
Efficient Pipeline Planning for Expedited
Distributed DNN Training

Ziyue Luo∗, Xiaodong Yi∗, Guoping Long†, Shiqing Fan†, Chuan Wu∗, Jun Yang†, Wei Lin†
∗Department of Computer Science, The University of Hong Kong, Email: {zyluo, xdyi, cwu}@cs.hku.hk

†Alibaba, Email: longguoping@gmail.com, {shiqing.fsq, muzhuo.yj, weilin.lw}@alibaba-inc.com

Abstract—To train modern large DNN models, pipeline par-
allelism has recently emerged, which distributes the model
across GPUs and enables different devices to process different
microbatches in pipeline. Earlier pipeline designs allow multiple
versions of model parameters to co-exist (similar to asynchronous
training), and cannot ensure the same model convergence and ac-
curacy performance as without pipelining. Synchronous pipelin-
ing has recently been proposed which ensures model performance
by enforcing a synchronization barrier between training itera-
tions. Nonetheless, the synchronization barrier requires waiting
for gradient aggregation from all microbatches and thus delays
the training progress. Optimized pipeline planning is needed to
minimize such wait and hence the training time, which has not
been well studied in the literature. This paper designs efficient,
near-optimal algorithms for expediting synchronous pipeline-
parallel training of modern large DNNs over arbitrary inter-
GPU connectivity. Our algorithm framework comprises two
components: a pipeline partition and device mapping algorithm,
and a pipeline scheduler that decides processing order of mi-
crobatches over the partitions, which together minimize the per-
iteration training time. We conduct thorough theoretical analysis,
extensive testbed experiments and trace-driven simulation, and
demonstrate our scheme can accelerate training up to 157%
compared with state-of-the-art designs.

I. INTRODUCTION

Deep learning has advanced various applications in a wide
range of domains [1][2][3]. Deep Neural Networks (DNNs)
have significantly grown in size in recent years, in pursuit of
better model accuracy. Training of large models over large
datasets has promoted the rapid development of distributed
DNN training frameworks (e.g., TensorFlow [4], PyTorch [5]).

A number of parallel-training paradigms have been adopted
in practice. Data parallelism [6] partitions the training dataset
among workers. Each worker holds a copy of the DNN,
computes parameter updates using the local dataset, and syn-
chronizes parameter updates with others periodically. AllRe-
duce operation [7] is a common approach for parameter
synchronization among workers. To handle large models which
cannot be fit entirely into a single device’s memory, model
parallelism [8] partitions a DNN model and places model
partitions on different devices. In each training iteration, a
mini-batch is processed by model partitions on the devices
one after another, through forward propagation followed by
backward propagation. Such vanilla model parallelism suffers
from low device utilization, as only one device is active at

This work was supported in part by Alibaba Group through Alibaba
Innovative Research (AIR) Program, and grants from Hong Kong RGC under
the contracts HKU 17204619, 17208920 and 17207621.

each time when a mini-batch is trained across the devices
hosting different model partitions. Pipeline parallelism [9] has
been proposed to maximize device utilization during training.
Similar to model parallelism, it partitions a DNN into stages
and places stages over multiple devices; it further partitions
each mini-batch of training data into equal-sized microbatches,
and allows different devices to process different microbatches
at the same time (i.e., microbatch pipelining).

Most works on pipeline parallelism [10][11][12][13] adopt
asynchronous pipelining, by injecting microbatches into the
training pipeline one by one and updating model parameters
with gradients computed with a microbatch, whenever its
backward propagation is done. Asynchronous pipeline par-
allelism maximizes GPU utilization by fully saturating the
pipeline. However, the processing of different microbatches
overlaps, each updating the model using gradients computed
based on outdated parameters that are learned on different
earlier microbatches, which may inevitably slow down or
even prevent training convergence, and render a model whose
accuracy differs from that trained without pipelining [14].

To ensure model convergence and accuracy, synchronous
pipeline parallelism has been advocated by a few recent
studies [15][16]. It enforces a synchronization barrier between
training iterations, to aggregate gradients computed with all
microbatches before applying them for model update. Such
a synchronization barrier flushes the pipeline and introduces
waiting time (for training completion of all microbatches) into
each training iteration, leading to lower device utilization as
compared to asynchronous pipeline training. Optimal planning
of synchronous pipeline training is needed to improve device
utilization and minimize per-iteration training time, to achieve
similar training time as asynchronous pipelining while provid-
ing convergence and accuracy guarantees. Pipeline planning
includes DNN model partition, replication and device place-
ment, as well as scheduling the order of microbatch processing
across the devices within each training iteration. Non-trivial
challenges exist, as follows:

First, in a typical DNN model, layers are not uniform in
terms of computation time, parameter size and activation size.
Optimal model partition over devices is hence challenging.

Second, previous pipeline designs have been restricted to
homogeneous inter-GPU connectivity (or homogeneous in
each level of a hierarchical topology) [15][10]. GPU inter-
connectivity is often more complicated in a practical machine
learning (ML) cluster, including PCI-e or NVLink within

a physical server [17], RDMA or TCP network between
servers [18]. We will show that heterogeneous GPU inter-
connectivity leads to an exponential number of solutions for
DNN model partition and device mapping (Sec. IV-B), adding
to the difficulty of finding efficient, near-optimal solutions.

Third, deciding the execution order of all microbatches over
all devices, respecting inter-stage dependencies and minimiz-
ing per-iteration training time, falls in the category of job shop
problems. The job shop problem is NP-hard [19] even with
only two machines (aka GPUs in our case).

Tackling the challenges, we design near-optimal algorithms
that efficiently partition a given DNN model, replicate and
distribute the partitions over available GPUs with arbitrary
inter-GPU connectivity, and schedule microbatch processing
over the stages to minimize per-iteration training time. Our
main techniques and contributions are summarized as follows:
. Assuming model partition and device mapping are given,

we design an efficient list ordering method to decide the pro-
cessing order of microbatches on different GPUs, and then a
scheduling algorithm that minimizes idle time of devices based
on the order. With thorough theoretical analysis, we identify
an upper bound of per-iteration training time, decided by two
key factors: the number of stages that the DNN is partitioned
into, and the maximum time to process a microbatch on a
single stage or an inter-stage communication channel.
. We are hence inspired to design a pipeline partition

and device mapping algorithm to minimize the maximum
per-stage/channel execution time, given the number of stages
to partition the model into. A recursive min-cut method is
designed to identify a device order that maximizes inter-
GPU bandwidth utilization. Based on the device order, we
use dynamic programming to derive the optimal partition,
replication and mapping solution.
. Our complete synchronous pipeline planning algorithm,

SPP, iteratively invokes the pipeline partition/mapping al-
gorithm and the execution order scheduler to identify the
best number of partitioned stages and the set of near-optimal
pipeline execution strategies accordingly. We rigorously ana-
lyze SPP and prove a worst-case performance guarantee.
. We conduct extensive testbed experiments and trace-

driven simulation, carefully comparing SPP with state-of-
the-art pipeline-training paradigms, including GPipe [15],
PipeDream [10] and HetPipe [12]. Experimental results show
that SPP can accelerate training up to 147% compared to
GPipe, 157% to PipeDream and 80% to HetPipe in terms of
per-iteration training time, and achieves the target accuracy
in the most expedited manner as compared to baselines. We
observe that SPP can strike a balance between the number of
stages and the maximum per-stage execution/communication
time in DNN partition, and maximally overlap communication
and computation with its pipeline execution scheduling.

