
Optimizing Task Placement and Online Scheduling
for Distributed GNN Training Acceleration

Ziyue Luo∗, Yixin Bao∗, Chuan Wu∗
∗Department of Computer Science, The University of Hong Kong, Email: {zyluo, yxbao, cwu}@cs.hku.hk

Abstract—Training Graph Neural Networks (GNN) on large
graphs is resource-intensive and time-consuming, mainly due
to the large graph data that cannot be fit into the memory
of a single machine, but have to be fetched from distributed
graph storage and processed on the go. Unlike distributed deep
neural network (DNN) training, the bottleneck in distributed
GNN training lies largely in large graph data transmission for
constructing mini-batches of training samples. Existing solutions
often advocate data-computation colocation, and do not work
well with limited resources where the colocation is infeasible. The
potentials of strategical task placement and optimal scheduling of
data transmission and task execution have not been well explored.
This paper designs an efficient algorithm framework for task
placement and execution scheduling of distributed GNN training,
to better resource utilization, improve execution pipelining, and
expediting training completion. Our framework consists of two
modules: (i) an online scheduling algorithm that schedules the
execution of training tasks, and the data transmission plan;
and (ii) an exploratory task placement scheme that decides the
placement of each training task. We conduct thorough theoretical
analysis, testbed experiments and simulation studies, and observe
up to 67% training speed-up with our algorithm as compared to
representative baselines.

I. INTRODUCTION

Graph neural networks (GNN) [1][2] generalize deep neu-
ral networks (DNN) to learning from graph-structured data
and have been exploited in various domains, e.g., computer
networking [3], social and biological network analysis [4][5].
GNNs learn high-level graph representations (aka embeddings)
by aggregating information from the neighborhood of nodes
in a graph, and have shown their superiority in various tasks
including node classification [6], graph classification [7] and
link prediction [8].

As compared to traditional graph analysis models [9][10],
GNNs can capture more complicated features of nodes/edges
of large graphs with millions of nodes and billions of edges
(e.g., Amazon Product Co-purchasing Network [11], Microsoft
Academic Graph [12]). However, training GNNs on large
graphs is very resource-intensive and time-consuming. The
large graph sizes often exceed the memory and computation
capacities of a single device (e.g., GPU) or physical machine,
yielding distributed GNN training using multiple devices and
machines as the solution. While full-graph training by loading
the entire graph into device memory is often infeasible [1],
a common practice of distributed GNN training is to do
subgraph sampling [13][14] and mini-batch training at each

This work was supported in part by grants from Hong Kong RGC under
the contracts HKU 17204619, 17208920 and 17207621.

device: samplers select a set of training nodes in the graph,
retrieve from graph stores features of (a subset of) several-
hop neighbor nodes of each training node to form subgraphs,
construct mini-batches with the subgraphs and feed them into
workers for training.

A few distributed GNN training frameworks have recently
been proposed, e.g., distributed DGL [15], Dorylus [16]. It has
been observed that frequent, large graph data transfers exist in
distributed GNN training, as mini-batch sampling is carried out
in each training iteration, which involves retrieval of subgraphs
commonly consisting of hundreds of graph nodes each. Graph
data transfer often consumes the majority of time during GNN
training (up to 80% of overall training time [15][17]) and
renders the performance bottleneck of GNN training, which
is different from the common bottlenecks of computation or
gradient/parameter communication in DNN training. Careful
design to alleviate the graph data transfer overhead is hence
the key for distributed GNN training acceleration.

A few efforts have been devoted to minimizing the graph
data transfers in distributed GNN training, through static
caching [18], min-edge-cut graph partition [19], and data-
computation co-location [15]. Even with these schemes, large
data transfers between samplers and graph stores may still
exist; data-computation co-location may not always be ap-
plicable when resource availability varies across machines.
On the other hand, strategical task placement, data flow and
task execution scheduling to improve resource utilization and
execution parallelization, have not been well explored, which
can be good complements to the traffic-minimizing schemes
for distributed GNN training acceleration.

We focus on optimized planning of distributed GNN train-
ing, involving effective placements of training tasks (sam-
plers, workers and parameter servers), near-optimal execution
scheduling of the tasks, and data flow transfers. Unique
challenges exist in distributed GNN training planning:

First, existing designs largely advocate co-locating a worker
with its samplers on the same physical machine, which is
only applicable if the computational resources on the machine
allow. In a practical machine learning (ML) cluster where
resource availability differs across machines, it is non-trivial
to plan task placements to minimize data transfer traffic and
maximize resource utilization.

Next, optimal scheduling of data transfers and task execution
in a distributed GNN training job is complex, falling in the
category of strongly NP-hard multi-stage coflow scheduling
problems [20]. Further, the data transfer volume between graph



stores and samplers varies according to the graph nodes and
their neighbors sampled in each training iteration [13][14] and
their storage locations, rendering the scheduling problem an
online nature and calling for efficient online algorithm design.

Tackling the challenges, we design an algorithm framework
for distributed GNN training planning, comprising two mod-
ules: 1) an online scheduling algorithm to strategically set
execution time of training tasks and transfer rates of data flows;
and 2) an exploratory task placement scheme that decides the
placement of each task among available machines. Our goal
is to maximize task parallelization while respecting various
dependencies, and hence minimize the overall training time of
a given GNN model. Our main techniques and contributions
are summarized as follows:
. Given task placements, we formulate the task and flow

scheduling problem for distributed GNN training as an on-
line optimization problem. We design an online scheduling
algorithm by effectively overlapping task computation with
graph data communication, and adaptively balancing the flow
transmission rates among parallel flows into (from) the same
machine, to eliminate negative impact of potential communi-
cation bottlenecks on the training time. We rigorously analyze
the online algorithm and identify a competitive ratio on the
training makespan, which is decided by the maximum number
of incoming or outgoing flows at any machine in one iteration.
. Next, we propose an exploratory task placement scheme

based on the Markov Chain Monte Carlo (MCMC) frame-
work [21]. We start by efficient construction of an initial
feasible placement in polynomial time. We then introduce a
resource violation tolerance factor to encourage full explo-
ration among feasible placements in the solution space. A
carefully designed cost function of the placements, defined
on the expected training makespan and resource feasibility,
guides our search process to the best feasible placement of
tasks in arbitrary (heterogeneous) environments, to achieve the
minimal expected training time in conjunction with our online
scheduling algorithm.
. We implement our design atop DGL [22], and conduct

thorough testbed experiments and trace-driven simulations.
Testbed experiments show that our design achieves signifi-
cantly lower GNN training time as compared to DistDGL [15]
(31.75% on ogbn-products dataset [11] and 22.95% on Reddit
dataset [2]) with more efficient network bandwidth utilization.
Simulation studies further prove that our design accelerates
training up to 67% compared to representative baselines under
more diversified training settings, by exploiting strategical task
placements to minimize the overall data traffic and maxi-
mize the utilization of heterogeneous network bandwidths,
maximally overlapping communication with computation, and
efficiently scheduling data traffic despite the varying data
volumes.

II. BACKGROUND AND RELATED WORK

A. GNN Training

GNNs learn effective graph embeddings by iteratively ag-
gregating neighborhood features (Fig. 1) [23][24]. The derived

v

h2
v

Layer 2

Layer 1

v Node v

1-hop neighbor of  v

2-hop neighbor of  v
Aggregator 

function

GNN layer

Fig. 1: An example of embedding calculation of
node v with a 2-layer GNN: embeddings of v’s
1-hop neighbors (l = 1) are computed using
hlv = σ(hl−1v ,AGGREGATEv′∈v’s neighborsf(hl−1v , hl−1v′ , ev,v′)),
and then aggregated to derive v’s embedding, h2v , using the
formula with l = 2. σ(·) and f(·) are trainable parameterized
functions, ev,v′ is the edge between v and v′, and AGGREGATE
is an aggregator function (e.g., mean, min, max).
embeddings can be further processed (e.g., using DNN layer,
softmax operation), to produce decisions for downstream tasks
(e.g., node classification, link prediction).

