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Deep Learning-Based Job Placement in Distributed
Machine Learning Clusters With
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Abstract— Nowadays, most leading IT companies host a variety
of distributed machine learning (ML) workloads in ML clus-
ters to support AI-driven services, such as speech recognition,
machine translation, and image processing. While multiple jobs
are executed concurrently in a shared cluster to improve resource
utilization, interference among co-located ML jobs can lead
to significant performance downgrade. Existing cluster sched-
ulers, such as YARN and Mesos, are interference-agnostic in
their job placement, leading to suboptimal resource efficiency
and usage. Some literature has studied interference-aware job
placement policy, but relies on detailed workload profiling and
interference modeling, which is not a general solution. In this
work, we present Harmony, a deep learning-driven ML cluster
scheduler that places heterogeneous training jobs (either with
parameter server architecture or all-reduce architecture) in a
manner that minimizes interference and maximizes performance
(i.e., training completion time minimization). The design of
Harmony is based on a carefully designed deep reinforcement
learning (DRL) framework enhanced with reward modeling.
The DRL integrates a dynamic sequence-to-sequence model with
the state-of-the-art techniques to stabilize training and improve
convergence, including actor-critic algorithm, job-aware action
space exploration, multi-head attention, and experience replay.
In view of a common lack of reward samples corresponding to
different placement decisions, we build an auxiliary sequence-to-
sequence reward prediction model, which is trained with histori-
cal samples and used for producing reward for unseen placement.
Experiments using real ML workloads in a Kubernetes cluster of
6 GPU servers show that Harmony outperforms representative
schedulers by 16%-42% in terms of average job completion time.

Index Terms— Distributed machine learning systems, job
scheduling, deep reinforcement learning.

I. INTRODUCTION

IN LEADING IT companies, production machine learning
(ML) clusters of GPU servers commonly host a variety

of distributed ML workloads, to support the company’s ser-
vices. For example, an online video platform may use a
speech recognition model to generate caption and run language
models for auto-translation, image classification for illegal
video detection, and personalized recommendation system for
advertisement display.
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In order to accelerate training process over large datasets
or large models, the ML workloads are commonly run using
distributed ML frameworks, e.g., TensorFlow [1], MXNet [2]
and PyTorch [3]. In a distributed ML job, the dataset is divided
and trained by separate workers, where the worker exchanges
calculated model parameters with each other (either directly
with an all-reduce collective or through parameter servers) to
derive the global parameters. In case of a parameter server
(PS) architecture, it is common that the workers and parameter
servers may well be distributed onto different physical servers,
either when they cannot be completely hosted on one server,
or to maximize resource fragment utilization on servers [4],
[5], [6].

With increasing deep learning (DL) training workloads
hosted on public clouds or private clusters, a fundamental
challenge faced by cluster operators is that, how to effi-
ciently place different ML jobs onto servers to achieve high
resource efficiency and training throughput. To maximize
resource utilization, many existing cluster schedulers, such as
Borg [7] and Mesos [8], tend to allocate more resources to
the jobs than server resource capacity (i.e., resource over-
selling), in terms of resources such as CPU and memory
by assuming that not all jobs use their required resources
fully at all time. However, even without over-subscription
of resources, co-located ML jobs on the same server may
interfere with each other negatively and experience perfor-
mance deterioration unpredictably. This is because the jobs
share underlying resources such as CPU caches, disk I/O,
network I/O and buses (e.g., QPI, PCIe), besides the resources
typically considered by modern cluster schedulers (e.g., GPU,
memory). For example, when the GPU cards on a server
are allocated to different ML jobs, the PCIe bus is shared
when the jobs shuffle data between their allocated CPU and
GPU; the QPI bus is shared when two allocated GPUs are not
attached to the same CPU in the non-uniform memory access
architecture.

The levels of interference (i.e., resource contention) are
different when different types of ML jobs are co-located,
due mainly to the models being trained and behavior of the
training programs written by the users. Some ML jobs are
CPU intensive, e.g., CTC [9], due to demanding computation;
some are disk I/O intensive, e.g., AlexNet [10], due to reading
images for pre-processing; and some have a high network
bandwidth consumption level, due to a large model size
(number of parameters) and small mini-batch sizes (leading
to more frequent parameter exchanges among workers), such
as VGG-16 [11].
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To optimize training performance, a natural idea is to
co-locate jobs with low levels of interference. However, exist-
ing schedulers used in practical ML clusters (e.g., Yarn [12],
Mesos [8]) are largely interference-oblivious, due mainly to
the difficulty of obtaining potential interference levels of many
jobs, leading to longer job training time and sub-optimal
resource efficiency. In the literature, a number of work have
showcased the potential and effectiveness of interference-
aware scheduling, e.g., considering network contention in
MapReduce jobs [13], [14], cache access intensity of HPC
jobs [15]. These studies build an explicit interference model
of the target performance based on certain observations or
assumptions (e.g., that interference slows down performance
exponentially [13]), and rely on hand-crafted heuristics for
incorporating interference in scheduling [13], [15], [16].
To achieve high-quality scheduling decisions, such approaches
often require detailed application profiling under tens of inter-
ference sources (e.g., due to sharing of different resources such
as CPU caches, network bandwidth), and careful optimization
of coefficients in the performance model or thresholds in the
heuristics accordingly. Generality is an issue with these white-
box approaches: in case of the workload type or hardware
configuration changes, the heuristics may not work well.

Different from existing approaches, in this paper, we pursue
a black-box approach for ML job placement that embraces
interference while not relying on detailed analytical perfor-
mance modeling. Inspired by recent good results of deep
reinforcement learning (DRL) in the game of Go [17], job
scheduling [18], [19], [20], and video streaming [21], we adopt
DRL in the design of our scheduler. Specifically, we present
Harmony, a deep learning-driven scheduler for ML clusters.
Harmony encodes workload interference implicitly in a neural
network (NN) that maps raw cluster and job states (e.g.,
available resources, jobs’ resource demands) to job placement
decisions (in terms of which server to place each worker or
parameter server of a job onto). Harmony utilizes DRL to learn
to take near-optimal actions according to run-time information
without relying on any mathematical model or any pre-defined
job placement policy. Specifically, we make the following
contributions in developing Harmony.

� We identify severe performance degradation when sharing
resources among ML workloads, which has not been revealed
in the existing literature. In contrast to previous heuristics that
require operator insight and application knowledge, we pro-
pose a general design, i.e., using DRL with a sequence-to-
sequence based model to schedule ML workloads, which can
adapt to unknown dynamics (e.g., interference not experienced
before) automatically.

� We propose a Transformer-based [22] DRL model to
handle online job arrival sequence, without the need of know-
ing the number of arrived jobs beforehand. To extract the
correlation among all concurrent jobs, we utilize the attention
mechanism to obtain the interrelation of jobs at different
positions of the online job sequence, by looking at the global
information over the job sequence.