II. BACKGROUND AND RELATED WORK

DNN Training. A DNN model comprised of multiple layers
is usually trained over a large dataset iteratively to minimize
a loss function [20]. The dataset is typically divided into

GPU 3

GPU 2

GPU 1

1 F1 B1

2 F2 B2

3 F3 B3

AllReduce

Fm FP of microbatch m
Bm BP of microbatch m

m microbatch m

Data
Parallelism

AllReduce AllReduce operation

time

(a) Data Parallelism

F

GPU 3

GPU 2

GPU 1

F FP of the mini-batch
B BP of the mini-batch

F B

B

B

mini-batch
Model

Parallelism

F

time

Activation passing
Gradient passing

(b) Model Parallelism

Pipeline
Parallelism

GPU 3

GPU 2

GPU 1

Fm FP of microbatch m
Bm BP of microbatch m

Activation passing
Gradient passing

F1 F2 F3

F1 F2 F3

F1 B1 F2 B2 F3 B3

B1 B2 B3

B1 B2 B3

microbatch mm1 2 3

time

(c) Pipeline Parallelism

Fig. 1: Data parallelism vs. model parallelism vs. pipeline
parallelism: 1 mini-batch divided into 3 microbatches.

equal-sized mini-batches. In each training iteration, one mini-
batch is processed to update the DNN model as follows:
(1) forward propagation (FP): the mini-batch is computed
by each layer of the DNN sequentially to derive a loss; 2)
backward propagation (BP): gradients of model parameters
are computed based on the loss from the last layer to the
first layer; 3) a gradient update operation applies computed
gradients to parameters in each layer with an optimization
algorithm, e.g., stochastic gradient descent (SGD) or adaptive
moment estimation (Adam) [20].

DNN Model Partition and Device Mapping. A number
of studies have focused on partition and device mapping
strategies for large DNN models through learning-based meth-
ods [21][22][23], which require large computing resources
and long training time to derive a satisfying policy for one
training job. A few efforts [24][25] exploit efficient heuristics
for DNN model partition and device mapping at the operation
level, requiring detailed cost modeling of the DNN model
and accurate profiling of operation execution time. Our work
focuses on layer-level DNN model partitioning and mapping,
and derives a polynomial-time pipeline planning strategy.

Data Parallelism (DP) and Model Parallelism (MP) are
commonly adopted to parallelize training across multiple de-
vices. As shown in Fig. 1(a), with DP, three mini-batches
are each trained on one GPU with a complete copy of
model parameters; an AllReduce operation synchronizes com-
puted gradients after training of all mini-batches. With MP
(Fig. 1(b)), in each training iteration, a mini-batch is fed into
the device hosting the first stage(s) of the DNN model for
FP, and the computed activations are passed to later stages on
other devices for FP; during BP, gradients are computed and
passed from one device to another following reverse sequence
of the stage(s). In this way, only one device is active at each
time, where FP or BP of the mini-batch is being carried out,
while other devices are idle, leading to low device utilization.

Pipeline Parallelism Based on model parallelism, pipeline
parallelism further divides a mini-batch into equal-sized mi-
crobatches (Fig. 1(c)). The microbatches are consecutively fed
into the device hosting the first stage(s) whenever the forward
computation of the previous microbatch is done on this device,
rendering a training pipeline. Consequently, it enables multiple
devices to process different microbatches simultaneously.

Asynchronous Pipeline Training. PipeDream [10] partitions
a DNN model over multiple servers, allowing stage replication
among the servers, and further divides a stage over GPUs
within each server, aiming at minimizing the maximum time to
process a single stage. Its server configuration and inter-server
connectivity are both homogeneous. Stage execution is sched-
uled to ensure that every FP stage is immediately followed by
a BP stage. Geng et al. [11] study pipeline parallelism over
heterogeneous GPUs, and propose a dynamic tuning algorithm
to identify straggler devices and redistribute the DNN model
for better load balance. In HetPipe [12], each node (comprised
of homogeneous GPUs) trains the DNN model in a pipelined
manner similar to PipeDream without stage replication; DP is
used for training and parameter synchronization among nodes.
With asynchronous pipelining, microbatches are trained on
outdated versions of model parameters to compute gradients,
leading to slow model convergence and lower accuracy of
the obtained model as compared to synchronous training [14].
Several studies have investigated mitigating the accuracy loss
via weight prediction [26] or randomized smoothing [27],
under restricted assumptions of training loss functions.

Synchronous Pipeline Training. GPipe [15] is a synchronous
pipeline training framework, including (1) a partition strategy
that ensures approximately the same number of DNN layers on
each GPU, and (2) a schedule to execute all FP before starting
any BP. It does not allow stage replication and provides no
device mapping strategies. We design efficient algorithms to
deal with all aspects of synchronous pipeline planning.

III. SYSTEM MODEL

A. DNN Model and Device Connectivity
We consider a DNN model, D, consisting of L layers, e.g.,

attention layers, convolutional and fully-connected layers. In
each training iteration, a mini-batch is divided into M equal-
sized microbatches of size Z each. Every microbatch is trained
through FP through all L layers, followed by BP over the
L layers in the reverse order. We divide D into multiple
stages, place the stages on different GPUs, and allow different
GPUs to process different microbatches simultaneously in the
pipelined manner. Following the end of BP of all microbatches,
a gradient aggregation operation aggregates gradients com-
puted from all microbatches and applies them to update the
model parameters. As time needed for gradient aggregation
and apply is much shorter than FP/BP time , we ignore it in
our pipeline parallelism design.
V homogeneous GPUs on multiple physical servers are

available for training this DNN model.1 We consider a va-

1Training a DNN using GPUs of the same type is the norm in today’s
production systems, based on our discussions with leading AI cloud operators.

riety of GPU inter-connectivity, including PCIe or NVLink
(providing direct GPU-GPU communication channel) between
GPUs in the same physical server (e.g., in NVIDIA DGX-
1 [17]), TCP or RDMA connections across GPUs in different
servers [18], with various bandwidth levels. Graph G(V, E)
represents the multi-GPU system for training D, where V
includes the V GPUs and E contains all inter-connections
between the GPUs. Each edge (v, v′) in E is associated with
a weight, bv,v′ , representing the available bandwidth between
GPU v and GPU v′. Let bmin and bmax be the minimum and
maximum bandwidth among all edges in E , respectively.

The forward (backward) computation time of a microbatch
over layer l of DNN D on a given GPU is pfl (pbl). Let αl

be the size of parameters/gradients of layer l, which can be
profiled through one trial run of the whole model using several
training iterations. dfl,l+1 denotes the size of activations passed
from layer l to layer l+ 1 during FP, and dbl+1,l is the size of
gradients transferred from layer l + 1 to layer l during BP.

B. Synchronous Pipeline with Stage Replication

We target synchronous pipeline design that minimizes per-
iteration training time, including two subproblems:

1) Pipeline Partition, Replication and Device Mapping:
We decide the stage set S = {s1, s2, . . . , s|S|} with |S| ≤ V
to partition model D into, and a device mapping function F :
S → P(V), where P(V) includes all subsets of device set V .

