
Online Cloud Resource Allocation and Pricing with
Server Speed Scaling

Ziyue Luo
SKLSE, School of Computer Science

Wuhan University
luozy@whu.edu.cn

Zongpeng Li
SKLSE, School of Computer Science

Wuhan University
zongpeng@whu.edu.cn

Chuan Wu
Dept. of Computer Science

The University of Hong Kong
cwu@cs.hku.hk

Abstract—The provisioning of cloud computing services typ-
ically incurs huge electricity costs. Utilization maximization of
the cloud resources and efficient resource pricing have been key
factors determining a cloud provider’s revenue. On the other
hand, dynamic CPU speed scaling has been widely supported
by modern operating systems and hypervisors as an efficient
technique for CPU energy saving, potentially useful for cutting
down provider’s electricity bill. In this paper, we propose an
online mechanism for resource allocation and pricing on a cloud
platform, which enables dynamic CPU speed scaling for achieving
the best job execution efficiency. Using a novel compact infinite
optimization technique and the primal-dual online algorithm
design framework, our online mechanism achieves computational
efficiency, truthfulness, and near-optimal social welfare during
the long run of the cloud system. Trace-driven simulation studies
further demonstrate good performance of our mechanism in
realistic settings.

I. INTRODUCTION

Cloud computing has been a popular service that grants
users immediate access to abundant computing resources.
Infrastructure-as-a-Service (IaaS), a major cloud service model
provisioned by providers such as Amazon and Microsoft,
advocates packing resources such as CPU, RAM and disk
storage into virtual machines (VMs) or containers, for leasing
to users. For example, Amazon EC2 provides customers with
a wide range of VMs in various types [1]. Users can deploy
their systems or process their jobs on these VMs/containers
that meet their job requirements.

For operating a cloud platform, electricity cost accounts for
a major part in the operational cost. On the other hand, power
consumption by cloud computing has rendered a significant
portion in the electricity market, from 1.3% of the global
electricity supply in 2012 to the estimated 8% in 2020 [2].
CPU is one of the main energy-consuming components in
servers, e.g., 30% of the overall power is consumed by the
CPU as in an Atom processor based server, and 60% in a
Xeon-equipped server [3]. To alleviate CPU energy consump-
tion, major chip manufacturers, including Intel and AMD,
enable dynamic speed scaling in their CPUs: a processor’s
speed can be dynamically adjusted according to incoming
workload. Supplementing hardware designs, most operating
systems and hypervisors support dynamic speed scaling. Xen
hypervisor includes a power management feature, CPU P-
States, implemented by the cpufreq driver [4]. It periodically
measures the system status and adjusts the CPU frequency

according to the status for power consumption reduction. Such
a dynamic speed scaling technique is suitable for cloud jobs
such as human genome and other big data analysis with batch-
processing nature: those jobs are delay tolerant to some extent;
hence, we may alleviate electricity consumption of servers
processing these job by slightly lowering CPU speed if needed.

This paper investigates efficient online algorithms for job
scheduling on CPU resources in a geo-distributed IaaS cloud
with dynamic speed scaling enabled on its servers. Especially,
we design an online auction mechanism for CPU resource
scheduling and pricing, aiming to maximize both the provider
and users’ utilities, by striking a good balance among user
job valuation, electricity cost and deadline feasibility. Upon
a user’s arrival, it submits its CPU resource demand with
the bidding price. The cloud provider immediately decides
whether to accept the bid, schedules the job (if accepted) to
run on processors in future time slots and decides the CPU
speeds for running the job in respective time slots, as well as
calculates the user’s payment.

The online mechanism achieves several properties. First, the
online mechanism runs in polynomial time to process each
user’s bid. Second, it achieves truthfulness, that a user must
declare true job valuation to maximize its own utility. Third,
it produces near-optimal job schedules that maximize the
social welfare. We show that our online mechanism achieves
a good competitive ratio (2.77 in typical scenarios), computed
by dividing the optimal offline social welfare and the social
welfare achieved by the online mechanism.

Our technical contributions to enable the efficient online
mechanism are as follows. We design the auction framework
and formulate the social welfare maximization problem into an
integer non-linear program. Even without some constraints and
variables, the problem is NP-hard. To tackle its NP hardness,
we further formulate the original program into a compact
infinite integer linear program (ILP). Even though this ILP
contains an infinite number of variables, we novelly apply the
primal-dual technique and design an efficient online auction
mechanism.

