
22
Optimal Posted Prices for Online Cloud Resource Allocation

ZIJUN ZHANG, University of Calgary

ZONGPENG LI, University of Calgary

CHUAN WU, The University of Hong Kong

We study online resource allocation in a cloud computing platform through posted pricing: The cloud provider publishes a unit
price for each resource type, which may vary over time; upon arrival at the cloud system, a cloud user either takes the current

prices, renting resources to execute its job, or refuses the prices without running its job there. We design pricing functions

based on current resource utilization ratios, in a wide array of demand-supply relationships and resource occupation durations,

and prove worst-case competitive ratios in social welfare. In the basic case of a single-type, non-recycled resource (allocated

resources are not later released for reuse), we prove that our pricing function design is optimal, in that it achieves the smallest

competitive ratio among all possible pricing functions. Insights obtained from the basic case are then used to generalize the

pricing functions to more realistic cloud systems with multiple types of resources, where a job occupies allocated resources

for a number of time slots till completion, upon which time the resources are returned to the cloud resource pool.

Additional Key Words and Phrases: Cloud Computing; Posted Pricing; Resource Allocation; Online Algorithms; Competitive

Analysis

ACM Reference format:
Zijun Zhang, Zongpeng Li, and Chuan Wu. 2017. Optimal Posted Prices for Online Cloud Resource Allocation. Proc. ACM
Meas. Anal. Comput. Syst. 1, 1, Article 22 (June 2017), 26 pages.
https://doi.org/http://dx.doi.org/10.1145/3084460

1 INTRODUCTION
Over the past decade, cloud computing has proliferated as the new computing paradigm that provides flexible,

on-demand computing services in a pay-as-you-go fashion. Various applications and systems are built upon

cloud computing models, including big data analytics, cloud radio access networks (C-RAN), network function

virtualization (NFV), to name a few. Despite the common illusion that a cloud consists of an unlimited ‘sea’

of resources, real-world clouds are constrained by finite system capacity [17, 24] (e.g., physical capacity of a

cloud data center), which may become tight in periods of peak demand [9, 12]. A fundamental problem in cloud

computing is cloud resource allocation, i.e., to determine which user demands to satisfy at each time point. A

natural goal is to maximize the social welfare of the cloud eco-system, which represents the aggregated ‘happiness’

of the cloud provider and the cloud users [5].

This work is supported by the National Natural Science Foundation of China (NSFC), under grant 61628209; and by the Research Grants

Council (RGC) of Hong Kong, under grants HKU 717812, 718513, 17204715, 17225516, C7036-15G (CRF).

Author’s addresses: Z. Zhang and Z. Li, Department of Computer Science, University of Calgary; C. Wu, Department of Computer Science,

the University of Hong Kong.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from

permissions@acm.org.

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing Machinery.

2476-1249/2017/6-ART22 $15.00

https://doi.org/http://dx.doi.org/10.1145/3084460

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 22. Publication date: June 2017.

https://doi.org/http://dx.doi.org/10.1145/3084460
https://doi.org/http://dx.doi.org/10.1145/3084460

22:2 • Zijun Zhang, Zongpeng Li, and Chuan Wu

Cloud resource allocation in practice exhibits a nature of online decision making: cloud users with job requests

arrive at the cloud system at arbitrary time points, and the cloud provider decides resource allocation upon each

arrival. A natural, de facto standard of cloud resource allocation is through a posted pricing mechanism: the cloud

provider publishes resource prices; cloud users act as price takers who utilize the resources if the prices are

acceptable (i.e., its valuation of the job exceeds the cost of resource renting), and will otherwise give up the cloud

service.

Major cloud providers today, such as Amazon Web Services, Microsoft Azure, and Google Cloud, typically

adopt fixed prices, i.e., resource usage is charged at fixed unit prices posted on their websites. However, a dynamic

pricing strategy based on realtime demand-supply is more efficient in many scenarios [4], to fully exploit the

resource capacity of a cloud system, and to better satisfy user demands. For practical cloud computing systems

that employ dynamic pricing strategies, e.g., Amazon EC2 Spot Instances [1], short-term prices may not be driven

by realtime demand-supply [3]; however, the price differences across different service regions and over different

time periods are still relevant to demand and supply. Inspired by the Spot Instances model, various dynamic

pricing strategies have been proposed in recent literature, including auction mechanisms [13, 15, 23, 25, 27, 29, 30],

and other dynamic pricing strategies for revenue maximization and efficient cloud resource utilization [14, 19, 26].

This work studies effective pricing functions for a cloud provider to employ, for computing unit resource

prices at each time point. The computed prices are posted as ‘take it or leave it’ prices for cloud users to decide

whether to rent the cloud resources, while users’ job valuations are not revealed to the cloud provider. Such prices

can also serve in a posted-price auction mechanism for cloud job admission and charging. With meticulously

designed online prices, our goal is to maximize the social welfare of the cloud, which equals the overall valuation

of executed user jobs, minus a possible operational cost, over the entire system span.

Both social welfare maximization and provider revenue maximization are possible goals in cloud resource

allocation [16, 20]. Social welfare represents the aggregate gain of the cloud provider and cloud users, indicating

overall system efficiency. Compared to maximizing provider revenue, maximizing social welfare ensures good

user experience, which is important for long-term market competitiveness of a cloud provider [28]. Furthermore,

for public clouds operated by nonprofit organizations, and private clouds serving internal jobs, maximizing social

welfare is more relevant than maximizing revenue [18]. In these cases, the pricing schemes studied in this paper

can be used as mechanisms for allocating cloud resources to users based on their urgency and priorities. In the

auction design literature, there further exist techniques that can relate social welfare maximizing mechanisms

with revenue maximizing mechanisms [10].

Our study of the pricing functions has been partly inspired by dual price design in competitive online algorithms

based on the classic primal-dual framework [6, 8]. In primal-dual online algorithm design, a key idea is to update

dual prices using exponential functions for making primal resource allocation decisions, leading to provable

competitive ratios. Nonetheless, no explicit justification exists in the literature on the choice of using exponential
dual price functions.

In this work, we borrow the exponential form of the pricing function from the literature of primal-dual online

algorithms, and propose the optimal form of the exponential pricing functions for a fundamental cloud resource

allocation problem. We then provide an intuitive explanation of the optimality of the exponential pricing function.

For the first time in the literature, we generalize the pricing function to scenarios with bounded total demand,

where the optimal form is no longer necessarily an exponential function. Interestingly, this result also contributes

to the literature on knapsack problems, in that our problem is closely related to a variant of the online knapsack

problem [11], where the total weight of items is upper bounded.

We start by investigating the basic case of a single type of cloud resource without resource recycling, and design

resource pricing functions based on the current resource utilization levels that capture realtime demand-supply

of cloud resources. We prove the optimality of our pricing function design. We then investigate the cases of

multiple resource types, and limited resource occupation durations. Our contributions are summarized below.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 22. Publication date: June 2017.

Optimal Posted Prices for Online Cloud Resource Allocation • 22:3

First, we justify the use of exponential pricing functions in the literature of both cloud computing [13, 21, 22,

29, 30] and online algorithms [6, 8], both from a theoretical point of view and with intuitive interpretation. We

prove the optimality of the pricing function under mild system assumptions that are standard in recent literature.

Second, we derive the optimal pricing functions for more realistic cloud resource allocation scenarios, where

the potential total demand for resources is bounded.

Third, we extend the pricing functions to take into account multiple resource types. We propose a joint pricing

and scheduling strategy when the cloud system runs over multiple time slots. We prove tight competitive ratios

for these scenarios, which were not properly proven in previous literature. We make no assumptions on the

arrival process and the distribution of user valuations.

We further verify effectiveness of our price design in realistic cloud computing scenarios through simulation

studies, with assumptions in theoretical analysis relaxed. We show that the parameters involved in our pricing

functions can be practically optimized in different scenarios, to achieve consistently good performance ratios

against the offline optimal social welfare.

Finally, we note that our pricing models and algorithms are generally applicable to posted pricing mechanism

design in other online resource allocation systems, which share similar characteristics as a cloud computing

system.

In the rest of the paper, we review related literature in Sec. 2. The basic and general models of cloud resource

pricing are studied in Sec. 3 and Sec. 4, respectively. Sec. 5 presents simulation studies, and Sec. 6 concludes the

paper.

2 RELATED WORK
Recently, auction mechanisms have been extensively studied for online cloud resource allocation and pricing.

Zhang et al. [29] design an online auction mechanism for IaaS clouds, aiming to maximize both social welfare and

provider profit. Zhou et al. [30] extend the auction mechanism to deal with computing jobs with soft deadlines.

Shi et al. [22] propose an online mechanism for virtual cluster allocation and pricing. These studies exploit

the primal-dual framework for online mechanism design, and adopt exponential pricing functions to compute

dual prices, for deciding resource allocation and user payments. Competitive ratios of the online mechanisms

are proven, but the rational of adopting exponential pricing functions is lacking, and the optimality of such

exponential functions are not studied. Indeed, a wide spectrum of increasing functions are conceivable for cloud

resource pricing. Our pricing functions are applicable to both posted pricing mechanisms and online auctions.

The analysis of optimality of our pricing functions is independent from the primal-dual framework.

Apart from auction mechanisms, a wide range of resource pricing schemes have been studied in the literature.

While static pricing is prevalent in today’s cloud market, dynamic pricing based on realtime demand-supply can

be more efficient in many scenarios [4]. Li et al. [14] design a pricing algorithm for cloud resources, which updates

current prices based on historical resource utilization ratios. Their experiment demonstrates the advantage of the

pricing algorithm in terms of cost reduction and efficient resource allocation. Mihailescu and Teo [19] propose

a dynamic pricing scheme for federated clouds, where different cloud providers share and trade resources for

enhanced scalability and reliability. They show that user welfare and the percentage of successful requests are

increased by dynamic pricing, as compared to fixed pricing. The pricing schemes developed in this work are both

dynamic and usage-based, i.e., the unit price of cloud resource is driven by demand-supply dynamics, and the

total price is proportional to the amount and service time of requested resources.

The online social welfare maximization problem studied in this work is related to a variant of the online

knapsack problem [11]. Two assumptions are made in this literature: the weight of each item is much smaller

than the capacity of the knapsack, and the density (value to weight ratio) of every item falls in a known range

[L,U]. Under these assumptions, Buchbinder and Naor [6, 7] design an algorithm achieving a competitive ratio of

O (log (U /L)), as well as an Ω (log (U /L)) lower bound on the competitive ratio of any algorithm. In the context

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 22. Publication date: June 2017.

