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Abstract— Geo-distributed virtual network function (VNF)
chaining has been useful, such as in network slicing in 5G
networks and for network traffic processing in the WAN. Agile
scaling of the VNF chains according to real-time traffic rates
is the key in network function virtualization. Designing efficient
scaling algorithms is challenging, especially for geo-distributed
chains, where bandwidth costs and latencies incurred by the
WAN traffic are important but difficult to handle in making
scaling decisions. Existing studies have largely resorted to opti-
mization algorithms in scaling design. Aiming at better decisions
empowered by in-depth learning from experiences, this paper
proposes a deep learning-based framework for scaling of the
geo-distributed VNF chains, exploring inherent pattern of traffic
variation and good deployment strategies over time. We novelly
combine a recurrent neural network as the traffic model for
predicting upcoming flow rates and a deep reinforcement learning
(DRL) agent for making chain placement decisions. We adopt the
experience replay technique based on the actor–critic DRL algo-
rithm to optimize the learning results. Trace-driven simulation
shows that with limited offline training, our learning framework
adapts quickly to traffic dynamics online and achieves lower
system costs, compared to the existing representative algorithms.

Index Terms— Network function virtualization, service func-
tion chain, reinforcement learning, deep learning.

I. INTRODUCTION

THE network function virtualization (NFV)
paradigm advocates deploying virtualized network

functions (VNFs) on standard virtualization platforms, e.g.,
in cloud data centers, for network traffic processing [1].
The VNFs are typically chained together as VNF service
chains to provide network services, e.g., “Web Application
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Firewall→IDS→Load Balancer” for access control to a Web
service. Many chains are deployed over the WAN with VNFs
located in different data centers, to process network flows
between geo-dispersed sources and destinations. For example,
the upcoming 5G mobile networks are envisioned to support
various services such as machine-type communications (MTC)
and Internet of Things (IoT) through network slicing, and
a network slice primarily consists of chain(s) of 5G
network functions (NFs) [2]. For WAN optimization,
deduplication or compression functions are deployed close
to sources of flows and traffic shaping can happen anywhere
along the routes from sources to destinations [3]. For a
control-plane service chain “P-CSCF→S-CSCF” in an
IMS [4], instances of Proxy-Call Session Control Function
(P-CSCF), which a user contacts for call registration, should
be placed close to the callers, while Serving-Call Session
Control Function (S-CSCF) for session control can be
deployed in the middle between a caller and a callee.

The goal of NFV is to achieve significant cost reduction,
as compared to traditional NF provisioning with dedicated
hardware. On-demand deployment and agile scaling of VNF
instances play a key role in cost conservation: VNF instances
are easily added when flow demand increases, and removed
when idling; geographical placement of VNFs can be flexibly
adjusted according to varying geo-distribution of flow sources
and destinations. For the example of network slicing in 5G
networks, resources can be dynamically allocated to network
slices containing different VNF chains, guaranteeing service
latency and cost according to the demand [5].

A number of recent studies have designed offline or online
optimization algorithms for placement or scaling of VNF
chains in one data center [6], [7]. Deployment of service chains
over the WAN is less thoroughly investigated, owing mainly
to the many more factors to evaluate, such as various resource
costs and different delays when flows are routed through differ-
ent data centers, to obtain an efficient solution. The difficulty
escalates when time-varying flow demand is considered, and
migration of VNFs over the WAN is needed. A few studies
[8]–[11] adopt online optimization techniques to design online
scaling algorithms with or without worst-case performance
guarantees. Differently, we seek better scaling decisions in
expectation through in-depth learning from experiences, using
deep reinforcement learning techniques.

Deep reinforcement learning (DRL) has exhibited its power
in various applications such as game play (e.g., Go [12],
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Atari [13]) and robot control [14]. Recently, DRL has also
been used to handle a number of scheduling problems in net-
working systems, including resource allocation in cloud [15]
and big data systems [16], path selection in Internet rout-
ing [17], bitrate adjustment in adaptive video streaming [18],
and traffic scheduling in cellular networks [19]. DRL is
promising for learning service chain scaling strategies too: the
policy of a DRL agent evolves over time as it interacts with the
environment, allowing quick adaptation to the changing envi-
ronment, much needed in a WAN-based NFV system with traf-
fic variation and numerous randomness; besides, DRL adopts
a deep neural network (NN), capable of modeling the complex
inner connections among the many factors in VNF chain scal-
ing decision making, and to learn a good strategy over time.

Nonetheless, the VNF chain scaling problem, when treated
with DRL, faces challenges different from the existing
scheduling problems handled by reinforcement learning (RL)
so far: (1) the flow demand variation is irrelevant to DRL
output actions, which, if naively fed into the NN in the input
state, does not render a Markov decision process (MDP),
making many RL techniques non-applicable; (2) given the
many candidate data centers for deploying each VNF and the
multiple VNFs on a service chain, the action space is very
large if producing deployment of VNFs in the entire chain
altogether, leading to slow convergence for training the DRL
model [20].

This paper addresses the above challenges by proposing a
novel deep learning framework which combines a recurrent
neural network (RNN) as the traffic model for predicting
upcoming flow rates, and a DRL model for making VNF chain
placement decisions across a geographic span. The RNN takes
flow rates in a historical time-window as input, and predicts the
flow rate in the next time slot. Based on the current deployment
of the VNF chain and the predicted flow rate, the DRL NN
produces VNF deployment decisions to handle network traffic
in the upcoming time slot. Our main technical contributions
are as follows:

� We train the RNN as a separate network using supervised
learning with observations of actual flow rates, instead of
including it as part of the DRL NN to be trained altogether
using environmental rewards (overall cost incurred by the
chain in our model, which indirectly includes actual flow
rates), for more accurate prediction of upcoming flow demand.