To construct a mini-batch for GNN training, a set of training
nodes are sampled from the input graph, and their L-hop
neighbors are used for embedding generation by a L-layer
GNN. Using features of all L-hop neighbors of the selected
training nodes may lead to GPU/CPU memory overflow or
high computation complexity. A common practice is to recur-
sively sample neighbors of each training node with a sampling
algorithm (e.g., [13][14]), and a sub-graph is formed among
the training node and its sampled L-hop neighbors. Each sub-
graph with its features renders one sample in the mini-batch.

Using mini-batches of graph samples, GNN training is
similar to DNN training: forward propagation is carried out
to compute a loss, and then backward propagation to derive
gradients of the GNN model parameters based on the loss,
using an optimization algorithm (e.g., stochastic gradient de-
scent); a gradient update operation follows, which involves
gradient aggregation among workers in distributed training and
application of updated parameters to the GNN model.
B. Distributed GNN Training Systems

Deep Graph Library (DGL) [22] is a package built for easy
implementation of GNN models on top of DL frameworks
(e.g., PyTorch [25], MXNet [26]). The recent release of DGL
supports distributed GNN training on relatively large graphs. It
uses random sampling, collocates one worker with one graph
store, and does not pipeline GNN training across iterations,
leaving a large room for further performance improvement.
Euler [27] is integrated with TensorFlow [28] for GNN train-
ing, which partitions a large graph in a round-robin manner
and splits feature retrieving requests to allow concurrent
transmissions; large data transfers still exist due to its locality-
oblivious graph partition. AliGraph [29] adopts distributed
graph storage, optimized sampling operators and runtime to
efficiently support GNNs. PyTorch Geometric [30] is a deep
learning library on irregularly structured input data such as
graphs, supporting multi-GPU training on a single machine
only. Dorylus [16] distributes GNN training over serverless
cloud function threads on CPU servers, requiring specialized
functions provided by AWS [31]. Large data traffic exists



in these systems, and careful transfer scheduling and task
deployment can enhance them for training time minimization.

C. Distributed Training Acceleration

NeuGraph [32] and PaGraph [18], which train GNN models
on a single machine, adopt full-graph training by loading entire
graphs into GPU memory, and are hence only feasible for
training over small graphs. Considering multi-server clusters,
ROC [33] splits the input graph over multiple GPUs or
machines to achieve workload balance, and adopts a mem-
ory management scheme to reduce CPU-GPU data transfer.
DistDGL [15] alleviates network transfer in distributed GNN
training by co-locating each worker with its samplers on the
same server, and partitioning the input graph with a minimum
edge cut method. Further, various graph partition, sampling
and caching methods have been proposed for enhancing dis-
tributed GNN training [2][34][35]. These studies focus on
minimizing data transfer volumes across devices/machines.
Optimization of task placement and execution scheduling
is orthogonal to the existing efforts, and our solution can
complement them to fully accelerate distributed GNN training.
DGCL [36] is a recently proposed communication library for
distributed GNN training, which decides data routing strategy
for every graph node to the requiring worker(s), consider-
ing the detailed interconnection topology among workers.
Its detailed communication plan is re-computed before every
training epoch, which may incur substantial overhead for large
graphs. Our design performs efficient, polynomial-time online
scheduling on both task execution and data flows between
tasks, effectively reducing the overall training time.

Task placement, computation and communication schedul-
ing have been studied for DNN training on non-graph data
[37][38][39]. The communication scheduling deals with ar-
ranging transmission time and order of gradient/parameter ten-
sors for parameter synchronization [38][39]. Placement studies
focus on worker placement to minimize interference [40]
instead of proximity to data, and DNN operator placement
to achieve model parallelism [41]. Computation scheduling
deals with fine-grained operator execution ordering, in case of
model- or pipeline-parallel DNN training [42][43][44]. Com-
pared to distributed DNN training, GNNs are largely trained
with data parallelism, incurring large graph data communi-
cation that blocks the computation and occupies a majority
of the training time (up to 80% [17]). Instead of operator-
level placement and scheduling of a GNN model, we study
placement of tasks (samplers, workers and parameter servers),
overlap both graph data transfer and tensor communication
with computation (the graph data traffic is magnitudes larger
than tensor transfers), and pipeline mini-batch training across
training iterations, which are all dedicated for GNN training
acceleration.

III. PROBLEM MODEL

A. Distributed GNN Training System

We train a GNN model (with L embedding layers) in a
cluster of M physical machines. Partitions of a large graph
used for GNN training are stored on the M machines. Each

Graph Store Server 2
Graph Store Server 1

Node/
Edge 

Features
···

Sampler 1

···

Sampler 2

Sampled
Sub-graph

Parameter 
Server

Worker 2

Worker 1

GNN Model

Updated 
Parameters

Gradients
Worker 3

Fig. 2: Distributed GNN training workflow
machine m ∈ [M ]1 is equipped with R types of computational
resources (e.g., GPU, CPU and memory), with type-r resource
available at the amount of Cr

m. Let Bm
in (Bm

out) represent the
available incoming (outgoing) NIC bandwidth on machine m.

There are four types of tasks in our GNN training job: (1)
Graph store server: Each machine hosts a graph store server,
to maintain one graph partition (including graph structure
and node/edge features). (2) Sampler: Each sampler selects
training nodes, retrieves sampled node/edge features from
graph store servers and forms sub-graphs. (3) Worker: Each
worker carries out forward and backward computation, pushes
gradients to and pulls parameters from parameter servers for
parameter synchronization. A worker is typically associated
with one or multiple samplers, which supply mini-batches
dedicatedly to the worker. (4) Parameter server (PS): PSs
aggregate gradients from all workers, update the GNN model
parameters and distribute updated parameters to all workers.

We use Jg, Js, Jw and Jps to represent the sets of graph
store servers, samplers, workers and PSs, respectively, in the
training job. We suppose the number of each type of tasks is
specified by the ML developer: the number of graph stores
is M (as each machine hosts exactly one graph partition),
the number of workers can be larger or smaller than M
(considering a machine may host multiple GPUs and CPUs,
and a worker typically consumes one GPU or CPU), the
number of samplers to serve each worker is usually fixed
(e.g., 2 samplers per worker). Let J = Jg ∪ Js ∪ Jw ∪ Jps
denote the set of all tasks. Each task j ∈ J occupies a wr

j

amount of type-r resource, ∀r ∈ [R]. For example, graph
store servers, samplers and PSs are commonly run on CPUs,
while workers can run on GPUs [18] or CPUs [15], and
consume the respective memory. Tasks of the same kind (e.g.,
all samplers) occupy the same amount of resources. Let pj
denote the execution time of task j in each iteration.

In a training iteration, each sampler selects a number of
training nodes from the input graph and signals the graph store
servers to acquire neighbor information. Upon requests from a
sampler, a graph store server samples among L-hop neighbors
of the training nodes that it hosts (using a given sampling algo-
rithm), and sends the node/edge features back to the sampler.