22:4 • Zijun Zhang, Zongpeng Li, and Chuan Wu

Table 1. Notation and definition

U set of users

R set of resource types

T set of all time slots

Ti set of time slots required by user i

di,r amount of resource r demanded by user i

di total amount of resource demanded by user i

vi value of successfully finishing user i’s job

p unit resource price at the time of user arrival

p/p lower/upper bound of vi/di

γ ratio between p and p

ρ resource utilization level

ρr * final resource utilization level as defined by Definition 3.3

β scarcity level as defined by Definition 3.1

Vol (ρ*) total value obtained by an online solution, given a final utilization level ρ*

Vopt (ρ*) total value obtained by an optimal offline solution, given a final utilization level ρ*

of advertising auctions, Zhou et al. [31] design a (log (U /L) + 1)-competitive algorithm for an online knapsack

problem under the above assumptions. Interestingly, their algorithm is equivalent to our proposed pricing strategy

for the most basic case, as will be discussed in Sec. 3.2.1. Nevertheless, our proof of optimality is different from

that given by Zhou et al. [31], and leads to an intuitive interpretation on the choice of exponential pricing

functions. More importantly, the total weight of items is assumed to be unbounded in the previous work, which

is impractical in real-world applications. In this work, we develop a more general pricing strategy that achieves

better competitive ratios for bounded total weight, and prove the optimality of the proposed strategy.

3 CLOUD RESOURCE PRICING: THE BASIC CASE
We start by designing pricing functions for a basic, yet fundamental version of the online resource allocation

problem, following the posted pricing framework as described in Algorithm 1. By analyzing the basic case of

allocating a single-type, non-recycled resource, we develop necessary techniques and theoretical results, for the

online pricing and scheduling of more realistic cloud resource allocation problems.

3.1 The Basic Resource Allocation Problem
Consider a cloud provider whose data center is for now assumed to provision a single type of resource, to be

allocated to a large number of cloud users. The users in a set U come in an arbitrary sequence. Upon arrival, a

user decides immediately whether to rent cloud resources, by comparing the valuation of its job with the overall

price of required resources for executing the job. Let di denote the amount of resource demanded by a user i ∈ U,

and vi be the value of successfully finishing i’s job. In practice, vi is often influenced by multiple factors, such as

the purpose and priority of the job, and what is gained from the job’s completion. Without loss of generality,

we normalize user resource demands, assuming the total amount of resource in the cloud is 1, so that di can be

considered as the proportion of the entire resource pool demanded by user i . Let p be the unit price of the resource

posted by the cloud provider, which may vary over time. A user i accepts the price and rents resource at quantity

di , if and only if vi ≥ dip, where p is the current unit resource price at the time of user arrival. Effectively, vi

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 22. Publication date: June 2017.

Optimal Posted Prices for Online Cloud Resource Allocation • 22:5

ALGORITHM 1: Online pricing and resource allocation

Input: di ,vi ,∀i ∈ U

Output: xi ,∀i ∈ U

1 ρ = 0 ; // Initialize the resource utilization

2 for i ∈ U do
/* Upon the arrival of each user i */

3 if vi ≥ diP (ρ) and ρ + di ≤ 1 then
/* User i accepts the posted price */

4 xi = 1;

5 ρ = ρ + di ; // Allocate resource to user i

6 else
/* User i rejects the posted price */

7 xi = 0;

simply serves as a threshold for a price to be acceptable to user i . In this section, we assume that each unit of the

resource, once allocated, will not be returned to the resource pool.

The utility of the cloud provider is the total payment received. The utility of a served user is the valuation of

its job minus its payment. The utility of an unserved user is zero. Since payments cancel themselves, the social

welfare of the entire cloud system is equivalent to the total valuation of served jobs, assuming no operational

cost of the cloud.

Let xi indicate whether user i rents resource (at quantity di) or not upon its arrival. The social welfare

maximization problem can be formulated as an integer linear program (ILP):

maximize

∑
i ∈U

vixi (1)

s.t.: ∑
i ∈U

dixi ≤ 1 (1a)

xi ∈ {0, 1} ,∀i ∈ U (1b)

This is a 0-1 knapsack problem, and can be solved to optimum using dynamic programming in the offline

setting. However, for the online problem we investigate, the columns of the coefficient matrix of constraint

(1a), corresponding to different user arrivals, are revealed one-by-one, while the value of xi is to be determined

immediately when a user comes to the cloud. We apply an online resource allocation algorithm, as shown in

Algorithm 1, to decide resource allocation given resource prices.

The performance of the posted pricing mechanisms in the online resource allocation algorithm clearly depends

on the pricing function.We do not assume that users reveal their job valuations to the cloud provider. Consequently,

the pricing strategy depends only on the demand-supply relationship of cloud resources. To evaluate the quality

of a resource allocation solution, we resort to the standard notion of competitive ratio, defined as the ratio between
the optimal objective value of the offline problem (1) and that of the online solution. The smaller (closer to 1) the

competitive ratio is, the better the online resource allocation solution. We will focus on the worst-case competitive

ratio, as opposed to the average-case competitive ratio. We first make the following two mild assumptions:

assumption 1. The variability of users’ valuations is constrained, i.e., p ≤ vi/di ≤ p,∀i ∈ U, where p and p are
lower bound and upper bound of the per-unit-resource job valuation of all users, respectively.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 22. Publication date: June 2017.

22:6 • Zijun Zhang, Zongpeng Li, and Chuan Wu

assumption 2. The resource demand of each user is much smaller than the total resource capacity, i.e., di ≪
1,∀i ∈ U.

Assumption 2 is standard in the literature of online resource allocation [29, 30] and online knapsack problems

[6, 7, 11, 31], and is reasonable in large-scale data centers. We make this assumption to facilitate theoretical

analysis, such that techniques from calculus (differentiation) can be applied, and rare, extreme cases can be

eliminated. For example, if a high-valued bid demanding almost all the resource from a cloud provider is rejected,

because a small fraction of the resource is occupied by other users, then the worst-case competitive ratio can be

arbitrarily high. Such an assumption.

Nonetheless, it is possible to relax Assumption 2 to specifying an upper bound on di instead, without signifi-
cantly affecting our theoretical result. Specifically, differentiation and integration can be replaced with differences

and summation, to derive similar results. We will relax this assumption in empirical studies later in the paper.

3.2 Pricing Function Design
We design pricing functions that adjust resource prices based on realtime demand-supply. It is helpful to have

some prior knowledge about the total resource demand. In practice, unlimited total resource demand is rare;

an estimated upper bound on the overall resource demand can often be obtained. This is reflected through the

following definition.

Definition 3.1. Suppose the total resource demand of all users is upper bounded by 1+β times the total resource

supply, i.e.,
∑

i ∈U di ≤ 1 + β , with β > −1. We refer to β as the scarcity level of the resource.

It is possible to have a known lower bound on the overall resource demand as well, but our algorithm design

and analysis do not rely on such a lower bound.

We next present the optimal pricing function for β → ∞, and then derive the optimal pricing functions for

finite β , based on the insight we gain from the analysis of the first case. We then further show in Sec. 3.3 that the

results can be extended to the case with linear operational costs of cloud resources.

3.2.1 Pricing Function for Large Total Demand. We begin with the case that the total demand for resource is

much larger than the capacity of the cloud resource pool. We propose an optimal pricing function for the case

that β → ∞, and then show the same pricing function is in fact optimal as long as β ≥ 1 (i.e., the overall resource
demand is at least twice of the resource capacity).

Definition 3.2. In Algorithm 1, oblivious of true valuations of users, a pricing function is optimal if it achieves
the smallest possible worst-case competitive ratio in social welfare under Assumptions 1 and 2.

Let ρ be the resource utilization level, i.e., the amount of the resource already allocated. Note that ρ is a function

of time, but this dependency is omitted for notational simplicity. The unit price of the resource at the respective

resource utilization level is denoted by P1 (ρ), designed as follows:

P1 (ρ) =


p, ρ ∈ [0, 1/(logγ + 1)]

pe(logγ+1)ρ−1, ρ ∈ (1/(logγ + 1) , 1)

+∞, ρ = 1

, (2)

where γ = p/p. An illustration of the pricing function for p = 1, p = 10 is given in Fig. 1 (blue lines in both

subfigures). Intuitively, when ρ is quite small, it is desirable to keep the price at the lowest level (p), to allow

all potential users to rent the resource. As ρ increases, the amount of satisfied demand increases, as well as the

obtained social welfare, and hence it is reasonable to raise price to filter out users with low valuations. When

ρ = 1, cloud resource is exhausted, so we use an infinitely high price to reject all subsequent users. Note that even

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 22. Publication date: June 2017.

Optimal Posted Prices for Online Cloud Resource Allocation • 22:7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Resource utilization

0

2

4

6

8

10

U
n
it
 p

ri
c
e

0

2

4

6

8

10

C
o
m

p
e
ti
ti
v
e
 r

a
ti
o

(a) The pricing function and competitive ratio.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Resource utilization

0

2

4

6

8

10

U
n
it
 p

ri
c
e

Online

Offline

(b) Theworst-caseVol (ρ*) andVopt (ρ*) for ρ* = 0.7 visualized
by AUCs. Each AUC indicates the total value obtained by an
online or offline solution.

Fig. 1. An illustration of pricing function (2) for p = 1, p = 10.

if we need the lower bound and upper bound of the per-unit-resource valuation in (2), when applying this pricing

function in online resource allocation, we can use estimates of the bounds, which can be further calibrated over

time as more users arrive and more price taking decisions are learned.

We next prove the worst-case competitive ratio of Algorithm 1 when using the pricing function in (2), as well

as the optimality of the pricing function when β → ∞ (this default condition omitted in all lemmas, claims and

theorems before Theorem 3.8), and then generalize the conclusion to the case β ≥ 1 in Theorem 3.8.

Definition 3.3. ρ* ∈ [0, 1] denotes the final utilization level of the resource after all users have decided whether

to rent the cloud resource to execute their jobs.

The following lemma implies that when the final resource utilization level is low, the total demand of potential

users also tends to be low, thus it is possible to satisfy all user demands online.

Lemma 3.4. If ρ* ∈ [0, 1/(logγ + 1)], the worst-case competitive ratio achieved by Algorithm 1 using the pricing
function in (2) is α1,1 = 1.

Proof. According to the pricing function in (2), for ρ ∈ [0, 1/(logγ + 1)], the unit price is a constant, p, which

by Assumption 1 is acceptable to any potential user, thus ρ* ∈ [0, 1/(logγ + 1)] implies that the total demand of

all users is exactly ρ*. The social welfare achieved by the pricing function in (2) is the total value of all users,

which is also the maximum possible social welfare achieved by solving the offline problem (1). Therefore, the

worst-case competitive ratio is 1. □

For a final utilization level ρ*, letVol (ρ*) be the total value obtained by an online solution, andVopt (ρ*) be that
obtained by an optimal offline solution. Thus, in any worst case, the ratio Vopt (ρ*)/Vol (ρ*) is maximized.

Lemma 3.5. If ρ* ∈ (1/(logγ + 1) , 1], the worst-case competitive ratio achieved by Algorithm 1 using the pricing
function in (2) is α1,2 = logγ + 1.