The rest of the paper is organized as follow. We discuss
related work in Sec. II, and introduce the system model in
Sec. III. Sec. IV presents the online auction mechanism, Sec. V
gives simulation results, and Sec. VI concludes the paper.



II. RELATED WORK

A number of studies have investigated auction mechanism
design for dynamic cloud resource provisioning and pricing in
recent years. Zhang et al. [5] propose a one-round randomized
auction approach that guarantees a low approximate ratio and
truthfulness. Wang et al. [6] produce a two-dimensionally
truthful online auction, in which users always hold allocated
VMs for a continuous period of time. Zhang et al. [7] design
an online auction with heterogeneous user demands. Both
of the above work consider only a single type of VM for
simplicity. Shi et al. [8] propose an online auction where
the cloud provider provisions multiple types of VMs, and
reassignment of already allocated resources is allowed. All
these work do not take into account the operational cost
of servers. A recent work by Zhang et al. [9] proposes an
online auction mechanism, considering server costs in convex
function forms. Different from all the literature, our work is the
first one which combines VM allocation with dynamic server
speed scaling, and allows elastic job execution for power cost
saving.

Dynamic speed scaling has attracted substantial interest as
an efficient technique to reduce power usage in electronic
devices. Yao et al. [10] produce the first theoretical analysis
of dynamic speed scaling on a single processor and design
both an offline optimal scheduling algorithm and an online
approximation algorithm. Bansal et al. [11] further prove the
competitive ratio of the algorithm proposed by Yao et al. and
design a new online algorithm that focuses on temperature
management using speed scaling. Albers et al. [12] extend
the study of dynamic speed scaling to multi-processor envi-
ronments, considering either unit-size jobs or arbitrarily-sized
jobs with deadlines. Differently, our work studies dynamic
speed scaling in cloud VMs in an online cloud resource
scheduling problem, targeting overall utility maximization of
cloud provider and users.

Compact exponential optimization techniques have been
proposed by Zhou et al. [13] for online cloud resource
allocation. Sun et al. [14] further improve the technique and
apply it to power scheduling for datacenter demand response.
We propose a new compact infinite optimization technique
based on their techniques, which is able to transform a non-
linear integer program into an equivalent ILP at the price of
introducing an infinite number of variables; nonetheless, we
are still able to apply the primal-dual framework to derive an
efficient online mechanism.

III. SYSTEM MODEL

A. The Cloud System

Consider a cloud with J geo-distributed data centers. Let
Rj denote the total processor capacity in data center j ∈ [J ],1

which can be calculated as the total number of CPU cores
provided on servers in the datacenter. Each CPU core can
independently operate at a specified clock frequency. Without
loss of generality, we assume every CPU core can be assigned

1We use [X] to denote the integer set {1, 2, . . . , X}.

to at most one job at any given time slot. Let Cj be the price
of electricity that data center j consumes.

The system works in a time-slotted fashion. The entire time
span T is divided into T time slots and the length of each time
slot is δ. I jobs arrive at the cloud system throughout T . Upon
arrival, the owner of job i ∈ [I] submits to the cloud provider
the following: (1) bi, the willingness-to-pay for completing its
job in the cloud; (2) the arrival time ti and the deadline di by
when the job i should be completed; (3) wi, the total number
of required CPU cycles for job i; and (4) ri, the number of
CPU cores required by job i. That is, the bid of job request i
can be expressed as:

Bidi = {bi, ti, di, wi, ri}
Upon arrival of each job, the cloud provider decides whether

to accept the job request immediately. If the job is accepted,
it produces a resource allocation scheme together with job’s
payment. The job schedule is formulated by the following
quantities. (1) Binary variable xij indicates whether job i is
accepted and assigned to run in data center j (xij = 1), or
not (xij = 0). (2) Binary variable yij(t) denotes the executive
schedule of bid i: yij(t) equals 1 if job i is accepted to data
center j and scheduled to run in time slot t, and 0, otherwise.
(3) Variable sij(t) denotes the speed of CPU cores allocated
to job i in data center j at t. We assume that the speed is
the same for all cores allocated to one job within one time
slot, which may vary from one time slot to another. We use
smin and smax to denote the minimum and maximum speed
of a CPU core, respectively. Note that the execution time slots
of one job are not necessarily continuous, i.e., a job can be
temporarily suspended at one time slot and resume in another.
We also consider a transfer delay of dispatching job i to data
center j, as indicated by aij . We allow each job to run in one
data center only.

