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Abstract— Network Function Virtualization (NFV) is an
emerging paradigm that turns hardware-dependent implemen-
tation of network functions (i.e., middleboxes) into software
modules running on virtualized platforms, for significant cost
reduction and ease of management. Such virtual network func-
tions (VNFs) commonly constitute service chains, to provide
network services that traffic flows need to go through. Efficient
deployment of VNFs for network service provisioning is a key
to realize the NFV goals. Existing efforts on VNF placement
mostly deal with offline or one-time placement, ignoring the
fundamental, dynamic deployment and scaling need of VNFs
to handle practical time-varying traffic volumes. This work
investigates dynamic placement of VNF service chains across geo-
distributed datacenters to serve flows between dispersed source
and destination pairs, for operational cost minimization of the
service chain provider over the entire system span. An efficient
online algorithm is proposed, which consists of two main compo-
nents: 1) A regularization-based approach from online learning
literature to convert the offline optimal deployment problem
into a sequence of one-shot regularized problems, each to be
efficiently solved in one time slot and 2) An online dependent
rounding scheme to derive feasible integer solutions from the
optimal fractional solutions of the one-shot problems, and to
guarantee a good competitive ratio of the online algorithm over
the entire time span. We verify our online algorithm with solid
theoretical analysis and trace-driven simulations under realistic
settings.

Index Terms— Network function virtualization, service chains,
online algorithm, convex optimization.

I. INTRODUCTION

TRADITIONALLY, network functions such as firewalls,
proxies, network address translators (NATs) and intrusion

detection systems (IDSs) are implemented by dedicated hard-
ware middleboxes, which are costly and difficult to scale. The
emerging paradigm of network function virtualization (NFV)
aims to revolutionize network function provisioning by run-
ning the respective software in standard virtualized platforms,
e.g., virtual machines (VMs) on industry-standard servers,
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in order to achieve fundamental flexibility in deployment and
management, as well as significant cost reduction [1].

To realize these goals, a fundamental challenge is to
strategically deploy the virtualized network functions (VNFs),
in terms of the number of instances for each VNF and
the deployment locations, and to dynamically scale the
deployment, by adding/removing instances of VNFs with
increase/decrease of the demand. In particular, the net-
work functions are typically connected to compose service
chains [2] that provide different network services [3], [4].
Along a service chain, network traffic flows are required to
go through multiple stages of network function processing in
a particular order. A service chain can be placed within one
datacenter (e.g., the service chain “Firewall→IDS→Proxy”
providing a company’s access service is typically deployed
in an on-premise datacenter), or distributed across multiple
datacenters, (e.g., for the virtualization of WAN optimizers,
IP Multimedia Subsystem (IMS), mobile core networks [1]).
For the example of WAN optimization, deduplication or com-
pression functions are deployed close to the sender of a flow
and traffic shaping can happen anywhere along the route from
the sender to the receiver. For virtualization of a control plane
service chain in an IMS [5], namely “P-CSCF→S-CSCF”,
instances of P-CSCF, first contact of a user for call registration,
should be distributed close to geo-dispersed callers, while
S-CSCF for session control can be located more in the middle
between a caller and a callee.

This study focuses on geo-distributed deployment of service
chains and tackles the challenges of dynamic deployment and
scaling of VNF instances in the chains. We take the perspective
of a network service provider, who rents VMs from cloud
datacenters owned by the respective datacenter or cloud oper-
ators, deploys VNFs on the VMs and assembles service chains
for the usage of its flows. For example, the network service
provider can provide service chains for WAN optimization
consisting of different WAN optimizers, or can be an IMS
provider who seeks to virtualize its control plane and data
plane service chains (an example data plane service chain in
an IMS is “Firewall→IDS→Transcoder”).

We target cost minimization for the network service
provider by optimally deploying geo-distributed service
chains. The intriguing challenges are as follows. First,
the deployment of VMs to run different network functions is
not only relevant to VM rental cost, but also decides the band-
width (cost) needed in-between datacenters to accommodate
traffic flows passing through geo-dispersed network functions,
which further decides quality of the network service, e.g., end-
to-end delay experienced by the flows. Second, when multiple
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service chains are in place, they may well share one or multiple
common network functions, and may hence exploit the same
collection of VNF instances deployed; this further demands
deliberate computation of the geographical deployment of
the shared instances, in order to balance the end-to-end
performance experienced by different flows between various
sources and destinations. Last but most importantly, we seek
to make efficient online deployment and scaling decisions on
the go with the variation of flows, while guaranteeing good
performance over the long run of the system.

Existing efforts on VNF placement mostly deal with
the offline or one-time placement, ignoring the fundamen-
tal, dynamic deployment and scaling demand of VNF ser-
vice chains to handle practical time-varying traffic flows
(see Sec. II for detailed discussions). In contrast, this work
investigates dynamic placement of VNF service chains in geo-
distributed cloud datacenters to serve dynamically-generated
flows between various source/destination pairs across the
globe, for service cost and delay minimization. We show
that even in the offline setting, the problem we consider
renders an NP-hard combinatorial nature, leading to significant
difficulty in efficient online algorithm design. Looking deep
into the structure of the problem, we design an efficient
online algorithm based on the state-of-the-art online learning
techniques and a well-designed dependent rounding scheme.
Our detailed contributions are summarized as follows.

First, we formulate a practical online cost minimization
problem enabling dynamic deployment and removal of VNF
instances in different datacenters, as well as dynamic traffic
flow routing among VNF instances in the respective ser-
vice chains. Various deployment and running costs of VNF
instances in different datacenters are considered, in addition
to time-varying bandwidth costs to transmit flows into and
out of a datacenter. As a key QoS performance indicator for
network service provisioning, the average end-to-end delays
of the flows are also formulated and minimized as part of our
objective.

Second, we leverage a regularization based technique from
the online learning literature [6] to transform the relaxation
of the integer offline optimization problem into a sequence
of regularized sub-problems. In particular, the regularization
eliminates temporal correlation among decisions across time
slots by lifting the precedence constraints coupling successive
time slots into the objective function, such that each of the sub-
problems can be efficiently and optimally solved in each time
slot, using only information at the current time. By solving
each sub-problem, VNF instance deployment/removal and
flow routing decisions at the time are obtained in polynomial
time, constituting part of the feasible (fractional) solution to
the relaxed offline problem. Based on the KKT optimality
conditions, we are able to show that an upper-bounded overall
cost, as compared to the optimal offline solution, can be
guaranteed by this (fractional) feasible solution. Moreover,
we adapt the regularization framework into a general network
flow model to handle the end-to-end delay.

Third, we carefully design an online randomized dependent
rounding scheme for rounding fractional solutions (on the
numbers of VNF instances in each datacenter) to feasible

integer solutions of the original problem [7], [8]. Our online
dependent rounding scheme consists of three modules: 1) A
local clustering algorithm that groups datacenters into clusters
with small intra-cluster end-to-end delays. One datacenter
in each cluster with low resource costs is chosen as the
“buffer” datacenter, to deploy VNF instances for absorbing
un-served flows due to round-down in the number of VNF
deployment in other datacenters. 2) An online dependent
rounding algorithm which rounds the fractional numbers of
VNF instances to integers while guaranteeing flow routing
feasibility. 3) An optimal strategy for intra- and inter-cluster
flow redirection based on the rounded solution. Our depen-
dent rounding scheme balances well the minimization among
different costs in our objective. Without relying on any future
information, it together with the regularization based online
algorithm guarantees a good competitive ratio in overall cost
as compared to the offline optimum, which is insensitive to
the total number of flows nor the number of time slots.