Proof. For any ρ* ∈ (1/(logγ + 1) , 1], the worst case of the online solution is that the valuations of satisfied

users are the same as the prices they accept. By Assumption 2, the minimum total value of an online solution is

Vol (ρ*) =

∫ ρ*

0

P1 (ρ)dρ =
p

logγ + 1
e(logγ+1)ρ*−1, (3)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 22. Publication date: June 2017.

22:8 • Zijun Zhang, Zongpeng Li, and Chuan Wu

as shown by the blue area under the curve (AUC) in Fig. 1b. At the same time, any unsatisfied user has a unit value

smaller than P1 (ρ*), because otherwise ρ* cannot be the final resource utilization. Hence in the worst case, there

can be a set of unsatisfied users with a total demand of 1 (i.e.,
∑

i ∈Uopt
di = 1,∀r ∈ R, whereUopt is the set of

users chosen by the optimal offline solution), and each with a unit value of P1 (ρ*) − ϵi , where ϵi is an arbitrarily

small positive number, such that the optimal offline solution is to satisfy their demands with all available resource.

This yields the maximum optimal offline value given Eq. (3):

Vopt (ρ*) =
∑

i ∈Uopt

di (p (ρ*) − ϵi) = p (ρ*) − ϵ

= pe(logγ+1)ρ*−1 − ϵ,

(4)

as shown by the red AUC (partially covered by the blue one) in Fig. 1b. Here, ϵ =
∑

i ∈Uopt
ϵi , and hence can

also be arbitrarily small. Note that, there can be a case which leads to a larger optimal offline total value, by

increasing the online value corresponding to ρ ∈ [0, ρ*] (i.e., the blue AUC in Fig. 1b) until it is large enough

and becomes part of the optimal offline value. However, the online value will increase more than the optimal

offline value does in this case, making it impossible to be a worst case. Therefore, the worst-case competitive

ratio α1,2 = supϵ>0
Vopt (ρ*)
Vol (ρ*)

= logγ + 1,∀ρ* ∈ (1/(logγ + 1) , 1]. □

An illustration of the worst-case competitive ratio at different final resource utilization levels is shown in

Fig. 1a (red line).

Theorem 3.6. The worst-case competitive ratio of Algorithm 1 using the pricing function in (2) is

α1 = logγ + 1. (5)

Proof. The worst-case competitive ratio of the pricing function in (2) is the maximum possible competitive

ratio for all ρ* ∈ [0, 1]. Hence following Lemma 3.4 and 3.5, α1 = max

{
α1,1,α1,2

}
= logγ + 1. □

We next show the optimality of the pricing function based on the observation that, to achieve a finite worst-case

competitive ratio, any pricing function should contain a constant (p) part at the beginning of the function.

Claim 3.1. If a pricing function P (ρ) achieves a finite worst-case competitive ratio of α , then P (ρ) = p,∀ρ ∈

[0, 1/α].

Proof. If the claim does not hold and P (0) > p, there can be a case where ρ* = 0, such that the online

total value V ′
ol (ρ*) = 0, while the optimal offline total value V ′

opt (ρ*) = P (0) − ϵ > 0, where ϵ is an arbitrarily

small positive number. Thus the worst-case competitive ratio α ≥ supϵ>0
V ′
opt (ρ*)

V ′
ol (ρ*)

= +∞, which contradicts the

assumption that α is finite.

If the claim does not hold and P (0) = p, there must be a ρ0 ∈ (0, 1/α] such that P (ρ0) > P (ρ) ,∀ρ ∈ [0, ρ0).

There can be a case where ρ* = ρ0, such that the online total value

V ′
ol (ρ*) =

∫ ρ0

0

P (ρ)dρ < ρ0P (ρ0) ,

while the optimal offline total valueV ′
opt (ρ*) = P (ρ0)−ϵ . Thus theworst-case competitive ratioα ≥ supϵ>0

V ′
opt (ρ*)

V ′
ol (ρ*)

>

1/ρ0, which contradicts ρ0 ≤ 1/α . □

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 22. Publication date: June 2017.

Optimal Posted Prices for Online Cloud Resource Allocation • 22:9

Theorem 3.7. the pricing function in (2) is optimal according to Definition 3.2, i.e., using it Algorithm 1 achieves
the smallest worst-case competitive ratio.

Proof. We prove this theorem by way of contradiction. Assume that there exists a pricing function, P ′
1
(ρ),

which achieves a worst-case competitive ratio α ′
1
< α1. According to Claim 3.1 and Theorem 3.6, we have

P ′
1
(ρ) = p,∀ρ ∈

[
0, 1/α ′

1

]
, and hence ∫

1/α ′
1

0

P ′
1
(ρ)dρ <

∫
1/α ′

1

0

P1 (ρ)dρ,

where P1 (ρ) is the pricing function in (2).

If there exists some ρ ∈
(
1/α ′

1
, 1
)
such that P ′

1
(ρ) ≥ P1 (ρ) we find the smallest one, and denote it by ρ1. Then

there can be a case where ρ* = ρ1, such that the online total value

V ′
ol (ρ*) =

∫ ρ1

0

P ′
1
(ρ)dρ <

∫ ρ1

0

P1 (ρ)dρ = Vol (ρ*) ,

while the optimal offline total value V ′
opt (ρ*) = P ′

1
(ρ1) − ϵ ≥ P1 (ρ1) − ϵ = Vopt (ρ*), where ϵ is an arbitrarily

small positive number. Thus the worst-case competitive ratio α ′
1
≥ supϵ>0

V ′
opt (ρ*)

V ′
ol (ρ*)

> supϵ>0
Vopt (ρ*)
Vol (ρ*)

= α1,

contradicting the assumption α ′
1
< α1. Therefore, P

′
1
(ρ) < P1 (ρ) ,∀ρ ∈

(
1/α ′

1
, 1
)
.

For ρ* = 1, since P ′
1
(1) ≤ p (a unit price higher than p will have all potential users rejected) is finite, we now

have

V ′
ol (ρ*) =

∫
1

0

P ′
1
(ρ)dρ <

∫
1

0

P1 (ρ)dρ = Vol (ρ*) .

However, as cloud resource is exhausted, subsequent users will not be served, regardless of their valuations. There

can be a case where the optimal offline total value V ′
opt (ρ*) = p = Vopt (ρ*). Thus the worst-case competitive

ratio α ′
1
≥

V ′
opt (ρ*)

V ′
ol (ρ*)

>
Vopt (ρ*)
Vol (ρ*)

= α1, contradicting the assumption that α ′
1
< α1. □

We next generalize the optimality result for all β ≥ 1.

Theorem 3.8. For β ≥ 1, the pricing function in (2) is optimal according to Definition 3.2, and the corresponding
worst-case competitive ratio is α1.

Proof. For any possible input set of users, we can prune the users that can be satisfied by neither the online

solution or the optimal offline solution, without affecting the online or offline social welfare, given a certain

pricing function. Clearly, the resulting set of users has a total demand no greater than 2, which can also happen

given any β ≥ 1. Consequently, all the discussions above can be generalized to β ≥ 1. □

The following property (which holds for all β ≥ 1) is useful for guiding the design of pricing functions in more

realistic cloud computing scenarios.

Property 1. For the pricing function in (2), and any ρ* ∈ (1/α1, 1], i.e., the monotonically increasing part of
P1 (ρ), we have

sup

ϵ>0
Vopt (ρ*) = α1Vol (ρ*) , (6)

and hence
d supϵ>0Vopt (ρ*)

dρ*
= α1

dVol (ρ*)
dρ*

, (7)

and a constant (w.r.t. ρ*) worst-case competitive ratio, α1.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 22. Publication date: June 2017.

22:10 • Zijun Zhang, Zongpeng Li, and Chuan Wu

Proof. This a corollary that follows from Eq. (3), (4), Lemma 3.5 and Theorem 3.5. □

Property 1 is illustrated in Fig. 1b, where the light red area corresponds to

dVopt (ρ*)
dρ*

���
ρ*=0.7

, and the light blue

area corresponds to

dVol (ρ*)
dρ*

���
ρ*=0.7

. Intuitively, this property implies the best trade-off between the worst-case

competitive ratios corresponding to different ρ* values. That is, any changes to the pricing function in (2) that

may decrease the competitive ratio for some ρ*, will increase the competitive ratio for some other ρ*, and thus

can only lead to a worse competitive ratio over all possible values of ρ*.

3.2.2 Pricing Function for Small Total Demand. In the case that β ∈ (−1, 0], the total resource demand is no

larger than the total resource supply. The optimal strategy is simply serving all user demands by setting a unit

resource price below the smallest per-unit-resource valuation of cloud users.

Theorem 3.9. For β ∈ (−1, 0], pricing function

P4 (ρ) = p (8)

is optimal according to Definition 3.2, and the corresponding worst-case competitive ratio achieved by Algorithm 1 is
1.

The proof is straightforward and hence omitted.

3.2.3 Pricing Function for Total Demand Up to Twice of Supply. In the case that β ∈ (0, 1), we first derive pricing
functions that have Property 1, and then prove the optimality of the functions. In the following derivation, we

assume that all pricing functions are continuous and non-decreasing, for the solution existence of our differential

equations. However, the assumptions are not required by the proof of optimality. The following claim will be

useful in the derivation.

Claim 3.2. For any β > −1, if a pricing function P (ρ) leads to a finite worst-case competitive ratio of α , then
P (ρ) = p,∀ρ ∈ [0, 1/α].

Proof. For β > 0, the proof is similar to that of Claim 3.1 and is omitted. For β ∈ (−1, 0], the claim follows

immediately from Theorem 3.9. □

Our derivation of the pricing function is further divided into two cases.

Case 1: β ∈ (β0, 1)where β0 ∈ (0, 1), such that β > 1/α2 and α2 is the worst-case competitive ratio achieved using

the optimal pricing function for β ∈ (β0, 1). According to Claim 3.2, the pricing function P2 (ρ) = p,∀ρ ∈ [0, 1/α2].

When ρ* ∈ (1/α2, 1), as discussed for Eq. (3), the minimum total value of an online solution is

Vol (ρ*) =

∫ ρ*

0

P2 (ρ)dρ, (9)

and hence

dVol (ρ*)

dρ*
=

d

(∫ ρ*
0

P2 (ρ)dρ

)
dρ*

= P2 (ρ*) , (10)

which is illustrated by the light blue area in Fig. 2a. Since P2 (ρ) is non-decreasing, when ρ* ∈ (1/α2, β], we still
have Vopt (ρ*) = P2 (ρ*) − ϵ as discussed for Eq. (4), where ϵ is an arbitrarily small positive value. Thus

d supϵ>0Vopt (ρ*)

dρ*
=
dP2 (ρ*)

dρ*
. (11)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 22. Publication date: June 2017.