Power consumption of CPU is proportional to V 2f , in
which V denotes the supply voltage and the f is the clock
frequency (speed) [15]. In practice, the supply voltage V is
strongly related to the clock frequency, because operating at
a high frequency must be accompanied with a high voltage.
Therefore we can model the power consumed by a core,
denoted by P , as a function of its speed, s. Consistent with
much prior literature [11] [12] [16], we adopt the power
function sα, α ≥ 2, and compute the power consumed by a
single core during a time slot as P (s) = δsα.

Let vi be user’s truth value of job i, and pi be the payment
if the cloud provider accepts job i. Utility of job i is ui =
vi − pi if bid i is accepted, and ui = 0, otherwise. Let ej(t)
be the total electricity consumption of CPU in time slot t at
data center j. The cloud provider’s utility can be computed as
overall user payment minus the power cost,

∑
i∈[I]

∑
j∈[J]

pixij −∑
j∈[J]

∑
t∈[T ]

Cjej(t).

B. Social Welfare Maximization Problem
We seek to maximize the sum of provider and users’

utilities, i.e., the social welfare. Assuming truthful bids, the



overall utility of all users is
∑
i∈[I]

∑
j∈[J]

bixij −
∑
i∈[I]

∑
j∈[J]

pixij .

Hence the social welfare is
∑
i∈[I]

∑
j∈[J]

bixij−
∑

j∈[J]

∑
t∈[T ]

Cjej(t)

(payments are cancelled in the summation). To inspire online
algorithm design, we first formulate the offline social welfare
maximization problem:

Maximize
∑
i∈[I]

∑
j∈[J]

bixij −
∑
j∈[J]

∑
t∈[T ]

Cjej(t) (1)

Subject to: ∑
j∈[J]

xij ≤ 1,∀i ∈ [I] (1a)

yij(t)t ≤ dixij ,∀i ∈ [I],∀j ∈ [J ],∀t ≥ (ti + aij) (1b)

sij(t) ≤ smaxyij(t),∀i ∈ [I],∀j ∈ [J ],∀t ≥ (ti + aij) (1c)

wixij ≤
∑

t∈[T ]:t≥ti+aij

sij(t),∀i ∈ [I],∀j ∈ [J ] (1d)

∑
i∈[I]:t≥ti+aij

riyij(t) ≤ Rj ,∀j ∈ [J ],∀t ∈ [T ] (1e)

∑
i∈[I]:t≥ti+aij

riP (sij(t)) ≤ ej(t),∀j ∈ [J ],∀t ∈ [T ] (1f)

xij , yij(t) ∈ {0, 1}, sij(t) ∈ [smin, smax]
∪

{0}, ej(t) ≥ 0,

∀i ∈ [I],∀j ∈ [J ],∀t ∈ [T ]
(1g)

Constraint (1a) specifies that each job is accepted to at most
one data center. Constraint (1b) guarantees that each job
is executed between its arrival time and its deadline, while
constraint (1d) ensures that the schedule is able to complete
the corresponding job. Constraint (1c) makes sure that yij(t)
equals 1 only when sij(t) is greater than 0. Moreover,
constraint (1b), Constraint (1c) and constraint (1d) together
ensure that a job is only executed in its assigned data center.
Constraint (1e) expresses the processor capacity limitation in
each data center. The total electricity consumption in time slot
t at data center j is computed in constraint (1f).

If we set P (·) = 1 and smax = smin = 1, problem (1)
becomes an integer linear program (ILP). This ILP without
constraints (1a) and (1b) is the same as the classic NP-hard
knapsack problem. To design an efficient online mechanism
without assuming knowledge of future incoming jobs, we
adopt novel optimization techniques, to be detailed in the next
section.