� The DRL NN takes predicted flow rate among the input
state. We define each state based on previous DRL action and
output of the RNN (based on input of historical flow rates),
which ensures the transition to next state is only determined
by current input state and action performed. Consequently,
the entire process renders an MDP which serves as the foun-
dation for RL algorithm. The input state to the DRL NN is not
related to history, allowing experience replay technique, which
encourages the learning agent to fully search in a large action
space for better training results, and avoids poor decisions due
to lack of exploration.

� We design a DRL framework based on the asynchronous
actor-critic learning method. Due to the large state space
in the VNF chain scaling problem, we combine experience
replay and ε-greedy techniques to allow our agent to explore

more actions. Instead of producing entire chain deployment
decisions altogether, we allow placement of the VNFs to be
decided one by one in sequence to form the chain, to expedite
model convergence.

We carry out trace-driven simulation, and compare our DRL
scheduler with representative baselines. The results show that
with limited offline training, our learning framework adapts
quickly to traffic dynamics online and achieves lower system
costs, i.e., 10%–42% reduction as compared to the baselines.

The rest of the paper is organized as follow. We discuss
related work in Sec. II, and introduce the system model in
Sec. III. Sec. IV presents our DRL design. Sec. V gives
evaluation results, and Sec. VI concludes the paper.

II. BACKGROUND AND RELATED WORK

A. VNF Chain Placement and Scaling

Ghaznavi et al. [8] study the problem of geo-distributed
VNF chain placement and propose a local search heuristic to
minimize consumption of physical resources. Cohen et al. [9]
decouple the geo-distributed VNF chain placement prob-
lem into a facility location problem, which places VNFs
on physical nodes, and a generalized assignment problem,
which assigns service requests to VNFs. An approximation
algorithm is proposed with theoretically proven performance.
Sang et al. [21] design two heuristic methods for single-
type NFV placement with a constant approximation ratio
proven, and one optimal greedy placement algorithm for tree
network topologies, assuming a fixed path for each flow.
Nadig et al. [22] formulate the problem of Service Function
Chain (SFC) mapping in geo-distributed data centers as an ILP
and propose an application-aware flow reduction algorithm to
obtain a simplified ILP that is directly solvable. These work
all assume static systems without flow changes.

Considering dynamic flows, Shi et al. [6] model dynamic
resource allocation of VNFs as an MDP, use Bayesian learning
to predict future resource reliability and design a heuristic
algorithm. A simple setting is studied, where VNFs are
placed within one data center with a simpler cost structure.
Zhang et al. [10] implement network coding functions based
on the NFV paradigm and design an online deployment and
scaling algorithm for the functions in the Internet to maximize
the throughput of multicast sessions. Pei et al. [23] study the
problem of SFC Embedding with dynamic VNF placement.
A two-stage method is proposed: the first stage of the method
is to place, select and concatenate VNF instances for SFC
requests; the second stage of the method is to release redun-
dant VNF instances considering the dynamic network load.
Jia et al. [11] propose an online geo-distributed VNF scaling
algorithm based on the regularization method and dependent
rounding technique, and prove its competitive ratio with a
worst-case performance guarantee.

Different from the above online optimization tech-
niques or heuristic algorithm, we novelly design a DL-based
framework that captures the inherent flow patterns and makes
online scaling decisions according to the current system state
and predicted flow rates, to achieve better performance under
various scenarios.
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B. Deep Reinforcement Learning

Reinforcement learning is a category of machine learning
approaches that maximize an accumulated reward through
repeated interactions with the environment. In each step τ ,
the agent observes the current state of the environment sτ and
produces an action aτ , based on the policy π. With action aτ ,
the environment transits to the next state sτ+1 and the agent
receives a reward signal rτ . The states s and actions a form
an MDP, where the probability of each possible value of sτ+1

and rτ is determined solely by the immediately preceding state
and action, sτ and aτ [24]. The goal of reinforcement learning
is to maximize the expected cumulative discounted reward:

R = Eπ

[ ∞∑
τ=0

γτrτ

]
(1)

where γ ∈ (0, 1] is the discount factor.
In deep reinforcement learning, deep neural network (DNN)

is used to represent the agent’s policy. DNN is a kind of
NN with multiple layers of neurons. The multiple layers
make DNN capable of learning vast information from the
input data. A number of recent studies have applied DRL
for various resource scheduling problems. Mao et al. [15]
design a multi-resource scheduler based on RL that dynami-
cally allocates computational resources to incoming jobs in a
single data center. Mirhoseini et al. [16] decouple the device
placement problem into two sub-problems and use two NNs
to learn their own decisions through DRL. Xu et al. [17]
propose a DRL framework with experience-driven control for
optimal routing path selection in a communication network.
Chinchali et al. [19] design a DRL-based traffic scheduler
in a cellular network that quickly adapts to traffic variation.
A key challenge in the cellular network system is that networks
exhibit non-stationary dynamics, which is non-Markovian for
RL algorithm to solve. To address the challenge, the authors
include past actions and historical traffic pattern in the state for
future forecast. Such technique successfully casts the original
non-Markovian problem as a Markov Decision Process for
RL method. They design the predictor to forecast future states
over multiple time slots leveraging all past states. Unlike their
design, we propose a traffic model that only models network
traffic and makes prediction for each time slot. Therefore,
we ensure a more precise prediction of incoming traffic
rate. In addition, the exponentially large discrete action space
of VNF chain scaling problem makes the method in [19],
Deep Deterministic Policy Gradient (DDPG), inapplicable.
Ye and Zhang [25] also adopt DDPG for Small cell Base Sta-
tion (SBS) activation problem. Again, the difference between
our problem and the SBS activation problem lies in the size of
the action space. While their strategy only needs to decide if
the base station is active or not, our scheduler gives a complete
VNF placement in each time slot.