We consider classical interval partition, that each stage
consists of a number of consecutive layers: for stage s ∈ S, if
layer lstart and layer lend belong to s, then all layers l, with
lstart ≤ l ≤ lend, belong to s. Without loss of generality, we
assume a sequential dependency through s1, s2, . . . , s|S|, i.e.,
the last layer lnend in stage sn is the predecessor of the first
layer ln+1

start in stage sn+1 in the DNN model.
F maps each stage s ∈ S to one or multiple GPUs, ensuring

that each GPU hosts exactly one stage or one replica of a stage.
In our design, we allow a stage to be replicated and executed
over multiple GPUs in a data-parallel fashion. Suppose stage
s is replicated over k GPUs {v1, v2, . . . , vk}. Processing of
a microbatch by stage s is distributed over the k GPUs (by
evenly dividing input data among these GPUs), and we assume
that the forward (backward) computation time of each layer l
in stage s on each replica device is now p

f
l
k

(
pbl
k

).2 Fig. 2(a)
gives an example, where a 6-layer DNN model is trained using
4 GPUs. The model is partitioned into three stages with stage
2 replicated over GPU 2 and GPU 3.

Such stage replication may improve GPU utilization and
further balance stage processing time, together with stage
partition. In Fig. 2, supposing the size of layers in stage 2
is much larger than the other stages, replicating stage 2 on
two GPUs allows forward/backward computation time of the
stage to be similar to others, as shown in Fig. 2(b).

2We note that non-linear change of training time may happen when a layer
is replicated, i.e., each layer replica’s execution time is not exactly 1

k
of the

layer’s processing time without input data partition. Our algorithm can be
readily extended to the non-linear case by modeling the computation time of
each layer given different input data sizes.

GPU 4

GPU 2

GPU 1

GPU 3

Stage 1

Stage 2

Stage 3

Stage Replication

(a) Stage partition, replication and device map-
ping

F1

F1

F1

F1

F2

B1

F3

F2

F2

F2 B2

F3

F3

F3 B3

B1

B1

B2

B2

B3

B3

B1 B2 B3

AllReduce

GPU 4

GPU 3

GPU 2

GPU 1

Stage 3

Stage 2

Stage 1

Fm FP for microbatch m

Bm BP for microbatch m

Inter-stage communication

AllReduce AllReduce operation

time

1 2 3 microbatch mm
iteration

completion

time

(b) Execution schedule of 3 microbatches

Fig. 2: A pipeline parallelism design example

TABLE I: NOTATION

D the DNN model
L # of layers
M # of microbatches in one iteration
V # of GPUs
G(V, E) GPU inter-connection graph

(V: GPUs; E : inter-GPU connections)
bv,v′ bandwidth between GPU v and GPU v′

bmin(bmax) minimum (maximum) bandwidth in E
pfl (pbl) FB (BP) computation time of layer l per

microbatch
αl size of parameters (gradients) of layer l
dfl,l+1 (dbl+1,l) size of activations (gradients) from

layer l to l + 1 (l + 1 to l) during FP (BP)
S set of all stages that D is partitioned into
Srepl set of replicated stages
F : S → P(V) device mapping function from stages to sets

of GPUs
cfsn,sn+1

communication time between stages sn and
(cbsn+1,sn) sn+1 during FP (BP)
efm,sn(ebm,sn) start time of stage sn’s processing of

microbatch m during FP (BP)
As time taken by AllReduce operation of stage s
eAs start time of AllReduce operation of stage s

After completion of backward computation of microbatches
on all k replicas of stage s, a ring AllReduce operation [7] syn-
chronizes gradients of stage s across the k GPUs. Especially,
the k GPUs are organized into a logical ring topology, and each
GPU exchanges gradients/parameters with its neighbors in the
ring through inter-GPU connections. The size of communica-
tion data (gradients and parameters) involved in the AllReduce
operation is 2(k−1)

k

∑
l∈s αl per GPU [28]. The time taken by

the AllReduce operation, denoted by As, is further decided by
the minimum connection bandwidth among the k GPUs:

As =

2(k − 1)
∑
l∈s

αl

k min
v,v′∈{v1,v2,...,vk}

bv,v′
(1)

2) Execution Scheduling: We also decide the execution
order of processing each microbatch on each stage, as well
as running the AllReduce operations for replicated stages.
Let efm,sn (ebm,sn) be the start time of forward (backward)
computation of microbatch m on stage sn.

Execution schedule should respect forward-backward de-
pendency and stage dependency. Each GPU can only process

GPU 1
Stage

n

GPU 3 GPU 5Stage

n+1
GPU 4

activations

gradients
GPU 2

Fig. 3: Inter-stage communication: an example

one microbatch at a time. Let cfsn,sn+1
and cbsn+1,sn represent

the inter-stage communication time between stage sn and stage
sn+1 during FP and BP, respectively. We ignore the time for
data passing between layers residing in the same GPU. We
formulate the dependencies as follows.
• (Forward-backward dependency):

efm,s|S| +

∑
l∈s|S|

pfl

|F(s|S|)|
≤ ebm,s|S| , ∀m ∈ {1, . . . ,M}

• (Stage dependency):

efm,sn +

∑
l∈sn

pfl

|F(sn)| + cfsn,sn+1
≤ efm,sn+1

,

∀m ∈ {1, . . . ,M}, n ∈ {1, . . . , |S| − 1}

ebm,sn +

∑
l∈sn

pbl

|F(sn)| + cbsn,sn−1
≤ ebm,sn−1

,

∀m ∈ {1, . . . ,M}, n ∈ {2, . . . , |S|}
ef1,s1 = 0

To compute inter-stage communication time, when sn
and/or sn+1 are replicated over multiple GPUs, we evenly
distribute the data being transmitted across inter-stage links.
For example in Fig. 3, sn is replicated onto 2 GPUs and sn+1

onto 3 GPUs. During FP, 1/3 of the activations derived by
each of the two GPUs hosting stage n is sent to each of the
three GPUs hosting stage n+1. During backward propagation,
each GPU running sn+1 splits its gradients (computed with a
microbatch) into two sets of gradients corresponding to two
smaller batches, and sends the two sets to the two GPU of sn,
respectively; each replica of sn sums up received gradients
from replicas of sn+1. The inter-stage communication time is
decided by the minimum link bandwidth between GPUs in
F(sn) and in F(sn+1): (note df

lnend,l
n+1
start

and db
ln+1
start,l

n
end

are
data size produced by an entire microbatch, i.e., sum of data
produced by all replicas of a stage)

cfsn,sn+1
=

df
ln
end

,ln+1
start

|F(sn)||F(sn+1)| min
v∈F(sn),v′∈F(sn+1)

bv,v′

cbsn+1,sn =
db
ln+1
start,l

n
end

|F(sn)||F(sn+1)| min
v∈F(sn),v′∈F(sn+1)

bv′,v

Let Srepl be the set of replicated stages, and eAs denote
the start time of AllReduce operation of stage s ∈ Srepl. We
further have:
• (AllReduce operation dependency):

ebm,s +

∑
l∈s

pbl

|F(s)| ≤ e
A
s , ∀m ∈ {1, . . . ,M}, s ∈ Srepl

We aim at minimizing the makespan of training all M
microbatches, i.e., the per-iteration training time of the DNN:

minimize max{ max
m∈{1,2,...,M}

(ebm,s1 +

∑
l∈s1

pbl

|F(s1)|), max
s∈Srepl

(eAs +As)}
(2)

An AllReduce operation and inter-stage communication do
not share the same inter-GPU connections: the former uses
links between GPUs hosting replicas of the same stage, while
the latter is between GPUs hosting different stages (also
recall that one GPU can only host (a replica of) one stage).
The AllReduce operation of a replicated stage sn can take
place at the same time as inter-stage communication and
backward computation of stages sn−1, sn−2, . . ., as well as
AllReduce operations of other replicated stages. Therefore,
the completion time of a training iteration in (2) is decided
by the latest among backward computation completion time
of all microbatches over stage 1 and end time of AllReduce
operations of all replicated stages. Note that our schedule
may not ensure that microbatches are processed in the same
sequence at each stage; instead, we enforce a synchronization
barrier in each training iteration, as represented by the inside
max over all microbatches in (2).