IV. ONLINE AUCTION MECHANISM DESIGN

We first reformulate the non-linear problem in (1) into a
compact-infinite integer program, based on which a primal-
dual technique can be applied for online mechanism design.
Let l denote a feasible resource allocation schedule for job i,
which satisfies constraints (1b) and (1d). Schedule l is a vector
such that l = ({t}∀t∈[T ]:yij(t)=1, {sij(t)}∀t∈[T ]). We use l(t)
to represent the processor speed at time slot t in schedule l,

TABLE I
NOTATION

Var Definition
J # of data centers

I # of jobs

T # of time slots

δ length of a single time slot

Rj capacity of CPU in data center j

Cj electricity price in data center j

bi bidding price of job i

ti arrival time of job i

aij estimated transfer delay for job i to data center j

wi required CPU cycles for job i

di deadline of job i

ri number of CPU cores job i requires

pi payment of job i

xij job i is accepted to run in data center j or not

yij(t) job i is executed at time slot t in data center j or not

sij(t) CPU speed when executing job i in data center j at t

ej(t) overall electricity consumption at time slot t in data center j

P (s) power consumption when CPU speed is s

and use ζij to denote the set of all feasible schedules of job i in
data center j. Consequently, we formulate the compact-infinite
integer program as follows:

Maximize
∑
i∈[I]

∑
j∈[J]

∑
l∈ζij

bixijl −
∑
j∈[J]

∑
t∈[T ]

Cjej(t) (2)

Subject to: ∑
j∈[J]

∑
l∈ζij

xijl ≤ 1,∀i ∈ [I] (2a)

∑
i∈[I]

∑
l∈ζij :t∈l

rixijl ≤ Rj ,∀j ∈ [j],∀t ∈ [T ] (2b)

∑
i∈[I]

∑
l∈ζij :t∈l

riP (l(t))xijl ≤ ej(t),∀j ∈ [j],∀t ∈ [T ] (2c)

xijl ∈ [0, 1], ej(t) ≥ 0,∀i ∈ [I],∀j ∈ [J ],∀l ∈ ζij (2d)

Constraints (2a), (2b) and (2c) are equivalent to constraints
(1a), (1e) and (1f), respectively. Constraints (1b), (1c) and
(1d) are transformed into schedule set ζij . Therefore, we can
observe that (2) produces the same solution as the original
non-linear problem (1).

Problem (2) is a linear program, but it involves an infinite
number of variables. Since we have a potentially infinite
number of possible values for the speed sij(t), the number
of possible schedules l is infinite. Therefore, we have an
infinite number of variables xijl. Nevertheless, our online
algorithm designed based on problem (2) using a primal-dual
technique runs efficiently in polynomial time, by evaluating
only a polynomial number of possible schedules to find the
optimal schedule.



Relaxing the integrality constraint on variable xijl to xijl >
0 and introducing dual variables ui, kj(t) and vj(t) corre-
sponding to constraints (2a), (2b) and (2c), respectively, we
derive the dual of (2):

Minimize
∑
i∈[I]

ui +
∑
j∈[J]

∑
t∈T

Rjkj(t) (3)

Subject to:

ui ≥ bi −
∑

t∈[T ]:t∈l

rikj(t)−
∑

t∈[T ]:t∈l

riP (l(t))vj(t),

∀i ∈ [I],∀j ∈ [J ],∀l ∈ ζij

(3a)

vj(t) ≤ Cj ,∀j ∈ [J ],∀t ∈ [T ] (3b)

ui, kj(t), vj(t) ≥ 0,∀i ∈ [I],∀j ∈ [J ],∀t ∈ [T ] (3c)

We next present the online auction mechanism designed
based on the primal and dual problems in (2) and (3)
(Sec. IV-A), and then analyze properties achieved by the
mechanism (Sec. IV-B).

A. The Online Auction Mechanism

In the online setting, the cloud provider only knows infor-
mation of a job at the time when it arrives. Upon a job’s arrival,
the cloud provider immediately decides whether to accept it
and if so, to which data center the job is to be dispatched,
as well as a feasible schedule l for running the job in the
selected data center, by solving problem (2). If the job is
assigned to a data center j, corresponding xij is set to 1, and
we update variables yij(t) and sij(t) according to l. By the
rule of complementary slackness [17], variable xijl equals 0
unless dual constraint (3a) is tight. Hence, we let dual variable
ui be the maximum of 0 and right hand side (RHS) of (3a):

ui = max
j∈[J],l∈ζij

{0, bi−
∑

t∈[T ]:t∈l

rikj(t)−
∑

t∈[T ]:t∈l

riP (l(t))vj(t)}

(4)
Once the value of ui is decided, variables j and l are those
that maximize RHS of (3a). If ui > 0, job i is accepted to run
in data center j and executed according to schedule l.