� We adopt a number of training techniques to facilitate
DRL for converging to a good ML job placement policy,
including actor-critic algorithm, job-aware action space explo-
ration, multi-head attention and experience replay. In view

of a common lack of reward samples corresponding to dif-
ferent placement decisions, we build an auxiliary sequence-
to-sequence reward prediction model, which is trained using
limited historical samples and used for producing reward for
unseen placement.

� We have implemented a prototype of Harmony on
Kubernetes [23] and evaluated Harmony on a GPU cluster,
with real ML jobs running on MXNet [2], training mod-
els from different application domains (see Table I). Our
experiment results show that Harmony outperforms commonly
adopted scheduling policies (e.g., multi-resource bin packing)
by 16%-42% in terms of average job completion time under
various settings.

II. BACKGROUND AND RELATED WORK

A. Distributed Model Training

An ML job trains a model (i.e., a deep NN) using a
large amount of data to minimize a loss function iteratively.
It is typically computation intensive and hence many ML
frameworks have been designed for distributed training [1],
[2], [3]. Most of them adopt parameter server architecture [4]
or all-reduce collective [24]. In parameter server architecture,
the training dataset is split among workers which train a
local copy of the model parameters using allocated data,
respectively (i.e., data parallel training); the global model
is partitioned to be updated by multiple parameter servers.
At the beginning of each training iteration, each worker pulls
the latest parameters from parameter servers to update its
local copy; then it calculates gradients (parameter updates)
over a small number of samples (i.e., a mini-batch) and
pushes the gradients to parameter servers. After receiving the
gradients from all workers,1 parameter servers use stochastic
gradient descent (SGD) method (or its variants) to update
global parameters. One mini-batch after another, a worker
trains its data and pulls/pushes parameters/gradients from/to
the parameter servers. After the entire training dataset has
been processed once, one training epoch is done. The dataset
is trained for multiple epochs until the model converges or a
preset maximum number of epochs is reached. While in all-
reduce architecture, each worker maintains one copy of global
model parameters and synchronize gradients in a peer-to-peer
manner without parameter server. Specifically, each worker
sums (or averages) the gradients from all other workers, and
distributes the aggregated (or averaged) gradients to other
workers. With such all-reduce operation, the target arrays
of gradients in all workers are reduced to a single array of
gradients, and the resultant gradients array are further returned
to all workers. The most representative algorithm to implement
this operation is ring all-reduce, which is most widely adopted
in ML frameworks, including Horovod [6], PaddlePaddle [26],
etc.

B. ML Job Scheduling

There have been a few recent work on resource allocation
in ML clusters. Dorm [27] is a utilization-fairness optimizer to

1We focus on synchronous training, which are more widely deployed in
real-world ML clusters, due to higher stability and model accuracy that
synchronous training can achieve as compared to asynchronous training [25].
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schedule ML jobs. OASiS [28] is an online scheduling algo-
rithm for ML jobs, by scaling the number of workers and para-
meter servers to minimize job completion time. SLAQ [29]
and Optimus [25] build a performance model for each ML
job and dynamically adjusts resource allocation. They focus
on dynamic adjustment of the numbers of workers/parameter
servers to fully utilize cluster resources or improve training
quality. Gandiva [30] proposes an introspective scheduling
framework for deep learning jobs to continuously refine the
scheduling decision. Tiresias [31] is an information-agnostic
resource manager for GPU clusters. Or et al. [32] present
an auto-scaling system for distributed deep learning to save
resource costs and shorten job completion time. Themis [33]
is a scheduler to ensure fairness in job completion time of ML
workloads in a shared GPU cluster. Chaudhary et al. [34] pro-
pose a fair share scheduler to balance efficiency and fairness
in GPU clusters for deep learning training. Gavel [35] is a
heterogeneity-aware scheduler that systematically generalizes
a wide range of existing scheduling policies, and is able to
optimize for many high-level metrics like fairness, make span,
and cost. Instead, we study interference between co-located
ML jobs and optimize job placement using DRL, given
fixed resource demands, which is not covered in the above
schedulers.

C. Interference-Aware Task Placement

Previous work have showcased the potential of interference-
aware scheduling. For example, Gupta et al. [15] design an
interference-aware VM placement algorithm for high perfor-
mance computing workloads in clouds. They heuristically
classify workloads into several categories (e.g., based on CPU
cache interference level) and place workloads with little CPU
interference together. Mihailescu et al. [36] propose OX, a run-
time system to mitigate network congestion while satisfying
availability requirements for data analytics, by discovering
communication topology of each application and migrating
VMs between racks to optimize communication. Bu et al. [13]
target network interference and locality-aware scheduling
for MapReduce workloads. They assume interference affects
application performance in a non-linear way and construct an
interference model to predict slowdown. Xu et al. [37] build an
analytical model for MapReduce applications by considering
resource utilization and VM interference. Paragon [16] and
Quasar [38] use collaborative filtering to predict application
performance. These studies model interference explicitly and
typically require application profiling to determine coefficients
in the models. Instead, we leverage historical data traces and
learn interference implicitly in NN without loss of generality.

D. DRL

DRL has achieved promising results in different problem
domains, including games [17], [39], resource allocation [18],
device placement [40], video streaming [21], and traffic engi-
neering [41]. Specifically, Mao et al. [18] use DRL to set
task parallelism level and execution order for data-parallel jobs
running on Spark. Liu et al. [42] use DRL to design a dynamic
power management policy for data centers. Mao et al. [21]
apply DRL to adjust streaming rates to cope with unstable
network bandwidth in an adaptive video streaming system.

TABLE I

DL JOBS

Fig. 1. Performance degradation: bin packing vs. standalone.

Mirhoseini et al. [40], [43] use DRL to optimize the operator
placement of a TensorFlow computation graph in a single
machine. Xu et al. [41] apply DRL for routing path selection
in traffic engineering. Peng et al. [19] and Gong et al. [20]
propose DRL-based online scheduling algorithms for deep
learning jobs, where they only consider parameter server
architecture and consider a fixed number of newly arrived
jobs at each time. Wang et al. [44] propose a scheduler based
on deep reinforcement learning to find a trade-off between
model quality and cost in serverless computing. These work
assume enough training data for DRL, typically generated by
a simulation model or online measurement. Instead, we show
that interference is difficult to model and we develop a reward
prediction NN to generate samples for DRL training.

III. MOTIVATION

A. Interference Among Co-Located ML Jobs

We showcase the impact of interference among co-located
ML jobs with real ML workloads on our testbed (see Sec. VII
for hardware details).

Case study 1: bin packing vs. standalone execution. We
run 6 deep learning (DL) jobs with parameter server architec-
ture, training ML models from official MXNet tutorials [45],
as shown in Table I. Each job uses 1 parameter server and
1 worker for simplicity. In experiment 1, each job is run on
a dedicated server; in experiment 2, the 6 jobs are packed
onto 3 servers using multi-resource bin packing (i.e., consoli-
dating workloads on the least number of machines) [7], [46].
We compare each job’s training speed in the two experiments,
and show the slowdown percentage in Fig. 1, calculated as
training speed (i.e., number of trained epochs per unit time)
in experiment 1 minus training speed in experiment 2, divided
by the former. We show the slowdown instead of absolute
training completion time in order to normalize the different
completion times of the jobs. We observe a 33% performance
degradation on average, and nearly 2x slowdown for training
ResNeXt when the jobs are co-located. Note that when a
job has multiple parameter servers and workers (instead of
1 parameter server and 1 worker in this case), the performance
degradation would be more severe due to global synchro-
nization, i.e., bad placement of one worker/parameter server
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Fig. 2. Pair-wise interference (darker color indicates more severe
interference).

slows the overall training speed of a synchronous training
job.