1[X] denotes set {1, 2, . . . , X}



The sampler then sends sub-graph samples to its associated
worker, which form a mini-batch from samples supplied by its
sampler(s), for forward and backward computation. Computed
gradients are sent from workers to the PSs and then updated
parameters are dispatched from PSs to workers. The workflow
is illustrated in Fig. 2.

B. Problem Formulation
We target overall training time minimization in our dis-

tributed GNN training job. Our design space includes two
subproblems.

1) Task Placement: We decide placements of all tasks
in the GNN training job on the machines, to maximize task
parallelization and minimize communication traffic. We use
binary variable ymj to indicate task placement: ymj equals 1
if task j is deployed on machine m, and 0, otherwise. The
placement constraints are: ∑

m∈[M ]

ymj = 1,∀j ∈ J (1)

∑
j∈J

wr
jy

m
j ≤ Cr

m, ∀m ∈ [M ], r ∈ [R] (2)

ymj = 1, ∀j ∈ Jg, j is placed on machine m (3)
ymj ∈ {0, 1}, ∀j ∈ J,m ∈ [M ] (4)

Constraints in (1) ensure that every task is placed on one
and only one machine. (2) are resource capacity constraints
on the machines. (3) specifies the given placements of graph
store servers on machines. Fig. 3(a) shows an example task
placement of a GNN training job on two machines.

2) Online Execution and Flow Scheduling: Suppose it
takes N iterations for the GNN model training to converge.
Given task placements, we decide the start time of each task
and transmission schedules of sampled data and tensor flows,
in each training iteration. Let binary variable xtj,n indicate the
start time of task j in iteration n: xtj,n is 1 if task j in iteration
n starts at time t, and 0, otherwise. We use kt(j,n)→(j′,n′) to
denote the amount of traffic sent from task j of iteration n to
task j′ of iteration n′ at time t, including the following cases:
sampled graph data from a graph store server to a sampler or
from a sampler to a worker in the same iteration, gradients
from a worker to a PS, or parameters updated at a PS (j)
in iteration-n training to a worker (j′) for iteration-(n + 1)
training (n′ = n+ 1).

The execution schedule should respect execution dependen-
cies among tasks and flows, as follows:

x1j,1 = 1, ∀j ∈ Jg (5)∑
t∈[T ]

xtj,n = 1, ∀j ∈ J, n ∈ [N ] (6)

min{t|kt(j,n)→(j′,n′) > 0, t ∈ [T ]} ≥
∑
t∈[T ]

txtj,n + pj , ∀j ∈ J,

n ∈ [N ], (j′, n′) ∈ succ(j, n), j and j′ are on different servers (7)

max{t|kt(j,n)→(j′,n′) > 0, t ∈ [T ]} <
∑
t∈[T ]

txtj′,n′ , ∀j ∈ J,

n ∈ [N ], (j′, n′) ∈ succ(j, n), j and j′ are on different servers (8)∑
t∈[T ]

txtj,n + pj ≤
∑
t∈[T ]

txtj′,n′ , ∀j ∈ J, n ∈ [N ],

(j′, n′) ∈ succ(j, n), j and j′ are on the same server (9)

We ignore the training node selection time at a sampler,
and message passing from a sampler to a graph store server
for graph data requests, as the traffic volume is negligible.
Constraint (5) indicates that graph store servers run first to
sample neighbors. (6) ensures that each task in each training
iteration is scheduled once. Here T is a potentially large time
span in which our GNN training converges.

Among tasks and flows, there are the following execution
dependencies: (i) a sampler can start after receiving data from
all graph store servers in each iteration; (ii) in iteration n, a
worker can start after receiving a mini-batch of graph data
from its samplers and model parameters updated in iteration
n − 1; (iii) a PS can start after receiving gradients from all
workers, computed in this iteration. We call (j′, n′) a successor
of (j, n) if task j′ in iteration n′ can only start after receiving
data from task j in iteration n, and succ(j, n) denotes the
set of all successors of (j, n). Constraint (7) specifies that
transmission from (j, n) to its successor (j′, n′) starts after
(j, n) is done. (8) ensures that task j′ in iteration n′ does not
start before the transfer from (j, n) to (j′, n′) is completed, if
tasks j and j′ do not reside on the same machine. We ignore
data passing time between tasks on the same machine, but
specify execution dependency among those tasks in (9).

Across training iterations, we require that task j in iteration
n+ 1 can only start after task j’s execution in iteration n has
been done (e.g., a sampler prepares training data for iteration
n before those for iteration n + 1), and data transfer (j, n +
1) → (j′, n′ + 1) cannot start before transmission (j, n) →
(j′, n′) has been completed. These inter-iteration dependencies
are formulated as in (10) and (11):∑

t∈[T ]

txtj,n + pj ≤
∑
t∈[T ]

txtj,n+1, ∀j ∈ J, n ∈ [N − 1] (10)

max{t|kt(j,n)→(j′,n′) > 0, t ∈ [T ]} <
min{t|kt(j,n+1)→(j′,n′+1) > 0, t ∈ [T ]}, ∀j ∈ J, n ∈ [N − 1],

(j′, n′) ∈ succ(j, n), j and j′ are placed on different servers (11)

Further, the following constraint specifies the total traffic
transmitted from task j in iteration n to task j′ in iteration n′,
as denoted by d(j,n)→(j′,n′). The traffic volume is decided ac-
cording to whether it is graph data transfer from a graph store
server to a sampler or from a sampler to a worker (decided by
the graph sampling algorithm in use), or gradient/parameter
tensor transfer between a worker and a PS (depending on the
GNN model size).∑

t∈[T ]

kt(j,n)→(j′,n′) = d(j,n)→(j′,n′), ∀j ∈ J, n ∈ [N ],

(j′, n′) ∈ succ(j, n), j and j′ are placed on different servers (12)

The total incoming (outgoing) traffic at machine m should not
exceed its available bandwidth at each time t:∑
n∈[N ]

∑
j∈J:ym

j =1

∑
(j′,n′)∈succ(j,n):ym

j′ =0

kt(j,n)→(j′,n′) ≤ Bm
out,

∀m ∈ [M ], t ∈ [T ] (13)∑
n∈[N ]

∑
j∈J:ym

j =0

∑
(j′,n′)∈succ(j,n):ym

j′ =1

kt(j,n)→(j′,n′) ≤ Bm
in,

∀m ∈ [M ], t ∈ [T ] (14)



Sampler 2

Parameter 
Server 1

Worker 1

Machine 1

Graph Store 
Server 2

Sampler 1

Graph Store 
Server 1

Machine 2
Intra-machine 

data communication
Inter-machine 

data communication

(a) Task placement

G1,1
G2,1

(G1,1)→(S2,1)
(G2,1)→(S1,1)

W1,1 P1,1
(S2,1)→(W1,1) zzzzzz

j,n Execution of task j in iteration n
(j,n)→(j',n') Communication from (j, n) to (j', n')

S1,1

G1,2
G2,2

(G1,2)→(S2,2)
(G2,2)→(S1,2)

W1,2 P1,2

S1,2

G1,3
G2,3

(G1,3)→(S2,3)
(G2,3)→(S1,3)

W1,3 P1,3

time

S2,1 S2,2 S2,3
(S2,2)→(W1,2) (S2,3)→(W1,3)

S1,3

G - Graph store server S - Sampler
W - WorkerP - Parameter server

(b) Execution and flow schedule

Fig. 3: A distributed GNN training planning example: a job with 2 graph store servers, 1 worker with 2 samplers, and 1 PS.

