The dataset is trained for multiple epochs until the model
converges or a preset maximum number of epochs is reached.

B. Interference among Co-located ML Jobs

We showcase the impact of interference among co-located
ML jobs with real ML workloads on our testbed (see Sec. VI
for hardware details).
Case study 1: bin packing vs. standalone execution. We run
6 deep learning (DL) jobs, training ML models from official
MXNet tutorials [19], as shown in Table I. Each job uses 1 PS
and 1 worker for simplicity. In experiment 1, each job is run on
a dedicated server; in experiment 2, the 6 jobs are packed onto
3 servers using multi-resource bin packing (i.e., consolidating
workloads on the least number of machines) [5] [20]. We
compare each job’s training speed in the two experiments,
and show the slowdown percentage in Fig. 1, calculated as
training speed (i.e., number of trained epochs per unit time)
in experiment 1 minus training speed in experiment 2, divided
by the former. We observe a 33% performance degradation on
average, and nearly 2x slowdown for training ResNeXt when
the jobs are co-located. Note that when a job has multiple PSs
and workers (instead of 1 PS and 1 worker in this case), the
performance degradation would be more severe due to global
synchronization, i.e., bad placement of one worker/PS slows
the overall training speed of a synchronous training job.
Case study 2: pair-wise interference level. We explicitly co-
locate each pair of jobs training two different models in Table I
on one server, and investigate the interference level, computed
as the sum of the slowdown percentages of the two jobs
(as compared to their respective standalone execution on the
server). Fig. 2 shows that different levels of interference occur
when different jobs are co-located, e.g., ResNet and WLM
are less affected when trained together, so do ResNet and
Seq2Seq. This demonstrates good opportunities for optimizing
resource efficiency and training performance in ML clusters
by co-locating jobs with little interference.

load balancing bin packing standalone

Fig. 3: Placement under different schemes (diamonds represent
PS and worker in job 1; squares represent those of job 2)

VGG ResNeXt0.0

0.5

1.0

No
rm

al
ize

d
Sp

ee
d a

b
c

Fig. 4: Normalized training
speed under 3 schemes

0 1 2 3 4 5
of CTC Jobs

0.0

0.5

1.0

No
rm

al
ize

d
Sp

ee
d

VGG
ResNeXt

Fig. 5: Speed with increasing
of co-located CTC jobs

Case study 3: placement under representative policies. We
further compare the results of three representative job place-
ment policies (a) load balancing, i.e., spreading workloads
across servers as even as possible, as adopted in Mesos [6] and
Kubernetes [17]; (b) multi-resource bin packing, as adopted in
Google Borg [5] and Tetris [20]; (c) standalone execution. We
run 2 ML jobs, each with 1 PS and 1 worker, on 2 servers; each
server can accommodate up to 4 tasks (either PS or worker).
The first job trains CTC and the second trains VGG-16 or
ResNeXt-110.

Fig. 3 illustrates 3 placement schemes according to the
policies. Fig. 4 shows the training speed when the second
job runs VGG-16 and ResNeXt-110, respectively, under the
3 placement schemes. Standalone execution leads to the best
performance, but also resource underutilization. Ideally, bin
packing should outperform load balancing, in terms of both
resource utilization and training performance, since it avoids
cross-machine communication by placing PS and worker
together. But this is not true when the second job trains
ResNeXt-110, which performs better under the load balancing
scheme. This is due to the more severe interference between
training ResNeXt and CTC together. Fig. 5 further shows the
training speed of ResNeXt (or VGG) when the number of
co-located CTC training jobs increases. The more jobs are
co-located, the worse the interference is.

All 3 schemes are not good enough to achieve high resource
utilization and training speed at the same time. When more
jobs are colocated (the number of different combinations of
jobs would be huge), performance interference is even harder
to identify and model. We resort to a black-box policy learned
through DRL for job placement.

C. Challenges in Applying DRL in Job Placement

RL has been widely used for sequential decision making in
an unknown environment, where an agent observes the current
environmental state, selects an action based on current policy,
and updates the policy based on the feedback (i.e., reward

from the environment). In DRL, the policy is learned through
training an NN using rewards collected by trial-and-error
interactions with the environment, with the goal of optimizing
cumulative reward over time [21].

In our placement problem, the state space and action space
are very large. For example, the action space is exponential in
the numbers of jobs, workers/PSs in jobs, and servers. Even
with 6 jobs, 3 workers plus PSs each, and 6 servers, there are
more than 100 million different ways of placement. The com-
plexity of state space and action space often prevents (quick)
convergence of RL to a good decision making policy [22], due
to insufficient or ineffective exploration. Further, it leads to
significant practical difficulty in collecting enough traces for
DRL training, which contain reward samples corresponding
to various deployment ways. Even in production clusters that
have operated for a few years, hardly ever all possible place-
ment scenarios have happened. Without sufficient samples, it
is unlikely to train the DRL NN to converge to a good policy.