In conclusion, VNF chain scaling problem is different from
the existing problems handled by reinforcement learning meth-
ods: (1) The incoming flow rate is unknown and independent
from DRL output actions. This imposes difficulty to render the
problem as an MDP and makes RL method non-applicable;
(2) Naively producing the placement for the whole VNF

chain leads to an exponentially large action space, making RL
methods impractical due to slow convergence. Nevertheless,
we believe that DRL is promising for VNF chain scaling
problem as well, and are the first to tackle the challenges for
doing so, different from those faced by existing DRL-based
schedulers.

III. SYSTEM MODEL

A. Geo-Distributed NFV System

Consider an NFV provider who can rent resources from
M data centers distributed in M distinct geographical regions
to provision VNF service chains. The NFV provider runs a
DL-based scheduler for placement and scaling of each VNF
service chain (different chains are scheduled by different
schedulers). Each VNF chain is traversed by many network
flows (e.g., TCP connections) between various sources and
destinations. For ease of presentation, we group the individual
network flows originating from the same geographic region
and ending at the same region, and refer to the flow group as
one flow hereinafter. Our system is to place sufficient instances
of each VNF in the chain onto geo-distributed data centers,
catering for the need of all flows. Instances of the same VNF
can be deployed onto different data centers, and different flows
can share the same VNF instance.

We focus on one scheduler handling one service chain when
presenting our design. There are N distinct VNFs in the
service chain, whose connectivity in the chain is indicated by
en,n′ , with en,n′ = 1 if (n, n′) is a hop in the VNF chain and
en,n′ = 0 otherwise, ∀n ∈ [N ], n′ ∈ [N ].1 There are in total I
flows traversing the service chain, corresponding to I different
source-destination region pairs. Let mi

s ∈ [M ] (mi
d ∈ [M ])

be the data center in the region that the source (destination)
of flow i belongs, ∀i ∈ [I]. For notation simplicity, we use
mi

s and mi
d to indicate flow i’s source region and destination

region as well.
The system works in a time-slotted fashion, over a poten-

tially large span of T time slots. Flow rate of each flow i,
fi(t), t ∈ [T ] (i.e., aggregate rate of individual flows when
sent out from the source mi

s), varies over time, decided by the
number of individual network connections the flow includes
and the data rates along the connections at each time. fi(t) = 0
indicates that there is no flow from region mi

s to region mi
d

in t. In addition, we practically consider that the flow rate
may change after being processed by a VNF: some VNFs,
e.g., those performing tunneling gateway functions such as
IPSec/SSL VPN and media gateways, convert flow packets
from one format to another, which may increase the packet size
for encapsulation or decrease the packet size for decapsulation;
some VNFs, which perform security functions (e.g., firewalls
and intrusion detection), may drop packets which violate
security policies [26]. We use λn(t) to denote the flow change
ratio of VNF n in t, computed by the overall rate of the flows
after passing the VNF divided by the overall flow rate arriving
at the VNF. Let λ̄n(t) denote the cumulative flow rate change
ratio from first VNF to the VNF before VNF n in the chain

1We use [X] to represent the set {1, 2, . . . , X} in the paper.
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at t: λ̄n(t) = λn1λn2 . . . λn− , where n1, n2, . . . , n
− are the

VNFs before n in the chain. Hence, the rate of flow i arriving
at VNF n in t is fi(t)λ̄n(t).

Let Pn denote the processing capability of one instance of
VNF n ∈ [N ], in terms of the incoming flow rate that it can
handle in a time slot. Without loss of generality, we assume
that instances of the same VNF used to process one flow are to
be placed in the same data center in a time slot; that is, there
is one source-to-destination flow path across the data centers
for each flow, and there can be multiple instances of the same
VNF in a data center to serve the flow, depending on the flow
rate. On the other hand, different flows may share the same
instance of a VNF n, if they place VNF n in the same data
center, to minimize the number of instances deployed in the
same data center.

At the beginning of each time slot t, the NFV provider
adjusts service chain deployment for the flows, to prepare
for upcoming flow changes in the time slot, by making the
following decisions: (i) Placement of VNFs for each flow,
indicated by xi

m,n(t): xi
m,n(t) = 1 if VNF n of flow i is

deployed in data center m in t, and xi
m,n(t) = 0, otherwise,

∀m ∈ [M ], n ∈ [N ], i ∈ [I]. (ii) The number of instances of
each VNF to be deployed in each data center, zm,n(t), which
is decided by the processing capacity Pn and total rate of flows
traversing VNF n in data center m in t, ∀m ∈ [M ], n ∈ [N ].

B. Cost Structure

The goal of the NFV provider is to minimize the overall cost
of running the service chain to serve the flows. We consider
four types of costs.

(1) Operating costs. Let Om,n be the operating cost for
running each instance of VNF n in data center m, for
renting a virtual machine or container with required resource
configuration for running the instance. The overall operational
cost for running all VNFs of the service chain at t is:

Coperate(t) =
∑

m∈[M ]

∑
n∈[N ]

Om,nzm,n(t) (2)

(2) Flow transfer costs. Let Ein
m and Eout

m denote the
transfer-in and transfer-out cost per unit of flow rate at data
center m. Binary variable yi

m′,n′,m,n indicates whether flow i
goes from VNF n′ deployed in data center m′ to VNF n in
m in t, or not. We can calculate the overall flow transfer cost
in t as:

Ctrans(t) =
∑
i∈[I]

∑
m′∈[M ]

∑
n′∈[N ]

∑
m∈[M ]

×
∑

n∈[N ]

Ein
m λ̄nfi(t)en′,nyi

m′,n′,m,n(t)

+
∑
i∈[I]

∑
m∈[M ]

∑
n∈[N ]

∑
m′∈[M ]

×
∑

n′∈[N ]

Eout
m λ̄n′fi(t)en,n′yi

m,n,m′,n′(t) (3)

(3) Deployment costs. We use Dm,n to denote the cost for
deploying VNF n anew in data center m, while there is no

instance of VNF n deployed in m in the previous time slot.
The cost is mainly incurred due to the effort of copying the
VNF’s image to the data center, and launching a VM/container
with the image. The cost is typically considered on the order
of the operating cost to run a server for a short period [27].
Let binary variable km,n(t) indicate if any instance of VNF n
is deployed in data center m in t or not. The total deployment
cost in t can be formulated as:

Cdeploy(t) =
∑

m∈[M ]

∑
n∈[N ]

Dm,n max{km,n(t)−km,n(t1), 0}

(4)

(4) Delay costs. Let lm,m′ denote the network delay
from data center m to data center m′, ∀m, m′ ∈ [M ].
The end-to-end delay of a flow is an import performance
metric of geo-distributed service chain deployment. To for-
mulate the end-to-end delay of a flow, we augment the
service chain with a virtual first VNF and a virtual last-
hop VNF, indicating the source and destination of the
flow, with fixed deployment in mi

s and mi
d, respectively.