We aim at minimizing the makespan of all N iterations of
GNN training, which is computed as maxt∈T,j∈J{txtj,N +pj}.
Given task placements {ymj }, the execution and flow schedul-
ing problem is formulated as:

min max
t∈T,j∈J

{txtj,N + pj} (15)

subject to:

(5)–(14)
xtj,n ∈ {0, 1},∀j ∈ J, n ∈ [N ], t ∈ [T ] (16)

kt(j,n)→(j′,n′) ≥ 0, ∀j ∈ J, n ∈ [N ], t ∈ [T ],

(j′, n′) ∈ succ(j, n), j and j′ are placed on different servers (17)

Problem (15) is a generalization of the strongly NP-hard
multi-stage coflow scheduling problem (MSCSP) [20], by
grouping transmission between the same types of tasks in one
iteration as one coflow (e.g., data transmission from all graph
store servers to all samplers). In addition, the key challenge
with our problem lies in the unknown graph data volume
transferred between graph store servers and samplers: graph
sampling is typically a random algorithm [13], the training
nodes and their neighbors selected vary from one training
iteration to the next, and hence the sizes of node/edge features
to transfer change and are unknown beforehand. Consequently,
our execution scheduling is an online problem.

In the following, we first design an online algorithm for
task execution and flow transmission schedule, assuming task
placements are given; next, we devise the task placement
scheme that minimizes the total training time in conjunction
with scheduling. An example task and flow schedule is given
in Fig. 3(b), where we depict task execution and flow com-
munication for the first three training iterations, based on the
task placement in Fig. 3(a). Each training iteration is denoted
using a different color.

Key notation is summarized in Table I for ease of reference.

IV. ONLINE EXECUTION AND FLOW SCHEDULING

A. Scheduling Algorithm

Given placements {ymj }, we design an online algorithm that
decides start time of each task (xtj,n) and flow transmission
(kt(j,n)→(j′,n′)) over time.

We maintain two flow sets: (i) Fact, that stores every active
flow (j, n) → (j′, n′) which currently has started but not
finished transmission yet; (ii) Fpend, to store every pending
flow (j, n) → (j′, n′) whose predecessor task (j, n) has
been done, and that has not started because its predecessor

TABLE I: Notation

T total time span
J set of all tasks

Jg/Js/Jw/Jps set of graph store servers/samplers/workers/PSs
M # of machines
N # of training iterations
R # of resource types
Cr

m available amount of type-r resource on machine m
Bm

in (Bm
out) avail. incoming (outgoing) bandwidth of machine m

pj execution time of task j in one iteration
d(j,n)→(j′,n′) amount of traffic transmitted from task j of

iteration n to its successor task j′ of iteration n′

wr
j type-r resource demand of task j

ymj task j is placed on machine m (1) or not (0)
xt
j,n task j of iteration n starts at t (1) or not (0)

kt
(j,n)→(j′,n′) amount of traffic transmitted from task j of

iteration n to its successor j′ of iteration n′ at t

flow (j, n − 1) → (j′, n′ − 1) in the previous iteration has
not completed transmission yet. For each task (j, n), we use
F(j, n) to represent the set of flows that originate from (j, n)
to tasks that reside on other machines (than where j is).

Our online scheduling algorithm is in Alg. 1. We start by
running graph store server processing for the first training
iteration at t = 1 (line 2). Then at each time t, we run every
task that has received all required data and hence is available
to execute (line 7). For each task (j, n) completed at t − 1,
consider every flow (j, n) → (j′, n′) ∈ F(j, n) in t: if the
flow’s predecessor flow (j, n− 1)→ (j′, n′ − 1) is in Fact or
Fpend (indicating it not done yet), we add (j, n)→ (j′, n′) to
Fpend; otherwise, it is scheduled to transmit in t and added to
Fact (lines 8-13). In addition, for every flow (j, n)→ (j′, n′)
ended at t − 1, we check if its successor flow (j, n + 1) →
(j′, n′ + 1) is in Fpend: if so, we move it from Fpend to Fact

and start the flow transmission (lines 14-17). For every flow
(j, n) → (j′, n′) which transfers in t, supposing j placed on
m and j′ on m′, we set its traffic volume kt(j,n)→(j′,n′) at t
to min{Bm′

in /∆
m′

in , B
m
out/∆

m
out} (lines 18-21). ∆m

in (∆m
out) is

the ingress flow degree (egress flow degree) on machine m,
counting the number of active flows entering and exiting from
m, respectively:

∆m
in = |{(j′, n′)→ (j, n)|(j′, n′)→ (j, n) ∈ Fact, y

m
j = 1}|

(18)

∆m
out = |{(j, n)→ (j′, n′)|(j, n)→ (j′, n′) ∈ Fact, y

m
j = 1}|

(19)
In this way, we balance flow rates among flows going into and
out of each machine, ensuring no individual flow becoming the



Algorithm 1: Online Execution Scheduling - OES
Input: T, J,M,N, {ymj }
Output: {xtj,n}, {kt(j,n)→(j′,n′)}, TOES

1 Initialize Fact and Fpend to ∅
2 x1j,1 ← 1,∀j ∈ Jg
3 for t ∈ [T ] do
4 if every (j,N), j ∈ J is done (aka training has

converged) then
5 TOES ← t− 1 break
6 for (j, n) ∈ {(j, n)|j ∈ J, n ∈ [N ]} do
7 xtj,n ← 1 if (j, n) is available
8 if (j, n) finished at t− 1 then
9 for (j, n)→ (j′, n′) ∈ F(j, n) do

10 if (j, n− 1)→ (j′, n′ − 1) ∈ Fact ∪ Fpend

then
11 add (j, n)→ (j′, n′) to Fpend

12 else
13 add (j, n)→ (j′, n′) to Fact

14 for every flow (j, n)→ (j′, n′) finished at t− 1 do
15 if (j, n+ 1)→ (j′, n′ + 1) ∈ Fpend then
16 remove (j, n+ 1)→ (j′, n′+ 1) from Fpend

17 add (j, n+ 1)→ (j′, n′ + 1) to Fact

18 for m ∈ [M ] do
19 calculate ∆m

in and ∆m
out according to (18) (19)

20 for (j, n)→ (j′, n′) ∈ Fact do
21 kt(j,n)→(j′,n′) ← min{Bm′

in /∆
m′

in , B
m
out/∆

m
out},

where ymj = 1 and ym
′

j′ = 1

22 return {xtj,n}, {kt(j,n)→(j′,n′)}, TOES

bottleneck. The algorithm terminates when the whole training
process is done, i.e., all tasks of the last training iteration are
completed (lines 4-5).

B. Theoretical Analysis

Let Fone iter denote the set of all inter-machine flows in one
training iteration, including the transfer of updated parameters
computed in this iteration from PS to workers. We define the
one-iteration ingress flow degree ∆̂m

in and one-iteration egress
flow degree ∆̂m

out:

∆̂m
in = |{(j′, n′)→ (j, n)|(j′, n′)→ (j, n) ∈ Fone iter, y

m
j = 1}|

∆̂m
out = |{(j, n)→ (j′, n′)|(j, n)→ (j′, n′) ∈ Fone iter, y

m
j = 1}|

and the maximum degree ∆:

∆ = max
m∈[M ]

{max{∆̂m
in, ∆̂

m
out}} (20)

which represents the maximum number of incoming or out-
going flows at any machine in one training iteration.

Theorem 1. The overall training makespan achieved by
Alg. 1, TOES , is no larger than ∆ times the optimal objective
value T ∗ of the offline execution scheduling problem (15), i.e.,
the competitive ratio of the online algorithm in Alg. 1 is ∆.