To train our DRL model, we need one way to produce
synthetic reward samples for placement decisions that are
produced by DRL agent, but not seen in historical ML cluster
operation traces. We do not rely on analytical interference
models [11] [12], but adopt a more generic approach of using
another NN for reward modeling, trained through supervised
learning using the available traces.

III. SYSTEM OVERVIEW

We consider a machine learning cluster with multiple GPU
servers. ML training jobs are submitted to the cluster over
time. Each job runs a distributed ML framework (e.g., MXNet,
as in our experiments) to learn a specific ML model by repeat-
edly training its dataset. We focus on distributed ML jobs using
the parameter server architecture; our design can be readily
extended to handle jobs using all-reduce type of algorithms
for direct parameter exchange among the workers [3].

When submitting an ML job, the job owner provides the
following job information: (i) his specific resource demands
to run each worker and each PS, respectively, (ii) the total
numbers of workers and PSs to use, and (iii) the total number
of training epochs to train the dataset for. Worker/PS resource
demands and total worker/PS numbers can be provided based
on the model being trained, training program the user wrote,
and experience of the user in training similar models. The total
number of training epochs can be set based on expert knowl-
edge or job history, e.g., as an upper bound on the number of
epochs used to achieve model convergence (typically indicated
by the convergence of model loss or accuracy according to a
threshold), when similar models were trained before.

Our proposed ML cluster scheduler, Harmony, schedules
jobs in a batch processing manner, similar to [23] [18]. Time
is divided into small scheduling intervals. Harmony batches
newly arrived jobs in each interval and then decides the batch’s
placement altogether, i.e., on which server each worker and
each PS in a job should be run (as a virtual machine or
a container). Then the jobs are deployed accordingly and
run to completion, i.e., placement of each job’s workers and

Synthetic
Trace NN

Policy

State

Observe State Change

Reward

Reward
Prediction

NN
Historical

Trace

Supervised Learning

Online Inference

Reward
Model

DRL
Model

Submitted
Jobs

Collect Trace

Placement
Decision

Deep Reinforcement Learning

Job
Placement

Fig. 6: Harmony workflow

PSs does not change through the training course. Hence
Harmony schedules newly arrived jobs only in each scheduling
interval, placing them according to current resource avail-
ability on the servers. According to our discussions with
companies operating large AI clouds (e.g., Microsoft and
Alibaba), job submission with resource specification and no
placement adjustment after deployment are the norm in ML
clusters; any dynamic adjustment of resource allocation to a
running job is hard to implement in practice.

Harmony aims to minimize the average job completion time
in the ML cluster, respecting the server capacity constraints.
It learns a good job placement policy based on DRL, and
combines offline training with online inference plus model
update. The detailed workflow of Harmony is shown in Fig. 6.

Offline training is largely indispensable for producing a
good model for online decision making (by inferences on the
model); pure online learning of the policy NN from scratch has
been widely known to result in poor policies at the beginning
of learning, as DRL typically requires a large number of trials
and errors in order to converge to a good policy [22] [15].
Large historical traces containing enough samples may not
always be available; for DRL models with large action space,
DRL may select actions or enter states that are never seen in
practice. We boost our DRL with a reward prediction model
(using another NN), to resolve the issue of insufficient training
samples. Our offline training is divided into two steps.
. Reward model training. With historical job traces, Har-

mony trains the reward prediction NN using supervised learn-
ing. The input includes job set information and placement
state; the label is the reward (training speed) of each job. This
model provides fast reward evaluation for any job set with
corresponding placement decisions.
. DRL model training. The DRL NN takes various job

sets and cluster resource availability as input, and produces
placement decisions for new jobs in the set. With the reward
prediction model, we can effectively expand the available trace
set and generate sufficient samples for DRL training.

Online inference and model update. The offline trained

Value Network

policy

value

Policy Network

Server

Server 1

State

Job

Job 1

Fig. 7: DRL architecture

models are used for online decision making. In each schedule
interval, Harmony decides placement of the new job batch
via inference on the DRL NN, and observes actual rewards
corresponding to the placement decisions. We periodically
retrain the DRL NN and the reward NN using online collected
samples, to continuously improve decisions over time.

We detail our design of DRL and reward prediction modules
in the following sections.

IV. DEEP REINFORCEMENT LEARNING BASED
PLACEMENT POLICY

We first present our DRL algorithm for learning the job
placement policy that maximizes job training speed across the
entire cluster.