The rest of the paper is organized as follows. We discuss
related work in Sec. II and present the problem model and the
offline optimization problem in Sec. III. The online algorithm
is given in Sec. IV and the dependent rounding scheme is
discussed in Sec. V. We present trace-driven evaluation results
in Sec. VI and conclude the paper in Sec. VII.

II. RELATED WORK

Interest on NFV rippled out from a 2012 white paper [1] by
telecommunication operators that introduced virtualized net-
work functions running on commodity hardware. Recent IETF
drafts presented the use cases of service chains applied across
datacenters [2], [9], and highlighted the relation between
service chains and NFV. Early efforts on NFV focused on
bridging the gap between specialized hardware and network
functions [10]–[12], and provided industrial standards for
implementing network functions on VMs. Research activities
from both industry and academia soon followed suit.

Several NFV management systems have been designed.
SIMPLE [13] implements an SDN-based policy enforce-
ment layer for efficient middlebox-specific “traffic steering”
in datacenters. Clayman et al. [14] design an orchestrator-
based architecture for automatic placement of the VNFs.
Split/Merge [13] provides system support for achieving effi-
cient, load-balanced elasticity when scaling in and out of vir-
tual middleboxes. OpenNF [3] is a control plane that enables
loss-free and order-preserving flow state migration across mul-
tiple instances of a VNF, in scenarios where flow packets are
distributed across a collection of VNF instances for processing.
Stratos [15] is an orchestration layer for efficient and scalable
VNF provisioning and scaling via software-defined networking
mechanisms. E2 [16] designs an application-agnostic schedul-
ing framework to simplify deployment and scaling of VNFs
for packet processing. These systems significantly facilitate the
deployment of VNFs, and provide the system bases to support
our deployment/scaling algorithm.

A fundamental issue in dynamic VNF provisioning is
to optimally place, add and reduce the VNF instances
with varying traffic, to provision needed service chains at
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the minimal cost. There have been a few recent efforts
on optimization algorithm design, which mostly deal with
one-off placement, ignoring the dynamic nature of an NFV
system. VNF-P [17] presents a one-time optimization model
for VNF placement, considering hybrid deployment where
part of the network service is provided by dedicated hardware
and part by VNF instances, and designs a heuristic algorithm.
Bari et al. [18] study a similar problem, formulate the problem
into an integer linear program (ILP), and propose a dynamic
programming based heuristic. Mehraghdam et al. [19] model
a mixed integer quadratically constrained program (MIQCP)
to pursue different optimization goals in VNF placement,
without giving solution algorithms. Cohen et al. [20]
investigate one-off VNF placement across different
datacenters, to minimize the distance cost between clients
and the VNFs that they need and the setup costs of these
VNFs, and provide approximation algorithms with rigorous
performance analysis. Zhang et al. [21] use the graph pattern
matching model to formulate the VNF placement problem,
without considering the VNF migration cost and the delay.
Guo et al. [22] study throughput maximization in
SDN-enabled networks with respect to service chaining
specifications under various constraints, and do not consider
the costs incurred by the VNFs. Ghaznavi et al. [23] propose
an offline solution for an elastic virtual network function
placement problem that minimizes the operational costs.
Bari et al. [24] compute the required number and placement
of VNFs to optimize the network operational costs and
utilization using heuristic algorithms. Wang et al. [25] present
VNF scaling models and online algorithms within one
datacenter. Except [20], [21], [25], all other studies propose
heuristic algorithms to solve the respective VNF placement
problems, without giving any theoretical performance
guarantee. On dynamic VNF scaling, similarly only heuristic
approaches are discussed in a few system designs, e.g.,
Stratos [15] and E2 [16]. Going substantially beyond the
existing work, we aim to design an online algorithm for
dynamic VNF deployment and scaling across datacenters, and
provide solid theoretical guarantee of algorithm efficiency.

III. PROBLEM MODEL

A. The NFV System

We consider a network service provider which rents virtual
machines (VMs) from cloud datacenters distributed in different
geographic locations, deploys virtualized network functions
(VNFs) on the VMs, and assembles service chains to serve
traffic flows between arbitrary sender and receiver locations.
There are in total M types of VNF and I datacenters. Without
loss of generality, the system works in a time slotted fashion
within a large time span of 1, 2, . . . , T . Each time slot repre-
sents a decision interval, which is much longer than a typical
end-to-end flow delay. Let [X ] represent the set {1, 2, . . . , X}
throughout the paper, e.g., [M ] = {1, 2, . . . , M} is the set of
different VNFs.

The VM instances running different VNFs are referred to
as VNF instances. The flow processing capacities of VNF
instances may differ, depending on resource capacities of the

Fig. 1. An example of NFV service chains deployed over geo-distributed
datacenters.

respective VMs, including CPU, memory and network I/O.
We use bm,i to denote the processing capacity of each instance
of VNF m in datacenter i, in terms of the maximum flow
rate that it can process in each time slot without causing
extraordinary processing and queueing delays. Instances of the
same VNF are deployed on the same types of VMs in one
datacenter, while VM types may differ from one datacenter to
another, leading to different processing capacities of instances
of the same VNF across different datacenters.

Up to K traffic flows may co-exist at any time in the system,
each consisting of data packets from source sk (location) to
destination zk (location), traversing the same service chain
pk, k ∈ [K]. A service chain pk contains an ordered sequence
of selected VNFs from set [M ], i.e., pk ⊆ [M ], and the
hops in the service chain can be described by indicators
hk,m,m′ , ∀m, m′ ∈ pk: hk,m,m′ = 1, if m → m′ is a
hop of pk; and h′

k,m,m = 0 otherwise. For completeness of
formulation, we add a dummy VNF 0 and a dummy VNF 0′

to the head and the tail of each service chain, respectively,
such that hk,0,m = 1 if m is the first VNF in the chain
and hk,m,0′ = 1 if m is the last VNF in the chain. A flow
can follow different paths from the source to the destination,
via different instances of the same VNF along its service
chain. Fig. 1 shows two service chains deployed over multiple
datacenters, where the flow along service chain 2 can be
distributed to three instances of VNF 1 located in 2 different
datacenters.

Let F
(t)
k be the rate of flow k at the source, going into

instances of the first VNF in its service chain at time t.
Note that we capture dynamic flow arrivals and departures
by allowing the flow rate to be zero if the flow does not
exist at the time. Even in the same time slot, the flow rate
may change at different hops of the VNF chain: some VNFs
perform tunneling gateway functions (e.g., IPSec/SSL VPN
and media gateways), converting packets from one format
to another, which may increase the packet size for encap-
sulation or decrease the packet size for decapsulation [26];
some VNFs perform security functions (e.g., firewalls and
intrusion detection), dropping packets which violate security
policies [27]. We use βk,m to denote the average change ratio
of flow rates of flow k on VNF m, such that the outgoing
rate of flow k after traversing an instance of VNF m is on
average βk,m times the incoming rate. In practice, we can
estimate βk,m based on the past history and calibrate its value
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over time. For ease of problem formulation, we define β̄k,m

as the cumulative rate change ratio of flow k before it goes
through VNF m, which is the ratio of the overall rate of the
flow coming into all instances of VNF m over the initial flow
rate F

(t)
k . β̄k,m can be computed using βk,m’s as follows:

β̄k,mk,s
= 1, where mk,s is the first VNF in service chainpk,

β̄k,m =
∑

m′∈pk

hk,m′,mβ̄k,m′βk,m′ , ∀m ∈ pk/{mk,s}.