Optimal Posted Prices for Online Cloud Resource Allocation • 22:11

It follows from Eq. (7), (10) and (11) that

dP2 (ρ)

dρ
− α2P2 (ρ) = 0. (12)

Solving the differential equation above gives P2 (ρ) = Ce
α2ρ

, where C is a constant to be determined. Since we

assumed the continuity of P2 (ρ), we let limρ→1/α2+ P2 (ρ) = P2 (1/α2) = p, and then we obtain C = p/e , and

P2 (ρ) = pe
α2ρ−1,∀ρ ∈ (1/α2, β].

When ρ* ∈ (β, 1), having a set of users with a unit value of P2 (ρ*) − ϵ to consume all resource is no longer

possible in the worst case. Instead, there can be a set of unsatisfied users with a total demand of 1 + β − ρ*, and
with a unit value of P2 (ρ*) − ϵ , such that the optimal offline solution yields the maximum optimal offline total

value given Eq. (9):

Vopt (ρ*) = (1 + β − ρ*) (P2 (ρ*) − ϵ) +

∫ ρ*

β
P2 (ρ)dρ, (13)

as shown by the red and yellow AUCs (partially covered by the blue one) in Fig. 2a. We have

d supϵ>0Vopt (ρ*)

dρ*
= (1 + β − ρ*)

dP2 (ρ*)

dρ*
, (14)

which is illustrated by the light red areas in Fig. 2a. Note that, there can be a case which leads to a larger optimal

offline total value, by increasing the value corresponding to ρ ∈ [β, ρ*] (i.e., the yellow AUC in Fig. 2a). Suppose

the increased optimal offline total value is Vopt (ρ*) + ∆ (∆ > 0), the online total value will also be increased to

Vol (ρ*) + ∆. However, since the competitive ratio now changes to supϵ>0
Vopt (ρ*)+∆

Vol (ρ*)+∆
< supϵ>0

Vopt (ρ*)
Vol (ρ*)

, it cannot

be the worst case.

It follows from Eq. (7), (10) and (14) that

(1 + β − ρ)
dP2 (ρ)

dρ
− α2P2 (ρ) = 0. (15)

Solving the differential equation above gives P2 (ρ) = C(1 + β − ρ)−α2
, where C is a constant to be determined.

Again, due to the continuity of P2 (ρ), we let limρ→β+ P2 (ρ) = P2 (β) = peα2β−1
. Then we obtain C = peα2β−1

,

and P2 (ρ) = pe
α2β−1 (1 + β − ρ)−α2 ,∀ρ ∈ (β , 1]. To have a constant competitive ratio at ρ* = 1− and ρ* = 1, as

suggested by Property 1, we let P2 (1) = pe
α2β−1β−α2 = p = γp, which leads to

α2 =
logγ + 1

β − log β
. (16)

To obtain the value of β0, let β = β0 = 1/α2. By Eq. (16), we obtain

β0 =
W (logγ)

logγ
. (17)

Here,W (·) is the LamberW -function (a.k.a. the omega function or the product logarithm), which is the inverse

function of f (W) =WeW . Therefore, for β ∈ (β0, 1), the pricing function is

P2 (ρ) =


p, ρ ∈ [0, 1/α2]

peα2ρ−1, ρ ∈ (1/α2, β]

peα2β−1 (1 + β − ρ)−α2 , ρ ∈ (β, 1)

+∞, ρ = 1

. (18)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 22. Publication date: June 2017.

22:12 • Zijun Zhang, Zongpeng Li, and Chuan Wu

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Resource utilization

0

2

4

6

8

10

U
n
it
 p

ri
c
e

Online

Offline

Online/Offline

(a) The worst-case Vol (ρ*) and Vopt (ρ*) for β = 0.5, ρ* = 0.7

visualized by AUCs.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Resource utilization

0

2

4

6

8

10

U
n
it
 p

ri
c
e

0

2

4

6

8

10

C
o
m

p
e
ti
ti
v
e
 r

a
ti
o

(b) Pricing functions and competitive ratios for different values
of β .

Fig. 2. Pricing functions and competitive ratios for β ∈ (0, 1), p = 1, p = 10.

An example of P2 (ρ) is shown in Fig. 2b by the dashed line corresponding to β = 0.5, where β0 = 0.399. In
practice, β can be estimated or optimized against competitive ratios.

Theorem 3.10. For β ∈ (β0, 1), the pricing function in (18) is optimal according to Definition 3.2, and the
corresponding worst-case competitive ratio is α2.

Proof. The proof of the worst-case competitive ratio α2 follows that of Theorem 3.6, and is omitted.

Suppose there exists a pricing function, P ′
2
(ρ), which achieves a worst-case competitive ratio α ′

2
< α2. According

to Claim 3.2 and the proof of Theorem 3.7, we have∫ β

0

P ′
2
(ρ)dρ <

∫ β

0

P2 (ρ)dρ,

where P2 (ρ) is the pricing function in (18).

If there exists some ρ ∈ (β , 1) such that P ′
2
(ρ) ≥ P2 (ρ), we identify the smallest one and denote it by ρ1. Then

there can be a case where ρ* = ρ1, such that the online total value

V ′
ol (ρ*) =

∫ ρ1

0

P ′
2
(ρ)dρ <

∫ ρ1

0

P2 (ρ)dρ − ∆ = Vol (ρ*) − ∆,

where ∆ =
∫ ρ1
β

[
P2 (ρ) − P ′

2
(ρ)

]
dρ; while the optimal offline total value V ′

opt (ρ*) ≥ Vopt (ρ*) − ∆ according to

Eq. (13). Thus the worst-case competitive ratio α ′
2
≥ supϵ>0

V ′
opt (ρ*)

V ′
ol (ρ*)

> supϵ>0
Vopt (ρ*)−∆

Vol (ρ*)−∆
> α2, contradicting the

assumption α ′
2
< α2. Therefore, P

′
2
(ρ) < P2 (ρ) ,∀ρ ∈ (β , 1).

For ρ* = 1, since P ′
2
(1) ≤ p (a unit price higher than p will reject all potential users) is finite, we now have

V ′
ol (ρ*) =

∫
1

0

P ′
2
(ρ)dρ <

∫
1

0

P2 (ρ)dρ − ∆ = Vol (ρ*) − ∆,

where ∆ =
∫
1

β

[
P2 (ρ) − P ′

2
(ρ)

]
dρ. However, as the resource is exhausted, subsequent users will not be satisfied

regardless of their valuations. There can be a case where the optimal offline total value V ′
opt (ρ*) = Vopt (ρ*) − ∆

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 22. Publication date: June 2017.

Optimal Posted Prices for Online Cloud Resource Allocation • 22:13

00.10.20.30.40.50.60.70.80.91

Scarcity rate

1

1.5

2

2.5

3

3.5

C
o
m

p
e
ti
ti
v
e
 r

a
ti
o

Fig. 3. Competitive ratios for different values of β and γ .

according to Eq. (13). Thus the worst-case competitive ratio α ′
2
≥

V ′
opt (ρ*)

V ′
ol (ρ*)

>
Vopt (ρ*)−∆

Vol (ρ*)−∆
> α2, contradicting the

assumption α ′
2
< α2. □

Case 2: β ∈ (0, β0]. From the definition of β0, we have β ≤ 1/α3, where α3 is the worst-case competitive ratio of

the optimal pricing function in this case. According to Claim 3.2, the pricing function P3 (ρ) = p,∀ρ ∈ [0, 1/α3].

When ρ* ∈ (1/α3, 1), Vol (ρ*) follows Eq. (10) with P2 (ρ*) replaced by P3 (ρ*); Vopt (ρ*) follows Eq. (13), (14) with
P2 (ρ*) replaced by P3 (ρ*). Then, following Eq. (15), we have P3 (ρ) = C(1 + β − ρ)−α3

. As discussed for Eq. (16),

we let limρ→1/α3+ P3 (ρ) = P3 (1/α3) = p, P3 (1) = p = γp. Solving the resulting equations:

C

(
1 + β −

1

α3

)−α3

= p,

Cβ−α3 = γp,

we get

α3 =
logγ

(1 + β) logγ −W
(
βγ 1+β

logγ
) , (19)

and the pricing function for β ∈ (0, β0] is:

P3 (ρ) =


p, ρ ∈ [0, 1/α3]

pγ βα3 (1 + β − ρ)−α3 , ρ ∈ (1/α3, 1)

+∞, ρ = 1

. (20)

An example of P3 (ρ) is shown in Fig. 2b by the dashed line corresponding to β = 0.2.

Theorem 3.11. For β ∈ (0, β0], the pricing function in (20) is optimal according to Definition 3.2, and the
corresponding worst-case competitive ratio is α3.

Proof. The proof is similar to that of Theorem 3.10 and is omitted. □

For better illustrating how β ∈ (0, 1) affects the competitive ratio as dictated by Theorems 3.8, 3.10 and 3.11,

we plot the competitive ratio as a function of β in Fig. 3. As shown in the figure, for a certain value of γ , the
competitive ratio decreases with the decrease of β , and reaches the minimum value 1 when β drops to 0.

Putting Eq. (2), (18) and (20) together, we have obtained a 2-dimensional piecewise pricing function, P (ρ; β).
An illustration of the pricing function is given in Fig. 4.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 22. Publication date: June 2017.

22:14 • Zijun Zhang, Zongpeng Li, and Chuan Wu

0

1

2

4

1

Resource utilization

6
U

n
it
 p

ri
c
e

Scarcity rate

0.8

8

0.5 0.6

10

0.4
0.2

0 0

Fig. 4. 2-D pricing function P (ρ; β) for ρ ∈ [0, 1] , β ∈ [0, 1].

3.3 Linear Operational Cost
Resource provisioning in real-world cloud computing systems often incurs an operational cost. If such cost is

proportional to the amount of resources provisioned, then we have a linear operational cost [29]. We can extend

the proposed pricing strategy to accommodate such linear operational cost by making two modifications. First,

we replace Assumption 1 by:

assumption 3. The variability of users’ valuations is constrained, i.e., p + c ≤ vi/di ≤ p + c .

Here, c ≥ 0 is the operational cost of using a unit of resource. Second, we replace the pricing functions (2), (18)

and (20), by P ′
1
(ρ) = P1 (ρ)+ c , P

′
2
(ρ) = P2 (ρ)+ c and P

′
3
(ρ) = P3 (ρ)+ c . Then all discussions about the proposed

pricing strategy remain valid, including the proof of optimality. In the rest of this paper, we ignore operational

cost for simplicity.

4 PRICING MULTIPLE RESOURCE TYPES WITH RESOURCE RECYCLING
In this section, we extend our resource allocation problem in (1) to one with multiple types of resources (Sec. 4.1),

and then further investigate the practical case where resource occupation spans multiple time slots (Sec. 4.2). We

show that, by carefully designing the pricing and scheduling strategy, the worst-case competitive ratio in social

welfare will not be influenced by the number of resource types, or by the number of requested time slots.