A. DRL Framework

Fig. 7 shows the detailed design of our DRL framework.
State space. The input state to the DRL NN is s =
(x, r, ~w, ~p,v,d), includes the following:
(1) x, an N×L binary matrix encoding the ML models trained
by the jobs, where N is the maximal number of concurrent
jobs in an interval and L is the maximal number of models
that can be trained in the cluster (i.e., total number of types
of training jobs at all times). The concurrent jobs include
both newly arrived jobs and uncompleted jobs which were
submitted earlier; the reason to include existing jobs whose
placement has been decided in earlier intervals, is to allow
the DRL model to learn potential interference between new
jobs and existing jobs on shared servers. Each vector ~xn in x,
∀n = 1, . . . , N , is a one-hot encoding of job n’s model [22].
The same ML model, e.g., a DNN of the same architecture
and mini-batch size but possibly different learning rates, uses
the same encoding. For example, if there are 3 models in total
and 3 concurrent jobs using each of the models respectively,
then x = {[1, 0, 0], [0, 1, 0], [0, 0, 1]}.
(2) r, an N × 2(1 +K) matrix encoding worker/PS resource
demands in the jobs, where K is the number of resource types
to compose a worker or a PS. In each vector ~rn in r, the
first value represents the number of workers requested by job

n, and the next K values represent demand for the K types
of resource in each worker; similarly, the rest 1 + K values
represent the number of PSs requested by job n and each PS’s
resource composition. For example, considering a job with
3 workers and 2 PSs, each requiring two types of resources
(GPUs and CPU cores), ~rn = [3, 1, 2, 2, 0, 1] represents that
each worker in the job requires 1 GPU and 2 CPU cores, and
each PS needs no GPU but 1 CPU core.

(3) ~w (~p), an N -dimensional vector, in which the nth item is
the number of workers (PSs) allocated to the nth job.

(4) v, an M×K matrix representing available amount of each
type of resources on the servers, where M is the number of
physical servers. Each vector ~vm, ∀m = 1, . . . ,M , represents
available resources on server m.

(5) d, an M × 2N matrix encoding the placement of workers
and PSs of the concurrent jobs on the servers. In each vector
~dm (m = 1, . . . ,M), the number of workers and the number
of PSs of job n (n = 1, . . . , N) placed on server m, is on
the 2n−1th and 2nth position, respectively. Suppose sever m
hosts 1 PS and 1 worker of job 2 and 1 PS and 2 workers of job
5 among 6 jobs; we have ~dm = [0, 0, 1, 1, 0, 0, 0, 0, 2, 1, 0, 0].

Action space. After receiving s, the DRL agent selects an
action a based on a policy πθ(s, a), which is a probability
distribution over the action space. The policy is produced by
an NN, and θ is the set of parameters in the NN. Naturally,
an action can include placement decisions of all new jobs in a
scheduling interval (recall we do not adjust placement of exist-
ing jobs); however, this leads to an action space of exponential
size, due to the exponentially many placement combinations of
all workers and PSs in all jobs. A large action space may incur
significant training time and worse results [22]. To expedite
policy learning, we simplify the action definition, and our
action space contains 2MN ′ actions as follows (N ′ denotes
the maximal number of newly arrived jobs in an interval and
N ′ ≤ N): (i) (n, 0,m), meaning placing one worker of job n
on server m, ∀n ∈ [1, N ′],m ∈ [1,M]; (ii) (n, 1,m), placing
one PS of job n on server m, ∀n ∈ [1, N ′],m ∈ [1,M].

In each scheduling interval, we allow multiple inferences
over the NN, each selecting an action out of the action space,
in order to come up with a complete set of placement decisions
for all workers and PSs in the new jobs (or the inferences stop
when there are not enough resources to place any additional
PS/worker). In this way, we use multiple inferences to effec-
tively reduce action space [23] [22].

Reward. We target average job completion time minimization
by training the policy NN. Job completion time would be
a natural reward to observe, but it is only known when a
job is finished, which may well be hundreds of scheduling
intervals later; further, completion time of a job is decided
not only by the current job placement state, but also future
deployment of upcoming jobs (possibly on the same servers
and interfering with this job). We design a per-interval reward
to collect more reward samples through the job processes, for
more frequent RL model updates to expedite convergence. The

reward r observed when action a is taken under state s is the
sum of normalized training speeds of all concurrent jobs in
the scheduling interval:

r =
∑
n∈[N]

cn
en

(1)

where cn is the training speed (i.e., number of trained epochs
in this interval) of job n and en is the total number of training
epochs that job n should complete. The rationale behind this
reward design is that the more epochs a job trains in an
interval, the fewer intervals it takes to complete, and hence
maximizing cumulative reward amounts to minimizing average
job completion time.
NN model. We design the policy NN architecture as follows
(Fig. 7). The state of each job or each server is connected to a
fully connected layer separately, and then they are connected
to a few fully connected layers before the output layer. In this
way, the NN can extract features from each job or each server
before merged together as a whole. To respect server resource
capacities, in the output layer of the NN, we mask the invalid
actions, which deploy a worker or PS on a server without
enough resources to run it, by setting its probability to 0 in
the policy distribution. Then we rescale the probabilities on
all actions such that the sum still equals 1.