Define [N̄ ] to be the set of VNFs including the two virtual
ones. The end-to-end delay of flow i can be computed as∑
m∈[M ]

∑
n∈[N̄ ]

∑
m′∈[M ]

∑
n′∈[N̄]

lm,m′en,n′yi
m,n,m′,n′(t). We multi-

ple the delay by a cost per unit of delay, L, to convert the
delay to a delay cost. The overall delay cost of all flows at t
is:

Cdelay(t) = L
∑
i∈[I]

∑
m∈[M ]

∑
n∈[N̄]

∑
m′∈[M ]

×
∑

n′∈[N̄]

lm,m′en,n′yi
m,n,m′,n′(t) (5)

The overall cost of the NFV system over the entire time
span T is hence:

Call =
∑
t∈[T ]

(Coperate(t)+Cdeploy(t)+Ctrans(t)+Cdelay(t))

(6)

C. DL-Based Scheduler

We propose a deep learning-based scheduler, to decide
deployment and scaling of the geo-distributed VNF chain
to serve multiple flows traversing the chain. Different from
existing DL-based schedulers [15], [16], our scheduler does
not rely on pure offline training. It consists of an RNN-based
traffic prediction model and a DRL model. The traffic model
is trained using limited historical traces. Using upcoming
flow rate predicted by the traffic model, the DRL model
learns the scheduling policy in an online manner: in each
time slot, the scheduler takes system state composed of flow
prediction and VNF deployment information and produces
VNF placement to serve each flow; it observes system cost
as reward signal along with actual flow rates and uses them as
feedback to update its DRL NN as well as further update the
traffic model. This design alleviates the need for historical
traces in implementing our scheduler: we only need some
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Fig. 1. Overview of DL-based scheduler.

historical traffic rates and user distribution, which are available
statistics in many real-world systems, e.g., Websites and other
online services; we do not need detailed historical traces
on VNF deployment and flow rate change ratios, which are
largely unavailable in practice. Our online DRL is able to learn
a good deployment strategy by interacting with the real world
over time, towards minimizing the overall cost in Eqn. (6).
Fig. 1 gives an overview of our scheduler.

IV. DEEP LEARNING FRAMEWORK FOR

SERVICE CHAIN DEPLOYMENT

We present detailed design of our traffic model that learns
the inherent pattern of flow rates and the DRL model for
deployment decision making.

A. Traffic Model

In view of the strong traffic pattern in practical Internet
applications (e.g., daily/weekly access patterns from around
the world in a Web application), we propose an NN model to
learn the traffic pattern and use it for predicting upcoming flow
rates during our online DRL. Combination of an environment
model with RL has shown promising performance in tackling
complex problems [28], [29]. The predicted flow rate is
embedded into the input state of our DRL model. Therefore,
we ensure that the next input state of the DRL model is solely
dependent on our current input state and the action we select.

1) NN Model: We use a recurrent neural network (RNN)
as the traffic model, which is a category of highly expressive
models that are capable to learn rich temporal representation
of data for future prediction [30]. RNN is a kind of NN where
connections between neurons form a directed graph along a
temporal sequence. The strong pattern in network traffic is
suitable for RNN to learn and predict the future trend. The
input to the RNN is a vector (mi

s, m
i
d, n, f). Here, mi

s and mi
d

are flow source and destination, respectively; n indicates
the VNF; f includes rates of the flow arriving at VNF n in

TABLE I

NOTATION

a historical time window, i.e., f = {fi(t − Δt)λ̄n(t − Δt),
fi(t−Δt+1)λ̄n(t−Δt+1), . . . , fi(t−1)λ̄n(t−1)}, where t
is the current time slot and Δt decides the window size (48 as
in our evaluation). The output produced by the RNN is the
predicted upcoming flow rate arriving at VNF n in t, f̃i,n(t).
In our experiment, the traffic model is a one-layer LSTM [31]
with 128 neurons.

2) Model Training: The RNN model is trained offline and
updated online, using supervised learning.

For offline training, we can use historical flow traces,
describing flow distribution between different source-
destination pairs and the flow rates, which are common sta-
tistics in real-world applications. We do not rely on any VNF
information in the traces, and can just set n in the input to
the RNN to be the first VNF in our service chain; essentially,
our offline training is to capture flow rate pattern between
each pair of source and destination. The training is done using
ADAM optimization algorithm [32] to minimize the relative
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error between the predicted flow rates and real flow rates in
the traces [30].

During online DRL training, the traffic model is further
refined with real flow data. In each time slot, we observe the
flow rate arriving at each NF in the chain, and can collect up
to M2N samples to train the traffic model RNN, for different
flows between different source-destination pairs and arriving
at different VNFs.

B. Online Deep Reinforcement Learning

We design an online DRL algorithm based on the actor-critic
framework [24] for VNF chain placement and scaling. We
allow our agent to produce part of the VNF chain placement
in each learning step to reduce the action space, and all the
decisions in one time slot form the complete VNF chain
placement. The information about the previous decisions is
embedded into the input state to help the agent learn the VNF
chain structure.