Proof sketch. Following our schedule, we can identify a
chain, O, consisting of dependent tasks and flows that are
executed sequentially without waiting in-between, respecting
the execution dependencies. We ensure the execution of chain
O covers the whole training makespan. Further, our online
schedule guarantees that the minimum flow rate of any flow
in O is no less than dividing the maximum flow rate of any
flow in O in the offline optimal solution by ∆. Detailed proof
of Theorem 1 and all missing proofs are in our technical report.

V. EXPLORATORY TASK PLACEMENT

We adopt the Markov Chain Monte Carlo (MCMC) search
framework [21] to identify a good placement solution to
minimize the training makespan with our online scheduling
Alg. 1. We start by constructing a feasible initial placement
solution, Y0 = {ymj }0, followed by generating a sequence of
placements Y1,Y2, . . ., until a time budget I is exhausted.

A. Constructing Initial Feasible Placement

A feasible task placement solution should respect resource
capacity constraints in (2). We first randomly order the
M machines into {m1,m2, . . . ,mM}. Note that placements
of graph store servers are given (one on a machine). Let
[qs, qw, qps, i] indicate that we can pack qs samplers, qw
workers and qps PSs within the first i machine (m1 to mi)
without violating resource capacities, and (qs, qw, qps, i) be a
particular partial placement of putting qs samplers, qw workers
and qps PSs on machine mi. We use Aqs,qw,qps,i to denote an
exact placement associated with [qs, qw, qps, i], specifying how
many samplers, workers and PSs are placed in each of the i
machines, to make up for the total numbers of qs, qw and
qps. Let Ω(i) be the set of all [qs, qw, qps, i]’s with i fixed and
qs ∈ [|Js|], qw ∈ [|Jw|], qps ∈ [|Jps|].

We use dynamic programming to construct a feasible
placement solution. We first consider all feasible placements
(qs, qw, qps, 1) on m1. Let ηs denote the maximal number
of samplers that can be hosted by any machine, i.e. ηs =
maxm∈[M ] minr∈[R]:wr

j>0bC ′rm/wr
j c, any j ∈ Js (C ′rm is avail-

able type-r resource on m excluding that occupied by the
graph store server). Similarly, we can define an upper bound
on the number of workers and PSs per machine, ηw and ηps.
For every possible combination of qs ∈ {0}∪ [min{|Js|, ηs}],
qw ∈ {0}∪[min{|Jw|, ηw}] and qps ∈ {0}∪[min{|Jps|, ηps}],
we check if the capacity constraints on m1 are satisfied. For
every feasible solution found, we add [qs, qw, qps, 1] to Ω(1),
and set Aqs,qw,qps,1 = {(qs, qw, qps, 1)}.

Next, we iteratively construct Ω(i) based on Ω(i − 1)
until finding a complete feasible solution of placing all |Js|
samplers, |Jw| workers and |Jps| PSs onto the machines. For
each [qs, qw, qps, i − 1] ∈ Ω(i − 1), we examine whether
|Js| − qs samplers, |Jw| − qw workers and |Jps| − qps PSs
can be fit into machine mi. If so, we have identified a
complete feasible placement solution that packs all tasks
within the first i machines: Asolution = A(qs, qw, qps, i−1)∪
{(|Js|−qs, |Jw|−qw, |Jps|−qps, i)}. Otherwise, we find every
feasible placement (q′s, q

′
w, q
′
ps, i) with q′s ∈ {0} ∪ [|Js| − qs],



Algorithm 2: Exploratory Task Placement - ETP
Input: T, J,M,R, {Cr

m}, {wr
j}

Output: Ymin

1 Y0 ←IFS(J,M,R, {Cr
m}, {wr

j}); Ymin ← Y0
2 , ,min makespan = OES(T, J,M,N,Y0)
3 for z ∈ {0, 1, . . . , I − 1} do
4 randomly select a task j from J \ Jg
5 construct Mavail of j
6 randomly select a machine m from Mavail

7 construct new placement solution Y ′
8 , , T ′Y′ = OES(T, J,M,N,Y ′)
9 π(Yz → Y ′)←

min{1, exp(βcost(Yz)− βcost(Y ′))}
10 if rand()≤ π(Yz → Y ′) then
11 Yz+1 ← Y ′
12 if no resource violation with Yz+1 and

T ′Y′ < min makespan then
13 min makespan← T ′Y′

14 Ymin ← Yz+1

15 else
16 Yz+1 ← Yz

17 return Ymin

q′w ∈ {0} ∪ [|Jw| − qw], and q′ps ∈ {0} ∪ [|Jps| − qps]
that satisfies capacity constraint on machine mi; and if
[qs +q′s, qw +q′w, qps +q′ps, i] is not in Ω(i) yet, we add it into
Ω(i), and set A(qs + q′s, qw + q′w, qps + q′ps, i) to be the union
of A(qs, qw, qps, i − 1) and {(q′s, q′w, q′ps, i)}. We build from
Ω(2) to Ω(M) and return the first complete feasible placement
solution. The above algorithm for finding the initial feasible
placement is referred to as IFS.

Theorem 2. IFS identifies a feasible placement solution
within polynomial time.

Proof sketch. Every feasible placement corresponds to exact
one [qs, qw, qps, i] tuple. The construction of each Ω(i) takes
up to O(|Js||Jw||Jps|ηsηwηpsR) time, and through the con-
struction of Ω(1) to Ω(M), IFS explores all possible tuples
in polynomial time and identifies one feasible solution.

B. Searching for Better Placements
Starting from the initial feasible placement, we iteratively

search for better placement solutions, according to a cost(Y)
defined on the overall training makespan of placement Y .

Practically, task placements should be decided before train-
ing starts and remain fixed during training (to avoid substantial
overhead of VM/container migration and flow redirection).
The online nature of execution scheduling is due to size vari-
ation of sampled graph data; we should identify a placement
that works best in expectation of the traffic variation. To
this end, we profile task execution time and inter-task traffic
volumes by running the GNN training for some iterations
(50 as in our evaluation), and produce their distributions. We
simulate the training process under placement Y using Alg. 1,
with time and traffic volume drawn from the distributions, and
derive the training makespan T ′Y . The cost of placement Y is:

cost(Y) = T ′
Y(1 +

∑
m∈[M ],r∈[R]

max{

∑
j∈J

wr
jy

m
j − Cr

m

Cr
m

, 0}) (21)

where T ′Y is multiplied by 1 plus a penalty term for resource
violation (computed as the sum of capacity violation percent-
ages over all types of resources and all machines).

Our search explores the solution space by transferring from
one placement Yz to another Yz+1, for a total of I transfers
(the time budget). Give Yz , we uniformly randomly sample
a task j ∈ J \ Jg . Let Mavail denote the set of machines
other than the one where j is placed in Yz , which can host j
adhering to relaxed resource capacity constraints:∑

j∈J

wr
jy

m
j ≤ (1 + µ)Cr

m, ∀m ∈ [M ], r ∈ [R] (22)

Here, the capacity constraints are relaxed by a µ factor to allow
full exploration in the placement space. For example, when the
violation factor µ is set to 100% (default in our evaluation),
every feasible solution can be identified if an infinite time
budget I is allowed: Setting µ to 100% is equivalent to
allowing a duplicate set of machines (i.e., each machine has
doubled its resource capacities). Therefore, we can transit
from any feasible placement Y to any other feasible Ŷ by
moving each task from its placement in Y to the duplicate
of the machine where it is placed in Ŷ . The new placement
on the set of duplicate machines is feasible since Ŷ is a
feasible placement solution. If the computational resources of
all machines are quite sufficient to host the training tasks, we
can set µ to a smaller value for better search efficiency.