The total flow rate arriving at all instances of VNF m of flow
k at t, F̂

(t)
k,m, can be computed based on F

(t)
k and β̄k,m as

F̂
(t)
k,m = F

(t)
k β̄k,m (1)

For the example of service chain 2 in Fig. 1, suppose initial
rate of the flow going into the service chain is F

(1)
2 = 12;

then we have F̂
(1)
2,1 = F

(1)
2 = 12, F̂

(1)
2,2 = 6 (since β2,1 = 0.5)

and F̂
(1)
2,0′ = 6 (since β2,2 = 1).

B. Decision Variables

We seek to make the following decisions on VNFs deploy-
ment and flow routing at each time slot t ∈ [T ]: (i) q

(t)
m,i,

the number of instances of VNF m to deploy in datacenter
i, ∀m ∈ [M ], i ∈ [I]. An instance of a VNF can be shared
by multiple flows whose service chain includes this VNF. (ii)
x

(t)
k,m,i,m′,i′ , the overall egress rate of flow k from instances of

VNF m at datacenter i to instances of VNF m′ at datacenter
i′, ∀k ∈ [K], m, m′ ∈ [M ], i, i′ ∈ [I]. For ease of optimization
formulation, we also introduce y

(t)
k,m,i to denote the total

ingress rate of flow k to instances of VNF m at datacen-
ter i, i.e., y

(t)
k,m,i =

∑
i′∈[I]/{i}

∑
m′∈[M ] hk,m′,mx

(t)
k,m′,i′,m,i.

Here q
(t)
m,i’s are non-negative integers, while x

(t)
k,m,i,m′,i′ ’s

and y
(t)
k,m,i’s are non-negative real numbers. In the example

in Fig. 1, q
(1)
1,1 = 2, q

(1)
1,2 = 2 and q

(1)
2,3 = 1; for service chain 2,

supposing the incoming flow is evenly distributed to the three
instances of VNF 1 in datacenters 1 and 2, then x

(1)
2,1,1,2,3 = 2,

x
(1)
2,1,2,2,3 = 4 and y

(1)
2,2,3 = 6.

C. Cost Structure

We aim to minimize the overall operational cost of the
network service provider during [T ], with the following costs
considered.

1) VNF Running Cost: The network service provider pays
the cloud operator for renting VMs to run the VNF instances.
Let c

(t)
m,i be the cost of operating an instance of VNF m in

datacenter i in time slot t. The overall cost for VM rentals in
all datacenters in t is:

C
(t)
R =

∑

i∈[I]

∑

m∈[M ]

c
(t)
m,iq

(t)
m,i (2)

2) VNF Deployment Cost: Launching a new VNF instance
commonly involves transferring a VM image containing the
network function to the hosting datacenter/server, and booting
and attaching the image to device. The deployment cost is
typically considered on the order of the cost to run a server

for a number of seconds or minutes [28]. Let δm,i denote the
cost for deploying an instance of VNF m in datacenter i. Let
ρ
(t)
m,i denote the number of new instances of VNF m to be

deployed in datacenter i in t, which can be calculated as

ρ
(t)
m,i = max{0, q

(t)
m,i − q

(t−1)
m,i } (3)

The total deployment cost for all new VNF instances in all
datacenters in t is computed as:

C
(t)
D =

∑

i∈[I]

∑

m∈[M ]

δm,iρ
(t)
m,i (4)

Note that we consider VNF migration cost within the VNF
deployment cost. In real-world systems, the VNF destruction
cost is relatively small [29] and we treat the VNF deployment
cost as the major cost incurred during VNF migration. If we
are to include the VNF destruction cost, we may just set
ρ
(t)
m,i = |q(t)

m,i − q
(t−1)
m,i | in (3).

3) Flow Transfer Cost: To transfer flows into and out of a
datacenter, a bandwidth charge may be incurred (e.g., [30]).
Let din

i and dout
i respectively be the costs of sending a unit of

a flow into and out of datacenter i in a time slot. The overall
bandwidth cost of all flows across all datacenters in t is:

C
(t)
T

=
∑

k∈[K]

∑

m′∈[M ]

∑

i′∈[I]/{i}

∑

m∈[M ]

∑

i∈[I]

hk,m′,mdin
i x

(t)
k,m′,i′,m,i

+
∑

k∈[K]

∑

m∈[M ]

∑

i∈[I]

∑

m′∈[M ]

∑

i′∈[I]/{i}
hk,m,m′dout

i x
(t)
k,m,i,m′,i′

which is equivalent to

C
(t)
T

=
∑

k∈[K]

∑

m∈[M ]

∑

i∈[I]

(din
i + dout

i βk,m)y(t)
k,m,i

−
∑

k∈[K]

∑

m∈[M ]

∑

m′∈[M ]

∑

i∈[I]

hk,m,m′(din
i + dout

i )x(t)
k,m,i,m′,i

where the deduction is to remove flows between VNF
instances in the same datacenter from the cost computation.

4) End-to-End Flow Delay: As an important performance
indicator, the end-to-end delay of each flow to pass through its
service chain should be minimized, which is mainly decided
by locations of the VNF instances that it traverses, i.e., delays
on the hops. Let li,j denote the delay between node i and
node j in the set of all datacenters, flow sources, and flow
destinations, such that li,j = lj,i and li,i = 0. We use a
generalized α−relaxed triangle inequality [31] to describe
delays between nodes:

|la,b − lb,c| ≤ αla,c, ∀a, b, c ∈ [I] ∪k∈[K] {sk, zk} (5)

If α ≤ 1, (5) becomes the normal triangle inequality, la,b ≤
la,c + lb,c; α > 1 implies violation of the normal triangle
inequality, which is common for the Internet delay space.