Case study 2: pair-wise interference level. We explicitly
co-locate each pair of jobs training two different models in
Table I on one server, and investigate the interference level,
computed as the sum of the slowdown percentages of the two
jobs (as compared to their respective standalone execution on
the server). Fig. 2 shows that different levels of interference
occur when different jobs are co-located, e.g., ResNeXt and
WLM are less affected when trained together, so do ResNeXt
and Seq2Seq. This demonstrates good opportunities for opti-
mizing resource efficiency and training performance in ML
clusters by co-locating jobs with little interference. Besides,
all jobs are severely affected by the CPU-intensive CTC job,
indicating that a standalone execution for the CTC job may
be better.

Case study 3: placement under representative poli-
cies. We further compare the results of three representative
job placement policies (a) load balancing, i.e., spreading
workloads across servers as even as possible, as adopted
in Mesos [8] and Kubernetes [23]; (b) multi-resource bin
packing, as adopted in Google Borg [7] and Tetris [46];
(c) standalone execution. We run 2 ML jobs, each with
1 parameter server and 1 worker, on 2 servers; each server can
accommodate up to 4 tasks (either parameter server or worker).
The first job trains CTC and the second trains VGG-16
or ResNeXt-110. Note that each job’s PS and worker may
be placed on different servers depending on the placement
policies.

Fig. 3 illustrates 3 placement schemes according to the
policies. Fig. 4 shows the training speed when the second
job runs VGG-16 and ResNeXt-110, respectively, under the
3 placement schemes. Standalone execution leads to the best
performance, but also resource underutilization. Ideally, bin
packing should outperform load balancing, in terms of both
resource utilization and training performance, since it avoids
cross-machine communication by placing parameter server and
worker together. This is true when the first job trains VGG-16,
which involves large amount of gradient exchanges in each
training iteration and is sensitive to network latency and
throughput. However, it is not true when the second job trains
ResNeXt-110, which performs better under the load balancing
scheme. This is due to the more severe CPU interference
when training ResNeXt and CTC together. Fig. 5 further
shows the training speed of ResNeXt (or VGG-16) when the
number of co-located CTC training jobs increases. We see that
(1) the more jobs are co-located, the worse the interference
is; (2) ResNeXt training is more sensitive to CPU-intensive
workloads than VGG-16 training.

Fig. 3. Placement under different schemes (diamonds represent parameter
server and worker in job 1; squares represent those of job 2).

Fig. 4. Normalized training speed under 3 schemes.

Fig. 5. Speed with increasing # of co-located CTC jobs.

All 3 schemes are not good enough to achieve high resource
utilization and training speed at the same time. When more
jobs are co-located (the number of different combinations of
jobs would be huge), performance interference is even harder
to identify and model. We resort to a black-box policy learned
through DRL for job placement.

B. Challenges in Applying DRL in Job Placement

RL has been widely used for sequential decision making in
an unknown environment, where an agent observes the current
environmental state, selects an action based on current policy,
and updates the policy based on the feedback (i.e., reward
from the environment). In DRL, the policy is learned through
training an NN using rewards collected by trial-and-error
interactions with the environment, with the goal of optimizing
cumulative reward over time [47].

Harmony aims to handle online arrived jobs, which means
that we do not assume knowledge of total number of jobs at
different time. In this case, a straightforward solution is to
train one NN to produce placement decisions for each newly
arrived job independently. However, this approach may not
work well since it ignores the interference among different
jobs (as what we focus on). It is quite challenging to use
DRL to dynamically process multiple jobs which may come
and go at any time, since the agent usually uses a deep
feed-forward NN or a convolutional NN to produce an action,
which requires a fixed input size. Using a recurrent neural
network or long short-term memory [48] can deal with an
input sequence with variable sequence length, but earlier jobs’
information at the beginning of the input sequence becomes
less important after we have iteratively compressed all infor-
mation into a fixed-size matrix. A sequence with dozens of
jobs represented by a small matrix will surely lead to infor-
mation loss, inadequate representation, etc. Instead, we adopt
the Transformer structure with the attention mechanism [22]
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to model the long-range dependencies among the new jobs
without regard to their separation in the input job sequence.
In this way, we can have a global view of all the concurrent
jobs’ information, available resources, and existing placement
decisions.

In our placement problem, the state space and action space
are very large. For example, the action space is exponential in
the numbers of jobs, workers/parameter servers in jobs, and
servers. Even with 6 jobs, 3 workers plus parameter servers
each, and 6 servers, there are more than 100 million different
ways of placement. The complexity of state space and action
space often prevents (quick) convergence of RL to a good
decision making policy [39], due to insufficient or ineffective
exploration. Further, it leads to significant practical difficulty
in collecting enough traces for DRL training, which contain
reward samples corresponding to various deployment ways.
Even in production clusters that have operated for a few years,
hardly ever all possible placement scenarios have happened.
Without sufficient samples, it is unlikely to train the DRL NN
to converge to a good policy.

To train our DRL model, we need one way to produce
synthetic reward samples for placement decisions that are
produced by DRL agent, but not seen in historical ML cluster
operation traces. In this way, we can obtain the reward sample
immediately instead of running a set of jobs in a real cluster.
We do not rely on analytical interference models [13], [14],
but adopt a more generic approach of using another NN for
reward modeling, trained through supervised learning using
the available traces. To expedite convergence of our DRL
model to a good placement policy, we strategically design
some learning techniques, that enable efficient exploration
of the large action space and full exploitation of good
feedback.

IV. SYSTEM OVERVIEW

We consider a machine learning cluster with multiple GPU
servers, where the ML training jobs are submitted into the
cluster over time in an online fashion. Each job runs a distrib-
uted ML framework (e.g., MXNet, as in our experiments) to
learn a specific ML model by repeatedly training its dataset.
We focus on distributed ML jobs using either the parameter
server architecture or all-reduce architecture, and data parallel
training; our design can be readily extended to handle jobs
using model parallel training [5].

Along with a submitted ML job, the job owner provides
the following job information: (i) his/her specific resource
demands to run each worker and each parameter server,
respectively, (ii) the total numbers of workers and parameter
servers to use, and (iii) the total number of training epochs to
train the dataset for. For example, a worker often requires at
least 1 GPU, and a parameter server needs high bandwidth.
The resource demands of worker/parameter server and total
worker/parameter server numbers can be provided based on
the model being trained, training program the user wrote,
and experience of the user in training similar models. The
total number of training epochs can be set based on expert
knowledge or job training history, e.g., as an upper bound
on the number of epochs used to achieve model convergence
(typically indicated by the convergence of model loss or

Fig. 6. Harmony workflow.

accuracy according to a threshold), when similar models were
trained before.