Next, we uniformly randomly choose one server m ∈
Mavail to move j to, and come up with the new placement
solution Y ′. We compute a probability (β > 0 is a hyper-
parameter set to 0.1 in our evaluation, whose smaller value
increases the tendency of our search process to jump out of
local optima):

π(Yz → Y ′) = min{1, exp(βcost(Yz)− βcost(Y ′))} (23)

With probability π(Yz → Y ′), we use Y ′ as Yz+1: if
cost(Y ′) ≤ cost(Yz), we accept Y ′ as Yz+1 (probability is 1);
otherwise, we still accept Y ′ as the next state with probability
π(Yz → Y ′) (for exploration) and maintain Yz+1 the same as
Yz with probability 1− π(Yz → Y ′).

Our state transition as designed above ensures that the
probability of visiting Y is linear to exp(−βcost(Y)) [21],
i.e., solutions with lower costs are more frequently visited than
ones with larger costs. We return the best feasible placement
found after I transitions, which does not violate any original
resource capacity constraints in (2), and leads to the minimum
(simulated) training time as compared to all other feasible
placements visited. Alg. 2 summarizes our exploratory task
placement algorithm (ETP).

C. Complete Distributed GNN Training Planning Algorithm

Our complete distributed GNN training planning (DGTP)
algorithm is given in Alg. 3. We first leverage Alg. 2 to identify



Algorithm 3: Distributed GNN Training Planning
(DGTP)

Input: T,N, J,M,R, {Cr
m}, {wr

j}
Output: Ymin, {xtj,n}, {kt(j,n)→(j′,n′)}

1 Ymin ← ETP(T, J,M,R, {Cr
m}, {wr

j})
2 {xtj,n}, {kt(j,n)→(j′,n′)}, TOES ←

OES(T, J,M,N,Ymin)
3 return Ymin, {xtj,n}, {kt(j,n)→(j′,n′)}

the best placement Ymin and then use Alg. 1 to decide the task
and flow schedules {xtj,n}, {kt(j,n)→(j′,n′)} based on Ymin, in
an online manner.

VI. PERFORMANCE EVALUATION

We evaluate DGTP by both testbed experiments and simu-
lation studies.

A. Testbed Experiments

Implementation. We implement DGTP using Python on DGL
0.6.1 [22] and PyTorch 1.8.1 [25] with 1056 LoC for the
training system and 1522 LoC for the search and scheduling
algorithms. Parameter synchronization through a PS is built on
PyTorch. We use the Stochastic Fairness Queueing provided by
tc qdisc [45] to control flow transmission rates according to our
online scheduling algorithm, dynamically assigning ongoing
data flows into separate queues and ensuring fairness among
them with negligible scheduling overhead.
Testbed. Our testbed consists of 4 GPU servers inter-
connected by a Dell Z9100-ON switch, with 50Gbps peak
bandwidth between any two servers. Each server is equipped
with one 50GbE NIC, one 8-core Intel E5-1660 CPU, two
GTX 1080Ti GPUs and 48GB DDR4 RAM. To emulate
resource heterogeneity, we use tc to limit the bandwidth
capacity of two servers to 10Gbps.
GNN model and datasets. We train one representative GNN
model (three layers of hidden size 256), GraphSage [2], on two
graph datasets: ogbn-products [11] (an Amazon product co-
purchasing graph) and Reddit [2] (consisting of Reddit posts
within a month and connections between posts if the same user
comments on both posts). We implement uniformly random
sampling of neighbors of training nodes, with different fan-
outs (the number of neighbors to sample) at different hops,
set according to the official training script provided by the
DGL team and other existing studies [2][15]. Same as in
DistDGL [15], we set the mini-batch size on both datasets to
2000 (subgraphs). We use Adam optimizer [46] with a learning
rate of 0.001 during the training.

TABLE II: Benchmark datasets

Dataset #Nodes #Edges Feature
Vector Length Fan-out

ogbn-products 2.4M 61.8M 100 5, 10, 15
Reddit 0.2M 114.6M 602 5, 10, 25

ogbn-papers100M 0.1B 1.6B 128 12, 12, 12

We use 4 graph store servers, 6 workers (each requiring
3GB memory, 1 logical CPU core and 1 GPU card), and

1 PS (requiring 5GB memory, 1 logical CPU core) to train
the GNN model. We partition the input graph with METIS
partitioner [19] among graph stores. Each worker is associated
with two samplers (each requiring 7GB memory, 2 logical
CPU cores). We profile data to drive our search algorithm
over 50 iterations of training on each dataset.
Baseline. We compare DGTP with a modified version of Dist-
DGL [15] that enables inter-server communication between a
worker and its samplers. DistDGL adopts a placement scheme
that maximally colocates each worker with its associated sam-
plers within one server, and uses the system default scheduling
strategy (running a task when ready and sending data in FIFO
queues).
End-to-end training performance. We compare the end-to-
end training convergence time between DGTP and DistDGL.
The offline search to obtain DGTP’s task placements can be
done within 5 minutes (we only simulate 20 iterations of GNN
training to obtain T ′Y during search, and set the exploratory
time budegt to 10000). Fig. 4 shows the training progress
to achieve a 90% target accuracy over the validation sets.
DGTP outperforms DistDGL by 31.75% in terms of the overall
training time on ogbn-products, and 22.95% on Reddit.
Resource usage. We also examined resource usage during
training. We observed similar GPU, CPU and memory usage
between DGTP and DistDGL, as task execution in both
systems is constantly blocked by the large data transfers.
Fig. 5 shows the bandwidth usage on the four servers. We
observe that DGTP has a much better network usage on both
datasets: DGTP can identify task placements that exploit the
heterogeneous bandwidth levels well, while communication
in DistDGL is often bottlenecked on the low-bandwidth inter-
server connections (two pairs of its worker and samplers have
to be separated onto different servers due to non-sufficient
resources on the same servers).
B. Simulation Studies
Settings. We further evaluate DGTP in detail by simulating
the training of the GraphSage model on: 1) ogbn-products
on 8 machines using 8 graph store servers, 16 workers
each with 2 samplers, and 1 PS; and 2) ogbn-papers100M
(Microsoft Academic Graph dataset described in Table II)
on 16 machines using 16 graph store servers, 20 workers
each with 4 samplers, and 1 PS. We simulate 5 epochs of
training (i.e., each sampler goes through the whole set of
training nodes specified by the dataset for five times) on
ogbn-products (actual training of GraphSage on ogbn-products
converges in 5 epochs, as we observed in our experiment), and
25 epochs on ogbn-papers100M (convergence time according
to ogbn-papers100M official leaderboard [47]). Our simulation
is driven by profiled data collected by training the model on
the respective datasets in our testbed.

We consider four types of resources on each machine:
memory, CPU, GPU and network bandwidth. The available
memory size on each machine is set within [32, 128]GB, the
number of available CPU cores between [4, 16], the number of
available GPUs within [1, 4], and network bandwidth among
{10Gbps, 20Gbps, 50Gbps}.