The average end-to-end delay of a flow k can be computed
by summing up the following: (i) The average delay from
source sk to datacenters hosting the first VNF of service

chain pk,
∑

m∈[M ] hk,0,m(
�

i∈[I] lsk,iy
(t)
k,m,i

F
(t)
k

). The summation
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over all datacenters represents that the flow can be dispatched
to different instances of the first VNF m (hk,0,m = 1) in
different datacenters, and dividing the sum by F

(t)
k removes

the impact of flow rate, leaving only delay in the result. (ii)
The average delay in each hop m → m′ of service chain

pk (hk,m,m′ = 1), hk,m,m′

�
i∈[I]
�

i′∈[I] li,i′x
(t)
k,m,i,m′,i′

βk,mβ̄k,mF
(t)
k

. The

summation over all datacenter pairs models that both VNF
m and VNF m′ can be deployed in multiple datacenters,
and dividing the sum by the overall flow rate at this hop,
βk,mβ̄k,mF

(t)
k , removes the influence of flow rates in delay

calculation. (iii) The average delay from the datacenters host-
ing instances of the last VNF of service chain pk to destination

dk,
∑

m∈[M ] hk,m,0′(
�

i∈[I] li,zk
βk,my

(t)
k,m,i

βk,mβ̄k,mF
(t)
k

). Hence the average

end-to-end delay of flow k in t is:

∑

m∈[M ]

∑

i∈[I]

hk,0,mlsk,i

F
(t)
k

y
(t)
k,m,i +

∑

m∈[M ]

∑

i∈[I]

hk,m,0li,zk

β̄k,mF
(t)
k

y
(t)
k,m,i

+
∑

m∈[M ]

∑

i∈[I]

∑

m′∈[M ]

∑

i′∈[I]

hk,m,m′ li,i′

βk,mβ̄k,mF
(t)
k

x
(t)
k,m,i,m′,i′

By multiplying the average end-to-end delay of each flow k

with a weight parameter a
(t)
k , we convert the delay to a delay

cost, to be aggregated with other costs for minimization in our
optimal decision making. The overall delay cost of all flows
in time slot t is:

C
(t)
E =

∑

k∈[K]

∑

m∈[M ]

∑

i∈[I]

ξ
(t)
k,m,iy

(t)
k,m,i

+
∑

k∈[K]

∑

m∈[M ]

∑

i∈[I]

∑

m′∈[M ]

∑

i′∈[I]

ω
(t)
k,m,i,m′,i′x

(t)
k,m,i,m′,i′

(6)

where

ξ
(t)
k,m,i =

a
(t)
k hk,0,mlsk,i

F
(t)
k

+
a
(t)
k hk,m,0′ li,zk

β̄k,mF
(t)
k

and

ω
(t)
k,m,i,m′,i′ =

a
(t)
k hk,m,m′ li,i′

βk,mβ̄k,mF
(t)
k

.

Such a conversion of delay to a delay cost, in order to
sum it up in the total cost for minimization, can be inter-
preted from the angle of multi-objective optimization [32]:
the classic technique to treat an optimization problem where
we have more than one objectives (e.g., minimize operating
cost and minimize delay as in our case), i.e., a multi-objective
optimization problem, is to convert it into a single objective
optimization problem, where the new objective is a weighted
sum of the original multiple objectives.

D. The Offline Cost Minimization Problem

Assuming full knowledge of the system in [T ], we can for-
mulate an offline VNF deployment and flow routing problem
in (7), for overall cost minimization. Important notation is

TABLE I

KEY NOTATION

listed in Table I for ease of reference.

P: minimize
∑

t∈[T ]

C
(t)
R + C

(t)
D + C

(t)
T + C

(t)
E (7)

subject to:∑

k∈[K]

y
(t)
k,m,i ≤ q

(t)
m,ibm,i, ∀t ∈ [T ], i ∈ [I], m ∈ [M ]

(8a)

ρ
(t)
m,i ≥ q

(t)
m,i − q

(t−1)
m,i , ∀t ∈ [T ], i ∈ [I], m ∈ [M ] (8b)

∑

i∈[I]

y
(t)
k,m,i = F̂

(t)
k,m, ∀t ∈ [T ], m ∈ [M ], k ∈ [K] (8c)

y
(t)
k,m,i =

∑

i′∈[I]

∑

m′∈[M ]

hk,m′,mx
(t)
k,m′,i′,m,i

∀t ∈ [T ], m ∈ [M ]/{mk,s}, i ∈ [I], k ∈ [K] (8d)

βk,my
(t)
k,m,i =

∑

m′∈[M ]

∑

i′∈[I]

hk,m,m′x
(t)
k,m,i,m′,i′

∀t ∈ [T ], m ∈ [M ]/{mk,z}, i ∈ [I], k ∈ [K] (8e)

x
(t)
k,m,i,m′,i′ ≥ 0,

∀t ∈ [T ], m, m′ ∈ [M ], i, i′ ∈ [I], k ∈ [K] (8f)

y
(t)
k,m,i ≥ 0, ∀t ∈ [T ], k ∈ [K], m ∈ [M ], i ∈ [I] (8g)

q
(0)
m,i = 0, ∀m ∈ [M ], i ∈ [I], (8h)

q
(t)
m,i ∈ {0, 1, 2, . . .}, ∀t ∈ [T ], m ∈ [M ], i ∈ [I] (8i)

ρ
(t)
m,i ∈ {0, 1, 2, . . .}, ∀t ∈ [T ], m ∈ [M ], i ∈ [I] (8j)

Here mk,s (mk,z) denotes the first (last) VNF in flow
k’s service chain. Constraint (8a) guarantees that the total
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incoming flow rate to instances of VNF m in datacenter
i does not exceed the processing capacity of the deployed
instances. Constraints (8b) and (8j) are derived from the
definition of auxiliary variable ρ

(t)
m,i in (3). (8c) shows that

the total incoming rate of flow k to VNF m in all datacenters
should equal the (changed) aggregate rate of the flow at this
hop, where F̂

(t)
k,m is decided by the initial flow rate and the

change ratios along the service chain as in Eqn. (1). (8d)
and (8e) guarantee flow conservation (considering flow rate
change ratios βk,m) for each flow at instances of each VNF in
each datacenter, by connecting ingress and egress flows. In our
model, the overall capacity limits are not considered in each
datacenter, as the capacities provisioned are typically much
larger than the demand from one service such as our VNF
system.

Theorem 1: The offline optimization problem (7) is NP-
hard.

Proof: The offline problem (7) is a mixed integer linear
programming (i.e., MILP), and can be reduced from the
minimum (multiple) knapsack (covering) problem (MKP) [33],
which is known to be NP-hard. In MKP, a set of items are
given, each with a weight and a value; the objective is to find a
minimum-weight subset of items (each item can have multiple
copies) such that the total value of the items in the subset meets
some specified demand. We reduce MKP to (7) as follows: We
set T = 1, and if we only consider the VNF running cost and
treat other costs as 0 (i.e., C

(t)
D = C

(t)
T = C

(t)
E = 0, when the

coefficients of these costs are 0), then the value for each item
is bm,i, the weight is c

(t)
m,i, C

(t)
R presents the total weight, and

the required demand in the MKP is
∑

k∈[K] y
(t)
k,m,i, which is

satisfied by constraint (8a). Therefore our offline problem (7)
is at least as difficult as the MKP. �

In an online setting, all parameters, variables and constraints
related to time slot t are revealed upon the arrival of the
corresponding time. Due to constraints (8b), decisions of
one time slot are coupled with those in another. We seek
to design an efficient online algorithm that produces VNF
deployment and flow routing decisions based only on the
current flow information and past history. Our offline problem
provides us a better understanding of the problem at hand
to facilitate our online algorithm design, and also presents
a performance benchmark for our online algorithm: we will
show that our online algorithm can achieve a good competitive
ratio, computed by dividing the overall cost it achieves by the
offline minimum cost derived by solving (7) exactly.