1) DRL Model: We detail the DRL model as follows.
a) State: We design the input state to be mainly com-

posed of previous deployment decisions and information about
the upcoming flows from the traffic model. The input state to
the DRL NN in time slot t should include the following:

(1) VNF deployment in previous time slot t− 1, indicated
by matrix z(M, N), where z(m, n) is the number of VNF n
instances deployed in data center m in t− 1.

(2) Source and destination of the current flow i under
consideration, encoded by two M -dimensional vectors, �o(M)
and �d(M), respectively. �o(m) = 1 (�d(m) = 1) if m = mi

s

(m = mi
d) and �o(m) = 0 (�d(m) = 0), otherwise.

(3) VNF deployment decisions made in the current
time slot t, represented by matrix r(M, N). r(M, N) is
initialized to all zero at the beginning of time slot t. During
the current time slot, r(M, N) is continuously updated as each
VNF placement is decided. With each action produced by the
NN (see Action below), in the next input state to the NN,
r(M, N) is populated as follows: if a previous action in t
indicates placing VNF n serving flow i in m, we increase
r(m, n) by the predicted number of instances of VNF n to
serve flow i in t, computed based on the predicted flow rate
arriving at VNF n using the traffic model, as follows:

r(m, n)←− r(m, n) +
f̃i,n(t)

Pn
. (7)

(4) The VNF whose placement is to be decided, encoded
in vector �h(N). While r(m, n) represents previous decisions,
the information of current VNF whose placement is to be
decided remains unknown. Therefore, we use �h(N) to encode
the type and the estimated number of instances needed of
the VNF that is to be placed. Supposing n is the VNF to

be deployed, we have �h(i) = 0, ∀i �= n and �h(n) =
�fi,n(t)

Pn
.

(5) Deployment of the previous VNF in the chain to serve
flow i in t, indicated by a matrix g(M, N). This information
is included in the state, as current VNF placement is strongly
related to the previous VNF’s placement in the chain, due
to the cost in bandwidth and delay. If the previous action is
to place VNF n in data center m, then we have g(m, n) =
r(m, n) and other components in g remain 0.

The input state is hence:

S = (z(M, N), �o(M), �d(M), r(M, N),�h(N), g(M, N)).

Recall that our scheduler works in a proactive fashion: it
adjusts VNF deployment at the beginning of a time slot,
preparing for handling the upcoming flow rates in the time
slot. As detailed in Action below, we allow multiple actions
within one time slot. After each action, we will update the
state, S, according to the previous action. Therefore, we allow
multiple state changes within one time slot. And, we do
not have the exact flow rates to handle when making the
deployment decisions, but only predicted rates based on the
traffic RNN. Besides practicality, this design ensures the basic
MDP assumption for our DRL, which requires that transition
from current state s to the next state s′ is only affected by
the chosen action a at s [24]. Suppose the system works in a
reactive fashion, and the input state s includes the actual flow
rates to handle in a time slot; then the next state s′ is not fully
decided by s and action a taken on s, as the next-step input
flow rates are independent of them. In our system, we use
values computed based on predicted flow rates in the input
state, which are decided by the traffic NN model according
to previous flow rates; Hence with a traffic prediction model,
our state transition satisfies the MDP assumption.

b) Action: The DRL NN produces a policy π : π(s | a; �θ)
→ [0, 1], which is a probability distribution over the action
space. Here a represents an action, and �θ is the current set of
parameters in the NN. Straightforward design of the action
is to decide the placement of all VNFs to serve all flows
in one action. However, this leads to an exponential action
space, containing all possible combinations of VNF placement.
A large action space incurs significant training cost and slow
convergence [20]. To expedite learning of the NN, we simplify
the action definition, and produce one data center as the
deployment location for the input VNF (indicated in �h(N)).
Hence the action space is of size M :

A = {a|a ∈ [M ]}
We allow multiple inferences over the NN for producing the

complete set of VNF deployment decisions at the beginning of
each time slot: we order the I flows randomly, and decide their
VNF placement one flow after another; for each flow, we feed
the VNFs one after another according to their sequence in the
service chain, into the NN in �h(N). For example, for flow i,
we first indicate the first VNF n1 in �h(N); after producing
one action (n1’s placement), we update state S, indicating
the second VNF in �h(N), and produce the next action. This
repeats until we have placed all VNFs for serving flow i, and
then we move on to produce actions for placing VNFs to serve
another flow.

Each action only gives on which data center to place the
respective VNF. The number of instances of the VNF n to
deploy in the output data center m is decided based on r(m, n)
in Eqn. (7) using the actual flow rate, as multiple flows can
share the same instances. For example, if the scheduler decides
to place VNF 1 of flow 1, 2, 3 on the same date center,
data center 1, at time slot t, then, the instance number of
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Fig. 2. Actor-Critic framework for VNF scheduler.

VNF 1 to be deployed onto data center 1 is calculated as⌈
˜f1,1(t)+˜f2,1(t)+˜f3,1(t)

P1

⌉
.

c) Reward: At the end of each time slot, the agent
receives reward signal rτ . We define the reward as the additive
inverse of the overall cost increment after the action. In this
way, the cumulative rewards in Eqn. (1) equals the additive
inverse of the overall cost, if the discount factor γ = 1.
By maximizing the cumulative reward, we minimize the
overall system cost, Call.

2) Online DRL Training: We adopt a number of training
techniques for online DRL.

a) Actor-critic based policy gradient method: To train the
DRL agent, we adopt the actor-critic framework [24] as shown
in Fig. 2. We maintain two DNNs in our DRL agent: one is
the actor network that learns the deployment policy, and the
other is the critic network which estimates the value of the
current state. We use θ and θv to denote the parameters of
the actor network and the critic network, respectively. Both
networks take state as input. Output of action network is a
probability distribution over total M data centers as policy.
And, output of critic network is a real number representing
the estimated cumulative discounted reward from input state
following current policy.