In order to maximize the RHS of (3a), we shall now turn
our attention to the other dual variable, vj(t). We interpret it as
the unit price of electricity in data center j. By complementary
slackness, if ej(t) is greater than 0, which means that there
is power usage in time slot t at data center j, dual constraint
(3b) must be tight, making vj(t) equal the electricity price Cj .
If ej(t) equals 0, indicating that there is no power consumed
then in j, then vj(t) can be any non-negative value and we
set it to Cj . In summary, we let dual variable vj(t) always
equal the electricity price Cj and

∑
t∈[T ]

riP (l(t))vj(t) is the

total electricity cost under schedule l.
Next, we interpret dual variable kj(t) as the marginal price

per CPU core at t in data center j. In this way,
∑

t∈[T ]:t∈l

rikj(t)

becomes the overall resource cost of running job i. Combined
with previous analysis, we can regard RHS of (3a) as the

Algorithm 1 Online Auction Mechanism: Aonline

Input: profile of jobs {bi, ti, di, wi, ri}, {aij},∀i ∈ [I], j ∈
[J ]

1: Define function kj(zj(t)) according to (5);
2: Initialize xij = 0, yij(t) = 0, sij(t) = 0, ej(t) =

0, zj(t) = 0, kj(t) = kj(0),∀j ∈ [J ],∀i ∈ [I],∀t ∈ [T ];
3: for every arrival of new job i do
4: (ui, pi, xij , {yij(t)}, {sij(t)}, {zj(t)}, {kj(t)}) =

Aschedule({bi, ti, di, wi, ri}, {aij}, {zj(t)}, {kj(t)});
5: if ui > 0 then
6: Allocate the job according to xij and schedule the

job according to yij(t) and sij(t);
7: Charge the user at payment pi;
8: else
9: Reject job i;

10: end if
11: end for

bidding price minus the total cost if running job i in data
center j under schedule l.

We now describe our online mechanism which computes
the best potential schedule for each job i upon its arrival
and decides whether to accept the job based that schedule.
Our algorithm framework consists of two parts: Aschedule, the
sub-algorithm that produces the optimal schedule if we are to
accept job i, and Aonline, which decides whether to accept the
job based on the output of Aschedule.

Even though there seems to be an infinite number of
schedule candidates to be evaluated, we design Aschedule in
Alg. 2 such that it only exams a polynomial number of feasible
schedules and outputs the optimal one. The idea behind the
algorithm is as follows. We consider all the data centers that
a job may be assigned to. For each data center, the number of
time slots job i takes to complete is between ⌈wi/smax⌉ and
min{⌊wi/smin⌋, |Savail|}. We further calculate the optimal
speed given a fixed number of time slots for completing the job
in lines 10-13. Data center j∗ with schedule l∗ that minimizes
the overall cost of job i is the optimal schedule we want. Then
we calculate RHS of (3a) as bi minus the overall cost in line
17. If RHS > 0, we accept the job and assign it according to
j∗ and l∗; otherwise, the job request is rejected.

For updating dual variable kj(t), the marginal price per CPU
core, we introduce variable zj(t) indicating the number of
CPU cores that have already been allocated to prior jobs. As
zj(t) increases, available processor resources become more
precious and kj(t) increases. Therefore, we decide kj(t) as a
function of zj(t) in (5). Here, U represents the maximum unit
price of CPU and L represents the minimum unit price. Ej

denotes maximum electricity cost per CPU core in data center
j. Since the unit price of CPU cores should take both the
marginal price due to user resource occupation and electricity
cost into account, we can assume that L > Ej . Constant 1

F
represents the lower bound of resource usage over all jobs in
the whole system and can be estimated using historical data.
Therefore, kj(z(t)) is initialized to 1

2F (L−Ej) and eventually



Algorithm 2 Scheduling Algorithm for job i: Aschedule

Input: profile of job i {bi, ti, di, wi, ri}, {aij}, {zj(t)},
{kj(t)}, ∀j ∈ [J ]