Our proposed ML cluster scheduler, Harmony, schedules
jobs in a batch processing manner, similar to [25], [49],
and [19]. Time is divided into small scheduling intervals.
Harmony does not assume that job arrival time is known a
prior, and batches newly arrived jobs in each interval. Then
it decides the job placement of the whole batch altogether,
i.e., on which server each worker and each parameter server
in a job should be run (as a virtual machine or a container).
Then the jobs are deployed accordingly based on placement
decisions, and Harmony runs these jobs to completion, i.e.,
the placement of each job’s workers and parameter servers
does not change through the training course. Hence Har-
mony schedules newly arrived jobs only in each scheduling
interval, placing them according to current resource availabil-
ity and existing placement of previously arrived jobs on the
servers. According to our discussions with companies operat-
ing large AI clouds (e.g., Microsoft [50] and Alibaba [51]),
job submission with resource specification and no placement
adjustment after deployment are the norm in ML clusters,
mainly due to two reasons: (1) Stopping a training job and
then resuming the training requires modifications of ML
frameworks and user code in order to recover the correct
training state (e.g., number of epochs and iterations that have
trained, random seed, etc.). (2) Stopping and resuming a train-
ing job brings significant overhead, including rescheduling
time, container restart, dataset reloading, checkpoint reloading,
etc [52]. Dynamic resource adjustment without much overhead
to a running job is hard to implement in practice.

In Harmony, we aim to minimize the average job comple-
tion time in the ML cluster, respecting the server capacity
constraints. It learns a good job placement policy based
on DRL model training, and combines offline training with
online inference plus model update. The detailed workflow of
Harmony is shown in Fig. 6.

Offline training is largely essential for producing a good
model for online decision making (i.e., by inferences on the
model). Nevertheless, pure online learning of the policy NN
from scratch, i.e., RL with online data, has been widely
known to result in poor policies at the beginning of learning,
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as DRL typically requires a large number of trials and errors
in order to converge to a good policy [17], [39]. For example,
AlphaGo Zero uses 29 million games in offline training [17],
and DeepRM uses 20 thousand samples for a simple NN with
1 hidden layer [49]. However, large historical traces containing
enough samples may not always be available. For DRL models
with large action space, DRL may select actions or enter states
that are never seen in practice, while we still need to provide
the reward for the state and selected action as feedback from
the environment for further self-improvement. We boost our
DRL with a reward prediction model (using another NN),
to resolve the issue of insufficient training samples. Our offline
training is divided into two steps.

� Reward model training. With historical job traces, Har-
mony trains the reward prediction NN using supervised learn-
ing. The input includes job set information and the existing
placement on different servers; the label is the reward (training
speed) of each concurrent job. This model provides fast reward
evaluation for any job set with corresponding placement
decisions.

� DRL model training. The DRL NN takes various job sets,
existing placement, and cluster resource availability as input,
and produces placement decisions for all new jobs in the set.
We estimate reward based on the reward model, and obtain
reward for DRL training. With the reward prediction model,
we can effectively expand the available trace set and generate
sufficient samples for DRL offline training.

Online inference and model update. The offline trained
models are then used for online decision making. In each
scheduling interval, Harmony decides placement of the new
job batch via inference on the DRL NN, and observes actual
rewards corresponding to the placement decisions. In this way,
new reward samples are collected, which may not have been
seen historically and hence not used for training in the offline
phase. We periodically retrain the DRL NN and the reward
NN using online collected samples, to continuously improve
decisions over time.

We show the design details of our DRL and reward predic-
tion modules in the following sections.

V. DEEP REINFORCEMENT LEARNING

BASED PLACEMENT POLICY

We first present our DRL algorithm for learning the job
placement policy that maximizes job training speed across the
entire cluster.

A. DRL Framework

Fig. 7 shows the detailed design of our DRL framework.
State space. The input state to the DRL NN is a sequence

s = (s1, . . . , sN). The length of the sequence, N , is the
number of concurrent jobs in the current time. The concurrent
jobs include both newly arrived jobs and uncompleted jobs
which were submitted earlier; the reason to include exist-
ing jobs whose placement has been decided in earlier time,
is to allow the DRL model to learn potential interference
between new jobs and existing jobs on shared servers. sn =
(�xn, �rn, wn, pn, v, �dn, un), ∀n ∈ [N ] is the state of nth job,
includes the following:

Fig. 7. DRL architecture.

(1) �xn, an L-dimensional binary vector encoding the ML
models trained by the job n, where and L is the maximal
number of models that can be trained in the cluster (i.e., total
number of types of training jobs at all times). For simplicity,
each vector �xn, is a one-hot encoding of job n’s model [39].
The same ML model, e.g., a DNN of the same architecture
and mini-batch size but possibly different learning rates and
total numbers of training epochs, uses the same encoding. For
example, if there are 3 models in total and 3 concurrent jobs
using each of the models respectively, then �x0 = [1, 0, 0],
�x1 = [0, 1, 0], �x2 = [0, 0, 1]. There exist other possible
encoding methods, e.g., feature embedding [53], and we leave
the exploration of more efficient encoding approaches as a
future work.

(2) �rn, a 2(1 + K)-dimension vector encoding
worker/parameter server resource demands in the jobs,
where K is the number of resource types to compose a
worker or a parameter server. In each vector �rn for job n,
the first value represents the number of workers requested by
job n, and the next K values represent demand for the K
types of resource in each worker; similarly, the rest 1 + K
values represent the number of parameter servers requested
by job n and each parameter server’s resource composition.
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For jobs with all-reduce architecture, we manually set the
entry of parameter server in resource demands as zero, and
then the DRL model can differentiate the communication
architecture type based on the resource vector. For example,
considering a job with 3 workers and 2 parameter servers,
each requiring two types of resources (GPUs and CPU cores),
�rn = [3, 1, 2, 2, 0, 1] represents that each worker in the job
requires 1 GPU and 2 CPU cores, and each parameter server
needs no GPU but 1 CPU core. For an all-reduce job with
only 2 workers, each requiring two types of resources (GPUs
and CPU cores), �rn = [2, 2, 4, 0, 0, 0] represents that each
worker in the job needs 2 GPUs and 4 CPU cores, and the
resource demand entry for parameter server is defined as zero.

(3) wn (pn), one integer, in which the wn (pn) is the
number of workers (parameter servers) allocated to the nth

job. For jobs with all-reduce architecture, the number of
parameter servers is always zero. For example, w0 = 1 and
w1 = 2 represents that 1 and 2 workers are allocated to 2 jobs,
respectively. We manually set pn = 0 if job n is using the
all-reduce architecture.

(4) v, an M × K matrix representing available amount
of each type of resources on the servers, where M is the
number of physical servers. Each vector �vm, ∀m = 1, . . . , M ,
represents available resources on server m. For example,
a server with 8 available CPU cores and 2 available GPUs
is encoded as �vm = [8, 2].