0 2500 5000 7500 10000 12500 15000
Training time (second)

1

2

3

4

5

6

7

Tr
ai

ni
ng

 lo
ss DGTP loss

DistDGL loss
DGTP accuracy
DistDGL accuracy

40%

50%

60%

70%

80%

90%

Va
lid

at
io

n 
ac

cu
ra

cy

(a) ogbn-products

0 1000 2000 3000 4000 5000
Training time (second)

0

2

4

6

8

10

12

14

Tr
ai

ni
ng

 lo
ss DGTP loss

DistDGL loss
DGTP accuracy
DistDGL accuracy

40%

50%

60%

70%

80%

90%

Va
lid

at
io

n 
ac

cu
ra

cy

(b) Reddit

Fig. 4: Training loss & validation accuracy: DGTP vs. DistDGL

0 20 40 60 80 100 120
Training time (second)

0

2

4

6

8

10

12

Ba
nd

wi
dt

h 
us

ag
e 

(G
bp

s) DGTP
DistDGL

(a) ogbn-products

0 20 40 60 80 100 120
Training time (second)

0

2

4

6

8

10

12

14

Ba
nd

wi
dt

h 
us

ag
e 

(G
bp

s) DGTP
DistDGL

(b) Reddit

Fig. 5: Total network bandwidth usage: DGTP vs. DistDGL

1000 2000 4000 8000
Per-sampler batch size

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 ti
m

e 
(s

ec
)

1e3

DGTP
DistDGL
OMCoflow
MRTF

Fig. 6: Training time on ogbn-
products: different batch sizes

1000 2000 4000 8000
Per-sampler batch size

0

1

2

3

4

Tr
ai

ni
ng

 ti
m

e 
(s

ec
)

1e4

DGTP
DistDGL
OMCoflow
MRTF

Fig. 7: Training time on ogbn-
papers100M: diff. batch sizes

1 1.2 1.4 1.6
PMR

1.2

1.3

1.4

1.5

1.6

1.7

Tr
ai

ni
ng

 ti
m

e 
(s

ec
)

1e3

DGTP
DistDGL
OMCoflow
MRTF

Fig. 8: Training time on ogbn-
products: different PMRs

1 1.2 1.4 1.6
PMR

2.50

2.75

3.00

3.25

3.50

3.75

4.00

Tr
ai

ni
ng

 ti
m

e 
(s

ec
)

1e4

DGTP
DistDGL
OMCoflow
MRTF

Fig. 9: Training time on ogbn-
papers100M: different PMRs

Baselines. Apart from DistDGL, we further compare DGTP
with two flow scheduling schemes (in which we use the same
placements as computed by DGTP and a task starts immedi-
ately once its dependencies have been cleared): (i) OMCoflow,
a state-of-the-art online coflow scheduling algorithm [48] that
groups flows to the same task as one coflow, and sets the flow
rates in each coflow inversely proportional to predicted flow
finish time (supposing it is the only coflow in the network);
(ii) MRTF, which schedules flows according to the minimum
remaining time first (MRTF) heuristic.
Different per-sampler batch sizes. A larger per-sampler
batch size (a worker’s mini-batch size divided by the number
of samplers it uses) results in larger sampling data traffic, po-
tentially yielding more communication overhead when poorly
planned. As Fig. 6 and Fig. 7 show, DGTP outperforms all
three baselines, reducing the training makespan on ogbn-
products by up to 11%, and on ogbn-papers100M by up to
25%, compared to DistDGL. Larger data traffic is incurred
for training on ogbn-papers100M due to the larger fan-outs,
and its training environment is more complex (with more
servers, resource heterogeneity, etc.). We identify DGTP’s
larger speed-up on ogbn-papers100M is because DGTP can
find better task placements that reduce the overall data traffic
during training and schedule the traffic over the complex
network environment well. Further, DGTP achieves up to 33%
less training time as compared to OMCoflow, and up to 67% to
MRTF, on the two datasets. The advantage of DGTP improves
with batch size. These indicate that DGTP can efficiently
schedule flow transfers to minimize the overall training time
in an online manner.
Different peak-to-mean ratios. We compute a peak-to-mean
ratio (PMR) for flows from graph store servers to samplers, as
the maximum data flow rate between any (graph store server,
sampler) pair divided by the average flow rates among all

such flows. The PMR in our profiled data during training
with DGTP is 1.16 on ogbn-products and 1.08 on ogbn-
papers100M. We scale up and down the transmitted graph
data sizes to simulate different PMRs. Intuitively, a larger
PMR indicates more intensive traffic volume fluctuation, more
challenging for online scheduling. In Fig. 8 and Fig. 9,
DGTP exhibits stable performance as the PMR changes, and
outperforms DistDGL by up to 26%, OMCoflow by up to 37%
and MRTF by up to 55%.

VII. CONCLUSION

This paper designs efficient placement and scheduling al-
gorithms for distributed GNN training over heterogeneous
clusters. We propose a competitive online execution algorithm
that schedules training task execution and flow transfers for
both graph data sampling and parameter synchronization. We
also design an explorative algorithm to decide the placement
of every task, which, in conjunction with online task/flow
scheduling, minimizes the overall training makespan. Accord-
ing to testbed experiments, our design reduces the end-to-end
training time by up to 31.75% as compared to a state-of-
the-art distributed GNN training solution. Simulation studies
further demonstrate that our design significantly outperforms
representative schemes by minimizing the total data traffic and
maximizing the bandwidth usage through task placement, and
strategically scheduling tasks and flows to overlap computation
with communication and reduce total communication time.
Our design can be easily extended to GNN training with
AllReduce-based parameter synchronization, by considering
detailed communication flows within AllReduce operations. In
the case of multiple GNN training jobs on the same cluster,
our algorithms can be adopted for jointly searching for task
placements of all jobs, and for online task and flow scheduling
for each of the jobs.



REFERENCES

[1] T. N. Kipf and M. Welling, “Semi-Supervised Classification with Graph
Convolutional Networks,” in Proc. of ICLR, 2017.

[2] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive Representation
Learning on Large Graphs,” in Proc. of NIPS, 2017.

[3] K. Rusek, J. Suárez-Varela, P. Almasan, P. Barlet-Ros, and A. Cabellos-
Aparicio, “RouteNet: Leveraging Graph Neural Networks for network
modeling and optimization in SDN,” IEEE Journal on Selected Areas
in Communications, 2020.

[4] C. Li and D. Goldwasser, “Encoding Social Information with Graph
Convolutional Networks for Political Perspective Detection in News
Media,” in Proc. of ACL, 2019.

[5] D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gómez-
Bombarelli, T. Hirzel, A. Aspuru-Guzik, and R. P. Adams, “Convo-
lutional Networks on Graphs for Learning Molecular Fingerprints,” in
Proc. of NIPS, 2015.

[6] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph Attention Networks,” in Proc. of ICLR, 2018.

[7] F. Errica, M. Podda, D. Bacciu, and A. Micheli, “A Fair Comparison
of Graph Neural Networks for Graph Classification,” in Proc. of ICLR,
2020.

[8] X. Li, Y. Shang, Y. Cao, Y. Li, J. Tan, and Y. Liu, “Type-Aware
Anchor Link Prediction across Heterogeneous Networks Based on Graph
Attention Network,” in Proc. of AAAI, 2020.

[9] P. Frasconi, M. Gori, and A. Sperduti, “A General Framework for
Adaptive Processing of Data Structures,” IEEE Transactions on Neural
Networks, 1998.

[10] S. Cao, W. Lu, and Q. Xu, “GraRep: Learning Graph Representations
with Global Structural Information,” in Proc. of ACM CIKM, 2015.

[11] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and
J. Leskovec, “Open Graph Benchmark: Datasets for Machine Learning
on Graphs,” in Proc. of NeurIPS, 2020.

[12] A. Sinha, Z. Shen, Y. Song, H. Ma, D. Eide, B.-J. Hsu, and K. Wang,
“An Overview of Microsoft Academic Service (MAS) and Applica-
tions,” in Proc. of WWW, 2015.