Our design of the online algorithm is divided into two
steps. First, we relax the in tegrality constraints (8i) and (8j)
in (7), obtain the fractional offline optimization problem Pf as
follows, and apply a novel regularization method to design an
online algorithm for solving this relaxed linear program (LP)
in Sec. IV. We then design a dependent rounding algorithm to
round the fractional solutions to feasible solutions of MILP (7)
in Sec. V.

Pf : minimize
∑

t∈[T ]

C
(t)
R + C

(t)
D + C

(t)
T + C

(t)
E

subject to: constraints (8a) to (8h)

q
(t)
m,i ≥ 0, ∀t ∈ [T ], m ∈ [M ], i ∈ [I] (9i)

ρ
(t)
m,i ≥ 0, ∀t ∈ [T ], m ∈ [M ], i ∈ [I]

(9)

IV. THE FRACTIONAL ONLINE ALGORITHM VIA

REGULARIZATION

Regularization

The key idea of our online algorithm to solve Pf is to lift
constraint (8b) to the objective function using a smooth convex
function. By doing this, decisions in time slots t − 1 and t
can be decoupled and the resulting relaxed offline problem,
denoted by P̃f , can be readily decomposed into a set of sub-
problems, each to be efficiently solved in one time slot.

To lift (8b) into the objective function in (7), we observe
that (8b) originates from the definition of variable ρ

(t)
m,i in (3),

the number of new instances of VNF m to be deployed in
datacenter i in t. ρ

(t)
m,i is involved in the deployment cost C

(t)
D

as defined in (4), which is the second term of the objective
function in (7). We substitute ρ

(t)
m,i in (7) by a function

of q
(t−1)
m,i and q

(t)
m,i via the regularization technique from

the online learning literature [34], removing constraint (8b).
In particular, we use the following relative entropy function,
a commonly adopted convex regularizer, as the basis of the
function to approximate ρ

(t)
m,i in (3):

Δ(q(t)
m,i||q(t−1)

m,i ) = q
(t)
m,i ln

q
(t)
m,i

q
(t−1)
m,i

+ q
(t−1)
m,i − q

(t)
m,i (10)

This relative entropy function is obtained by summing the

relative entropy (q(t)
m,i ln

q
(t)
m,i

q
(t−1)
m,i

) and a linear term representing

the movement cost (q(t−1)
m,i − q

(t)
m,i). Such a function, proven

convex, is a widely adopted regularizer in online learning
problems that involve l1-norm constraints [6], [34], such as
in our case (constraint (8b)). Further, to approximate ρ

(t)
m,i

in (3), we add a constant term ε
MI to both q

(t)
m,i and q

(t−1)
m,i in

the relative entropy term in (10), where ε is a small positive
constant, to ensure that the fraction is still valid when the
number of VNF instances deployed in t − 1 is zero, i.e.,
q
(t−1)
m,i = 0. We also define a parameter η = ln(1 + MI

ε ) and
multiple the improved relative entropy function by 1

η , which is
related to our competitive ratio, to normalize the deployment
cost by regularization.

We replace ρ
(t)
m,i in (7) by the constructed function, and

obtain P̃f as follows. Here we only present the subproblem
at t, P̃

(t)
f , that P̃f is decomposed into, ∀t ∈ [T ]. P̃f can be

readily obtained by adding a summation over t ∈ [T ] in the
objective function, i.e., P̃f =

∑
t∈[T ] P̃

(t)
f , and repeating each

constraint for each t ∈ [T ].

P̃(t)
f : minimize C

(t)
R + C

(t)
T + C

(t)
E +

∑

m∈[M ]

∑

i∈[I]

δm,i

η

×
(
(q(t)

m,i +
ε

MI
) ln

q
(t)
m,i + ε

MI

q
(t−1)
m,i + ε

MI

+ q
(t−1)
m,i − q

(t)
m,i

)

subject to: constraints (8a)(8c)-(8h), (9i), for t (11)
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Algorithm 1 An Online Regularization-Based Fractional
Algorithm - ORFA

Input: K, M, I, β, δ,h,b, s, z, l,din,dout, ε
Output: q,x,y

1 Initialization: q = 0,x = 0,y = 0;
2 for each time slot t ∈ [T ] do
3 observe values of F

(t)
k , a

(t)
k , c

(t)
m,i,

∀k ∈ [K], m ∈ [M ], i ∈ [I];
4 compute F̂

(t)
k , ∀k ∈ [K], according to (1);

5 use the interior point method to solve P̃
(t)
f in (11);

6 return optimal solutions q(t),x(t),y(t);
7 end

Online Algorithm

Our online algorithm to derive a solution to Pf in (9), given
in Alg. 1, runs by solving subproblem P̃

(t)
f in (11) in each time

slot t. Note that q
(t−1)
m,i , ∀i ∈ [I], m ∈ [M ], have been obtained

when solving P̃
(t−1)
f in time t− 1, and their values are given

as input to P̃
(t)
f at t. Since P̃

(t)
f is a convex optimization

problem with linear constraints, it can be optimally solved in
polynomial time, e.g., using the interior point method [32]. It is
obvious that the optimal solution of P̃

(t)
f , ∀t ∈ [T ], constitute

a feasible solution to Pf (values of ρ
(t)
m,i’s can be easily set

based on (3)), as given in the following theorem.
Theorem 2: The online fractional algorithm ORFA pro-

duces a feasible solution of Pf in polynomial time.

Competitive Ratio

q
(t)
m,i’s derived by ORFA are potentially fractional. We next

show that the fractional solution can achieve a good competi-
tive ratio in overall cost. In Sec. V, we will round the fractional
solutions to integers, as well as show the final competitive ratio
based on the ratio here plus the efficiency loss due to rounding.

Theorem 3: The overall cost in (7) that the solution derived
by ORFA achieves is at most log(1 + MI/ε)+ 1 + 1/φ times
the offline minimum overall cost derived by solving P in (7)
exactly, where φ = mint∈[T ],i∈[I],m∈[M ]{q(t)

m,i : q
(t)
m,i > 0} is

the minimum positive number of instances deployed for any
VNF, at any time slot and in any datacenter.

The detailed proof is given in the supplementary materials.
We next give a bound on the value of the objective function

achieved by any integer solution of (11), which will be used in
our analysis of the final competitive ratio in the next section.

Theorem 4: The objective value of P̃f in (11) achieved by
the best integral solution of (11), denoted by P̃I , is at most
log(1 + MI/ε)+2 times the offline minimum overall cost.

Theorem 4 follows immediately Theorem 3, since the
smallest integer value of φ in the ratio given in Theorem 3 is 1,
denoting the minimum positive integral number of instances
deployed for any VNF in any datacenter at any time.

V. AN ONLINE DEPENDENT ROUNDING SCHEME

A. The Dependent Rounding Scheme

The ORFA algorithm in Sec. IV computes a fractional
solution (q(t),x(t),y(t), ρ(t)), for the optimization problem

in (9). However, the number of instances of each VNF to
deploy should be integral, as captured by (8i) and (8j) in the
offline problem. We need to round the fractional solution q(t)

to an integer solution q̄(t). Due to constraints (8a) - (8e), modi-
fying q(t) requires correspondingly modifying (x(t),y(t), ρ(t))
to maintain solution feasibility. Our goal in this section is
to compute a rounded solution (q̄(t), x̄(t), ȳ(t), ρ̄(t)) from
(q(t),x(t),y(t), ρ(t)) such that the rounded solution is feasible
to (7).