Output: ui, pi, xij∗ , {yij∗(t)}, {sij∗(t)}, {zj(t)}, {kj(t)},
∀j ∈ [J ], t ∈ [di, ti]

1: for all j ∈ [J ] do
2: Savail = ∅;
3: for all t ∈ [ti + aij , di] do
4: if zj(t) + ri ≤ Rj then
5: Add t to Savail;
6: end if
7: end for
8: Sort time slots in Savail by kj(zj(t)) in non-decreasing

order;
9: for N = ⌈wi/smax⌉ to min{|Savail|, ⌊wi/smin⌋} do

10: Select the first N time slot {t′1, t′2, . . . , t′N}from
Savail;

11: sij(t) =
wi

N ;
12: Save the corresponding executing time slots and

running speed into l;

13: pi =
N∑

n=1
rikj(t

′
n) +

N∑
n=1

riP (sij(t
′
n))Cj ;

14: end for
15: end for
16: Set j∗, l∗ as the arguments that minimize the value of pi

and set pi as the minimum value;
17: ui = bi − pi;
18: if ui > 0 then
19: xij∗ = 1;
20: yij∗(t) = 1, sij∗(t) = l∗(t), zj(t) = zj(t) + ri, kj(t) =

kj(z(t)),∀t ∈ l∗;
21: end if
22: return ui, pi, xij∗ , yij∗(t), sij∗ , zj(t), kj(t);

reaches U − Ej as zj(t) approaches Rj . In Aschedule, we
ensure that if zj(t) was greater than Rj , we would not schedule
the job in time slot t.

kj(zj(t)) =
1

2F
(L− Ej)

(
U − Ej

1
2F (L− Ej)

) zj(t)

Rj

(5)

Where U ≤ max
i∈[I]

bi
wi

smax
ri

, L ≥ min
i∈[I]

bi
wi

smin
ri

, Ej = CjP (smax)

and 1
F ≤

∑
j∈[J]

∑
t∈[T ]

zj(t)∑
j∈[J]

TRj
. Here, bi

wi
smax

ri
is the maximum unit

price per CPU core for job i and bi
wi

smin
ri

is the minimum;∑
j∈[J]

∑
t∈[T ]

zj(t)∑
j∈[J]

TRj
calculates the resource usage in all data centers

across the entire time span.
Our online mechanism Aonline is given in Alg. 1. In the

beginning, Aonline defines function kj(zj(t)) and initializes
all the variables in line 1-2. Then, it waits for incoming jobs.
Upon the arrival of a job, Aonline resorts to sub-algorithm
Aschedule for optimal scheduling and decides whether to
accept the job in line 5-10. Aschedule always produces the

optimal schedule and updates remaining resource amount zj(t)
and marginal price kj(t) if the job will be accepted.

B. Theoretical Analysis

We now analyze the properties achieved by our online
mechanism. All missing proof can be found in our online
technical report [18].

Theorem 1. The CPU speed for running job i, sij(t), as com-
puted in every iteration in lines 9-15 in Aschedule, minimizes
the overall cost (the sum of the total CPU cost and the total
electricity cost), if job i is assigned to data center j.

Theorem 2. Aonline in Alg. 1 computes a feasible solution to
problems (1), (2) and (3) in polynomial time.

Theorem 3. Alg. Aonline in Alg. 1 is truthful.

Theorem 4. Alg. Aonline in Alg. 1 is 2β-competitive in social
welfare, where β = ln U−Emax

1
2F (L−Emax)

and Emax = max
j∈[J]

Ej .

If we assume that overall job demand for CPUs is high as
compared to resource provisioning, then 1

F is close to 1. When
U−Emax

L−Emax
is 2, the competitive ratio is close to 2.77.

V. PERFORMANCE EVALUATION

We evaluate our online auction mechanism Aonline through
trace-driven simulation studies. We use the Google Cluster
Data [19], which contains abundant job information including
the start time, execution duration and resource requirements
(including CPU usage) of the jobs over a 7-hour period. We
translate each job into a bid according to the data from the
trace. We assume each time slot is 5 minutes long and the
entire time span is 24 hours with 288 time slots. Processor’s
frequency is set to be within [2.20GHz, 3.00GHz] based on
that of Intel Xeon processors [20]. Jobs’ demand for CPU
cores is normalized between [0, 1]. We derive the workload for
each job from the trace. Job deadlines are generated randomly
between its arrival time and the end of the system time span.
Constant α in the power function is between 2 and 3 [15]. We
set the number of data centers as 10.