The actor network is trained through the policy gradient
method. The gradient of the expected cumulative discounted
reward is calculated as follows [33]:

∇θEπθ

[ ∞∑
τ=0

γτrτ

]
= Eπθ

[∇θ log πθ(a|s)Aπθ
(s, a)] (8)

Here Aπθ
(s, a) represents the difference between the expected

cumulative discounted reward starting from state s when
agent chooses action a and follows policy πθ afterward,

and the expected discounted reward from state s follow-
ing πθ . Aπθ

(s, a) gives an evaluation of the current action.
If Aπθ

(s, a) is greater than 0, than we know that choosing
action a results in a better cumulative discounted reward than
following policy π. Hence, the actor network will be updated
towards a direction that tends to choose a more often when
facing state s than before. Eventually, the actor network will
learn a policy that produces an optimal action in each state.

However, unlike offline reinforcement learning, where the
agent performs actions till the end state and calculates the
cumulative discounted reward for learning, our online DRL
agent is not able to acquire the expected cumulative discounted
reward when facing state s. Thus, we use the critic network
to estimate the cumulative discounted reward of each state
following the current actor network’s policy, which is also
expressed as the value of each state, vθv(st). Therefore, θv

in the critic network is trained to obtain a better estimation
of expected cumulative discounted reward for each state fol-
lowing the current policy through the Temporal Difference
method [24], where α′ is the learning rate of the critic network:

θv ←− θv + α′ ∑
τ≥0

∇θv(γvθv (sτ+1) + rτ − vθv(sτ ))2 (9)

We leverage output value estimation from the critic network
to calculate the updates of actor network parameters, θ:

θ ←− θ + α
∑

τ

∇θ log πθ(aτ |sτ )(γvθv (sτ+1) + rτ − vθv (sτ ))

(10)

Here we use γvθv(sτ+1)+rτ−vθv(sτ ) to represent estimation
of Aπθ

(s, a); we update θ towards the direction specified by
log πθ(aτ |sτ ) with a step size of Aπθ

(s, a). α denotes the
learning rate for actor network.

b) Asynchronous learning with experience replay: The
sequence of past experiences, represented by a series of
< sτ , aτ , rτ , sτ+1 > transitions, encountered by an online
DRL agent is non-stationary and update of agent policy is
correlated because we update policy network with gradients
computed through a sequence of continuous transitions. This
makes online DRL agent unstable and easily fall into local
optimum. Hence, we adopt an online asynchronous learning
algorithm based on A3C [33], eliminating the update corre-
lation in online DRL. We set up multiple learning agents to
interact with its own environment, where each environment
consists of the same data center setting and VNF chain
structures. Every agent performs scheduling decisions on the
same set of flows. After every τupdate learning steps, the agent
collects past τupdate transitions in trace and sends trace to
the central agent to update network parameters.

However, we find out that directly updating network para-
meters based on each agent’s experience still results in poor
performance. This is because the data correlation is not fully
eliminated as experiences from the same agent are always used
together to update the actor network and critic network. Thus,
we adapt experience replay technique [13] that leverages a
memory buffer to store past transitions < sτ , aτ , rτ , sτ+1 >.
We store the experiences from each agent in a memory buffer
and sample transitions from it for network parameter updating.
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By doing so, we ensure that every time experiences from
multiple agents are used for updating network parameters and
correlation is removed.

c) Exploration: In addition, to encourage exploration
of our DRL agent in the action space (to produce actions
leading to good rewards), we add an entropy regularization
term β∇θH(πθ(·|sτ )) [33] to the update of parameters in the
actor network. This term is to prevent our agent policy from
becoming a deterministic policy.

We find that this commonly used entropy exploration is not
sufficient for our RL to find a near-optimal policy (based on
our experiments). To further allow good exploration of the
action space, we adopt the ε-greedy method in our agent
policy. During each inference, each learning agent chooses
an action according to policy πθ(aτ |sτ ) with a probability of
1− ε, or randomly chooses a data center to deploy VNF with
a probability of ε. This encourages our agent to explore more
actions instead of simply following the current policy. Thus,
the agent is more likely to find actions that lead to better
cumulative reward than current policy.

The algorithms to be carried by each learning agent and
the central agent are given in Alg. 1 and Alg. 2, respectively,
where τ represents learning steps (each corresponding to one
inference made on our DRL model) and the total number of
learning steps, Tend, is T × I ×N .

Algorithm 1 Agent Algorithm
1: τ ←− 0
2: while True do
3: τstart = τ
4: Observe state sτ with traffic model
5: repeat
6: Select aτ according to πθ(aτ |sτ ) with the probability

of 1−ε or perform a random action with the probability
of ε

7: Place the current VNF onto data center aτ

8: Transfer to new state sτ+1 and corresponding reward
is rτ

9: τ ←− τ + 1
10: until τ − τstart == τupdate

11: trace = []
12: for i ∈ {τ − 1, . . . , τstart} do
13: trace.append(< si, ai, ri, si+1 >)
14: end for
15: Send trace to central agent
16: if τ == Tend then
17: τ ←− 0
18: end if
19: end while

V. PERFORMANCE EVALUATION

A. Simulation Setup

System Settings: We perform trace-driven simulations to
evaluate our DRL-based framework. The whole time span is
7 days and each time slot lasts half an hour. Flow data are
generated according to real-world Web traffic obtained from

Algorithm 2 Central Agent Algorithm
1: Initialize memory buffer exp
2: while receive trace from agent do
3: Add trace to exp
4: Sample B < s, a, r, s′ > from exp randomly
5: for i = 1→ B do
6: Accumulate gradients wrt θ: dθ ←− dθ +