4.1 Pricing Function for Multiple Types of Resources
Now we consider a cloud system that provisions multiple types of resources in a set R, as exemplified by CPU,

GPU, RAM, and disk storage. Let di,r be user i’s demand for resource r , ∀r ∈ R. Again, we assume the total

amount of each type of resource is 1, so that di,r is the proportion of the overall supply of resource r demanded

by i .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 22. Publication date: June 2017.

Optimal Posted Prices for Online Cloud Resource Allocation • 22:15

The offline social welfare maximization problem is:

maximize

∑
i ∈U

vixi (21)

s.t.: ∑
i ∈U

di,rxi ≤ 1,∀r ∈ R (21a)

xi ∈ {0, 1} ,∀i ∈ U (21b)

The online resource allocation algorithm we apply to determine xi immediately after user i arrives at the cloud,
is the same as Alg. 1, except that di and the pricing function will be redefined.

Given the optimal pricing functions (2) (for β ≥ 1), (18) (for β ∈ (β0, 1)), (20) (for β ∈ (0, β0]) and (8) (for

β ∈ (−1, 0]) in case of a single resource type, we can simply price each type of resource independently as pr ,
using these pricing functions, and sum them up by

∑
r ∈R di,rpr to form a total price; a user i accepts the prices

and rents resources at quantities di,r ’s, if and only if vi is no smaller than the total price. Before doing so, we

need to redefine p and p. One way is to define them for each type of resource independently, as p
r
= inf i

vi
di,r

, and

pr = supi
vi
di,r

, as done by Zhang et al. [29]. However, a drawback of this definition is that pr can be infinite, as

we do not assume that every user demands all types of resources. A remedy is to define the same p and p for all

types of resources, as p = inf i
vi
di
, and p = supi

vi
di
, where di =

∑
r ∈R di,r . In this way, Assumption 1 or 3 remains

intact. The definitions of p and p are a simple extension of Assumption 1 to the multi-resource case. Compared

to the former definition, they do not make any (implicit) assumptions on the ratio of different resources each

user demands, and thus are more practical. Moreover, summing up the demand for different types of resources is

reasonable when each di,r is normalized by the total supply of the corresponding resource, such that their values

are all in the range of [0, 1]. Then given the resource utilization ρr and scarcity level βr of each type of resource

r ∈ R, we define an average unit price for any resource for user i as

Pi
(
ρ
)
=

1

di

∑
r ∈R

di,rP (ρr ; βr) (22)

where ρ denotes the vector of ρr ,∀r ∈ R, and P (ρr ; βr) is defined by Eq. (2), (18), (20) and (8). Therefore, diPi
(
ρ
)

is the total price for user i . Note that we omit βr in Pi
(
ρ
)
for notation simplicity, but different βr will lead to

different Pi
(
ρ
)
.

While it is traightforward to adapt the pricing strategy for a single resource type to multiple resource types,

the resulting worst-case competitive ratio will be different. Specifically, we denote the final resource utilization

level of resource r by ρr *,∀r ∈ R, according to Definition 3.3, and analyze competitive ratios in three cases: (i)

ρr * ∈ [0, 1/αr] ,∀r ∈ R; (ii) there exists an r ∈ R such that ρr * ∈ (1/αr , 1), but no r ∈ R such that ρr * = 1; (iii)

there exists an r ∈ R such that ρr * = 1. Here, αr is defined by Eq. (5), (16) or (19) for β = βr . We denote the three

cases by ρ* ∈ Ω1, ρ* ∈ Ω2 and ρ* ∈ Ω3, respectively, and observe that Ω1 ∪ Ω2 ∪ Ω3 covers all possible values of

ρ*. Without loss of generality, here we assume not all βr ≤ 0; otherwise the worst-case competitive ratio would

be 1.

Lemma 4.1. For ρ* ∈ Ω1, the worst-case competitive ratio achieved by Alg. 1 using pricing function (22) for
multiple types of resources is α1 = 1.

Proof. For ρ* ∈ Ω1, according to the pricing function in (22), Pi
(
ρ*

)
= p, which by Assumption 1 is

acceptable to any potential users, thus the total demand of all users for resource r is exactly ρr *. The social welfare
achieved by the pricing function in (22) is the total value of all users, which is also the maximum possible social

welfare achieved by solving the offline problem (21). Therefore, the worst-case competitive ratio α1 = 1. □

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 22. Publication date: June 2017.

22:16 • Zijun Zhang, Zongpeng Li, and Chuan Wu

For ρ* ∈ Ω2, we first present the following claim, which states that worst cases happen when all users demand

only one specific type of resource, driving the average unit price to slightly beyond p.

Claim 4.1. Let ρr * ∈ [0, 1/αr] for r ∈ R1, ρr * ∈ (1/αr , 1) for r ∈ R2, where R1 ∪ R2 = R. For ρ* ∈ Ω2, there
exists a worst case that happens when ρr * = 0 for r ∈ R1, and ρr * = 1/αr + ϵ for r ∈ R2, where |R2 | = 1. Here, ϵ is
an arbitrarily small number.

The proof can be found in the appendix.

Lemma 4.2. For ρ* ∈ Ω2, the corresponding worst-case competitive ratio α2 = αr
∑

r ∈R min {1, 1 + βr }, where αr
is defined by Eq. (5), (16) or (19) for β = βr , and r = argmaxr ∈R αr .

Proof. According to Claim 4.1, we let ρr * = 0 for r ∈ R1, and ρr * = 1/αr + ϵ for r ∈ R2, and let |R2 | = 1.

Then from Eq. (31) and (32), R2 = {r } maximizes α
(
ρ*

)
, and thus is a worst case for ρ* ∈ Ω2. The corresponding

competitive ratio

α2 = sup

ϵ>0

∑
r ∈R pmin {1, 1 + βr }

pρr *
= αr

∑
r ∈R

min {1, 1 + βr } . (23)

□

For ρ* ∈ Ω3, the following claim states that worst cases happen when all users satisfied by an online solution

demand only one specific type of resource until it is exhausted.

Claim 4.2. Let ρr * ∈ [0, 1) for r ∈ R3, ρr * = 1 for r ∈ R4, where R3 ∪ R4 = R. For ρ* ∈ Ω3, there exists a worst
case that happens when ρr * = 0 for r ∈ R3, and ρr * = 1 for r ∈ R4, where |R4 | = 1.

The proof can be found in the appendix.

Lemma 4.3. For ρ* ∈ Ω3, the corresponding worst-case competitive ratio α3 ≥ αr
∑

r ∈R min {1, 1 + βr }.

Proof. According to Claim 4.2, we let ρr * = 0 for r ∈ R3, and ρr * = 1 for r ∈ R4, and let |R4 | = 1. Then from

Eq. (33) and (34), we have the worst-cast competitive ratio for ρ* ∈ Ω3

α3 = max

r ′∈R′

∑
r ∈R\{r ′ } pmin {1, 1 + βr } + αr ′

∫
1

0
P (ρ; βr ′)dρ∫

1

0
P (ρ; βr ′)dρ

, (24)

where R′ = {r |βr > 0}. Since it is assumed that βr > 0, we have min {1, 1 + βr } = 1, and hence

αr
∫
1

0
P (ρ; βr)dρ∫

1

0
P (ρ; βr)dρ

=
pmin {1, 1 + βr }

p/αr
.

And since αr
∫
1

0
P (ρ; βr)dρ ≤ pmin {1, 1 + βr }, we have

α3 ≥

∑
r ∈R\{r } pmin {1, 1 + βr } + αr

∫
1

0
P (ρ; βr)dρ∫

1

0
P (ρ; βr)dρ

≥

∑
r ∈R pmin {1, 1 + βr }

p/αr
= αr

∑
r ∈R

min {1, 1 + βr } .

□

By Lemma 4.1, 4.2 and 4.3, we have the following theorem:

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 22. Publication date: June 2017.

Optimal Posted Prices for Online Cloud Resource Allocation • 22:17

Theorem 4.4. The worst-case competitive ratio achieved by Alg. 1 using the pricing function in (15) for multiple
types of resources is given by Eq. (24).

As shown by Lemma 4.3, the worst-case competitive ratio for multiple resource types increases roughly linearly

with the number of resource types. However, from Claim 4.1, 4.2, and the analysis above, it is clear that the

worst cases happen in rather extreme scenarios, where all satisfied users demand only one type of resource,

unrealistic in practical cloud computing systems. In fact, the supply of and the demand for resources in a cloud

computing system are often balanced to some extent, since otherwise the supply would be adjusted to better meet

the demand of users and to improve the system efficiency. Hence, we make the following realistic assumption:

assumption 4. All types of resources share a common scarcity level, βR > 0, and hence a common αR as defined
by Eq. (5), (16) or (19) for β = βR ; and the final utilization vector, ρ*, follows

minr ∈R ρr *
maxr ∈R ρr *

≥ η. (25)

Assumption 4 leads to an improved competitive ratio.

Theorem 4.5. Under Assumption 4, the worst-case competitive ratio with the pricing function in (15) is upper
bounded by a constant with respect to |R |.

Proof. It can be shown that Claim 4.1 and 4.2 are still valid under Assumption 4. For ρ* ∈ Ω2, any worst

case gives Vol
(
ρ*

)
= [1 + (|R| − 1)η]p/αR and Vopt

(
ρ*

)
= |R | p, and hence the corresponding competitive ratio

α2 =
|R |

1+(|R |−1)ηαR . Since η ≤ 1, we have α2 ≤ αR/η. For ρ* ∈ Ω3, as ϵ → 0, any worst case gives

Vol
(
ρ*

)
=

∫
1

0

P (ρ; βR)dρ + (|R| − 1)

∫ η

0

P (ρ; βR)dρ,

and

Vopt
(
ρ*

)
= αRVol

(
ρ*

)
+ (|R| − 1) (1 + βR − η)

(
p − P (η; βR)

)
,

and hence the corresponding competitive ratio

α3 = αR +
(1 + βR − η)

(
p − P (η; βR)

)∫
1

0
P (ρ; βR)dρ/(|R| − 1) +

∫ η
0
P (ρ; βR)dρ

.

Let

θ =
(1 + βR − η)

(
p − P (η; βR)

)∫ η
0
P (ρ; βR)dρ

,

we have α3 < αR + θ . Therefore, the worst-cast competitive ratio under Assumption 4 is upper bounded by

max{αR/η,αR + θ }. □

Theorem 4.5 justifies the pricing function in (22) by showing that, a direct extension of the optimal pricing

functions for the single resource type case can achieve a reasonably good (degraded by a constant factor w.r.t.

|R |) competitive ratio in scenarios with multiple resource types.

4.2 Pricing Function for Multiple Time Slots
In real-world cloud systems, a user job runs over its specified resource bundle in the cloud, across one or more

time slots. Once the job is completed, the resources that it occupies are then released back to the cloud pool.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 22. Publication date: June 2017.