We first examine the performance of Aonline in terms of
social welfare and competitive ratio. Further, we exam the
difference between enabling dynamic speed scaling and not.

Fig. 1 illustrates the social welfare achieved by Aonline

with different numbers of jobs and values of α. We observe
that there is an obvious upward trend in social welfare as
the number of jobs increases. Meanwhile, the social welfare
decreases as α shifts from 2 to 3. This can be explained that
the electricity cost rises as α increases, yielding a reduction
in social welfare. In Aonline, unit price of resources is defined
based on the value of U−Emax

L−Emax
. Since the value of Emax is

based on the maximum CPU frequency, we can evaluate the
impact on social welfare under different values of U−Emax

L−Emax
, as

shown in Fig. 2. We observe a positive impact of the value of
U−Emax

L−Emax
on the social welfare. That is because higher U−Emax

L−Emax

ensures larger bidding prices (for accepted jobs). Thus, these
high value bids raise the overall social welfare.



1000 1200 1400 1600 1800 2000

Number of Jobs

0

1

2

3

4

5

6

S
o
c
ia

l 
W

e
lf
a
re

×10
6

α = 2

α = 2.5

α = 3

Fig. 1. Social Welfare: different
numbers of jobs and α

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Number of Jobs

2

3

4

5

6

7

8

9

10

11

S
o
c
ia

l 
W

e
lf
a
re

×10
6

(U - E
max

)/(L - E
max

) = 10

(U - E
max

)/(L - E
max

) = 20

(U - E
max

)/(L - E
max

) = 30

(U - E
max

)/(L - E
max

) = 40

(U - E
max

)/(L - E
max

) = 50

Fig. 2. Social Welfare: different
numbers of jobs and U−Emax

L−Emax

20 30 40 50 60 70 80 90 100 110 120

(U - E
max

)/(L - E
max

)

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

C
o

m
p

e
ti
ti
v
e

 R
a

ti
o

Fig. 3. Competitive ratio: different
U−Emax
L−Emax

with 16 jobs and α = 2

1000 1200 1400 1600 1800 2000

Number of Jobs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
a
ti
o

Social Welfare

Energy Consumption

Fig. 4. Ratio in social welfare and
electricity consumption: enabling dy-
namic speed scaling vs. not

Fig. 3 shows the ratio of the offline optimal social welfare
obtained by directly solving problem (1) exactly through
CPLEX function based on exploiting a branch and bound
search tree and the overall social welfare obtained by Aonline.
The figure demonstrates that rise in U−Emax

L−Emax
leads to growth

in the ratio. This is consistent with our theoretical analysis that
the competitive ratio is related to the value of U−Emax

L−Emax
. We

observe that the ratio is much better than the theoretical bound.
For example, the overall resource usage lower bound, 1

F , is at
most 1, thus the theoretical bound of competitive ratio when
U−Emax

L−Emax
equals 20 is 7.3778 while the observed ratio is less

than 1.1. This is because the theoretical bound is calculated
in worst cases which is uncommon in realistic scenarios.

Finally we investigate the difference made when dynamic
speed scaling is enabled and not. Fig. 4 illustrates the ratio
of the social welfare achieved (overall electricity consumed)
when dynamic speed scaling is enabled and that when dynamic
speed scaling is not enabled. In the case that dynamic speed
scaling is not enabled, we set the CPU speed to 3.00GHz.
We can see that applying dynamic speed scaling decreases
social welfare by less than 10%, while significantly reducing
the power consumption by more than 30%. Therefore, it shows
that our algorithm efficiently decreases the power consumption
at the price of relatively small fall in social welfare.

VI. CONCLUSION

This paper proposes an online mechanism for CPU re-
source scheduling and pricing in cloud systems with dynamic
CPU speed scaling enabled. Leveraging a compact infinite
optimization technique, we transform the non-linear integer
problem for job scheduling into a compact infinite ILP. We
resort to the primal-dual technique to derive the efficient online
auction algorithm based on the ILP. Our complete mechanism

comprises of a primal-dual online auction framework that
decides the acceptance of incoming jobs and a sub-algorithm
that produces the optimal CPU schedule for each job. Our
online mechanism is efficient in computation and achieves
truthfulness, with a near-optimal social welfare as compared
to the offline optimum.