We first note that a straightforward independent rounding
scheme, where each variable is rounded up or down indepen-
dently of other variables, may violate feasibility. For example,
there is a chance that q

(t)
m,i, ∀m ∈ [M ], i ∈ [I], are rounded

down, making it impossible to obtain a feasible routing solu-
tion. We therefore design a dependent rounding scheme that
can exploit the inherent dependence of the variables in capacity
constraint (8a) and flow conservation constraints (8d) and (8e).
The key idea is that rounded-down VNF instance numbers will
be compensated by rounded-up VNF instance numbers, as well
as extra VNF instances deployed, guaranteeing a feasible ȳ(t)

and a feasible x̄(t) that satisfy (8a), (8d) and (8e).
Our dependent rounding scheme contains four modules: (i)

a local clustering algorithm that separates the geo-distributed
datacenter network into several clusters, each with at least
two datacenters; (ii) an initialization module for weighted
dependent rounding, that constructs a weighted star graph in
each time slot; (iii) a weighted dependent rounding algorithm
based on the clusters and start graph above to compute
the rounded solution of q̄(t) and ρ̄(t); (iv) a flow direction
algorithm to find the feasible solution of ȳ(t) and x̄(t), which
will provide (q̄(t), x̄(t), ȳ(t), ρ̄(t)) as the final feasible solution
to (7).

1) Datacenter Clustering: Geo-distributed datacenters in
practice often form natural clusters based on location prox-
imity. Amazon EC2 datacenters [35] and Google datacen-
ters [36] can be separated into 3 main clusters by continents:
America, Europe and Asia datacenter groups. Delays between
datacenters within the same cluster (intra-cluster delays) are
substantially smaller than those between datacenters across
different clusters (inter-cluster delays). We design a local
clustering algorithm, as given in Alg. 2, to group datacenters
in the system into clusters with intra-cluster delays no larger
than R. Here R is defined to be the median of all the inter-
datacenter delays (line 2). In Alg. 2, we construct the clusters
by repeatedly merging existing clusters whose inter-cluster
delays are no larger than R. Then we identify the isolated
points (clusters including only one datacenter) and merge them
to nearest clusters. The clustering algorithm is carried out once
at the beginning of the system. By carrying out dependent
rounding on top of the cluster structure, we will be able to
bound the delay cost part in the overall cost in our competitive
analysis, where the bound is related to R.

2) Star Graph Construction: In each time slot, we construct
a star graph for each datacenter cluster (Alg. 3). We identify
a buffer datacenter, j

(t)∗
m for each type of VNF m in each

datacenter cluster, which has the smallest VNF running cost
per unit flow processing capacity (line 4). We may deploy
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Algorithm 2 The Local Clustering Algorithm

Input: li,i′ , ∀i, i′ ∈ [I]
Output: clusters of datacenters 	

1 Treat each datacenter i as a singleton cluster;
2 R = mediani,i′∈[I]li,i′ ;
3 while there are more clusters to merge do
4 for Any two clusters 	u 
= 	v do
5 if li,j ≤ R ∀i ∈ 	u, j ∈ 	v then
6 Merge 	u and 	v into a new cluster 	u′ .
7 end
8 end
9 end

10 for any cluster 	u with only one datacenter i do
11 Find the cluster 	v with minimal value of

maxj∈�v li,j , merge 	u into 	v.
12 end

Algorithm 3 The Initialization Module for Weighted
Dependent Rounding in t, INIT

Input: K, M, I,q(t), c,b
Output: w(t),p(t),A,B,Υ, G(V (t)

m , E
(t)
m ), ∀m ∈ [M ]

1 for each type of VNF m ∈ [M ] do
2 Set V

(t)
m = [I], E(t)

m = ∅;
3 for each datacenter cluster do

4 Decide datacenter j
(t)∗
m with minimal

c
(t)
m,i

bm,i
; (if there

is a tie, choose any one from the tied candidates)
5 Label this datacenter cluster as 	

m,j
(t)∗
m

;

6 Set A
m,j

(t)∗
m

= 	
m,j

(t)∗
m

/{j(t)∗
m },

B
m,j

(t)∗
m

= {j(t)∗
m },

Υ
m,j

(t)∗
m

= {(i, j(t)∗
m )} ∀i ∈ A

m,j
(t)∗
m

;
7 for each datacenter i ∈ A

m,j
(t)∗
m

do

8 if q
(t)
m,i = �q(t)

m,i then

9 Υ
m,j

(t)∗
m

= Υ
m,j

(t)∗
m

/{(i, j(t)∗
m )};

10 end
11 else
12 Add the edge (i, j(t)∗

m ) to E
(t)
m ;

13 Associate a probability coefficient

p
(t)
m,i = �q(t)

m,i + 1 − q
(t)
m,i (12)

with the edge (i, j(t)∗
m );

14 Associate a weight coefficient

w
(t)
m,i = (q(t)

m,i − �q(t)
m,i)

bm,i

b
m,j

(t)∗
m

(13)

with the edge (i, j(t)∗
m );

15 end
16 end
17 end
18 end

extra instances of VNF m in such a buffer datacenter to absorb
unserved flow due to round-down of VNF instance numbers

Fig. 2. Datacenter graph with disjoint stars.

in other non-buffer datacenters in the cluster. The buffer
datacenter is the centre of the star graph for the cluster. Let
A

m,j
(t)∗
m

denote the non-buffer datacenters in cluster 	
m,j

(t)∗
m

,
B

m,j
(t)∗
m

denote the buffer datacenter in 	
m,j

(t)∗
m

, and Υ
m,j

(t)∗
m

denote the set of fractional edges in 	
m,j

(t)∗
m

with 0 < p
(t)
m,i <

1 (line 6). For each datacenter in each cluster except the buffer
(line 7), if the computed instance number of VNF m by the
online algorithm ORFA is already an integer, we ignore this
datacenter in the rounding scheme and remove it from Υ
(lines 8-9); otherwise, we add an edge connecting the datacen-
ter to the buffer datacenter, and associate a probability p

(t)
m,i and

a weight with the edge w
(t)
m,i (lines 13-14). p

(t)
m,i is computed

by (12) and will be used for rounding. w
(t)
m,i is computed

by (13), and will be used for determining the number of
instances of VNF m to be deployed in the buffer datacenter.
After running this initialization module, the data center graph
is dissected into disjoint stars, as illustrated in Fig. 2

3) Weighted Dependent Rounding: We are now ready to
present the Online Weighted Dependent Rounding (OWDR)
algorithm in Alg. 4, which computes a feasible integer solution
of q̄

(t)
m,i in each time slot t. For each type of VNF m, OWDR

runs a series of rounding iterations for each cluster (line 1).
For each cluster 	

m,j
(t)∗
m

, we find a maximum path in its star
topology (of length at most 2) that will be the path from a
datacenter in A

m,j
(t)∗
m

to the buffer datacenter j
(t)∗
m to another

datacenter in A
m,j

(t)∗
m

. Then the two edges are placed into two
distinct matchings (line 4). If only one floating edge remains
(this can happen only in the last iteration), we choose this edge
as the maximal path with length 1. During each iteration, we
let the probability of one of these two edges, p

(t)
m,i1

or p
(t)
m,i2

round to 0 or 1, decided by the coupled coefficient κ1 and
κ2, which will decrease the number of elements in Υ

m,j
(t)∗
m

by 1. Finally, the solution q̄
(t)
m,i can be produced by the original

integral part �q(t)
m,i plus the rounded fractional part p

(t)
m,i.