An example execution schedule is given in Fig. 2(b). As
stage 2 is replicated over two GPUs, an AllReduce operation
happens when backward computation of all three microbatches
over both GPUs has been done, ensuring the model parameters
on GPU 2 and GPU 3 are updated the same.

IV. PIPELINE PLANNING ALGORITHMS

We now design algorithms for efficient synchronous pipeline
training. We start with execution scheduler design, assuming
model partition and device mapping are given; then we devise
the partition and device mapping algorithm that minimizes per-
iteration training time together with the execution scheduler.
A. Execution Scheduler

Given model partitions S and device mapping F , our
scheduling problem, as presented in Sec. III-B2, is a special
case of the NP-hard job shop problem [19]: microbatches
correspond to jobs of the same type and stages correspond
to machines in the job shop problem, and the objective is
to minimize the total time of executing all jobs. We design
an efficient pipeline execution (PE) scheduling algorithm to
achieve a proven performance bound.

The PE algorithm contains two modules: 1) an ordering
method to decide execution order of microbatches over stages

on different GPUs, and 2) an algorithm that schedules pipeline
execution based on the computed order.

1) Execution ordering: We define a computation block as
the forward or backward computation of a stage. As back-
ward computation of the last stage s|S| follows immediately
forward computation of s|S|, we merge stage s|S|’s forward
and backward computation blocks into a single computation
block. We define the inter-stage communication from sn to
sn+1 or from sn+1 to sn to be a communication block,
including all communication over this communication channel,
i.e., the set of connections from GPU(s) hosting the former
stage to GPU(s) hosting the latter stage. The end-to-end
training of every microbatch in a training iteration involves
2|S| − 1 computation blocks, 2|S| − 2 communication blocks
and |Srepl| AllReduce operations for replicated stages. Let
J = {1, 2, . . . , 4|S|−3} be the ordered list of all computation
and communication blocks, with blocks ordered according to
their execution dependencies.

An execution order queue, Us, is maintained for each stage
s ∈ S, containing (microbatch index, block number) pairs
indicating the order of processing microbatches by forward or
backward computation blocks of stage s.

For each block j ∈ J , we maintain an available microbatch
queue Qj , containing microbatches which have been processed
by block j − 1 but not by j. Initially Q1 includes all micro-
batches in order of their indices, and Qj = ∅,∀j ∈ J /{1}.

We order microbatch processing over the blocks as follows.
According to the order of blocks in J , we pop out one
microbatch m at the head of a non-empty queue Qj , and push
it to the end of queue Qj+1 of the next block (if j is not
the last block in J); if block j is a computation block of
stage s, we add (m, j) to execution order queue Us. Going
through the block list, we identify at most one microbatch to
be processed by each block, corresponding to microbatches
that can be processed about simultaneously. We loop through
the block list repeatedly until all available microbatch queues
are empty (Qj = ∅,∀j ∈ J), i.e., end-to-end training of all
microbatches is ordered.

2) Scheduling: We next exploit the execution order queues,
Us’s, and schedule a microbatch’s processing on a block as
soon as it is ready. We start by popping the first (microbatch
index, block number) out of queue Us1 of the first stage s1,
and process the corresponding microbatch on the respective
block. Once a computation block is executed, the successor
communication block is immediately run (upon the communi-
cation channel becoming idle). Upon processing completion of
a scheduled computation block of stage s or a communication
block which transmits data to stage s, we examine queue Us:
if the first (microbatch index, block number) in Us is ready
to be executed (i.e., the microbatch has been processed by the
precedent block), we pop it out and run it. This procedure
terminates when Us = ∅,∀s ∈ S , i.e., all microbatches have
been processed by all computation and communication blocks.

For each replicated stage s ∈ Srepl, when all microbatches
have been processed by backward computation block of this
stage, the corresponding AllReduce operation is executed.

Algorithm 1 Pipeline Execution Scheduler - PE
Input: G(V, E),S,F : S → P(V)
Output: TPE , e

1: Initialize execution order queues Us ← ∅,∀s ∈ S
2: Initialize available microbatch queues Q1 ←
{1, 2, . . . ,M} and Qj ← ∅,∀j ∈ J /{1}

3: while ∃j ∈ J , Qj 6= ∅ do
4: for j ∈ J : Qj 6= ∅ do
5: Pop one microbatch m out from the head of Qj , and

push m to the end of Qj+1 if j < |J |
6: Add (m, j) to the corresponding Us if block j is a

computation block
7: end for
8: end while
9: Pop the first (1, 1) out of Us1 , and set ef1,s1 = 0

10: while ∃s ∈ S, a block of stage s completes or a
communication block which transmits data to stage s
finishes at time t do

11: if s ∈ Srepl and Us = ∅ then
12: Start AllReduce operation, and set eAs to t
13: end if
14: if Us = ∅,∀s ∈ S then
15: break
16: end if
17: if a computation block of s finishes then
18: Start successor communication block
19: end if
20: if the first (microbatch index, block number) in Us is

ready then
21: Pop (microbatch index, block number) out of Us

22: Start the block and set the efm,s or ebm,s to t
23: end if
24: end while
25: Calculate the makespan: TPE =

max{maxm∈{1,2,...,M}(e
b
m,s1

+

∑
l∈s1

pbl

|F(s1)|
),maxs∈Srepl (e

A
s +As)}

26: Return TPE , e

We summarize our pipeline execution scheduling algorithm
in Alg. 1. The following lemma gives an upper bound of the
per-iteration training time achieved by this PE algorithm.

Lemma 1. Per-iteration training time achieved by Alg. 1,
TPE , is no larger than (1 + 4|S|−4

M
)MC + maxs∈Srepl{As},

where C = max{maxn∈{1,...,|S|}

∑
l∈sn (p

f
l
+pbl)

|F(sn)| ,

maxn∈{1,...,|S|−1}{cfsn,sn+1
+cbsn+1,sn}}, denoting the maximum

time to process a microbatch on a single stage (including
both forward and backward computation) or an inter-
stage communication channel (including data transfer in
both forward and backward propagation phases), without
considering AllReduce operations.