α
∑
i

∇θ log πθ(ai|si)(γvθv(s′i) + r − vθv (si)) +

β∇θH(πθ(·|si))
7: Accumulate gradients wrt θv: dθv ←− dθv +

α′ ∑
i

∇θv (γvθv(s′i) + ri − vθv (si))2

8: end for
9: θ ←− θ + dθ, θv ←− θv + dθv

10: dθ ←− 0, dθv ←− 0
11: end while

Huawei Inc. The peak flow rate is at most 720Mbps and
appears between 9 and 11 PM. The bottom flow rate is at
least 160Mbps and appears between 4 and 6 AM. Average
flow rate is about 458Mbps. All the flow rates are normalized
within (0, 1]. We use eight Google data center locations [34]
to create our data center network. Latency between two data
centers is set proportional to their distance within (0, 1]. There
are six flows and four types of VNFs in the system. The
first two types of VNFs result in an increment of flow rate
and the last two reduce flow rate. The flow change ratio for
each VNF is within [0.9, 1.1]. Data processing capability is set
between 600Mbps and 900Mbps based on [35]. Operational
cost, migrating cost and transfer cost are set based on Amazon
EC2 pricing scheme [36]. Operational cost is between (0,1]
and migrating cost is 10% of the operational cost. Transfer
cost is set to be within (1, 2]. Weight L in computing the
latency cost is set to be 5. We use different flow rate data for
DRL training and evaluation.

DNN architecture: We use a one-layer long short-term
memory network (LSTM) [31], a typical type of RNN, with
128 neurons as our traffic model. The actor network has three
fully-connected hidden layers each with 128 neurons whose
activation function is ReLU [31], and an output layer with
8 neurons using softmax function as the activation function.
The critic network has three fully-connected hidden layers
each with 128 neurons whose activation function is ReLU and
one linear neuron as output.

Before DRL training, we train our traffic model by
1000 epochs using 3360 flows. The traffic model training can
be done within 10 minutes and achieves an average error rate
less than 1%.

DRL Settings: During DRL training, the discount factor γ is
set to be 0.99. Learning rates for actor network, critic network
and traffic model are all 0.0001. We use ADAM optimization
for parameter update. Entropy weight β is set to be 5 and ε
is 0.3. Memory buffer size is set to be 1 × 106 and size of
each training batch is 512. Update interval τupdate is set to be
512 learning steps. The number of learning agents is set to 16.

During training, we assign each agent to one CPU and the
total memory usage is 40G. After the learning converges, only
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Fig. 3. System cost: different numbers of VNFs in VNF chain.

one agent is needed to produce placement decisions, whose
running cost can be ignored.

Baselines: We compare our DL-based scheduler with the
following algorithms:

1) Online Algorithm, OA: We design an online algorithm,
OA, based on algorithm proposed in [11]. It formulates the
original problem as an Integer Linear Program (ILP) and
solves the ILP as LP in each time slot respectively by adding a
regularizer to the objective. Rounding technique is then applied
to obtain the feasible integer solution.

2) Greedy Algorithm, GA: A greedy algorithm, GA, is also
proposed as a baseline. GA places each VNF serving every
flow one by one similarly as our DL-based scheduler does,
and assigns every VNF to a data center that minimizes the
current increment in system cost.

3) Deep Q-Learning, DQN: A state-of-art deep reinforce-
ment learning system proposed in [13]. The NN in DQN has
three fully-connected hidden layers each with 128 neurons
whose activation function is ReLU and one output layer with
8 linear neurons. We set the learning rate of DQN to 0.0001.
The memory buffer size is 1 × 106 while the training batch
size is 512. The initial ε is 0.99 and reduced by 1% every
learning step.

In our evaluation experiments, our DL-based scheduler
and DQN make decisions based on historical flow data and
predictions, while OA and GA act based on actual flow rate
at each time (i.e., accurate prediction).

B. Performance

Comparison: We compare the performance of our DL-based
scheduler with baseline algorithms in terms of system cost
in Figs. 3, 4, 5, 6, 7, 8 and 9. We observe that our DL-based
scheduler outperforms three baselines in various scenarios.

1) Different Numbers of VNFs: Fig. 3 shows the perfor-
mance of our scheduler under different numbers of VNFs
in the VNF chain. For the case with 5 VNFs, we add an
additional VNF with flow change ratio 1 and data process
capability 750Mbps to the chain. We see that our DRL
approach achieves an average reduction of 10% in system cost
compared to GA and 41% compared to OA. DQN achieves
comparable performance with 3 and 4 VNFs in the chain.

Fig. 4. System cost: different numbers of flows.

Fig. 5. System cost: different flow patterns.

However, as the chain grows larger, the DQN performs worse
compared with our DL-based scheduler. The reason why OA
performs significantly worse than our scheduler and GA is
that even though it places VNF instances together to reduce
operating cost, it incurs large cost in transferring data, which
is considerably larger than other costs. On the other hand,
our scheduler learns to leverage the chain structures, groups
different VNFs together and places them in the same data
center to avoid high transfer cost. Hence, we observe a small
increase in system cost as the number of VNFs increases since
there is no significant change in the transfer cost.

2) Different Numbers of Flows: Fig. 4 illustrates the system
cost under different numbers of flows. We see that there is
an obvious upward trend in system cost as the number of
VNF flows increases due to the increase in all four costs. Our
scheduler leads to 9% less system cost than GA and 33% less
than OA. The performance of DQN is again unstable, and as
the number of flows grows to 8, DQN performs poorly.

3) Flow Patterns: We further investigate how the network
flow patterns affect performance in Fig. 5. We evaluate three
flow patterns: 1) flow pattern extracted from Huawei Web
traffic; 2) a Poisson arrival pattern where the average packet
number per second is 60 and the average size per packet is
1000 Bytes; and 3) static flows where the flow rate remains at
458Mbps. We observe that our DRL scheduler significantly
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Fig. 6. System cost: different unit delay costs.

Fig. 7. Cost Composition.

outperforms OA by 42%, GA by 10% and DQN by 17%
on average. We observe an even larger gap between our
DL-based scheduler and OA in the case of static flows. OA
is an approximation algorithm based on convex optimization
and random rounding. The randomness introduced by rounding
makes the performance of OA unstable. In contrast, DRL
is a search-based method that smartly searches the solution
space for a better solution. Therefore, our DL-based scheduler
outperforms OA.