[13] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “Graph-
SAINT: Graph Sampling Based Inductive Learning Method,” in Proc. of
ICLR, 2020.

[14] J. Chen, T. Ma, and C. Xiao, “FastGCN: Fast Learning with Graph
Convolutional Networks via Importance Sampling,” in Proc. of ICLR,
2018.

[15] D. Zheng, C. Ma, M. Wang, J. Zhou, Q. Su, X. Song, Q. Gan,
Z. Zhang, and G. Karypis, “DistDGL: Distributed Graph Neural Network
Training for Billion-Scale Graphs,” in IEEE/ACM Workshop on Irregular
Applications: Architectures and Algorithms, 2020.

[16] J. Thorpe, Y. Qiao, J. Eyolfson, S. Teng, G. Hu, Z. Jia, J. Wei,
K. Vora, R. Netravali, M. Kim et al., “Dorylus: Affordable, Scalable, and
Accurate GNN Training with Distributed CPU Servers and Serverless
Threads,” in Proc. of USENIX OSDI, 2021.

[17] S. Gandhi and A. P. Iyer, “P3: Distributed Deep Graph Learning at
Scale,” in Proc. of USENIX OSDI, 2021.

[18] Z. Lin, C. Li, Y. Miao, Y. Liu, and Y. Xu, “PaGraph: Scaling GNN
Training on Large Graphs via Computation-aware Caching and Parti-
tioning,” in Proc. of ACM SoCC, 2020.

[19] G. Karypis and V. Kumar, “A Fast and High Quality Multilevel Scheme
for Partitioning Irregular Graphs,” SIAM Journal on Scientific Comput-
ing, 1998.

[20] B. Tian, C. Tian, H. Dai, and B. Wang, “Scheduling Coflows of Multi-
stage Jobs to Minimize the Total Weighted Job Completion Time,” in
Proc. of IEEE INFOCOM, 2018.

[21] C. J. Geyer, “Practical Markov Chain Monte Carlo,” Statistical Science,
1992.

[22] M. Wang, L. Yu, D. Zheng, Q. Gan, Y. Gai, Z. Ye, M. Li, J. Zhou,
Q. Huang, C. Ma et al., “Deep Graph Library: Towards Efficient and
Scalable Deep Learning on Graphs,” in ICLR Workshop on Representa-
tion Learning on Graphs and Manifolds, 2019.

[23] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural Message Passing for Quantum Chemistry,” in Proc. of ICML,
2017.

[24] S. Cai, L. Li, J. Deng, B. Zhang, Z.-J. Zha, L. Su, and Q. Huang,
“Rethinking Graph Neural Architecture Search from Message-passing,”
in Proc. of IEEE/CVF CVPR, 2021.

[25] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: An Imperative Style, High-
Performance Deep Learning Library,” in Proc. of NeurIPS, 2019.

[26] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang, “MXNet: A Flexible and Efficient Machine
Learning Library for Heterogeneous Distributed Systems,” in NIPS
Workshop on Machine Learning Systems (LearningSys), 2016.

[27] (2021) Euler Graph Library. [Online]. Available:
https://github.com/alibaba/euler

[28] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “TensorFlow: A System for
Large-Scale Machine Learning,” in Proc. of USENIX OSDI, 2016.

[29] K. Zhao, W. Xiao, B. Ai, W. Shen, X. Zhang, Y. Li, and W. Lin,
“AliGraph: An Industrial Graph Neural Network Platform,” in Proc. of
SOSP Workshop on AI Systems, 2019.

[30] M. Fey and J. E. Lenssen, “Fast Graph Representation Learning with
PyTorch Geometric,” in Proc. of ICLR, 2019.

[31] AWS Lambda, 2021. [Online]. Available:
https://aws.amazon.com/lambda

[32] L. Ma, Z. Yang, Y. Miao, J. Xue, M. Wu, L. Zhou, and Y. Dai,
“NeuGraph: Parallel Deep Neural Network Computation on Large
Graphs,” in Proc. of USENIX ATC, 2019.

[33] Z. Jia, S. Lin, M. Gao, M. Zaharia, and A. Aiken, “Improving the
Accuracy, Scalability, and Performance of Graph Neural Networks with
ROC,” in Proc. of MLSys, 2020.

[34] L. Wang, Q. Yin, C. Tian, J. Yang, R. Chen, W. Yu, Z. Yao, and J. Zhou,
“FlexGraph: A Flexible and Efficient Distributed Framework for GNN
Training,” in Proc. of ACM EuroSys, 2021.

[35] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh, “Cluster-
GCN: An Efficient Algorithm for Training Deep and Large Graph
Convolutional Networks,” in Proc. of ACM KDD, 2019.

[36] Z. Cai, X. Yan, Y. Wu, K. Ma, J. Cheng, and F. Yu, “DGCL: An Efficient
Communication Library for Distributed GNN Training,” in Proc. of ACM
EuroSys, 2021.

[37] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang, Z. Hu, J. Wei,
P. Xie, and E. P. Xing, “Poseidon: An Efficient Communication Archi-
tecture for Distributed Deep Learning on GPU Clusters,” in Proc. of
USENIX ATC, 2017.

[38] A. Jayarajan, J. Wei, G. Gibson, A. Fedorova, and G. Pekhimenko,
“Priority-Based Parameter Propagation for Distributed DNN Training,”
in Proc. of Systems and Machine Learning (SysML), 2019.

[39] S. Shi, X. Chu, and B. Li, “MG-WFBP: Merging Gradients Wisely
for Efficient Communication in Distributed Deep Learning,” IEEE
Transactions on Parallel and Distributed Systems, 2021.

[40] Y. Bao, Y. Peng, and C. Wu, “Deep Learning-based Job Placement in
Distributed Machine Learning Clusters,” in Proc. of IEEE INFOCOM,
2019.

[41] A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner, R. Larsen, Y. Zhou,
N. Kumar, M. Norouzi, S. Bengio, and J. Dean, “Device Placement
Optimization with Reinforcement Learning,” in Proc. of ICML, 2017.

[42] S. Wang, D. Li, and J. Geng, “Geryon: Accelerating Distributed CNN
Training by Network-level Flow Scheduling,” in Proc. of IEEE INFO-
COM, 2020.

[43] J. H. Park, G. Yun, M. Y. Chang, N. T. Nguyen, S. Lee, J. Choi,
S. H. Noh, and Y.-r. Choi, “HetPipe: Enabling Large DNN Training on
(Whimpy) Heterogeneous GPU Clusters through Integration of Pipelined
Model Parallelism and Data Parallelism,” in Proc. of USENIX ATC,
2020.

[44] X. Yi, S. Zhang, Z. Luo, G. Long, L. Diao, C. Wu, Z. Zheng, J. Yang, and
W. Lin, “Optimizing Distributed Training Deployment in Heterogeneous
GPU Clusters,” in Proc. of ACM CoNEXT, 2020.

[45] M. A. Brown, “Traffic Control HOWTO,” Guide to IP Layer Network,
2006.

[46] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

[47] GraphSAGE res incep, 2021. [Online]. Available:
https://github.com/mengyangniu/ogbn-papers100m-sage

[48] H. Tan, S. H.-C. Jiang, Y. Li, X.-Y. Li, C. Zhang, Z. Han, and F. C. M.
Lau, “Joint Online Coflow Routing and Scheduling in Data Center
Networks,” IEEE/ACM Transactions on Networking, 2019.