We have all the missing proofs in our technical report.
B. DNN Partition and Device Mapping Algorithm

Lemma 1 shows that the per-iteration training time is
positively related to the number of stage |S| that DNN D
is partitioned into, the maximum time C to process a micro-
batch on a single stage or communication channel, and the

Algorithm 2 Recursive Device Ordering - RDO
Input: G(V, E), rankl, rankh

1: if |V| == 1 then
2: Set rank(v)← rankl
3: else
4: G1(V1, E1), G2(V2, E2) = min-cut(G)
5: RDO(G1, rankl, rankl + |V1| − 1)
6: RDO(G2, rankl + |V1|, rankh)
7: end if

maximum AllReduce operation time among replicated stages.
The number of stage partitions, |S|, is at most the same as the
number of GPUs, V . We next design a model partition and
device mapping algorithm aiming at minimizing the maximum
time, W(|S|), to process all microbatches on a single stage
(including AllReduce operations) or a communication channel,
given the number of stages |S|. The purpose is to minimize
the upper bound of per-iteration training time in Lemma 1, as
W(|S|) is related to both C and maxs∈Srepl{As}:

W(|S|) = max{ maxs/∈Srepl{M
∑
l∈s

(pfl + pbl)},

maxs∈Srepl{M
∑
l∈s

(p
f
l
+pbl)

|F(s)| +As},

maxn∈{1,...,|S|−1}{M(cfsn,sn+1
+ cbsn+1,sn)}}

Our DNN partition and device mapping problem, without
considering stage replication, can be reduced to the NP-
complete problem of pipeline partition over a heterogeneous
communication platform [29], which partitions a workflow
among a cluster of devices with heterogeneous connectivity
to maximize the pipeline throughput. We design an efficient
balanced pipeline partition and device mapping algorithm
(BPPM) to derive a near-optimal solution, which includes two
components: 1) a device ordering module that calculates a
linear ordering of all GPUs; and 2) an algorithm that partitions
the DNN model onto GPUs respecting the device order.

1) Recursive device ordering (RDO): We decide a linear
ordering of GPUs in V: {v1, v2, . . . , vV }. We will map stages
(stage replicas) to devices according to this ordering and stage
dependencies, i.e., (replicas of) the first stage mapped to the
device(s) at the head of the device ordering, and then the next
stage to latter device(s), etc. We target a linear ordering with
maximal bandwidth between consecutive GPUs, such that the
bandwidth between stages and between replicas of the same
stage is maximized. A recursive min-cut algorithm is designed
to find the ordering in polynomial time, as given in Alg. 2.
rankl (rankh) represents the lowest (highest) rank of devices
in the current subgraph in the ordering, initialized to 1 and
V , respectively (in the complete Alg. 3 that invokes RDO).
In each recursive step, we find a min-cut within the current
input graph (leveraging an efficient min-cut algorithm in [30]),
partition the graph into two subgraphs accordingly, and call
RDO again to order devices in the two subgraphs, respectively.
When the input graph contains only one GPU, we assign rankl
(which equals rankh) to it. We order GPUs according to their
computed ranks in ascending order.

The link(s) within the min-cut will be used for inter-stage
communication between the two consecutive stages mapped
respectively onto two GPUs in the two subgraphs, or AllRe-
duce operation within one stage whose replications are mapped
into both subgraphs. Since all GPUs will be used in pipeline
training, at least one link in each min-cut needs to be used for
communication (as otherwise the training topology will not be
a connected graph). By dividing the device graphs in this way,
link(s) in each min-cut will be used only between two stages
or among replicas of one replicated stage, but not between two
pairs of consecutive stages or replicas of two replicated stages.
Hence, links with small bandwidth are minimally exploited
while large-bandwidth links are maximally used for inter-
stage or AllReduce communication, minimizing the maximum
communication time on a single communication channel.

2) Pipeline partition, replication and mapping (PRM):
Following the device ordering {v1, v2, . . . , vV }, we leverage
dynamic programming to partition and map D onto the GPUs
that minimizes the maximum execution time W(|S|) on a
single stage or communication channel.

Let W (l, ξ, r, i) denote the optimal (aka minimum) max-
imum execution time on a single GPU or communication
channel, when we partition the first l consecutive layers in D
into ξ stages with the last stage replicated into r replica(s)
(r ≥ 1), and place the stages over GPUs v1 to vi. We
have W(|S|) = min1≤r≤V W (L, |S|, r, V). W (l, ξ, r, i) can
be recursively computed as follows:

W (l, ξ, r, i) = min
1≤l′≤l−1,1≤r′≤i−r

max{W (l′, ξ − 1, r′, i− r),

M
d
f

l′,l′+1
+db

l′+1,l′

r′rbr′r
,M

l∑
o=l′+1

(pfo+pbo)

r
+Al′+1→l(vi−r+1 → vi)}

The first term inside max is the maximal execution time on
a single GPU/communication channel by optimal partition of
layers 1 to l′ into ξ − 1 stages (with the last stage replicated
on r′ GPUs) and mapping them on GPUs v1 to vi−r. The
second term computes the total communication time on the
communication channel between layers l′ and l′ + 1, where
br′r = minv′∈{vi−r−r′+1,...,vi−r},v∈{vi−r+1,...,vi} bv′,v is the
minimal link bandwidth between r′ replicas of layer l′ and r
replicas of layer l′+1. The third term is the training time on the
last stage, including processing time of all microbatches over
layers l′ + 1 to l replicated on r GPUs and time taken by the
corresponding AllReduce operation. Here Al′+1→l(vi−r+1 →
vi) denotes the time for AllReduce operation of layers l′ + 1
to l replicated over GPUs vi−r+1 to vi.

To compute W (l, ξ, r, i), we solve the subproblem of op-
timally partitioning the first l′ layers into ξ − 1 stages on
GPUs v1 to vi−r, while replicating the stage containing layers
l′ + 1 to l over GPUs vi−r+1 to vi. We consider all possible
choices of layer l′ and various replication strategies of the
stage containing l′, and decide W (l, ξ, r, i) as the minimal time
computed among them. The detailed dynamic programming
PRM algorithm is omitted due to space limit, which takes
G(V , E), {v1, v2, . . . , vV }, D, L, V , ξ, r as input, and output
W (L, ξ, r, V) as well as S and F . The following lemma
shows that the best stage partition and device mapping that

Algorithm 3 Synchronous Pipeline Planning - SPP
Input: G(V, E),D
Output: S̄, F̄ , ē, TSPP

1: RDO(G(V, E), 1, V)
2: Obtain device ordering {v1, . . . , vV } according to
rank(v),∀v ∈ V

3: TSPP ← INF
4: for ξ ∈ {1, 2, . . . , V } do
5: for r ∈ {1, 2, . . . , V } do
6: W (L, ξ, r, V),Sr,Fr ←

PRM(G(V, E), {v1, . . . , vV },D, L, V, ξ, r)
7: end for
8: Set S and F to Sr and Fr that achieve the minimum

W (L, ξ, r, V)
9: TPE , e←PE(G,S,F)

10: TSPP ← TPE , S̄ ← S, F̄ ← F , ē← e if TPE < TSPP

11: end for
12: Return S̄, F̄ , ē, TSPP

our algorithms identify when the given number of stages
varies, achieves a maximum per-stage/communication channel
execution time close to optimum.
Lemma 2. Let WPRM = min|S|∈{1,...,V }W(|S|). WPRM

achieved by RDO and PRM is no larger than (1 + Φ)
times W∗, the optimal (aka minimum) maximum execu-
tion time on a single stage or communication channel,
where Φ = max{pmaxbmax,dmax}

Γ (1
bmin

− 1
bmax

), dmax =

max1≤l≤L−1(dfl,l+1 + dbl+1,l), pmax = max1≤l≤L(pfl + pbl), and
Γ =

∑
1≤l≤L

(pfl + pbl)/V .