B. DRL Model Training

We apply the REINFORCE algorithm [24] to train the
policy NN, which updates the NN parameters θ using policy
gradients computed with samples. Each sample is a four-tuple,
(s, a, r, s′), where s′ is the new state after action a is taken
in state s. Note that our system runs differently from standard
RL: we do multiple inferences (i.e., produce multiple actions)
using the NN in each scheduling interval t; the input state
changes after each inference; we only observe the reward and
update the NN once after all inferences in the interval are
done. Let It be the set of inferences in interval t; then we
can obtain It samples in the interval, and we set the reward in
each of these samples to be the reward in (1) observed after
all inferences are done in t.

The goal of training the policy NN is to maximize the
expected cumulative discounted reward J(θ) = E[

∑
i≥0 γ

iri],
where γ ∈ [0, 1] is the discount factor, i indicates the total
number of inferences done from system start, and ri is the
reward in the sample corresponding to the ith inference. The
policy gradient of J(θ) with respect to θ, to be used for NN
update in interval t, can be calculated as follows [24]:

5θ J(θ) = Eπθ [
∑
i∈It

5θ log(πθ(si, ai))Q
πθ (si, ai)] (2)

where the Q value, Qπθ (si, ai), represents the “quality” of
the action ai taken in given state si following the policy πθ,
calculated as the expected cumulative discounted reward to
obtain after selecting action ai at state si following πθ, i.e.,
Qπθ (si, ai) =

∑
i′≥i γ

i′−iri′ . Since we can not enumerate
all possible future states to calculate an exact Q value, we
can use a mini-batch of samples to calculate an empirical Q

value [24] and then compute the gradient 5θJ(θ). We can
then apply the SGD method to update parameters θ to improve
the empirical cumulative discounted reward. The idea behind
is to increase the probabilities of selecting actions whose Q
values are positive and reduce the probabilities of actions with
negative Q values.

Beyond the basic policy gradient-based training, we adopt
a number of techniques to stabilize training, expedite policy
convergence, and improve the quality of the obtained policy.

1) Actor-critic: The REINFORCE algorithm may suffer
from high variance in the Q values derived (for comput-
ing gradients), preventing quick convergence of the policy
model [25]. To reduce the variance, we improve the basic
policy gradient training with the actor-critic algorithm [21].
The basic idea is to introduce a baseline function dependent on
the state, to improve the gradients used in SGD for updating
the policy NN. We reinforce an action from a state if the
“quality” of this action, Qπθ (si, ai), is better than the “average
quality” of all possible actions in si, V πθ (si), calculated
as the expected cumulative reward following the policy π
from state si, over all possible actions in the state. That
is, we evaluate how good an action is by its advantage,
i.e., Qπθ (si, ai)− V πθ (si). We use this advantage instead of
Qπθ (si, at) in Eqn. (2) for gradient calculation. The purpose
is to ensure a much lower variance in the estimation of the
policy gradient, such that policy learning is more stable.

The value function, V πθ (si), is typically estimated by a
value network. It has the same architecture as the policy
network, except that the output layer is a linear neuron without
any activation function [25]. The input to the value network is
the same as that to the policy network (see Fig. 7); the output
of the value network is an estimate of value V πθ (si) (while
the output of the policy network is the policy distribution
over placement actions). The value network is trained using
temporal difference method [25].

2) Exploration: To obtain a good policy through DRL, we
need to ensure that the action space is adequately explored
(i.e., actions leading to high rewards can be sufficiently pro-
duced); as otherwise, DRL may well converge to poor local op-
timal policy [22] [25]. One approach to encourage exploration
is to add an entropy regularization term β·5θH(πθ(si, ·)) [25]
into gradient calculation in Eqn. (2), where β is the entropy
weight. The basic idea of entropy regularization is to encour-
age uniform action probability and prevents convergence to a
single choice of output.

However, we find that entropy regularization is not enough
due to the large exploration space for job placement. We
further adopt another technique based on the ε-greedy
method [21]. When performing each inference over the policy
NN (for its training), with probability 1 − ε, we adopt the
action (worker/PS placement decision) produced according
to the NN’s output policy distribution; with probability ε,
we randomly choose between multi-resource bin packing and
load balancing policies, and adopt the placement decision
produced by the chosen policy. The bin packing policy places
a worker or a PS (specified in the action selected by the NN)

on a machine with least capacity left (where the worker or
PS can still be accommodated); load balancing places one
worker or PS on the least loaded machine. The rationale
behind is to enable NN to effectively explore the tradeoff
between resource utilization (bin packing is best for) and
workload interference (that load balancing avoids). In this way,
we improve exploration quality to guide the NN training to
converge to a good policy.

3) Experience replay: It has been known that training an
RL model using consecutive samples is hard to converge,
due to the correlation among the samples [26]. The current
policy NN determines the following training samples, e.g., if
the policy network finds that packing jobs improves reward,
then the next sample sequence will be dominated by those
produced from this strategy; this may lead to a bad feedback
loop, preventing exploration of samples with higher rewards.
We adopt experience replay [26] to alleviate correlation in the
sample sequence.