Furthermore, based on the integral solutions q̄
(t)
m,i, we can then

calculate ρ̄
(t)
m,i as max{0, q̄

(t)
m,i − q̄

(t−1)
m,i } (line 12).

The following theorem shows that the numbers of instances
of each VNF m to deploy in the datacenters, q̄

(t)
m,i produced by

OWDR, are integers and are sufficient to serve all the incoming
flows that need this VNF at t.

Theorem 5: Elements of q̄(t) produced by OWDR
are non-negative integers and satisfy

∑
i∈[I] q

(t)
m,ibm,i ≥

∑
k∈[K] F̂

(t)
k,m, ∀m ∈ [M ], t ∈ [T ].
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Algorithm 4 The Online Weighed Dependent Rounding
Algorithm (OWDR) in t

Input: q(t),star graphs G(V (t)
m , E

(t)
m ), ∀m ∈ [M ],

p(t),w(t), q̄(t−1)

Output: q̄(t), ρ̄(t)

1 for each type of VNF m ∈ [M ] do
2 for each datacenter cluster 	

m,j
(t)∗
m

do
3 while Υ

m,j
(t)∗
m


= ∅ do
4 Run the depth-first-search (DFS) algorithm to

obtain maximal path P in the star graph
(A, B, Υ) and partition the edge set of P into
two matchings Ψ1 and Ψ2 ;

5 Define

κ1 = min{γ > 0|(∃(i1, j(t)∗
m ) ∈ Ψ1 : p

(t)
m,i1

+γ = 1)

∨ (∃(i2, j(t)∗
m ) ∈ Ψ2 : p

(t)
m,i2

− w
(t)
m,i1

w
(t)
m,i2

γ = 0)}

κ2 = min{γ > 0|(∃i1, j
(t)∗
m ) ∈ Ψ1 : p

(t)
m,i1

− γ = 0)

∨ (∃i2, j
(t)∗
m ) ∈ Ψ2 : p

(t)
m,i2

+
w

(t)
m,i2

w
(t)
m,i1

γ = 1)}

6 With probability κ2
κ1+κ2

, set

p
(t)
m,i1

= p
(t)
m,i1

+ κ1, ∀(i1, j(t)∗
m ) ∈ Ψ1

p
(t)
m,i2

= p
(t)
m,i2

− κ1

w
(t)
m,i1

w
(t)
m,i2

, ∀(i2, j(t)∗
m ) ∈ Ψ2

Remove (i1, j
(t)∗
m ) or (i2, j

(t)∗
m ) from Υ

m,j
(t)∗
m

if

p
(t)
m,i1

∈ {0, 1} or p
(t)
m,i2

∈ {0, 1}
7 With probability κ1

κ1+κ2
, set

p
(t)
m,i1

= p
(t)
m,i1

− κ2, ∀(i1, j(t)∗
m ) ∈ Ψ1

p
(t)
m,i2

= p
(t)
m,i2

+ κ2

w
(t)
m,i1

w
(t)
m,i2

, ∀(i2, j(t)∗
m ) ∈ Ψ2

Remove (i1, j
(t)∗
m ) or (i2, j

(t)∗
m ) from Υ

m,j
(t)∗
m

if

p
(t)
m,i1

∈ {0, 1} or p
(t)
m,i2

∈ {0, 1}
8 end
9 end

10 for each datacenter i ∈ A do
11

q̄
(t)
m,i = �q(t)

m,i + p
(t)
m,i

ρ̄
(t)
m,i = max{0, q̄

(t)
m,i − q̄

(t−1)
m,i }

12 end
13 end

The detailed proofs of the lemmas are given in the supple-
mentary materials.

4) Flow Redirection: q̄(t) and ρ̄(t) produced by OWDR
together with flow routing decisions x(t) and y(t) from Alg. 1

may well not be a feasible solution of (7). We next obtain x̄(t)

and ȳ(t) based on (q̄(t), ρ̄(t)) that leads to a complete feasible
solution of (7), by solving a linear optimization problem as
follows. The LP in (14) is derived from (7) by plugging in the
values of q̄(t) and ρ̄(t) obtained by OWDR and removing the
resulting fixed VNF running cost and VNF deployment cost
from the objective and the relevant constraints.

minimize C
(t)
T + C

(t)
E

subject to: constraints (8a)(8c)-(8g) (14)

The above LP can be exactly solved using the interior point
method in polynomial time.

B. The Complete Online Algorithm

We summarize our complete online algorithm in Alg. 5,
which incorporates the online regularization-based algorithm
(i.e., ORFA) to get an online fractional solution, together
with the dependent rounding algorithm (i.e., OWDR). Here
ORFA(t) is referring to the steps executed in time slot t of
the online algorithm ORFA, i.e., lines 3-6 in Alg. 1. INIT is
the routine in Alg. 3 and OWDR is the routine in Alg. 4.

Algorithm 5 The Complete Online Algorithm - COA

Input: K, M, I, β, δ,h,b, s, z, l,din,dout, ε
Output: q̄, ρ̄, x̄, ȳ

1 Initialization: q = 0,x = 0,y = 0, q̄ = 0;
2 call the local clustering algorithm in Alg. 2;
3 for each time slot t ∈ [T ] do
4 (q(t),x(t),y(t)) = ORFA(t)(K, M, I, β, δ,h,b, s, z,

l,din,dout, ε);
5 (w(t),p(t),A,B,Υ, G(V (t)

m , E
(t)
m ),

∀m ∈ [M ]) = INIT (K, M, I,q(t), c,b);
6 (q̄(t), ρ̄(t)) = OWDR(q(t), G(V (t)

m , E
(t)
m ), ∀m ∈

[M ],p(t),w(t), q̄(t−1));
7 Obtain x̄(t) and ȳ(t) by solving LP (14) using interior

point method;
8 end

Theorem 6: The complete online algorithm COA runs in
polynomial time.

Theorem 7: The complete online algorithm COA in Alg. 5
computes a feasible solution (q̄(t), x̄(t), ȳ(t), ρ̄(t)) of the orig-
inal problem (7).

Proof: Since q̄(t) satisfies the condition in Theorem 5,
we can find a feasible solution of y(t) which satisfies con-
straints (8a) and (8c), and then a feasible solution of x(t)

satisfying the flow conservation constraints (8d) and (8e). That
is, we can find a feasible solution when solving LP (14), and
(q̄(t), x̄(t), ȳ(t), ρ̄(t)) is feasible for the original problem (7).