4) End-to-End Delay: End-to-end delay plays a critical
part in the placement of VNF chain. Consequently, we study
the performance of our scheduler under different unit delay
costs L in Fig. 6. We observe the good performance of
our DL-based scheduler under both delay-tolerant and delay-
sensitive settings. This shows the strong adaptability of our
DRL framework. We can deploy our scheduler to handle
different flows for services with diverse requirements on
network latency, and the scheduler is capable of learning the
system requirements. The DRL approach reduces system cost
by 10% compared to GA, 37% compared to OA, and 10%
compared to DQN.

5) Cost Composition: Fig. 7 shows the ratio of every cost
to the total cost achieved by each method. We observe that all
four methods achieve negligible deployment cost. In accor-
dance with previous descriptions, OA incurs a large flow

Fig. 8. System cost: evolution over a single day.

Fig. 9. System cost: network traffic with spikes.

transfer cost resulting in poor performance. On the contrary,
our DL-based scheduler incurs a relatively high operating cost
in return for less flow transfer and delay costs. Both GA and
DQN present similar patterns that operating cost is the largest
cost.

6) Distribution of the System Cost Over Time: We
present the evolution of system costs over one day’s course
(48 time slots) in Fig. 8. We observe that the cost evolution is
consistent with the flow pattern: large flow rates lead to large
system costs during 9 to 11 PM.

7) Network Traffic With Spikes: We evaluate the resilience
of our DRL method to network traffic with spikes in Fig. 9.
We set the peak-to-mean ratio (PMR) to 1 with a peak flow
rate of 720Mbps. The burst of network traffic appears between
9 and 11 PM, while flow rates in other time slots are around
360Mbps. We observe our DL-based scheduler outperforms
OA and DQN significantly. Even though the spikes in net-
work traffic make predictions by our traffic model inaccurate,
the performance of our DL-based scheduler is comparable with
GA which leverages the actual flow rates for scheduling.

a) Traffic Model: To illustrate the impact of the traffic
model on our DRL framework, we compare our DRL sched-
uler with three alternatives, one with a poor traffic model,
one without traffic model and one implemented by tradi-
tional forecaster Autoregressive Integrated Moving Average
(ARIMA) [37]. For the alternative with a poor traffic model,
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Fig. 10. System cost: good model vs. poor model vs. no model vs. ARIMA.

we replace the traffic model in our scheduler with a function
that always returns the flow rate in the last time slot. For
the alternative without traffic model, we replace it with a
dummy function that always returns 1. For ARIMA, we set
the number of lag observations included in the model to be 12,
the number of times that the raw observations are differenced
to be 1 and the size of the moving average window to be 0.
In Fig. 10, we see that the scheduler without traffic model
cannot beat the baselines, because it has no knowledge of the
ever-changing flow rate and can only give similar decisions in
each time slot. Thus, we show that adding the traffic model
can significantly help our agent make better decisions. Further-
more, the relatively small difference between the results of our
traffic model and the poor model shows that our DRL agent
is quite robust to the prediction results of the traffic model.
The poor performance of DRL agent without traffic model
proves that the agent indeed leverages the predicted flow rates
for decision making. We observe that the agent without traffic
model naively places all the VNFs onto one data center. During
the evaluation, we find that RNN models traffic fluctuation
better than ARIMA due to the frequent traffic fluctuations.
ARIMA often makes false predictions when network traffic
changes from rising to falling or the opposite. Consequently,
scheduler with ARIMA as traffic model shows relatively poor
performance compared with scheduler equipped with RNN-
based traffic model.

b) Memory Buffer: Size of the memory buffer in DRL is
critical to the performance of our scheduler. A larger memory
buffer can store more past experiences for DRL agent to learn.
Accordingly, a larger memory encourages the DRL agent to
explore more instead of sticking to a local optimum. In Fig. 11,
We observe that when the memory buffer size is small, our
learning agent is not able to store much past experience, and
learns only from current decisions; update correlation in online
DRL exists, leading to poor performance. When we increase
the memory buffer size, the system cost decreases as the
update correlation is eliminated.

c) ε-Greedy: Fig. 12 illustrates the system cost when our
DRL scheduler uses different values of ε in exploration. When
ε equals 0, our scheduler performs solely according to the
actions produced by the actor network and quickly converges
to poor policy. By increasing ε, the system cost drops sharply

Fig. 11. System cost: different sizes of memory buffer.

Fig. 12. System cost: different ε.

Fig. 13. System cost: different numbers of agents.

and then gradually increases. This is because when ε is large,
our scheduler’s policy is too random for the DNN to learn and
hence leads to poor performance.

d) Learning Agents: Fig. 13 shows the system cost
with different numbers of asynchronous learning agents.
We observe that the scheduler obtains a low system cost when
the number of learning agents is large. This is because with
more learning agents, our scheduler is able to explore much
more states in less training epochs. However, when there
are more than 16 learning agents, the performance remains
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relatively stable. Accordingly, we set the number of learning
agents in our scheduler to 16 by default.

VI. CONCLUSION

This paper presents a deep learning-based scheduler for geo-
distributed VNF chain placement and scaling. Our scheduler
consists of a traffic model and a deep reinforcement learning
agent. The traffic model is trained by offline supervised
learning with historical traces to capture the pattern in
network traffic fluctuation, and further refined online with real
flow data. The DRL agent based on an actor-critic framework
is used to make VNF chain placement decisions across
geo-distributed data centers and improves its policy through
reward signals obtained purely in an online fashion. Compared
with representative heuristic, online optimization and DRL
algorithms, trace-driven simulation in various scenarios
demonstrates that our DL-based scheduler outperforms
baselines by 10%-42% regarding overall system cost.
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