(5) �dn, a M × 2-sized vector encoding the placement of
workers and parameter servers of each concurrent job n on
the servers. For the nth job, in its vector �dn, the number
of workers and the number of parameter servers of job n

placed on server m (m = 1, . . . , M), is on the 2m − 1th

and 2mth position, respectively. For all-reduce jobs, the 2mth

position is always zero. Suppose sever 2 hosts 1 parameter
server and 1 worker of job n and server 5 hosts 1 parameter
server and 2 workers of job n among 6 servers; we have
�dn = [0, 0, 1, 1, 0, 0, 0, 0, 2, 1, 0, 0].

(6) un, an integer, which indicates whether the nth job is a
newly arrived one or has been placed in previous scheduling
intervals. For example, u0 = 0 and u1 = 1 represent that job
0 has already been placed before and job 1 is a newly arrived
job in the current scheduling interval, respectively.

Action space. After receiving s, the DRL agent selects an
action a based on a policy πθ(s, a), which is a probability
distribution over the action space. The policy is produced by
an NN, and θ is the set of parameters in the NN. Naturally,
an action can include all feasible placement decisions of
the all new jobs in a scheduling interval (recall we do not
adjust placement of existing jobs), and then we can produce
the placements of all jobs by one inference; however, this
leads to an action space of exponential size, due to the
exponentially many placement combinations of all workers
and parameter servers in all jobs. A large action space
may incur significant training time and worse results [39].
To expedite policy learning, we make placement decisions for
newly arrived jobs one by one, and produce a sequence with
placement decision for each new job. Specifically, we simplify
the action definition, and our action space contains 2M actions
as follows: (i) (0, m), meaning placing one worker of the

Fig. 8. Inference workflow.

newly arrived job on server m, ∀m ∈ [1, M ]; (ii) (1, m),
placing one parameter server of the newly arrived job on server
m, ∀m ∈ [1, M ]. To handle the case of using the all-reduce
architecture, we manually set the probability of (ii) to zero,
and rescale other non-zero probabilities such that their sum
still equals 1.

In each scheduling interval, we allow multiple inferences
over the NN, each selecting an action out of the action
space for one of the newly arrived jobs. With each DNN
inference, Harmony makes a decision for the placement of
a parameter server or worker for a job, and then updates
the state s accordingly (including placement and remaining
available resources). Then in the next inference, Harmony will
make placement decisions according to the updated input
state and avoid co-location of jobs with intensive interference.
After multiple inferences, we come up with a complete set of
placement decisions for all workers and parameter servers in
the new jobs (or the inferences stop when there are not enough
resources to place any additional parameter server/worker).
In this way, we use multiple inferences to effectively reduce
action space by deciding (0, m) and (1, m) for all newly
arrived jobs one by one; similar techniques have been adopted
in [39], [49], and [19]. Fig. 8 shows an example of how to
make a placement decision of one job through one inference,
given job and server information.

Reward. We target average job completion time minimiza-
tion by training the policy NN, which learns how to improve
resource utilization and mitigate inter-job interference. Job
completion time would be a natural reward to observe, but
it is only known when a job is finished, which may well be
hundreds of scheduling intervals later. The significant feedback
delay of the reward is unacceptable for training, since the
delayed reward provides little guidance to improve the early
decisions. Further, the completion time of a job is decided
not only by the current job placement state, but also future
deployment of upcoming jobs (possibly on the same servers
and interfering with this job). We design a per-interval reward
to collect more reward samples through the job processes, for
more frequent RL model updates to expedite convergence. The
reward r observed when action a is taken under state s is the
sum of normalized training speeds of all concurrent jobs in
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one scheduling interval (e.g., 20 minutes):

r =
∑

n∈[N ]

cn

en
(1)

where cn is the training speed (i.e., number of trained epochs
in this interval) of job n and en is the total number of training
epochs that job n should complete. The rationale behind this
reward design is that the more epochs a job trains in an
interval, the fewer intervals it takes to complete, and hence
maximizing cumulative reward amounts to minimizing average
job completion time.

Representation network. The representation network takes
the state of all concurrent jobs and server status as input at
each scheduling interval, extracts features, and generates a
representation (i.e., a vector with a smaller size), which is then
used in the decoder network to produce scheduling decisions.
The main challenge is that the number of concurrent jobs is
unknown beforehand, and may change over time. However,
most NN structure, such as feed-forward NN, requires to have
an input with a fixed size. A straightforward way to use
feed-forward NN to deal with input of non-fixed size is to
set an upper bound of the concurrent number of jobs and use
padding in the input sequence, e.g., put the entries as 0 if the
job in that entry does not exist. This works if the actual number
of concurrent jobs is smaller than the pre-defined upper bound.
However, zero-padding causes lots of redundant information
in the input state when the number of concurrent jobs is
much smaller than the pre-defined job number upper bound.
Similarly, if the number of the actual number of concurrent
jobs is larger than the pre-defined upper-bound, we need to
exclude some jobs, which leads to a loss in input information.
To enable encoding of variable length input, we adopt the
encoder part in Transformer [22] to encode the job and server
information into a sequence of fix-sized matrices, where the
attention model helps capture the correlation among differ-
ent jobs in the input sequence. Specifically, the job set is
orderless, and sequences with different job orders should have
the same output policy distribution. Different from recurrent
neural networks such as long short-term memory [48], the
attention model is agnostic with the position of jobs in the
input sequence and hence will not be impacted by the job
order. We also adopt the residual network as the part of
Transformer to avoid the problem of vanishing gradients. The
output sequence of Transformer encoder is returned as the
representation.

Decoder network. The decoder network is used to analyze
the encoded sequence from the representation network and
produce the placement decision one by one for each newly
arrived job. The generated distribution for placement of other
concurrent jobs are fed to the decoder as the decoder input,
with the attention operation to deal with the impact of the
placement decisions of other concurrent jobs. By utilizing the
attention mechanism, it is possible for the decoder to capture
global information rather than solely to infer based on one job
placement decision. The decoder input processed by attention,
together with the output of the representation network, is then
aggregated to a decoder with a few hidden fully connected
layers with the ReLU [54] function for activation, which is
then connected to the final output layer. The final output layer

uses the softmax function [55] as the activation function, and
produce a sequence of decisions for each unscheduled job one
by one. To respect server resource capacities, in the output
layer of the NN, we mask the invalid actions, which deploy
a worker or parameter server on a server without enough
resources to run it, by setting its probability to 0 in the policy
distribution. Then we rescale the probabilities on all actions
such that the sum still equals 1.

NN model. As illustrated in Fig. 7, the state of each job and
server is connected to a fully connected layer (i.e., Job/Server
Embedding block in Fig. 7) first as embedding, and then they
are connected to a representation network for encoding. With
embedding, the NN can extract features from each job or each
server as pre-processing. The pre-processing can also better
differentiate the input sequence when the entries in the input
sequence are similar. The pre-processed states of concurrent
jobs are fed into the representation network one-by-one, and
the representation network is learned similarly to a sequence
learning process [56]. The representation network will be
trained together with the decoder network in an end-to-end
manner. We also feed the placement decisions of previous jobs
(e.g., Job 1 to Job N − 1 in Fig. 7) into the decoder network,
since the performance of the current placement decision (e.g.,
for Job N in Fig. 7) is related to previous placement decisions
we made within the current scheduling interval.