�

Competitive Analysis

We now analyze the competitive ratio of COA. Let
PI(ORFA) denote the objective value of problem (11)
achieved by its best integer solution. Let P̄I(COA) be the
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objective value of the original problem (7) achieved by the
solution produced by COA, in which the VNF running cost,
VNF deployment cost, flow transfer cost and delay cost are
P̄I(CR), P̄I(CD), P̄I(CT ) and P̄I(CE), respectively:

P̄I(COA) = P̄I(CR) + P̄I(CD) + P̄I(CE) + P̄I(CT )

The competitive ratio achieved by our complete online
algorithm in Alg. 5 is computed as the worst-case ratio
of P̄I(COA) over the minimium overall cost computed by
solving the offline problem (7) exactly.

Lemma 1: P̄I(CR) is at most 2 times PI(ORFA).
Lemma 2: P̄I(CD) is no larger than φ1 times PI(ORFA),

where φ1 = maxt∈[T ],m∈[M ],i ∈[I]
δm,i

c
(t)
m,i

is the maximal ratio

of deployment cost to operational cost per VNF instance.
Lemma 3: P̄I(CT ) is no larger than φ2 times PI(ORFA),

where φ2 = maxt∈[T ],m∈[M ],i ∈[I]
(din

i +dout
i ).bm,i

c
(t)
m,i

is the max-

imal ratio of flow transfer cost to operational cost per VNF
instance.

Lemma 4: P̄I(CE) is no larger than φ3 times PI(ORFA),
where

φ3 = max
t∈[T ],m∈[M ],i ∈[I],k∈[K],u,v∈S

max{αlu,va
(t)
k bm,i

Rc
(t)
m,i

, },

S = ∪k∈[K]{sk, zk} ∪ [I],

and α is the coefficient for the relaxed triangle inequality
defined in (5).

The detailed proofs of the lemmas are given in the supple-
mentary materials.

Theorem 8: (Final Competitive Ratio) P̄I(COA) is no
larger than [log(1 + MI/ε) + 2](2 + φ1 + φ2 + φ3) times the
offline minimum objective value P ∗

I of the original problem
(7).

Proof: According to Lemmas 1 – 4 and Theorem 4,
we have

P̄I(COA) ≤ (2 + φ1 + φ2 + φ3)PI(OFRA)
≤ [log(1 + MI/ε) + 2](2 + φ1 + φ2 + φ3)P ∗

I

�

VI. PERFORMANCE EVALUATION

A. Simulation Setup

We use the topology of the physical network of Cogent
to create the datacenter network [37]. The default number
of datacenters is 50. Delays between datacenters are set
proportional to their geographic distances, perturbed by multi-
plying a random number in [0.8, 1.2]. The flows are generated
according to real web traffic based on the Wikipedia trace
[38], which contains 20.6 billion HTTP requests within a
10-month period. We generate the geolocations of the sources
and destinations of the flows uniformly at random over the
Cogent datacenter network. We further boost the daily peak
in the WikiPedia traffic to flash crowds generated using the
model in [39]: Rflash = shock level × Rnormal, where the
shock level is the order of magnitude increase in the average
request rate. Fig. 3 shows the input traffic rate to service

Fig. 3. Request traffic with flash crowds.

Fig. 4. Performance of ORFA with different # of datacenters.

chains, produced at shock level of 5 (default). Since the IP
addresses in the traces are hidden due to privacy issues, we use
the demographic density data of the global Internet users [40]
to model the geo-distribution of the resource/destination pairs.
A location with high demographic density is selected with a
high probability to be a flow source or destination.

We simulate the VNFs in the following table, with respec-
tive processing capacity, instance type (following those of
Amazon EC2), and flow rate change ratios. The running cost,
deployment cost and flow transfer cost for each VNF are set
according to EC2’s pricing of the respective instance type [30].
We set a

(t)
k ’s for converting delay to cost to 1. We create 30

service chains, each containing 2∼5 VNFs randomly chosen
from the four. Each time slot in our experiments corresponds
to one hour.

B. Performance of ORFA

We first examine the ratio achieved by ORFA in Alg. 1
without rounding, by dividing the overall cost achieved by
the fractional solution of ORFA by the offline minimum
overall cost. The offline minimal cost is obtained by solving
(7) exactly using CVX and MOSEK Optimizer. Due to the
complexity of solving the offline problem with a large number
of variables, we set the default number of time slots to be
T = 200.

Fig. 4 shows that the number of datacenters does not
influence the result significantly. Under our setting, datacenters
are residing in locations with high Internet user density with
higher probability according to the reality. Fig. 5 further shows
that the performance is quite stable with the increase of the
total number of time slots that the system spans. The impact of
ε is not obvious as shown in Fig. 4 and Fig. 5. The theoretical
worst case ratio given in Theorem 3 is larger when the number
of datacenters is larger and smaller when ε is larger; here we
observe that in practice, their impact is not obvious. We set
ε = 0.1 in the following experiments.
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Fig. 5. Performance of ORFA with different # of time slots.

Fig. 6. Performance of COA with different # of datacenters.

Fig. 7. Performance of COA with different # of time slots.

C. Performance of COA

We next evaluate ratios achieved by our complete online
algorithm, COA in Alg. 1, derived by dividing the overall
cost achieved by the integer solution of COA by the offline
minimum overall cost of (7). We compare the ratios achieved
by our algorithm and those of two other algorithms: (i)
IRR, our online algorithm ORFA in Alg. 1 together with a
randomized independent rounding algorithm, which simply
rounds the VNF quantities to nearest integers (e.g., 1.4 to
1), and computes the ratio only if the result flow routing is
feasible; and (ii) GR, ORFA with a greedy rounding algorithm
which rounds up the fractional VNF quantities to guarantee
feasibility. Fig. 6 and Fig. 7 show that our online algorithm
with the dependent rounding approach consistently outper-
forms the other algorithms. To recap, the ORFA provides
us with a promising online fractional solution with good
competitive ratios regardless of the number of time slots and
datacenters (Fig. 4 and Fig. 5). Furthermore, the dependent
rounding algorithm outperforms the other rounding algorithms
(Fig. 6 and Fig. 7), such that the overall competitive ratio with
the feasible integral solution is also promising.

D. Performance Under Different Shock Levels

Fig 8 plots the ratios under different shock levels of the
flash crowds. As expected, a higher shock level brings larger
ratios. However, even when the shock level increases signif-
icantly from 1 to 100, our ratios only increase from about
1 to around 6, which shows the stability of the performance
of our algorithms even in extreme scenarios. Note that the
COA performs worse than the ORFA, as the ORFA uses the

Fig. 8. Performance of our algorithms at various shock levels

fractional optimal solutions obtained by relaxing our original
integer programming problem.

VII. CONCLUDING REMARKS

The fast adoption and development of Network Function
Virtualization solutions introduce a series of challenges in
modern datacenter management. This work aims to efficiently
manage cloud resources for VNF deployment to realize the
NFV goals of significant cost reduction and ease of man-
agement, and also guarantee short end-to-end delay experi-
enced by the flows. We first leverage a regularization method
from online learning to reshape the relaxation of the original
offline optimization problem. Then the new problem can be
decomposed into a set of sub-problems, each of which can be
solved optimally in polynomial time. Furthermore, we design
an online dependent rounding scheme to obtain the final
randomized mixed integer solution. We show that the final
solution to the original problem yields a competitive ratio
which is independent of the number of flows or time horizon,
based on the analysis via a primal-dual framework. The cost
effectiveness is further validated by both theoretical proof and
a series of trace-driven simulations.
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