Specifically, we maintain an FIFO replay buffer with a fixed
size (e.g., 8192 as in our experiments), large enough to buffer
samples from multiple scheduling intervals. When computing
the gradients for policy NN update in each scheduling interval,
instead of using all samples collected in this interval, we
randomly select a mini-batch of samples (32 samples as in
our experiments) from the replay buffer, where the samples
could be from multiple previous intervals.

V. REWARD PREDICTION MODEL

We next design a reward model that can predict the reward
given job and cluster states, based on which we can produce a
large number of samples for DRL training. We adopt an NN
as the reward model. An advantage of NNs is that they do
not need hand-crafted features and can be applied directly to
“raw” observations; besides, they are more general and can
potentially be applied to other workloads.
NN architecture. The input state to the NN is a subset of the
input to the DRL NN: (x, ~w, ~p,d). The resource demands of
a worker and a PS in the concurrent jobs are not included as
they can typically be inferred from a job’s model type. The
output is a vector including predicted training speeds of the
input jobs (i.e., number of training epochs to complete in an
interval) The input state is connected to a sequence of hidden
fully connected layers before the output layer. In practice,
we find that fully connected layers work quite well in our
scenario compared to more complicated neural layers, such as
convolution layer (typically used for image processing [27]).
NN training. We train the NN by supervised learning using
available samples in historical traces. We compare the pre-
dicted training speed cn of each job n produced by the NN
with the label c′n, i.e., training speed of each job n in the
traces, by computing the relative error of the prediction and
the label: L(c, c′) = 1

|N |
∑
n∈[N]

|c′n−cn|
c′n

. Then we use SGD
to update parameters in the NN to minimize the overall relative
error. We train the NN iteratively using the samples from the
historical traces such that the prediction produced by the NN
converges with an acceptable relative error (e.g., 10%).

VI. PERFORMANCE EVALUATION

We evaluate Harmony using testbed experiments.

A. Implementation

Scheduler on Kubernetes. We implement Harmony using
python on Kubernetes 1.7 [17] as a custom scheduler. We
run workers and PSs on docker containers. Training datasets
of jobs are stored in HDFS 2.8 [28]. At the beginning
of a scheduling interval, Harmony queries unscheduled jobs
and existing cluster state by sending HTTP requests to the
Kubernetes API server and makes placement decisions using
the trained policy network. The Kubernetes agents start the
workers/PSs of each job on servers accordingly. Harmony up-
dates the DRL and reward models using online collected data.
We run each training job using the MXNet framework [2].
DRL Training. For offline training, we implement the DRL
NN using libraries provided on TensorFlow [1]. The NN has 3
hidden layers with 196 neurons in the first two hidden layers
and 128 neurons in the last hidden layer. We do parallel
training of the DRL NN: we use 20 workers to generate
samples (using the reward prediction model) and calculate
gradients locally; the gradients are aggregated synchronously
to obtain the global parameters. We adopt Adam optimizer [29]
with a fixed learning rate of 0.0001, mini-batch size of 32
samples per worker, reward discount factor γ = 0.9, and an
experience replay buffer size of 8192 samples. The greedy
exploration factor ε and entropy weight β are set to 0.5 at the
beginning and are annealed linearly during training.
Reward Model Training. We implement the reward NN using
TensorFlow too. The reward NN has 3 hidden layers with
196 or 128 neurons in each hidden layer. We train it using
Adam optimizer [29] with a fixed learning rate of 0.005 and a
batch size of 32 samples. We also apply batch normalization
for reward NN to accelerate convergence [27]. The traces
for the reward model are collected on our GPU cluster: we
generate jobs with random resource configurations, place them
randomly and measure the training speed of each job; the
number of jobs generated and their worker/PS configurations
are sufficient to saturate resource capacity of our cluster.

B. Evaluation Methodology

Testbed. We build a testbed of 6 GPU servers connected by
a Dell Networking Z9100-ON 100GbE switch. Each server
has one 8-core Intel E5-1660 CPU, two GTX 1080Ti GPUs,
48GB RAM, one MCX413A-GCAT 50GbE NIC, one 480GB
SSD and one 4TB HDD.
Workloads. By default, the jobs are submitted to the cluster
in a uniform random manner with 3 jobs per interval on
average. Each interval is 20 minutes long. Upon an arrival
event, we randomly select a job from Table I and set its
required number of workers and PSs randomly in [1, 3] to
generate a job variant. For jobs training large datasets (e.g.,
ImageNet [30]), we downscale the datasets so that the training
can be finished in a reasonable amount of time.
Baselines. We compare Harmony with the following policies:

– Load Balancing (LB): it assigns a worker/PS to the server
with the least load. We normalize the usage of resources (e.g.,
CPU, GPU) and sum them as the load of a server.

– Tetris [20]: it uses multi-resource bin packing to place a
worker/PS to avoid resource fragmentation.