B. DRL Model Training

We apply the REINFORCE algorithm [57] to train the
policy NN, which updates the NN parameters θ using policy
gradients computed with samples. Each sample is a four-tuple,
(s, a, r, s′), where s′ is the new state after action a is taken
in state s. Note that our system runs differently from standard
RL: we do multiple inferences (i.e., produce multiple actions)
using the NN in each scheduling interval t; the input state
changes after each inference; we only observe the reward and
update the NN once after all inferences in the interval are
done. Let It be the set of inferences in interval t; then we
can obtain It samples in the interval, and we set the reward in
each of these samples to be the reward in (1) observed after
all inferences are done in t.

The goal of training the policy NN is to maximize the
expected cumulative discounted reward J(θ) = E[

∑
i≥0 γiri],

where γ ∈ [0, 1] is the discount factor, i indicates the total
number of inferences done from system start, and ri is the
reward in the sample corresponding to the ith inference. The
policy gradient of J(θ) with respect to θ, to be used for NN
update in interval t, can be calculated as follows [57]:

�θJ(θ) = Eπθ
[
∑

i∈It

�θ log(πθ(si, ai))Qπθ (si, ai)] (2)

where the Q value, Qπθ (si, ai), represents the “quality” of
the action ai taken in given state si following the policy πθ ,
calculated as the expected cumulative discounted reward to
obtain after selecting action ai at state si following πθ , i.e.,
Qπθ(si, ai) =

∑
i′≥i γi′−iri′ . Since we can not enumerate

all possible future states to calculate an exact Q value, we
can use a mini-batch of samples to calculate an empirical Q
value [57] and then compute the gradient �θJ(θ). We can
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then apply the SGD method to update parameters θ to improve
the empirical cumulative discounted reward. The idea behind
is to increase the probabilities of selecting actions whose Q
values are positive and reduce the probabilities of actions with
negative Q values.

Beyond the basic policy gradient-based training, we adopt
a number of techniques to stabilize training, expedite policy
convergence, and improve the quality of the obtained policy.

1) Actor-Critic: The REINFORCE algorithm may suffer
from high variance in the Q values derived (for comput-
ing gradients), preventing quick convergence of the policy
model [58]. To reduce the variance, we improve the basic
policy gradient training with the actor-critic algorithm [47].
The basic idea is to introduce a baseline function dependent on
the state, to improve the gradients used in SGD for updating
the policy NN. We reinforce an action from a state if the
“quality” of this action, Qπθ(si, ai), is better than the “average
quality” of all possible actions in si, V πθ(si), calculated
as the expected cumulative reward following the policy π
from state si, over all possible actions in the state. That
is, we evaluate how good an action is by its advantage,
i.e., Qπθ(si, ai) − V πθ(si). We use this advantage instead of
Qπθ(si, at) in Eqn. (2) for gradient calculation. The purpose
is to ensure a much lower variance in the estimation of the
policy gradient, such that policy learning is more stable.

The value function, V πθ (si), is typically estimated by a
value network. It has the same architecture as the policy
network, except that the output layer is a linear neuron without
any activation function [58]. The input to the value network is
the same as that to the policy network (see Fig. 7); the output
of the value network is an estimate of value V πθ(si) (while
the output of the policy network is the policy distribution
over placement actions). The value network is trained using
temporal difference method [58].

2) Job-Aware Exploration: To obtain a good policy through
DRL, we need to ensure that the action space is adequately
explored (i.e., actions leading to high rewards can be suf-
ficiently produced); as otherwise, DRL may well converge
to poor local optimal policy [39], [58]. One approach to
encourage exploration is to add an entropy regularization term
β · �θH(πθ(si, ·)) [58] into gradient calculation in Eqn. (2),
where β is the entropy weight. The basic idea of entropy
regularization is to encourage uniform action probability and
prevents convergence to a single choice of output.

However, we find that entropy regularization is not enough
due to the large exploration space for job placement.
We further adopt another technique based on the ε-greedy
method [47]. When performing each inference over the policy
NN (for its training), with probability 1 − ε, we adopt the
action (worker/parameter server placement decision) produced
according to the NN’s output policy distribution; with prob-
ability ε, we randomly choose between multi-resource bin
packing and load balancing policies, and adopt the placement
decision produced by the chosen policy. The bin packing
policy places a worker or a parameter server (specified in
the action selected by the NN) on a machine with least
capacity left (where the worker or parameter server can still
be accommodated); load balancing places one worker or
parameter server on the least loaded machine. The rationale

behind is to enable NN to effectively explore the tradeoff
between resource utilization (bin packing is best for) and
workload interference (that load balancing avoids). In this way,
we improve exploration quality to guide the NN training to
converge to a good policy.

3) Multi-Head Attention: The attention mechanism is
designed to capture the dependency in the input job sequence,
by computing the dot product of all pairs of job information
with an attention function, and then computing a weighted
sum of the information of concurrent jobs in the input
sequence. One attention layer can map the dependency into
one sequence, each with a smaller vector. Besides, we project
the job information with different attention functions in par-
allel, yielding multi-dimensional output. Multi-head attention
is designed to allow the representation network to jointly
attend to information from different representation sub-spaces
at different positions. We employ 8 parallel attention layers
(i.e., heads) in experiments.

4) Experience Replay: It has been known that training an
RL model using consecutive samples is hard to converge,
due to the correlation among the samples [41]. The current
policy NN determines the following training samples, e.g.,
if the policy network finds that packing jobs improves reward,
then the next sample sequence will be dominated by those
produced from this strategy; this may lead to a bad feedback
loop, preventing exploration of samples with higher rewards.
We adopt experience replay [41] to alleviate correlation in the
sample sequence.

Specifically, we maintain an FIFO replay buffer with a fixed
size (e.g., 8192 as in our experiments), large enough to buffer
samples from multiple scheduling intervals. When computing
the gradients for policy NN update in each scheduling interval,
instead of using all samples collected in this interval, we ran-
domly select a mini-batch of samples (32 samples as in our
experiments) from the replay buffer, where the samples could
be from multiple previous intervals.

VI. REWARD PREDICTION MODEL

We next design a reward model that can predict the reward
given job and cluster states, based on which we can produce a
large number of samples for DRL training. We adopt an NN
as the reward model. An advantage of NNs is that they do
not need hand-crafted features and can be applied directly to
“raw” observations; besides, they are more general and can
potentially be applied to other workloads.