22:18 • Zijun Zhang, Zongpeng Li, and Chuan Wu

Therefore, cloud resources can be reused over time. Let T denote the set of all time slots that the system spans,

and Ti be the set of time slots when user i requires to use resources. yi (t) is an indication function as follows:

yi (t) =

{
1, t ∈ Ti

0, otherwise

. (26)

The offline social welfare maximization problem becomes:

maximize

∑
i ∈U

vixi (27)

s.t.: ∑
i ∈U

di,rxiyi (t) ≤ 1,∀r ∈ R, t ∈ T (27a)

xi ∈ {0, 1} ,∀i ∈ U (27b)

Since yi (t) is input (not a variable) in this optimization problem, problem (27) is still an ILP. The online resource

allocation algorithm we apply to determine xi upon the arrival of user i is still the same as Alg. 1, except that di
and the pricing function will be redefined, and yi (t) needs to be further determined.

In fact, problem (21) and problem (27) are equivalent if we consider resource r in different time slots to be of

different resource types. More specifically, let di,r (t) = di,ryi (t), where r (t) ∈ R (t), and t ∈ T . Then problem

(27) will have exactly the same form as problem (27). Therefore, according to Lemma 4.3 and Theorem 4.4,

the worst-case competitive ratio will increase roughly linearly with the number of time slots, |T |, if no other

assumptions are made. If the number of slots required by each user is upper bounded, then the worst-case

competitive ratio will increase roughly linearly with the maximum number of slots required by each user, which

is also undesirable. Intuitively, this issue is caused by the fact that, if one of the time slots required by a user

is unavailable (e.g., no available resources), then the demand of the user cannot be satisfied as a whole, even if

other required slots are all available.

To address the aforementioned problem, we propose a strategy that satisfies users’ demand in an elastic manner.

Specifically, assuming we are allowed to satisfy user i with any |Ti | slots in a larger set of time slots, T ′
i ⊇ Ti , we

can significantly improve the competitive ratio by choosing |Ti | slots from T ′
i that yield the lowest total price.

Concretely, the corresponding online resource scheduling strategy is that, we try to satisfy each user i with |Ti |

time slots chosen from T ′
i , and

��T ′
i

�� = ⌈λ |Ti |⌉, where λ is a constant factor. Here T ′
i can be interpreted as the

allowed (loosened) time interval for completing the user’s job. The overall price to user i is computed as the

minimum possible total price of |Ti | time slots selected from T ′
i .

From the user perspective, the price each user receives is determined upon its arrival in the system, and does

not change afterwards. A user i accepts the price and leases resource at quantities di,r ’s in the chosen |Ti | time

slots, if and only if vi is no smaller than the overall price. Once a user accepts the price, its job is guaranteed to

be completed within λ |Ti |. If the provider tells that a job cannot be completed within λ |Ti |, the job will receive
an infinitely high price according to the pricing function upon arrival (i.e., the user will reject the price and the

job will not be executed).

In fact, similar non-consecutive execution schemes have been implemented on Amazon EC2 Spot Instance

[2], and have been discussed in the literature [30]. Here, we further justify the use of non-consecutive execution

schemes from a theoretical point of view.

Without loss of generality, we assume both Ti and T ′
i are consecutive time slots; and if Ti = [τi ,τi + |Ti | − 1],

we let T ′
i =

[
τi ,τi +

��T ′
i

�� − 1

]
. To formulate the offline version of the modified social welfare maximization

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 22. Publication date: June 2017.

Optimal Posted Prices for Online Cloud Resource Allocation • 22:19

problem, we can add the following constraints to problem (27):∑
t ∈T′

i

yi (t) = |Ti | ,∀i ∈ U (27c)

yi (t) ∈ {0, 1} ,∀i ∈ U, t ∈ T (27d)

Note that yi (t) now follows Eq. (27c) and (27d), instead of Eq. (26), and yi (t) becomes a variable. Therefore, the

new problem is no longer an ILP.

We reuse the notation Pi (·) to denote the pricing function for user i; and we reuse the symbols, di and ρ, to
taken into account different time slots, i.e., di = |Ti |

∑
r ∈R di,r , and ρ denotes the vector of ρr (t) ,∀r ∈ R, t ∈ T .

The definitions of p and p remain the same, i.e., p = inf i
vi
di

and p = supi
vi
di
. Then under Assumption 4, our

pricing strategy for online resource allocation can be described by the following pricing function:

Pi
(
ρ
)
=

1

di
min

yi ∈Yi


∑
t ∈T′

i

∑
r ∈R

di,ryi (t) P (ρr (t) ; βR)

 , (28)

whereYi is defined by Eq. (27c) and (27d), and P (ρr (t); βR) is defined by Eq. (2), (18) and (20). Obviously, diPi
(
ρ
)

is the total price for user i .
In general, Pi

(
ρ
)
sets different unit prices for different time slots, according to the scheduled resource

utilization levels. Note that, the overall price that each user receives for its resource demand over the requested

resource usage duration is determined when the user comes to the system and requests resources, and does not

change over the course.

Given an arbitrary set of time slots T , and the corresponding time horizon |T |, any Ti ⊈ T can be ignored

since it cannot be satisfied anyway. Furthermore, we ignore the marginal effect of any T ′
i ⊈ T , since |T | is

usually significantly larger than

��T ′
i

��
. Thus, we assume Ti ,T

′
i ⊆ T ,∀i ∈ U. As we did to analyze competitive

ratios for multiple resource types, we divide possible values of final resource utilization levels into three cases: (i)

ρr * (t) ∈ [0, 1/αR] ,∀r ∈ R, t ∈ T ; (ii) there exists an r ∈ R and a t ∈ T such that ρr * (t) ∈ (1/αR , 1), but no r ∈ R

or t ∈ T such that ρr * (t) = 1; (iii) there exists an r ∈ R and a t ∈ T such that ρr * (t) = 1. Here, αR is defined by

Eq. (5), (16) or (19) for β = βR . We denote the three cases by ρ* ∈ Π1, ρ* ∈ Π2 and ρ* ∈ Π3, respectively.

Lemma 4.6. For ρ* ∈ Π1, the worst-case competitive ratio achieved by our online resource scheduling strategy
using pricing function (28) is α1 = 1.

Proof. The proof is similar to that of Lemma 4.1 and is omitted. □

Lemma 4.7. For ρ* ∈ Π2, the corresponding worst-case competitive ratio α2 < αR

(λ−1)η + 1, where η is defined in
Assumption 4.

Proof. Let T1 = {t |ρr * (t) ∈ [0, 1/αR] ,∀r ∈ R}, and T2 = {t |ρr * (t) ∈ (1/αR , 1) ,∃r ∈ R}, and T1 ∪ T2 = T .

For ρ* ∈ Π2, following the proof of Lemma 4.1, there exists a worst case that happens when ρr * (t) = 0 for all

r ∈ R and t ∈ T1; while for t ∈ T2, ρr * (t) = 1/αr + ϵ for some r ′ ∈ R, and ρr * (t) = η (1/αr + ϵ) for r ∈ R\ {r ′}.
Here, ϵ is an arbitrarily small number. Following the proof of Theorem 4.5, as ϵ → 0, we have

Vol
(
ρ*

)
= |T2 | [1 + (|R| − 1)η]p/αR ,

as the minimum total value of the online solution. For any Ti , since
��T ′
i

�� = ⌈λ |Ti |⌉, the demand will be satisfied

regardless of the user’s valuation, unless

��T ′
i ∩ T2

�� > ⌈ λ−1λ

��T ′
i

��⌉. In other words, if the demand of user i is not

satisfied by the online solution, there must be at least ⌈ λ−1λ

��T ′
i

��⌉ time slots in T ′
i that also belong to T2; or

equivalently, for any S ⊆ T , and any T ′
i ⊆ S that is not satisfied by the online solution,

��T ′
i

�� < ⌊ λ
λ−1 |S ∩ T2 |⌋,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 22. Publication date: June 2017.

22:20 • Zijun Zhang, Zongpeng Li, and Chuan Wu

and hence |Ti | < ⌊ 1

λ−1 |S ∩ T2 |⌋. Let T
′

2
be the union of all sets of consecutive time slots that contain T2, and

have a cardinality of ⌊ λ
λ−1 |T2 |⌋ − 1. When |Ti | < ⌊ 1

λ−1 |S ∩ T2 |⌋, since at least one type of resource in at least one

required time slot has a unit price above p, there can be a set of users in a worst case, demanding all resources in��T ′
2

��
time slots, with Pi

(
ρ
)
= p, where

��T ′
2

�� < 2⌊ 1

λ−1 |T2 |⌋ + |T2 |. Thus we have the maximum optimal offline

total value

Vopt
(
ρ*

)
<
��T ′
2

�� |R | p <

(
2⌊

1

λ − 1

|T2 |⌋ + |T2 |

)
|R | p.

Therefore, for ρ* ∈ Π2, the worst-cast competitive ratio

α2 <

λ+1
λ−1 |R | |T2 | p

|T2 | [1 + (|R| − 1)η]p/αR

=
λ + 1

λ − 1

|R |

1 + (|R| − 1)η
αR ≤

(λ + 1)αR

(λ − 1)η
. (29)

□

Lemma 4.8. For ρ* ∈ Π3, the correspondingworst-case competitive ratioα3 < λ+1
(λ−1)η′ , whereη

′ =
∫ η
0
P (ρ; βR)dρ/p.

Proof. Let T3 = {t |ρr * (t) ∈ [0, 1) ,∀r ∈ R}, and T4 = {t |ρr * (t) = 1,∃r ∈ R}, and T3 ∪ T4 = T . For ρ* ∈ Π2,

following the proof of Lemma 4.2, there exists a worst case that happens when ρr * (t) = 0 for all r ∈ R and t ∈ T3;

while for t ∈ T4, ρr * (t) = 1 for some r ′ ∈ R, and ρr * (t) = η for r ∈ R\ {r ′}. Following the proof of Theorem 4.5,

we have

Vol
(
ρ*

)
= |T4 |

[∫
1

0

P (ρ; βR)dρ + (|R| − 1)

∫ η

0

P (ρ; βR)dρ

]
,

as the minimum total value of the online solution. For any Ti , since
��T ′
i

�� = ⌈λ |Ti |⌉, the demand will be satisfied

regardless of the user’s valuation, unless

��T ′
i ∩ T4

�� > ⌈ λ−1λ

��T ′
i

��⌉. In other words, if the demand of user i is not

satisfied by the online solution, there must be at least ⌈ λ−1λ

��T ′
i

��⌉ time slots in T ′
i that also belong to T4; or

equivalently, for any S ⊆ T , and any T ′
i ⊆ S that is not satisfied by the online solution,

��T ′
i

�� < ⌊ λ
λ−1 |S ∩ T4 |⌋,

and hence |Ti | < ⌊ 1

λ−1 |S ∩ T4 |⌋. Let T
′

4
be the union of all sets of consecutive time slots that contain T4, and

have a cardinality of ⌊ λ
λ−1 |T4 |⌋ − 1. When |Ti | < ⌊ 1

λ−1 |S ∩ T4 |⌋, since at least one type of resource in at least one

required time slot is fully occupied, there can be a set of users in a worst case, demanding all resources in

��T ′
4

��
time slots, with Pi

(
ρ
)
= p, where

��T ′
4

�� < 2⌊ 1

λ−1 |T4 |⌋ + |T4 |. Thus we have the maximum optimal offline total

value

Vopt
(
ρ*

)
<
��T ′
4

�� |R | p <

(
2⌊

1

λ − 1

|T4 |⌋ + |T4 |

)
|R | p.