C. Complete Synchronous Pipeline Planning Algorithm
Our complete synchronous pipeline planning (SPP) algo-

rithm is given in Alg. 3, which produces model partition S̄ ,
device mapping F̄ and execution schedule ē. We first leverage
RDO in Alg. 2 to obtain a linear ordering of all GPUs (lines
1-2). We next vary the number of stages from 1 to V (line 4):
given a stage number to partition the model into, we vary r
and call PRM to compute the best stage partition and device
mapping (lines 5-8) that achieve W(|S|); we then invoke PE
in Alg. 1 to compute execution schedule of microbatches over
these partitions on the respective devices (line 9). We identify
the best stage partition number as the one minimizing the
makespan of a training iteration (lines 10-12) together with
the corresponding S̄, F̄ and ē.
Theorem 1. The makespan of a training iteration achieved by
SPP, TSPP , is less than (2 + 4V−4

M)(1 + Φ) times the optimal
makespan, T ∗.

Theorem 2. Our complete synchronous pipeline planning
Alg. 3 runs in polynomial time.

V. PERFORMANCE EVALUATION
We evaluate SPP with both testbed experiments and simu-

lation studies.
A. Testbed experiments

Implementation. We implement SPP using C++ and Python
on Tensorflow 1.14.1 [4]. We use Tensorflow profiler to
collect runtime data of each layer of each DNN model

TABLE II: Benchmark DNN models

Model # of
parameters

of
microbatches

microbatch size
(# of samples)

VGG19 [34] 144M 8 32
ResNet152 [2] 60M 4 4
Inception-V3 [35] 24M 8 32
Transformer [36] 55M 8 32
BERT-large [1] 340M 4 4
XLNet-large [37] 550M 4 4

BERT-48 [1] 640M 4 4 - 1080Ti×8
2 - V100×4

(e.g. forward/backward computation time, parameter size and
activation size) over 20 training iterations. We assign a priority
to each stage or AllReduce operation (implemented using
NCCL collective AllReduce [31]) based on our computed ex-
ecution order, such that they can be scheduled by TensorFlow
execution engine accordingly.
Testbed. We evaluate SPP in two testbed environments: (1)
One consists of 4 GPU servers, inter-connected by a Dell
Z9100-ON switch, with 50Gbps peak bandwidth between any
two servers. Each server has one 8-core Intel E5-1660 CPU,
two GTX 1080Ti GPUs and one 50GbE NIC. (2) The other
is a single server equipped with 4 Tesla V100 GPUs, two 10-
core Intel Xeon E5-2630 v4 CPUs and a 100GbE NIC. GPUs
in the sever are connected with 128Gbps PCIe bus.
DNN models. We train 7 representative DNN models: three
image classification models on the ImageNet dataset [32] and
four NLP models on SQuAD2.0 dataset [33] (Table II). The
number of microbatches and microbatch size for training each
model are set as the maximum number×size (aka mini-batch
size) without causing OOM (out of memory) for most base-
lines. The large batch sizes we use are consistent with common
practice [16]. To run SPP, we modified ResNet152 by ignoring
shortcut connections and Inception-V3 by aggregating parallel
branches (branches with the same start point and end point)
as one layer. We apply SPP to the modified models to decide
the strategies, and then train the original models (without the
modifications) using the obtained strategies.
Baselines. SPP is compared with 4 state-of-the-art schemes:
(i) Data Parallelism (DP), with each GPU training the complete
model with mini-batch size

of GPUs amount of data; (ii) GPipe [15];
(iii) PipeDream [10]; (iv) HetPipe [12] (see Sec. II for details
of the latter three). Unless stated otherwise, we enforce a
synchronization barrier at the end of each training iteration
in PipeDream and HetPipe, removing the negative impact of
asynchronous training on model convergence.
Per-iteration training speed-up. We compare SPP with all
baselines in terms of per-iteration training time in the first
testbed environment (1080Ti×8). In the other environment
(V100×4), we omit HetPipe as all four GPUs are on the
same server, reducing HetPipe to PipeDream solutions. In
Table III, the speed-up is computed by Baseline time−SPP time

SPP time .
SPP outperforms the baselines in all cases. While both DP
and HetPipe require an AllReduce operation to synchronize
gradients, SPP incurs less parameter synchronization traffic
and maximally overlaps communication with computation
within each training iteration. As a result, SPP outperforms

them by more than 20% in most cases. The large speed-up
for SPP over baselines on Inception-V3 demonstrates that our
design handles a model with non-uniform layer computation
time well. As VGG-19 has a small number of layers that
can be easily optimally partitioned, we observe minor gain
comparing SPP with PipeDream and GPipe. For BERT-large
on 1080Ti×8 testbed, PipeDream partitions the model into
uniform stages, achieving similar good performance as SPP.
End-to-end training performance. We next compare training
convergence among SPP, DP, GPipe and PipeDream. For
PipeDream, we use its original asynchronous pipeline design.
Fig. 4 shows the training progress of VGG19 on the V100×4
testbed to achieve a target 90% top-5 accuracy [32]. SPP
achieves the target accuracy using the least training time. De-
spite only marginal speed-up in per-iteration training time as
compared to PipeDream (using its synchronous pipeline mode
that we implemented), here SPP outperforms PipeDream (with
original asynchronous pipeline design) by 9.05% in terms of
the end-to-end training time. This is because PipeDream’s
asynchronous pipeline training slows down the model conver-
gence progress, as training microbatches on outdated versions
of model parameters [14].
B. Trace-driven Simulation
Settings. By default, we simulate training of BERT-large (27-
layers including 24 transformer layers) with 32 microbatches
and a microbatch size of 6 on 8 servers, each equipped
with 4 GPUs. We drive our simulation using profiled data
collected by running the DNN on a V100 GPU. 3 servers have
intra-server bandwidth between [96, 128] Gbps (representing
PCIe links [38]), and the other 5 servers [160, 200] Gbps
(representing NVLink connections [39]). By default, inter-
server bandwidth is set within [32, 40] Gbps to emulate an
RDMA network [40].

1) Different numbers of microbatches: Fig. 5 shows that
SPP achieves significant training speed-up compared with
the four baselines at different microbatch numbers (M). We
also observed (figure omitted due to space limit) that higher
GPU utilization is achieved with SPP when M is larger,
implying the diminishing gap between SPP and the optimal
solution (which maximally utilizes GPUs for the best training
speed). This is consistent with Theorem 1: as M increases,
the approximation ratio becomes smaller (i.e., better).

2) Different inter-server bandwidth levels: We emulate
three types of inter-server networks with low, medium and high
bandwidth, respectively. Fig. 6 shows that per-iteration training
time of SPP, GPipe and PipeDream is stable at different
bandwidth levels, while performance of DP and HetPipe drops
dramatically at small bandwidth. This is because the former
three overlap most inter-stage communication and AllReduce
operations with computation, achieving higher GPU utilization
even with small communication bandwidth. DP and HetPipe
require an AllReduce operation over inter-server connections
at the end of each training iteration, which incurs large
communication time with small bandwidth.

3) Different inter-GPU connectivity: We next vary the
number of available GPUs on servers and the server number.