ACKNOWLEDGMENT

This work was supported in part by NSFC (61628209,
61571335) and HKU URC Matching Fund, Hubei Sci-
ence Foundation (2016CFA030, 2017AAA125), and grants
from Hong Kong RGC under the contracts HKU 17204715,
17225516, C7036-15G (CRF).

REFERENCES

[1] Amazon EC2 Instance Types, https://aws.amazon.com/ec2/instance-
types/.

[2] P. X. Gao, A. R. Curtis, B. Wong, and S. Keshav, “It’s not easy being
green,” in Proc. of the ACM SIGCOMM, 2012.

[3] M. Dayarathna, Y. Wen, and R. Fan, “Data center energy consumption
modeling: A survey,” IEEE Communications Surveys Tutorials, vol. 18,
no. 1, pp. 732–794, 2016.

[4] Xen, https://wiki.xenproject.org/wiki/Xen power management/.
[5] L. Zhang, Z. Li, and C. Wu, “Dynamic resource provisioning in

cloud computing: A randomized auction approach,” in Proc. of IEEE
INFOCOM, 2014.

[6] W. Wang, B. Liang, and B. Li, “Revenue maximization with dynamic
auctions in iaas cloud markets,” in Proc. of IEEE IWQoS, 2013.

[7] H. Zhang, B. Li, H. Jiang, F. Liu, A. V. Vasilakos, and J. Liu,
“A framework for truthful online auctions in cloud computing with
heterogeneous user demands,” in Proc. of IEEE INFOCOM, 2013.

[8] W. Shi, C. Wu, and Z. Li, “Rsmoa: A revenue and social welfare
maximizing online auction for dynamic cloud resource provisioning,”
in Proc. of IEEE IWQoS, 2014.

[9] X. Zhang, Z. Huang, C. Wu, Z. Li, and F. C. M. Lau, “Online auctions
in iaas clouds: Welfare and profit maximization with server costs,”
IEEE/ACM Transactions on Networking, vol. 25, no. 2, pp. 1034–1047,
Apr. 2017.

[10] F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced
cpu energy,” in Proc. of IEEE 36th Annual Foundations of Computer
Science, 1995.

[11] N. Bansaland, T. Kimbrel, and K. Pruhs, “Speed scaling to manage
energy and temperature,” J. ACM, vol. 54, no. 1, p. 3, Mar. 2007.

[12] S. Albers, F. Müller, and S. Schmelzer, “Speed scaling on parallel
processors,” in Proc. of ACM Symposium on Parallel Algorithms and
Architectures, 2007.

[13] R. Zhou, Z. Li, C. Wu, and Z. Huang, “An efficient cloud market mech-
anism for computing jobs with soft deadlines,” IEEE/ACM Transactions
on Networking, vol. 25, no. 2, pp. 793–805, Apr. 2017.

[14] Q. Sun, C. Wu, Z. Li, and S. Ren, “Colocation demand response: Joint
online mechanisms for individual utility and social welfare maximiza-
tion,” IEEE Journal on Selected Areas in Communications, vol. 34,
no. 12, pp. 3978–3992, Dec. 2016.

[15] A. Wierman, L. L. H. Andrew, and A. Tang, “Power-aware speed scaling
in processor sharing systems,” in Proc. of IEEE INFOCOM, 2009.

[16] L. Chen and N. Li, “On the interaction between load balancing and
speed scaling,” IEEE Journal on Selected Areas in Communications,
vol. 33, no. 12, pp. 2567–2578, Dec. 2015.

[17] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[18] “Online cloud resource allocation and pric-
ing with server speed scaling,” Tech. Rep.,
https://www.dropbox.com/s/3840b1s8mr1mgi6/technical report.pdf?dl=0.

[19] Google Cluster Data, https://github.com/google/cluster-data/.
[20] Intel Xeon Processor E5 v4 Family,

http://ark.intel.com/products/series/91287/Intel-Xeon-Processor-E5-
v4-Family/.