Therefore, for ρ* ∈ Π2, the worst-cast competitive ratio

α3 <
λ+1
λ−1 |R | |T4 | p

|R | |T4 |
∫ η
0
P (ρ; βR)dρ

=
λ + 1

(λ − 1)η′
. (30)

□

Theorem 4.9. The worst-cast competitive ratio achieved by our online resource scheduling strategy using pricing
function (28) is upper bounded by λ+1

λ−1 max{αR/η, 1/η
′}, which is a constant with respect to both |R | and |T |. Here,

αR is defined by Eq. (5), (16) or (19) for β = βR , and η is defined as in Assumption 4.

Proof. The theorem follows immediately from Lemmas 4.6, 4.7 and 4.8. □

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 22. Publication date: June 2017.

Optimal Posted Prices for Online Cloud Resource Allocation • 22:21

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Relative total demand

0.8

1

1.2

1.4

1.6

1.8

2

R
e
la

ti
v
e
 s

o
c
ia

l
w

e
lf
a
re

1

1.5

2

2.5

3

C
o
m

p
e
ti
ti
v
e
 r

a
ti
o

Fig. 5. Online/offline social welfares and competitive ratios given different total demands.

5 EMPIRICAL STUDIES
In this section, we evaluate the proposed pricing and scheduling strategies through simulation studies. To simulate

realistic cloud computing scenarios, we relax the assumptions made previously for theoretical analysis. We use a

Poisson process to model the arrival of users, with arrival rate between 20 and 50 per time slot. Each user requests

5 time slots on average and 5 different types of resources at most, unless otherwise specified. Each user demands

1 to 3 percent of each type of resource on average,
1
with different standard deviation for different resource types

ranging from 0.2% to 2%. We set λ = 1.2 by default. The time horizon of simulations is 1000 time slots, which is

large enough compared to the demand of each user. The statistics of the random input variables are stationary in

all cases except the last one (shown in Fig. 8). The optimal offline total values are obtained by solving problem

(27) with constraints (27c) and (27d).

By relaxing the assumptions, we can now optimize the parameters in our pricing functions, e.g., β , p and p, to

maximize average social welfare. Specifically, we employ pattern search for the optimization: we repeat each

experiment for multiple iterations; in the first iteration, we fix the parameters to random estimates; then we add a

perturbation (decays with iterations) to each parameter and run the experiment again; a perturbation is retained

from one iteration to the next if the total value is improved. In practice, similar probing of parameter values can

be done through online learning techniques such as reinforcement learning.

Our theoretical analysis suggests that, under mild assumptions, the worst-case competitive ratio is mainly

influenced by the total demand level (Fig. 3), but not by the number of resource types (Theorem 4.5), nor by

the number of requested time slots (Theorem 4.9). We now investigate the impact of the three factors on social

welfare and competitive ratio, as well as the robustness of the theoretical results, when the assumptions are

relaxed.

To quantify different demand levels, we define the relative total demand as the ratio between the total demand

of all potential users and the total resource supply Fig. 5 shows that, the optimal offline total value,Vopt , increases
almost linearly with a slope of 1, as the total demand increases. At the same time, the online total value, Vol ,
increases with a smaller slope. Consequently, the competitive ratio increases noticeably from 1.09 to 1.78.
Although the results depict average system performance (rather than worst-case competitive ratios), it coincides

with our worst-case analysis on the scarcity level, β , where larger β leads to a larger competitive ratio (see Fig. 3).

Next, we vary the number of resource types, |R |, from 1 to 10 to see how it affects the competitive ratio. As

shown in Fig. 6, due to the increase in total demand and supply, both Vopt and Vol increase linearly with |R |,

while Vopt increases slightly faster than Vol . Consequently, the competitive ratio only increases mildly (from 1.34

1
These percentages are quite high as compared to practice. We set such percentages to evaluate performance of our pricing functions in the

case that Assumption 2 is not true.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 22. Publication date: June 2017.

22:22 • Zijun Zhang, Zongpeng Li, and Chuan Wu

1 2 3 4 5 6 7 8 9 10

Number of resource types

0

2

4

6

8

10

12

R
e
la

ti
v
e
 s

o
c
ia

l
w

e
lf
a
re

1

1.5

2

2.5

3

C
o
m

p
e
ti
ti
v
e
 r

a
ti
o

Fig. 6. Online/offline social welfares and competitive ratios given different numbers of resource types.

1 2 3 4 5 6 7 8 9 10

Average number of required time slots

0.6

0.7

0.8

0.9

1

1.1

1.2

R
e
la

ti
v
e
 s

o
c
ia

l
w

e
lf
a
re

1

1.5

2

2.5

3

C
o
m

p
e
ti
ti
v
e
 r

a
ti
o

(a) Online/offline social welfares and competitive ratios given
different numbers of required time slots.

0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45

0.8

0.85

0.9

0.95

1

1.05

1.1

R
e
la

ti
v
e
 s

o
c
ia

l
w

e
lf
a
re

(b) Online social welfare at different values of λ.

Fig. 7. Performance of the elastic scheduling strategy discussed in Sec. 4.2.

to 1.57) as |R | increases. The results may indicate that Assumption 4 is slightly violated in practice, since larger

|R | can increase the chance of unbalanced resource utilization.

Similarly, it is also interesting to see how the number of time slots required by each user affects the competitive

ratio. Different from the case of varying |R |, only the total demand will increase with the average number of

required time slots. Thus we adjust the demand of each user accordingly to eliminate the effect of increasing

relative total demand (Fig. 5). As we can see in Fig. 7a,Vopt andVol remain almost the same as the average number

of required time slots increases, and so does the competitive ratio (varying slightly from 1.41 to 1.48). To further

verify the proposed strategies, we vary the value of λ from 1 to 1.4 as shown in Fig. 7b. We test the performance

for two levels of total demands, 1.5 and 3. In this case, Vopt stays almost the same as λ changes and is omitted

from the figure. Clearly, Vol increases more from λ = 1 to λ = 1.2 than from λ = 1.2 to λ = 1.4, indicating λ = 1.2
is a good trade-off between the availability and timeliness of service.

The simulations conducted so far are based on stationary arrival processes of users. In practice, however, the

arrival rate may change over time (e.g., fluctuating periodically). To capture this characteristic, we vary the arrival
rate according to a sine curve with a period of 100 time slots. In Fig. 8, as we increase the amplitude of the sine

curve from 0 to 1 (normalized by the average arrival rate), both Vopt and Vol decrease significantly, while the
competitive ratio remains at around 1.5. The reason behind the results is that, when the arrival rate is very low,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 22. Publication date: June 2017.

Optimal Posted Prices for Online Cloud Resource Allocation • 22:23

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Level of arrival rate fluctuations

0

0.2

0.4

0.6

0.8

1

R
e
la

ti
v
e
 s

o
c
ia

l
w

e
lf
a
re

1

1.5

2

2.5

3

C
o
m

p
e
ti
ti
v
e
 r

a
ti
o

Fig. 8. Online/offline social welfare and competitive ratios given different levels of arrival rate fluctuations.

the resource utilization ratios stay low, and almost all demands can be satisfied; when the arrival rate is very high,

a high proportion of the demands cannot be satisfied by either the optimal offline solution or the online solution.

6 CONCLUDING REMARKS
We studied online posted pricing strategies in a number of cloud resource allocation scenarios. We started by

investigating the basic case of a single type of cloud resource without recycling, and proved optimality of a

set of exponential pricing functions in terms of social welfare, which compute unit resource prices based on

realtime demand-supply. Exploiting the insights acquired, we further derived pricing functions in more practical

scenarios with multiple resource types and limited resource occupation durations, and proved tight competitive

ratio bounds of these functions, without assumptions on user arrival process or valuation distribution. Empirical

studies further reveal good performance of our pricing functions under realistic settings. Though set up in a

cloud computing environment, our models and algorithms are also applicable to posted pricing in other related

online resource allocation problems.

A PROOF OF CLAIM 4.1
Proof. In the worst case of online solution, the valuations of satisfied users are the same as the prices they

accept. Thus by Assumption 2, we have

Vol
(
ρ*

)
=
∑
r ∈R

∫ ρr *

0

P (ρ; βr)dρ =
∑
r ∈R1

ρr *p +
∑
r ∈R2

∫ ρr *

0

P (ρ; βr)dρ, (31)

as the minimum total value of the online solution. On the other hand, any unsatisfied user i has an average unit

value smaller than Pi
(
ρ*

)
, otherwise ρ* cannot be the final resource utilization. We can decompose each user’s

value as vi =
∑

r ∈R di,rUi,r
(
ρ
)
, and

Ui,r
(
ρ
)
=

vi

diPi
(
ρ
) P (ρr ; βr) ,

such that a user i’s average unite value vi/di <Pi
(
ρ*

)
if and only ifUi,r

(
ρ*

)
< P (ρr ; βr), for any r ∈ R. Here,

Ui,r
(
ρ*

)
can be seen as user i’s unit value of resource r given a certain ρ*.

For r ∈ R1, in the worst case, there can be a set of unsatisfied users with a total demand of min {1, 1 + βr } for
each type of resource, and with a unit valueUi,r

(
ρ*

)
= p − ϵr . Note thatUi,r

(
ρ*

)
< p does not contradict with

Assumption. 1, since a small enough ϵr can ensure vi/di ≥ p. For r ∈ R2, the discussion on Eq. (3), (9) for a single

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 22. Publication date: June 2017.

22:24 • Zijun Zhang, Zongpeng Li, and Chuan Wu

resource type is still valid if we considerUi,r
(
ρ*

)
as unit value of resource; and according to Eq. (6), we have

Vopt (ρr *) = αrVol (ρr *) − ϵr = αr

∫ ρr *

0

P (ρ; βr)dρ) − ϵr .