0 40000 80000 120000
Training time (sec)

10%

30%

50%

70%

90%

Ac
cu

ra
cy

SPP
DP
GPipe
PipeDream

Fig. 4: VGG19 training
progress: SPP vs. baselines

Model Testbed SPP DP
(Speed-up)

GPipe
(Speed-up)

PipeDream
(Speed-up)

HetPipe
(Speed-up)

VGG19 1080Ti×8 1.799 2.882 (60.2%) 2.120 (17.9%) 1.949 (8.3%) 2.696 (49.9%)
V100×4 0.983 1.245 (26.7%) 1.004 (2.1%) 1.024 (4.2%) -

ResNet152 1080Ti×8 0.732 0.896 (22.4%) 1.214 (65.8%) OOM (-) 0.843 (15.2%)
V100×4 0.832 1.209 (45.3%) 1.041 (25.1%) 0.873 (4.9%) -

Inception-V3 1080Ti×8 0.303 0.420 (38.6%) 0.551 (81.8%) 0.656 (116.5%) 0.408 (34.7%)
V100×4 0.357 0.663 (85.7%) 0.587 (64.4%) 0.919 (157.4%) -

Transformer 1080Ti×8 0.640 0.944 (47.5%) 1.234 (92.8%) 1.118 (74.7%) 0.766 (19.7%)
V100×4 1.065 2.533 (137.8%) 1.487 (39.6%) 1.830 (71.8%) -

BERT-large 1080Ti×8 0.409 0.524 (28.1%) 0.472 (15.4%) 0.421 (2.9%) 0.525 (28.4%)
V100×4 0.952 2.269 (138.3%) 1.665 (74.9%) 1.084 (13.9%) -

XLNet-large 1080Ti×8 1.299 1.388 (6.7%) 1.696 (30.6%) 1.384 (6.5%) 1.628 (25.3%)
V100×4 1.437 1.842 (28.3%) 1.720 (19.7%) 1.690 (17.6%) -

BERT-48 1080Ti×8 0.762 OOM (-) 1.885 (147.4%) 1.266 (66.1%) 1.377 (80.7%)
V100×4 0.855 1.656 (93.7%) 1.199 (40.2%) 1.160 (35.7%) -

TABLE III: Per-iteration training time (in seconds) of different DNN models

8 16 32 64

of microbatches

0.0

0.5

1.0

1.5

2.0

P
e
r-

it
e
ra

ti
o
n
 t

ra
in

in
g
 t

im
e
 (

s
e
c
)

SPP

DP

GPipe

PipeDream

HetPipe

Fig. 5: Training time: differ-
ent # of microbatches

5-10Gbps 32-40Gbps 80-100Gbps

Inter-server bandwidth range

0

1

2

3

4

5

6

P
e
r-

it
e
ra

ti
o
n
 t

ra
in

in
g
 t

im
e
 (

s
e
c
)

SPP

DP

GPipe

PipeDream

HetPipe

Fig. 6: Training time: differ-
ent inter-server bandwidth
levels

[32 × 1] [6×2,3×4,1×8] [2×8,1×16]

of servers and GPUs

0.0

0.5

1.0

1.5

P
e
r-

it
e
ra

ti
o
n
 t

ra
in

in
g
 t

im
e
 (

s
e
c
)

SPP

DP

GPipe

HetPipe

Fig. 7: Training time: differ-
ent inter-GPU connectivity

BERT-large BERT-48 BERT-72

BERT model

0.0

2.5

5.0

7.5

10.0

12.5

15.0

P
e
r-

it
e
ra

ti
o
n
 t

ra
in

in
g
 t

im
e
 (

s
e
c
)

SPP

DP

GPipe

PipeDream

HetPipe

Fig. 8: Training time: BERT
with different # of layers

×1 ×10 ×50

Inter-layer data scale-up factor

0

2

4

6

8

P
e
r-

it
e
ra

ti
o
n
 t

ra
in

in
g
 t

im
e
 (

s
e
c
)

SPP

DP

GPipe

PipeDream

HetPipe

Fig. 9: Training time: differ-
ent inter-layer data sizes

0 5 10 15 20 25
of stages

0.9

1.0

1.1

1.2

1.3

1.4

Pe
r-i

te
ra

tio
n

tra
in

in
g

tim
e

(s
ec

)

Per-iteration training time
PRM

0.75

0.80

0.85

0.90

0.95

1.00


PR

M

Fig. 10: Training time &
WPRM : different # of stages

In Fig. 7, [6 × 2, 3 × 4, 1 × 8] represents training the model
over 6 servers each with 2 GPUs, three 4-GPU servers and
one 8-GPU server. SPP achieves the best performance in all
inter-GPU connection topologies.

4) Different numbers of layers: Fig. 8 compares the training
performance of BERT-large, BERT-48 (48 Transformer layers)
and BERT-72 (72 Transformer layers). As the model size
increases, it is more difficult to obtain optimal model partition
and device mapping solution. However, performance of SPP

and PipeDream remains quite stable, with SPP outperforming
PipeDream by more than 20% on the three models.

5) Different inter-layer data sizes: We investigate the im-
pact of activation sizes which influence inter-stage communi-
cation time, by scaling the activation data in BERT-large by
different factors. Fig. 9 shows that the per-iteration training
time with SPP remains similar with the increase of activation
sizes, due to the excellent communication and computation
overlap it achieves. GPipe tends to partition the model into
more stages, resulting in more inter-stage communication time.

6) Different numbers of stages: Lemma 1 gives that the
performance of our algorithm is related to: (1) the number
of stages |S|, and (2) WPRM , the maximum time to pro-
cess all microbatches on a single stage or communication
channel. While PipeDream only aims at minimizing WPRM ,
SPP strikes a balance between the two factors. In Fig. 10,
WPRM first decreases when the model is partitioned into more
stages, and becomes stable starting from the stage number
of 4. The main reason is that for training BERT-large (with
24 uniform Transformer layers) on 32 GPUs, the per-stage
training time with 4 stages is already quite close to the optimal
per-stage training time.3 The training time first decreases as
WPRM drops, and then increases when WPRM stabilizes and
|S| becomes the dominant factor, which is consistent with
Lemma 1. This indicates that only minimizing WPRM does
not yield the best solution. SPP strategically selects the 6-stage
partition solution to minimize per-iteration training time.

VI. CONCLUSION

This paper designs efficient algorithms for expediting syn-
chronous pipeline training of DNNs over arbitrary inter-
GPU connectivity. We partition a given DNN, replicate and
distribute the partitions over available GPUs, and design an
efficient scheduler to order pipeline execution of microbatches
over partitioned stages on different GPUs, minimizing the
training time. Our comparative experiments on two GPU
testbeds prove that our design outperforms state-of-the-art
approaches up to 157%. Trace-driven simulations further show
our algorithms’ superiority under various settings.

3With 4 stages, we roughly have 6 layers per stage and each stage replicated
to 8 GPUs; per-stage time is 6p/8 (p denotes per-layer computation time) plus
AllReduce time. Optimal per-stage training time is lower bounded by 24p/32.

REFERENCES

[1] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-Training
of Deep Bidirectional Transformers for Language Understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in Proc. of IEEE CVPR, 2016.

[3] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret, “Robots That Can
Adapt like Animals,” Nature, vol. 521, no. 7553, pp. 503–507, 2015.

[4] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “TensorFlow: A System for
Large-Scale Machine Learning,” in Proc. of USENIX OSDI, 2016.