NN architecture. The input state to the NN is a subset of
the input to the DRL NN: a sequence s = (s1, . . . , sN ) where
sn = (�xn, wn, pn, �dn), including the following: (i) �xn, job n’s
model type. (ii) wn and pn, allocated numbers of workers and
parameter servers of the nth job. (iii) �dn, job n’s placement
on each server. The resource demands of a worker and a
parameter server in the concurrent jobs are not included as they
can typically be inferred from a job’s model type. The output is
a vector including predicted training speeds of the input jobs
(i.e., number of training epochs to complete in an interval),
based on the current placement indicated in �dn, ∀n ∈ [N ]).
We do not directly output predicted completion time of the
jobs, due to the following: throughout a job’s execution, the
placement on servers where its workers/parameter servers are
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Fig. 9. Reward prediction model architecture.

deployed may change, due to arrival of new jobs, which affects
job completion time; therefore, given the current job placement
in the cluster, it is more reasonable to predict the training
speed under the current placement, rather than the eventual
job completion time. The input to the NN also has a non-fixed
input size, and we adopt a sequence-to-sequence Transformer
model to process input jobs and produce a sequence, i.e., the
predicted training speeds of the concurrent jobs. The input
state of each job is connected to a sequence of hidden fully
connected layers for embedding (Job/Placement Embedding
block in Fig. 9), and then a Transformer-based encoder before
a linear output layer. Similar to Sec. V-A, we also use the
attention mechanism to capture the correlation among concur-
rent jobs. We do not include the decoder part of Transformer
as there is no dependency in the output sequence, and we
can produce the whole output sequence at once. In practice,
we find that fully connected layers work quite well in our
scenario compared to more complicated neural layers, such as
convolution layer (typically used for image processing [59]).
The detailed architecture can be found in Fig. 9.

NN training. We train the NN by supervised learning
using available samples in historical traces. We compare the
predicted training speed cn of each job n produced by the
NN with the label c′n, i.e., training speed of each job n in
the traces, by computing a loss function, which is the relative
error of the prediction and the label:

L(c, c′) =
1
|N |

∑

n∈[N ]

|c′n − cn|
c′n

Then we use SGD to update parameters in the NN to
minimize the overall relative error. We train the NN iteratively
using the samples from the historical traces such that the
prediction produced by the NN converges with an acceptable
relative error (e.g., 10%).

VII. PERFORMANCE EVALUATION

We evaluate Harmony using testbed experiments, and sim-
ulation to validate the performance in a larger scale.

A. Implementation

Scheduler on Kubernetes. We implement Harmony using
python on Kubernetes 1.7 [23] as a custom scheduler. We run
workers and parameter servers on docker containers. Training
datasets of jobs are stored in HDFS 2.8 [60]. At the beginning
of a scheduling interval, Harmony queries unscheduled jobs
and existing cluster state by sending HTTP requests to the
Kubernetes API server and makes placement decisions for
these jobs by doing inference on the trained policy network.

Each inference takes 4ms in a GTX 1080Ti GPU. The Kuber-
netes agents start the workers/parameter servers of each job
on servers accordingly. Harmony updates the DRL and reward
models using online collected data. We run each training job
using the MXNet framework [2].

DRL Training. For offline training, we implement the DRL
NN using libraries provided on TensorFlow [1]. The first
embedding layer has the same number of nodes as the size
of each input entry in the sequence or decoder input. The
representation network has 2 hidden layers with 128 nodes,
and 8 attention heads. The decoder NN has 2 hidden layers
with 128 neurons in the each hidden layer. We do parallel
training of the DRL NN: we use 20 workers to generate
samples (using the reward prediction model) and calculate
gradients locally; the gradients are aggregated synchronously
to obtain the global parameters. We adopt Adam optimizer [61]
with a fixed learning rate of 0.0001, mini-batch size of
32 samples per worker, reward discount factor γ = 0.9, and
an experience replay buffer size of 8192 samples. The greedy
exploration factor ε and entropy weight β are set to 0.5 at the
beginning and are annealed linearly during training.

Reward Model Training. We implement the reward NN
using TensorFlow too [1]. The reward NN has 2 hidden-
encoder layers with 128 neurons in each hidden layer, and
8 attention heads in Transformer structure. We train it using
Adam optimizer [61] with a variable learning rate follow-
ing [22] and a batch size of 32 samples. We also apply batch
normalization for reward NN to accelerate convergence [59].
The traces for the reward model are collected on our GPU
cluster: we generate jobs with random resource configurations,
place them randomly and measure the training speed of each
job; the number of jobs generated and their worker/parameter
server configurations are sufficient to saturate resource capac-
ity of our cluster. We treat all-reduce as a special case that a
worker and a parameter server are put together as a bundle.
We run each job for about 5 minutes and calculate the average
training speed. Due to the iterativeness of model training,
running for 5 minutes should be sufficient to give us a rough
idea of the training speed.

B. Evaluation Methodology

Testbed. We build a testbed of 6 GPU servers connected by
a Dell Networking Z9100-ON 100GbE switch. Each server has
one 8-core Intel E5-1660 CPU, two GTX 1080Ti GPUs, 48GB
RAM, one MCX413A-GCAT 50GbE NIC, one 480GB SSD
and one 4TB HDD. We deploy Kubernetes 1.7 as the cluster
manager.

Workloads. By default, the jobs are submitted to the cluster
in a uniform random manner with 3 jobs per interval on aver-
age. Each interval is 20 minutes long. Upon an arrival event,
we randomly select a job from Table I and set its required
number of workers and/or parameter servers randomly in [1, 3]
to generate a job variant. With 0.5 probability, we choose para-
meter server architecture, and with 0.5 probability, we choose
all-reduce architecture. For jobs training large datasets (e.g.,
ImageNet [62]), we downscale the datasets so that the training
can be finished in a reasonable amount of time. The job length
follows a skewed distribution extracted from a production
cluster [19], where there are a large number of short jobs and
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Fig. 10. Performance comparison under different job arrival patterns.

Fig. 11. Performance comparison of each job type.

Fig. 12. Sensitive analysis of scheduling interval.

a few long jobs. We use the same sequence of jobs (and their
arrival time) for Harmony and the baselines.

Baselines. We compare Harmony with the following
policies:

– Load Balancing (LB): it assigns a worker/parameter server
to the server with the least load. We normalize the usage of
resources (e.g., CPU and GPU) and sum them as the load of
a server.

– Tetris [46]: it uses multi-resource bin packing to place a
worker/parameter server to avoid resource fragmentation.

– Tiresias [31]: it proposes 2D-Gittins index to estimate
job completion time and uses 2D-LAS (a SRTF variant) to
minimize average job completion time for deep learning jobs.
Tiresias also considers job placement by using spreading or
consolidation policy according to job characteristics.

– Least Interference First (LIF-Line, LIF-Quad) [13], [63]:
it builds a linear or non-linear interference model by assuming
that task slowdown is a function of CPU and bandwidth
usage. To determine coefficients in the interference model,
we profile the performance of each ML model under different
CPU and bandwidth usages and use a least-square solver to
calculate the coefficients based on profiling data. We find
that linear function and quadratic function fit our measured
traces best, so we use them as two baselines, i.e., LIF-Line
and LIF-Quad. When placing a worker/parameter server, the
algorithm calculates an interference score (i.e., performance
slowdown of all workers/parameter servers on a server) for
each server and selects the server with the least interference.