This yields the maximum optimal offline total value given Eq. (31):

Vopt
(
ρ*

)
=

∑
r ∈R1

pmin {1, 1 + βr } +
∑
r ∈R2

αr

∫ ρr *

0

P (ρ; βr)dρ − ϵ . (32)

For r ∈ R1, ρr * only affects the first term of Eq. (31), while the first term of Eq. (32) is a constant with respect

to ρr *. Thus in any worst case, the first term of Eq. (31) should be minimized, and hence ρr * = 0,∀r ∈ R1. For

r ∈ R2, let Vol (ρr *) =
∫ ρr *
0

P (ρ; βr)dρ, we have

α
(
ρ*

)
=

supϵ>0Vopt
(
ρ*

)
Vol

(
ρ*

) ≥

∑
r ∈R2

αrVol (ρr *)∑
r ∈R2

Vol (ρr *)
≥

αr
∑

r ∈R2

Vol (ρr *)∑
r ∈R2

Vol (ρr *)
= αr ,

where r = argminr ∈R2

αr . When |R2 | ≥ 2, we can iteratively move r from R2 to R1, and set ρr * = 0 without

decreasing α
(
ρ*

)
, until |R2 | = 1, since

supϵ>0

(
Vopt

(
ρ*

)
− αrVol (ρr *) − ϵ + pmin

{
1, 1 + βr

})
Vol

(
ρ*

)
−Vol (ρr *)

≥
supϵ>0Vopt

(
ρ*

)
Vol

(
ρ*

) .

Similarly, for the only r ∈ R2, we can decrease ρr * to 1/αr + ϵ without decreasing α
(
ρ*

)
. Therefore, for ρ* ∈ Ω2,

there exists a worst case that happens when ρr * = 0 for r ∈ R1, and ρr * = 1/αr +ϵ for r ∈ R2, where |R2 | = 1. □

B PROOF OF CLAIM 4.2
Proof. The worst case of online solution is that the valuations of satisfied users are the same as the prices

they accept. Thus by Assumption 2, we have

Vol
(
ρ*

)
=
∑
r ∈R

∫ ρr *

0

P (ρ; βr)dρ =
∑
r ∈R3

∫ ρr *

0

P (ρ; βr)dρ +
∑
r ∈R4

∫
1

0

P (ρ; βr)dρ, (33)

as the minimum total value of the online solution. On the other hand, since there is at least one type of resource

fully occupied, i.e., |R4 | ≥ 1, there can be a case where all subsequent users demand a small amount of resource

r ∈ R4, making it impossible to satisfy their demands regardless of their valuations. Hence the maximum optimal

offline total value

Vopt
(
ρ*

)
=

∑
r ∈R3

∫ ρ2

r

ρ1

r

P (ρ; βr)dρ +
∑
r ∈R3

pmin {1, 1 + βr − ρr *} +
∑
r ∈R4

αr

∫
1

0

P (ρ; βr)dρ, (34)

where ρ1r = max {0, βr } and ρ2r = max {βr , ρr *}.
For r ∈ R3, Eq. (33) stays the same or increases as any ρr * increases, while Eq. (34) stays the same or decreases.

Thus there exists a worst case where ρr * = 0,∀r ∈ R3. Let r = argminr ∈R4

αr . Due to the same reason as

discussed for Eq. (31) and Eq. (32), when |R4 | ≥ 2, we can iteratively move r from R4 to R3, and set ρr * = 0

without decreasing the competitive ratio, until |R4 | = 1. □

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 22. Publication date: June 2017.

Optimal Posted Prices for Online Cloud Resource Allocation • 22:25

REFERENCES
[1] 2017. Amazon EC2 Spot Instances Pricing. https://aws.amazon.com/ec2/spot/pricing/. (2017).

[2] 2017. Spot Instance Interruptions. https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-interruptions.html. (2017).

[3] Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and Dan Tsafrir. 2013. Deconstructing amazon ec2 spot instance pricing.

ACM Transactions on Economics and Computation 1, 3 (2013), 16.

[4] May Al-Roomi, Shaikha Al-Ebrahim, Sabika Buqrais, and Imtiaz Ahmad. 2013. Cloud computing pricing models: a survey. International
Journal of Grid and Distributed Computing 6, 5 (2013), 93–106.

[5] Bo An, Victor Lesser, David Irwin, and Michael Zink. 2010. Automated negotiation with decommitment for dynamic resource allocation

in cloud computing. In Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems: volume 1-Volume 1.
International Foundation for Autonomous Agents and Multiagent Systems, 981–988.

[6] Niv Buchbinder and Joseph Naor. 2005. Online primal-dual algorithms for covering and packing problems. In European Symposium on
Algorithms. Springer, 689–701.

[7] Niv Buchbinder and Joseph Naor. 2006. Improved bounds for online routing and packing via a primal-dual approach. In 2006 47th
Annual IEEE Symposium on Foundations of Computer Science (FOCS’06). IEEE.

[8] Niv Buchbinder and Joseph Naor. 2009. The design of competitive online algorithms via a primal: dual approach. Foundations and
Trends® in Theoretical Computer Science 3, 2–3 (2009), 93–263.

[9] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona Brandic. 2009. Cloud computing and emerging IT

platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation computer systems 25, 6 (2009), 599–616.
[10] Yang Cai, Constantinos Daskalakis, and S Matthew Weinberg. 2013. Reducing revenue to welfare maximization: Approximation

algorithms and other generalizations. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM,

578–595.

[11] Deeparnab Chakrabarty, Yunhong Zhou, and Rajan Lukose. 2008. Online knapsack problems. In Workshop on internet and network
economics (WINE).

[12] Saurabh Kumar Garg, Steve Versteeg, and Rajkumar Buyya. 2013. A framework for ranking of cloud computing services. Future
Generation Computer Systems 29, 4 (2013), 1012–1023.

[13] Sijia Gu, Zongpeng Li, Chuan Wu, and Chuanhe Huang. 2016. An Efficient Auction Mechanism for Service Chains in The NFV Market.

In Computer Communications, IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on. IEEE.
[14] Hao Li, Jianhui Liu, and Guo Tang. 2011. A pricing algorithm for cloud computing resources. In Network Computing and Information

Security (NCIS), 2011 International Conference on, Vol. 1. IEEE, 69–73.
[15] Wei-Yu Lin, Guan-Yu Lin, and Hung-Yu Wei. 2010. Dynamic auction mechanism for cloud resource allocation. In Cluster, Cloud and Grid

Computing (CCGrid), 2010 10th IEEE/ACM International Conference on. IEEE, 591–592.
[16] RT Ma, Dah Ming Chiu, John CS Lui, Vishal Misra, and Dan Rubenstein. 2010. On resource management for cloud users: A generalized

kelly mechanism approach. Electrical Engineering, Tech. Rep (2010).

[17] Sunilkumar S Manvi and Gopal Krishna Shyam. 2014. Resource management for Infrastructure as a Service (IaaS) in cloud computing:

A survey. Journal of Network and Computer Applications 41 (2014), 424–440.
[18] Ishai Menache, Asuman Ozdaglar, and Nahum Shimkin. 2011. Socially optimal pricing of cloud computing resources. In Proceedings

of the 5th International ICST Conference on Performance Evaluation Methodologies and Tools. ICST (Institute for Computer Sciences,

Social-Informatics and Telecommunications Engineering), 322–331.

[19] Marian Mihailescu and Yong Meng Teo. 2010. Dynamic resource pricing on federated clouds. In Proceedings of the 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing. IEEE Computer Society, 513–517.

[20] Mahyar Movahed Nejad, Lena Mashayekhy, and Daniel Grosu. 2015. Truthful greedy mechanisms for dynamic virtual machine

provisioning and allocation in clouds. IEEE transactions on parallel and distributed systems 26, 2 (2015), 594–603.
[21] Weijie Shi, Chuan Wu, and Zongpeng Li. 2014. RSMOA: A revenue and social welfare maximizing online auction for dynamic cloud

resource provisioning. In 2014 IEEE 22nd International Symposium of Quality of Service (IWQoS). IEEE, 41–50.
[22] Weijie Shi, Chuan Wu, and Zongpeng Li. 2016. An online mechanism for dynamic virtual cluster provisioning in geo-distributed clouds.

In Computer Communications, IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on. IEEE.
[23] Weijie Shi, Linquan Zhang, Chuan Wu, Zongpeng Li, and Francis Lau. 2014. An online auction framework for dynamic resource

provisioning in cloud computing. ACM SIGMETRICS Performance Evaluation Review 42, 1 (2014), 71–83.

[24] Adel Nadjaran Toosi, Rodrigo N Calheiros, and Rajkumar Buyya. 2014. Interconnected cloud computing environments: Challenges,

taxonomy, and survey. ACM Computing Surveys (CSUR) 47, 1 (2014), 7.
[25] Wei Wang, Ben Liang, and Baochun Li. 2013. Revenue maximization with dynamic auctions in IaaS cloud markets. In Quality of Service

(IWQoS), 2013 IEEE/ACM 21st International Symposium on. IEEE, 1–6.
[26] Hong Xu and Baochun Li. 2013. Dynamic cloud pricing for revenue maximization. IEEE Transactions on Cloud Computing 1, 2 (2013),

158–171.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 22. Publication date: June 2017.

https://aws.amazon.com/ec2/spot/pricing/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-interruptions.html

22:26 • Zijun Zhang, Zongpeng Li, and Chuan Wu

[27] Sharrukh Zaman and Daniel Grosu. 2013. Combinatorial auction-based allocation of virtual machine instances in clouds. J. Parallel and
Distrib. Comput. 73, 4 (2013), 495–508.

[28] Qi Zhang, Quanyan Zhu, Mohamed Faten Zhani, Raouf Boutaba, and Joseph L Hellerstein. 2013. Dynamic service placement in

geographically distributed clouds. IEEE Journal on Selected Areas in Communications 31, 12 (2013), 762–772.
[29] Xiaoxi Zhang, Zhiyi Huang, Chuan Wu, Zongpeng Li, and Francis Lau. 2015. Online auctions in IaaS clouds: welfare and profit

maximization with server costs. In ACM SIGMETRICS Performance Evaluation Review, Vol. 43. ACM, 3–15.

[30] Ruiting Zhou, Zongpeng Li, Chuan Wu, and Zhiyi Huang. 2016. An Efficient Cloud Market Mechanism for Computing Jobs With Soft

Deadlines. IEEE/ACM Transactions on Networking (2016).

[31] Yunhong Zhou, Deeparnab Chakrabarty, and Rajan Lukose. 2008. Budget constrained bidding in keyword auctions and online knapsack

problems. In International Workshop on Internet and Network Economics. Springer, 566–576.

Received March 2017; revised April 2017; accepted May 2017

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 22. Publication date: June 2017.

	Abstract
	1 Introduction
	2 Related Work
	3 Cloud Resource Pricing: the Basic Case
	3.1 The Basic Resource Allocation Problem
	3.2 Pricing Function Design
	3.3 Linear Operational Cost

	4 Pricing Multiple Resource Types with Resource Recycling
	4.1 Pricing Function for Multiple Types of Resources
	4.2 Pricing Function for Multiple Time Slots

	5 Empirical Studies
	6 Concluding Remarks
	A Proof of Claim 4.1
	B Proof of Claim 4.2
	References