– Least Interference First (LIF-Line, LIF-Quad) [31] [11]:
it builds a linear or non-linear interference model by assuming
that task slowdown is a function of CPU and bandwidth
usage. To determine coefficients in the interference model, we
profile the performance of each ML model under different
CPU and bandwidth usages and use a least-square solver to
calculate the coefficients based on profiling data. We find
that linear function and quadratic function fit our measured
traces best, so we use them as two baselines, i.e., LIF-Line
and LIF-Quad. When placing a worker/PS, the algorithm
calculates an interference score (i.e., performance slowdown
of all workers/PSs on a server) for each server and selects the
server with the least interference.

C. Performance

Fig. 8 compares the performance of Harmony with baselines
under three job arrival patterns: (1) default uniform distri-
bution; (2) a Poisson process with an arrival rate of 2 per
scheduling interval; (3) the job arrival process extracted from
Google cluster traces [32], with downscaled arrival rates. Har-
mony improves average job completion time (in terms of num-
ber of intervals) by more than 25% compared with all baselines
in the three cases. Harmony finds a good balance between
load balancing and bin packing via exploration, to jointly
reduce the computation interference and data transmission
time, and improves its scheduling policy by feedback obtained
after each decision making. Load balancing performs worse
than Harmony as it only focuses on reducing computation
interference on each machine, without considering network
transmission overhead. Tetris tries to put the jobs together to
avoid wasting resource fragments, and ignores performance
degradation caused by interference. LIF-Line and LIF-Quad
rely heavily on accurate modeling of interferences among jobs.

We also compare the reward model with interference model
in LIF-Line and LIF-Quad. We shuffle the collected trace
(13177 samples) and split it into training dataset (90%) and
test dataset (10%). Fig. 9(a) shows that our model achieves
9.8% relative error, much lower than that of the interference
models in LIF-Line and LIF-Quad. Further, Fig. 9(b) shows the
relative errors incurred for predicting speeds of jobs training
two models, Seq2Seq and CTC. We see that interference
models in LIF-Line and LIF-Quad work well for CTC, but
have large error on Seq2Seq, due to the following: CTC is
CPU-intensive while Seq2Seq does not utilize CPU much
and carries out computation mostly on GPU; LIF builds
interference models for CPU and network sharing only.

In addition, to validate scalability of Harmony, we generate
simulated traces of job placement on 30 machines (at a scale
of a rack) based on analytical models [31] [11], and use the
simulated traces to train reward prediction NN and our DRL
NN. We observe that Harmony can still reduce average job

Harmony LB TetrisLIF-Line
LIF-Quad0

2

4

6

8

Av
g.

 Jo
b

Co
m

pl
et

io
n

Ti
m

e

(a) Uniform

Harmony LB TetrisLIF-Line
LIF-Quad0

2

4

6

8

Av
g.

 Jo
b

Co
m

pl
et

io
n

Ti
m

e

(b) Poisson

Harmony LB TetrisLIF-Line
LIF-Quad0

2

4

6

8

Av
g.

 Jo
b

Co
m

pl
et

io
n

Ti
m

e

(c) Google trace

Fig. 8: Performance comparison under different job arrival patterns

completion time by at least 23%, as compared to the baselines.
We omit detailed figures due to space limit.

D. Deep Dive

We next evaluate our detailed design of Harmony.
Number of neurons. We fix the number of hidden layers
to 3 and vary the number of neurons in the hidden layer.
We train all neural networks until convergence over the same
training set. Fig. 10(a) shows the best performance is achieved
when there are 128 neurons. With fewer neurons, there are not
enough NN parameters to approximate the placement policy.
The performance degrades with too many neurons, as it may
capture unnecessary features (i.e., overfitting).
Number of hidden layers. We fix the number of neurons to
196 in the first two hidden layers and 128 in the remaining
hidden layers, and vary the number of hidden layers. As shown
in Fig. 10(b), the NN with 3 hidden layers performs the best.
With fewer NN layers, there are not enough parameters to
approximate a good policy; with more NN layers, it generally
takes a longer time to converge and results in lower perfor-
mance due to overfitting.
Value network. To investigate how the value network affects
training, we do not train the value network to provide the
baseline, but use the exponential moving average of the
rewards as a baseline in computing the gradient when training
the policy network. In Table II, the first row shows average
job completion time with all training techniques applied. We
see that without the value network, the performance is 49.3%
worse. This is because the average reward is not always an
effective baseline; in some cases even the optimal action leads
to a lower reward than the average reward over the history.
Exploration. We examine how exploration contributes to the
performance. From Table II, we see that without exploration,
the performance is significantly worse (i.e., 68.2% slowdown).
The reason is that without exploration, the DRL NN may make
a lot of useless trials to try many obviously bad actions and
get easily stuck in a local optimal policy.
Experience replay. We disable experience replay to examine
its effectiveness in DRL training. As shown in Table II, without
experience replay, the average job completion time is increased
by 37.7%, indicating that disrupting the order of samples and
using samples among different scheduling intervals to update
NN is critical for our DRL training.