[5] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: An Imperative Style, High-
Performance Deep Learning Library,” in Proc. of NeurIPS, 2019, pp.
8024–8035.

[6] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su, “Scaling Distributed Machine
Learning with the Parameter Server,” in Proc. of USENIX OSDI, 2014.

[7] A. Sergeev and M. Del Balso, “Horovod: Fast and Easy Distributed
Deep Learning in TensorFlow,” arXiv preprint arXiv:1802.05799, 2018.

[8] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-
zaro, “Megatron-LM: Training Multi-Billion Parameter Language Mod-
els Using GPU Model Parallelism,” arXiv preprint arXiv:1909.08053,
2019.

[9] A. Harlap, H. Cui, W. Dai, J. Wei, G. R. Ganger, P. B. Gibbons, G. A.
Gibson, and E. P. Xing, “Addressing the Straggler Problem for Iterative
Convergent Parallel ML,” in Proc. of ACM SoCC, 2016.

[10] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur,
G. R. Ganger, P. B. Gibbons, and M. Zaharia, “PipeDream: Generalized
Pipeline Parallelism for DNN Training,” in Proc. of ACM SOSP, 2019.

[11] J. Geng, D. Li, and S. Wang, “ElasticPipe: An Efficient and Dynamic
Model-Parallel Solution to Dnn Training,” in Proc. of the 10th Workshop
on Scientific Cloud Computing, 2019.

[12] J. H. Park, G. Yun, C. M. Yi, N. T. Nguyen, S. Lee, J. Choi, S. H. Noh,
and Y. ri Choi, “HetPipe: Enabling Large DNN Training on (Whimpy)
Heterogeneous GPU Clusters through Integration of Pipelined Model
Parallelism and Data Parallelism,” in Proc. of USENIX ATC, 2020.

[13] D. Narayanan, A. Phanishayee, K. Shi, X. Chen, and M. Zaharia,
“Memory-Efficient Pipeline-Parallel DNN Training,” in Proc. of ICML,
2021.

[14] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A. Gibson,
G. Ganger, and E. P. Xing, “More Effective Distributed ML via a Stale
Synchronous Parallel Parameter Server,” in Proc. of NeurIPS, 2013.

[15] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu et al., “GPipe: Efficient Training of Giant
Neural Networks Using Pipeline Parallelism,” in Proc. of NeurIPS, 2019.

[16] S. Fan, Y. Rong, C. Meng, Z. Cao, S. Wang, Z. Zheng, C. Wu, G. Long,
J. Yang, L. Xia et al., “DAPPLE: A Pipelined Data Parallel Approach for
Training Large Models,” in Proc. of ACM PPoPP, 2021, pp. 431–445.

[17] NVIDIA DGX-1, https://www.nvidia.com/en-us/data-center/dgx-1/.
[18] H. Wang, S. Potluri, D. Bureddy, C. Rosales, and D. K. Panda, “GPU-

aware MPI on RDMA-enabled Clusters: Design, Implementation and
Evaluation,” IEEE Transactions on Parallel and Distributed Systems,
vol. 25, no. 10, pp. 2595–2605, 2013.

[19] L. A. Goldberg, M. Paterson, A. Srinivasan, and E. Sweedyk, “Better
Approximation Guarantees for Job-Shop Scheduling,” SIAM Journal on
Discrete Mathematics, vol. 14, no. 1, pp. 67–92, 2001.

[20] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT press,
2016.

[21] A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner, R. Larsen, Y. Zhou,
N. Kumar, M. Norouzi, S. Bengio, and J. Dean, “Device Placement
Optimization with Reinforcement Learning,” in Proc. of ICML. PMLR,
2017, pp. 2430–2439.

[22] R. Addanki, S. B. Venkatakrishnan, S. Gupta, H. Mao, and M. Alizadeh,
“Placeto: Efficient Progressive Device Placement Optimization,” in NIPS
Machine Learning for Systems Workshop, 2018.

[23] X. Yi, S. Zhang, Z. Luo, G. Long, L. Diao, C. Wu, Z. Zheng,
J. Yang, and W. Lin, “Optimizing Distributed Training Deployment in
Heterogeneous GPU Clusters,” in Proc. of International Conference on
emerging Networking EXperiments and Technologies, 2020, pp. 93–107.

[24] X. Wu, H. Xu, B. Li, and Y. Xiong, “Stanza: Layer Separation for
Distributed Training in Deep Learning,” IEEE Transactions on Services
Computing, pp. 1–1, 2020.

[25] X. Yi, Z. Luo, C. Meng, M. Wang, G. Long, C. Wu, J. Yang, and W. Lin,
“Fast Training of Deep Learning Models over Multiple GPUs,” in Proc.
of the 21st International Middleware Conference, 2020, pp. 105–118.

[26] C.-C. Chen, C.-L. Yang, and H.-Y. Cheng, “Efficient and Robust Parallel
DNN Training Through Model Parallelism on Multi-GPU Platform,”
arXiv preprint arXiv:1809.02839, 2018.

[27] I. Colin, L. Dos Santos, and K. Scaman, “Theoretical Limits of Pipeline
Parallel Optimization and Application to Distributed Deep Learning,” in
Proc. of NeurIPS, 2019.

[28] Performance reported by NCCL tests, https://github.com/NVIDIA/nccl-
tests/blob/master/doc/PERFORMANCE.md.

[29] A. Benoit and Y. Robert, “Mapping Pipeline Skeletons onto Hetero-
geneous Platforms,” Journal of Parallel and Distributed Computing,
vol. 68, no. 6, pp. 790–808, 2008.

[30] M. Stoer and F. Wagner, “A Simple Min-Cut Algorithm,” Journal of the
ACM, vol. 44, no. 4, pp. 585–591, 1997.

[31] NVIDIA Collective Communication Library,
https://github.com/NVIDIA/nccl.

[32] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A Large-Scale Hierarchical Image Database,” in Proc. of IEEE CVPR,
2009.

[33] P. Rajpurkar, R. Jia, and P. Liang, “Know What You Don’t Know:
Unanswerable Questions for SQuAD,” arXiv preprint arXiv:1806.03822,
2018.

[34] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” arXiv preprint arXiv:1409.1556,
2014.

[35] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the Inception Architecture for Computer Vision,” in Proc. of IEEE
CVPR, 2016.

[36] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention Is All You Need,” in Proc. of
NeurIPS, 2017.

[37] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and
Q. V. Le, “XLNet: Generalized Autoregressive Pretraining for Language
Understanding,” in Proc. of NeurIPS, 2019.

[38] N. R. Tallent, N. A. Gawande, C. Siegel, A. Vishnu, and A. Hoisie,
“Evaluating on-Node GPU Interconnects for Deep Learning Workloads,”
in Proc. of International Workshop on Performance Modeling, Bench-
marking and Simulation of High Performance Computer Systems, 2017.

[39] M. Amaral, J. Polo, D. Carrera, S. Seelam, and M. Steinder, “Topology-
Aware GPU Scheduling for Learning Workloads in Cloud Environ-
ments,” in Proc. of SC, 2017.

[40] Y. Lu, G. Chen, B. Li, K. Tan, Y. Xiong, P. Cheng, J. Zhang, E. Chen,
and T. Moscibroda, “Multi-Path Transport for RDMA in Datacenters,”
in Proc. of USENIX NSDI, 2018.