Metrics. We use the average job completion time as the
main performance metric.

C. Performance

Fig. 10 compares the performance of Harmony with base-
lines under three job arrival patterns: (1) default uniform
distribution; (2) a Poisson process with an arrival rate of
2 per scheduling interval; (3) the job arrival process extracted
from Google cluster traces [64], with downscaled arrival rates.
Harmony improves average job completion time (in terms of
number of intervals) by 16%-42% compared with all baselines
in the three cases. Harmony finds a good balance between
load balancing and bin packing via exploration, to jointly
reduce the computation interference and data transmission
time, and improves its scheduling policy by feedback obtained
after each decision making. Load balancing performs worse
than Harmony as it only focuses on reducing computation
interference on each machine, without considering network
transmission overhead. Tetris tries to put the jobs together to
avoid wasting resource fragments, and ignores performance
degradation caused by interference. LIF-Line and LIF-Quad
rely heavily on accurate modeling of interference among
jobs. Tiresias does not consider CPU or IO interference in
the placement policy. For network interference, it uses a
threshold to determine whether a job should be consolidated
or not according to the skewness in tensor distributions across
parameter servers [31]. How to determine a good threshold is
also difficult.

Fig. 11 shows the breakdown of the job completion time for
different types of jobs. We find that Harmony can optimize all
jobs, though there is not much difference for some jobs like
Seq2Seq. We also conduct a sensitive analysis by varying job
scheduling interval from 10 minutes to 70 minutes in Fig. 12.
With a smaller job scheduling interval, we have fewer jobs
in each scheduling interval and could miss some optimization
opportunities. With a larger job scheduling interval, we can
optimize an overall completion time with more jobs in a batch,
but job waiting time is longer. The sweet spot of the scheduling
interval in our system in 20 minutes.

We also compare the reward model with interference model
in LIF-Line and LIF-Quad. We shuffle the collected trace
(29264 samples) and split it into training dataset (90%) and test
dataset (10%). Fig. 13(a) shows that our model achieves 6.9%
relative error, much lower than that of the interference models
in LIF-Line and LIF-Quad. We also compute the accuracy
for each solution in Fig. 13(b), by finding the percentage of
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Fig. 13. Training speed prediction.

Fig. 14. Performance comparison under different job arrival patterns over 30 machines.

Fig. 15. Deep dive.

samples whose relative errors are within 10%. We can find
that our model can ensure that for over 83% of predictions,
their relative error is less than 10%. Further, Fig. 13(c) shows
the relative errors incurred and accuracy for predicting speeds
of jobs training two models, Seq2Seq and CTC. We see that
interference models in LIF-Line and LIF-Quad work well for
CTC, but have large error on Seq2Seq, due to the following:
CTC is CPU-intensive while Seq2Seq does not utilize CPU
much (due to low pre-processing overhead), and carries out
computation mostly on GPU; LIF builds interference models
for CPU and network sharing only. The accuracy shown in
Fig. 13(d) is similar.

In addition, to validate scalability of Harmony, we generate
simulated traces of job placement on 30 machines (at a scale
of a rack) based on analytical models [13], [63], as shown in
Fig. 14. We use the simulated traces to train reward prediction
NN and our DRL NN, and set the required number of workers
and/or parameter servers randomly in [1, 10]. We observe that
Harmony can still reduce average job completion time by at
least 21%, as compared to the baselines.

D. Deep Dive

We next evaluate our detailed design of Harmony.

Number of neurons. We fix the number of hidden layers
to 2 in both encoder and decoder and vary the number of
neurons in the hidden layers. We train all neural networks
until convergence over the same training set. Fig. 15(a) shows
the best performance is achieved when there are 128 neurons.
With fewer neurons, there are not enough NN parameters to
approximate the placement policy. The performance degrades
with too many neurons, as it may capture unnecessary features
(i.e., overfitting).

Number of hidden layers. We fix the number of neurons
to 128 in the hidden layers in both Transformer encoder and
decoder, and vary the number of hidden layers. As shown in
Fig. 15(b), the NN with 2 hidden layers performs the best.
With fewer NN layers, there are not enough parameters to
approximate a good policy; with more NN layers, it generally
takes a longer time to converge and results in lower perfor-
mance due to overfitting.

Number of attention heads. We fix the number of neurons
to 128 with two hidden layers in both Transformer encoder and
decoder, and vary the number of attention heads from 1 to
32. As shown in Fig. 15(c), the NN with 8 attention heads
performs the best. With fewer heads, there are not enough
parameters to encode the input; with more heads, it generally
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TABLE II

EFFECTIVENESS OF TRAINING TECHNIQUES

increases the complexity of NN, requiring more trials to train
all NN parameters to suitable values, which leads to unstable
training progress.

Value network. To investigate how the value network
affects training, we do not train the value network to provide
the baseline, but use the exponential moving average of the
rewards as a baseline in computing the gradient when training
the policy network. In Table II, the first row shows average job
completion time with all training techniques applied. We see
that without the value network, the performance is 33.04%
worse. This is because the average reward is not always an
effective baseline; in some cases even the optimal action leads
to a lower reward than the average reward over the history.

Exploration. We examine how exploration contributes to
the performance. From Table II, we see that without explo-
ration, the performance is significantly worse (i.e., 35.54%
slowdown). The reason is that without exploration, the DRL
NN may make a lot of useless trials to try many obviously
bad actions and get easily stuck in a local optimal policy.

Multi-head attention. We change the number of heads to
one and examine how the number of attention layers influences
the performance. From Table II, we see that the performance
is worse than with 8 attention heads (i.e., 27.36% slowdown).
The reason is that without enough attention layers, it is hard
for the representation network to keep necessary information
of the input state.

Experience replay. We disable experience replay to exam-
ine its effectiveness in DRL training. As shown in Table II,
without experience replay, the average job completion time
is increased by 24.71%, indicating that disrupting the order
of samples and using samples among different scheduling
intervals to update NN is critical for our DRL training.

VIII. CONCLUSION

This paper presents Harmony, a deep learning-based sched-
uler that addresses performance interference and minimizes
average job completion time by efficient job placement in
an ML cluster. We consider online job arrival with either
parameter server or all-reduce architecture. Instead of design-
ing placement policy based on analytical models of workload
interference, we design a two-step learning mechanism: we
first exploit limited historical traces to learn a reward neural
network using supervised learning; then we train the DRL
model to learn placement decisions using reward samples
provided by the reward model. We adopt a transformer-based
structure to mitigate unknown and dynamic job arrival
sequence in both DRL model and reward model. We believe
that our reward prediction module design is general, and

applicable to other DRL problems where historical traces
are not sufficient. We conduct a comprehensive empirical
study to evaluate the performance of Harmony in different
scenarios. Evaluation on a Kubernetes cluster shows that
Harmony outperforms representative scheduling policies by
16%-42%, in reducing average job completion time in the
cluster.
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