NN LIF-Line LIF-Quad0

5

10

15

20

Er
ro

r (
%

)

(a) Overall error

Seq2Seq CTC0

5

10

15

20

Er
ro

r (
%

)

NN
LIF-Line
LIF-Quad

(b) Errors for jobs training
Seq2Seq and CTC

Fig. 9: Training speed prediction

32 64 96 128 2562

3

4

5

6

Av
g.

 Jo
b

Co
m

pl
et

io
n

Ti
m

e

(a) # of neurons

1 2 3 4 52

3

4

5

6

Av
g.

 Jo
b

Co
m

pl
et

io
n

Ti
m

e
(b) # of hidden layers

Fig. 10: Deep dive

TABLE II: Effectiveness of Training Techniques

Without Avg. Job Completion Time Slowdown (%)
(intervals)

- 4.3 0
Value network 6.4 49.3

Exploration 7.2 68.2
Experience replay 5.9 37.7

VII. RELATED WORK

ML job scheduling. There have been a few recent work on
resource allocation in ML clusters. Dorm [33] is a utilization-
fairness optimizer to schedule ML jobs. OASiS [34] is an
online scheduling algorithm for ML jobs. SLAQ [35] and
Optimus [18] build a performance model for each ML job
and dynamically adjusts resource allocation. They focus on
dynamic adjustment of the numbers of workers/PSs to fully
utilize cluster resources or improve training quality. Instead,
we study interference between colocated ML jobs and opti-
mize job placement using DRL, given fixed resource demands.

Interference-aware task placement. Abhishek et al. [13]

design an interference-aware VM placement algorithm for high
performance computing workloads in clouds. They heuristi-
cally classify workloads into several categories (e.g., based
on CPU cache interference level) and place workloads with
little CPU interference together. Bu et al. [11] target network
interference and locality-aware scheduling for MapReduce
workloads. Xu et al. [36] build an analytical model for MapRe-
duce applications by considering resource utilization and VM
interference. Paragon [14] and Quasar [37] use collaborative
filtering to predict application performance. These studies
model interference explicitly and typically require application
profiling to determine coefficients in the models. Instead, we
leverage historical data traces and learn interference implicitly
in NN without loss of generality.
DRL. DRL has achieved promising results in different prob-
lem domains. Mao et al. [38] use DRL to set task parallelism
level and execution order for data-parallel jobs running on
Spark. Liu et al. [39] use DRL to design a dynamic power
management policy for data centers. Mao et al. [16] apply
DRL to adjust streaming rates to cope with unstable network
bandwidth in an adaptive video streaming system. Mirhoseini
et al. [40] use DRL to optimize the operator placement of
a TensorFlow computation graph in a single machine. Xu
et al. [26] apply DRL for routing path selection in traffic
engineering. These work assume enough training data for
DRL, typically generated by a simulation model or online
measurement. Instead, we show that interference is difficult
to model and we develop a reward prediction NN to generate
samples for DRL training.

VIII. CONCLUSION

This paper presents Harmony, a deep learning-based sched-
uler that addresses performance interference and minimizes
average job completion time by efficient job placement in an
ML cluster. Instead of designing placement policy based on an-
alytical models of workload interference, we design a two-step
learning mechanism: we first exploit limited historical traces to
learn a reward neural network using supervised learning; then
we train the DRL model to learn placement decisions using
reward samples provided by the reward model. We believe
that our reward prediction module design is general, and
applicable to other DRL problems where historical traces are
not sufficient. Evaluation on a Kubernetes cluster shows that
Harmony outperforms representative scheduling policies by
25%, in reducing average job completion time in the cluster.

REFERENCES

[1] M. Abadi, P. Barham et al., “TensorFlow: A System for Large-Scale
Machine Learning,” in Proc. of USENIX OSDI, 2016.

[2] T. Chen, M. Li et al., “MXNet: A Flexible and Efficient Machine
Learning Library for Heterogeneous Distributed Systems,” in NIPS
Workshop on Machine Learning Systems (LearningSys), 2016.

[3] “Caffe2,” https://caffe2.ai/, 2018.
[4] M. Li, D. G. Andersen et al., “Scaling Distributed Machine Learning

with the Parameter Server,” in Proc. of USENIX OSDI, 2014.
[5] A. Verma, L. Pedrosa, M. Korupolu et al., “Large-Scale Cluster Man-

agement at Google with Borg,” in Proc. of ACM EuroSys, 2015.
[6] B. Hindman, A. Konwinski et al., “Mesos: A Platform for Fine-Grained

Resource Sharing in the Data Center,” in Proc. of USENIX NSDI, 2011.

[7] Y. Kim, “Convolutional Neural Networks for Sentence Classification,”
in Proc. of SIGDAT EMNLP, 2014.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in Proc. of NIPS, 2012.

[9] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-scale Image Recognition,” in Proc. of ICLR, 2015.

[10] V. K. Vavilapalli, A. C. Murthy, C. Douglas et al., “Apache Hadoop
Yarn: Yet Another Resource Negotiator,” in Proc. of ACM SoCC, 2013.

[11] X. Bu, J. Rao, and C.-z. Xu, “Interference and Locality-aware Task
Scheduling for MapReduce Applications in Virtual Clusters,” in Proc. of
ACM HPDC, 2013.

[12] F. Xu, F. Liu et al., “Network-Aware Task Assignment for MapReduce
Applications in Shared Clusters,” Journal of Internet Technology, 2015.

[13] A. Gupta, L. V. Kale, D. Milojicic, P. Faraboschi et al., “HPC-aware
VM Placement in Infrastructure Clouds,” in Proc of. IEEE IC2E, 2013.

[14] C. Delimitrou and C. Kozyrakis, “Paragon: QoS-aware Scheduling for
Heterogeneous Datacenters,” ACM SIGPLAN Notices, 2013.

[15] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang et al.,
“Mastering the Game of Go Without Human Knowledge,” Nature, 2017.

[16] H. Mao, R. Netravali, and M. Alizadeh, “Neural Adaptive Video
Streaming with Pensieve,” in Proc. of ACM SIGCOMM, 2017.

[17] “Kubernetes,” https://kubernetes.io, 2018.
[18] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: an Efficient

Dynamic Resource Scheduler for Deep Learning Clusters,” in Proc. of
ACM EuroSys, 2018.

[19] “MXNet Official Examples,” https://github.com/apache/
incubator-mxnet/tree/master/example, 2017.

[20] R. Grandl, G. Ananthanarayanan, S. Kandula et al., “Multi-Resource
Packing for Cluster Schedulers,” in Proc. of ACM SIGCOMM, 2014.

[21] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press Cambridge, 1998.

[22] O. Vinyals, T. Ewalds, S. Bartunov et al., “StarCraft II: A New Challenge
for Reinforcement Learning,” arXiv preprint arXiv:1708.04782, 2017.

[23] H. Mao, M. Alizadeh, I. Menache et al., “Resource Management with
Deep Reinforcement Learning,” in Proc. of ACM HotNets, 2016.

[24] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
Gradient Methods for Reinforcement Learning with Function Approxi-
mation,” in Proc. of NIPS, 2000.

[25] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous Methods for Deep
Reinforcement Learning,” in Proc. of ICML, 2016.

[26] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang,
“Experience-driven Networking: A Deep Reinforcement Learning based
Approach,” in Proc. of IEEE INFOCOM, 2018.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in Proc. of IEEE CVPR, 2016.

[28] “HDFS,” https://wiki.apache.org/hadoop/HDFS, 2014.
[29] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”

in Proc. of ICLR, 2015.
[30] “ImageNet Dataset,” http://www.image-net.org, 2018.
[31] R. Chiang et al., “TRACON: Interference-Aware Schedulingfor Data-

Intensive Applicationsin Virtualized Environments,” IEEE TPDS, 2014.
[32] C. Reiss, A. Tumanov et al., “Heterogeneity and Dynamicity of Clouds

at Scale: Google Trace Analysis,” in Proc. of ACM SoCC, 2012.
[33] P. Sun, Y. Wen, N. B. D. Ta, and S. Yan, “Towards Distributed Machine

Learning in Shared Clusters: A Dynamically-Partitioned Approach,” in
Proc. of IEEE Smart Computing, 2017.

[34] Y. Bao, Y. Peng, C. Wu, and Z. Li, “Online Job Scheduling in Distributed
Machine Learning Clusters,” in Proc. of IEEE INFOCOM, 2018.

[35] H. Zhang, L. Stafman, A. Or et al., “SLAQ: Quality-Driven Scheduling
for Distributed Machine Learning,” in Proc. of SoCC, 2017.

[36] F. Xu, F. Liu, and H. Jin, “Heterogeneity and Interference-Aware Virtual
Machine Provisioning for Predictable Performance in the Cloud,” IEEE
Transactions on Computers, 2016.

[37] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-Efficient and QoS-
aware Cluster Management,” ACM SIGPLAN Notices, 2014.

[38] H. Mao, M. Schwarzkopf, S. Venkatakrishnan et al., “Learning Graph-
based Cluster Scheduling Algorithms,” in Proc. of SysML, 2018.

[39] N. Liu, Z. Li, J. Xu, Z. Xu, S. Lin, Q. Qiu, J. Tang et al., “A Hierarchical
Framework of Cloud Resource Allocation and Power Management
Using Deep Reinforcement Learning,” in Proc. of IEEE ICDCS, 2017.

[40] A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner et al., “Device Placement
Optimization with Reinforcement Learning,” in Proc. of ICML, 2017.

