
1

Optimizing Task Placement and Online Scheduling
for Distributed GNN Training Acceleration in

Heterogeneous Systems
Ziyue Luo, Member, IEEE, Yixin Bao, and Chuan Wu, Senior Member, IEEE

Abstract—Training Graph Neural Networks (GNNs) on large
graphs is resource-intensive and time-consuming, mainly due
to the large graph data that cannot be fit into the memory
of a single machine, but have to be fetched from distributed
graph storage and processed on the go. Unlike distributed deep
neural network (DNN) training, the bottleneck in distributed
GNN training lies largely in large graph data transmission for
constructing mini-batches of training samples. Existing solutions
often advocate data-computation colocation, and do not work
well with limited resources and heterogeneous training devices
in heterogeneous clusters. The potentials of strategical task
placement and optimal scheduling of data transmission and task
execution have not been well explored. This paper designs an
efficient algorithm framework for task placement and execution
scheduling of distributed GNN training in heterogeneous systems,
to better resource utilization, improve execution pipelining, and
expedite training completion. Our framework consists of two
modules: (i) an online scheduling algorithm that schedules the
execution of training tasks, and the data transmission plan;
and (ii) an exploratory task placement scheme that decides the
placement of each training task. We conduct thorough theoretical
analysis, testbed experiments and simulation studies, and observe
up to 48% training speed-up with our algorithm as compared to
representative baselines in our testbed settings.

Index Terms—Distributed Machine Learning Systems, Graph
Neural Network, Online Scheduling.

I. INTRODUCTION

Graph neural networks (GNNs) [1][2], built on top of
deep neural networks (DNNs), are capable to learn the high-
level representations of graph-structured data, through iterative
aggregation of node’s neighboring information. GNN has
shown its success in various graph-related tasks, e.g., node
classification [3], graph classification [4] and link prediction
[5].

As compared to traditional graph analysis models [6][7],
GNNs can capture more complicated features of nodes/edges
of large graphs with millions of nodes and billions of edges
(e.g., Amazon Product Co-purchasing Network [8], Microsoft
Academic Graph [9]). However, training GNNs on large
graphs is very resource-intensive and time-consuming. The
large graph sizes often exceed the memory and computation

This work was supported in part by grants from Hong Kong RGC under the
contracts HKU 17207621, 17203522, and C7004-22G (CRF). A preliminary
version of this work appeared as ”Optimizing Task Placement and Online
Scheduling for Distributed GNN Training Acceleration” in Proc. of IEEE
INFOCOM, 2022, pp. 890-899.

Ziyue Luo, Yixin Bao and Chuan Wu are with the Department of
Computer Science, The University of Hong Kong, Email: {zyluo, yxbao,
cwu}@cs.hku.hk.

capacities of a single device (e.g., GPU) or physical machine,
yielding distributed GNN training using multiple devices and
machines as the solution. While full-graph training by loading
the entire graph into device memory is often infeasible [1],
a common practice of distributed GNN training is to do
subgraph sampling [10][11] and mini-batch training at each
device: samplers select a set of training nodes in the graph,
retrieve from graph stores features of (a subset of) several-
hop neighbor nodes of each training node to form subgraphs,
construct mini-batches with the subgraphs and feed them
into workers for training. Workers synchronize the trained
model parameters with each other through either parameter
servers [12] or the AllReduce operation [13].

A few distributed GNN training frameworks have recently
been proposed, e.g., distributed DGL [14], PyG [15], Dory-
lus [16]. It has been observed that frequent, large graph data
transfers exist in distributed GNN training, as mini-batch sam-
pling is carried out in each training iteration, which involves
retrieval of subgraphs commonly consisting of hundreds of
graph nodes each. Graph data transfer often consumes the
majority of time during GNN training (up to 80% of overall
training time [14][17]) and renders the performance bottleneck
of GNN training, which is different from the common bottle-
necks of computation or gradient/parameter communication
in DNN training. Careful design to alleviate the graph data
transfer overhead is hence the key for distributed GNN training
acceleration.

A few efforts have been devoted to minimizing the graph
data transfers in distributed GNN training, through static
caching [18], min-edge-cut graph partition [19], and data-
computation co-location [14]. Even with these schemes, large
data transfers between samplers and graph stores may still
exist; data-computation co-location may not always be ap-
plicable when resource availability varies across machines.
On the other hand, strategical task placement, data flow and
task execution scheduling to improve resource utilization and
execution parallelization, have not been well explored, which
can be good complements to the traffic-minimizing schemes
for distributed GNN training acceleration.

Moreover, a machine learning (ML) cluster commonly
consists of GPUs of different models, with thousands of
ML jobs running simutaneously [20]. A newly arrived ML
training job often faces the dilemma that available GPUs of its
desired model are not enough while GPUs of other models are
available, calling for ML training with heterogeneous devices.
However, distributed GNN training in heterogeneous systems

2

has not been fully explored.
We focus on optimized planning of distributed GNN training

in a heterogeneous system, involving effective placements
of training tasks (samplers, workers and parameter servers),
near-optimal execution scheduling of the tasks, and data flow
transfers. Unique challenges exist in distributed GNN training
planning:

First, existing designs largely advocate co-locating a worker
with its samplers on the same physical machine, which is
only applicable if the computational resources on the machine
allow. In a practical ML cluster, resource availability and
computation capability differ across machines. It is non-trivial
to make training task placement decisions to minimize data
transfer traffic and maximize GNN training efficiency.

Next, optimal scheduling of data transfers and task execution
in a distributed GNN training job is complex, falling in the
category of strongly NP-hard multi-stage coflow scheduling
problems [21]. Further, the data transfer volume between graph
stores and samplers varies according to the graph nodes and
their neighbors sampled in each training iteration [10][11] and
their storage locations, rendering the scheduling problem an
online nature and calling for efficient online algorithm design.

Tackling the challenges, we design an algorithm framework
for distributed GNN training planning, comprising two mod-
ules: 1) an online scheduling algorithm to strategically set
execution time of training tasks and transfer rates of data flows;
and 2) an exploratory task placement scheme that decides the
placement of each task among available machines. Our goal
is to maximize task parallelization while respecting various
dependencies, and hence minimize the overall training time of
a given GNN model. Our main techniques and contributions
are summarized as follows:

▷ Given task placements, we formulate the task and flow
scheduling problem for distributed GNN training as an on-
line optimization problem. We design an online scheduling
algorithm by effectively overlapping task computation with
graph data communication, and adaptively balancing the flow
transmission rates among parallel flows into (from) the same
machine, to eliminate negative impact of potential communi-
cation bottlenecks on the training time. We rigorously analyze
the online algorithm and identify a competitive ratio on the
training makespan, which is decided by the maximum number
of incoming or outgoing flows at any machine in one iteration.
This further inspires our task placement scheme design to find
the placements achieving the minimum expected training time
scheduled by our online algorithm.

▷ Next, we propose an exploratory task placement scheme
based on the Markov Chain Monte Carlo (MCMC) frame-
work [22]. We start by efficient construction of an initial
feasible placement in polynomial time. We then introduce
a resource violation tolerance factor to encourage full ex-
ploration among feasible placements in the solution space.
Inspired by our online scheduling algorithm, we design a
placement cost function, defined on the critical path length
in an execution graph constructed based on our scheduling
algorithm and the placement. The carefully defined cost fuc-
tion guides our search process to the best feasible placement
of tasks in arbitrary (heterogeneous) environments, to achieve

the minimal expected training time in conjunction with our
online scheduling algorithm.
▷ We implement our design atop DGL [23], and conduct

thorough testbed experiments and trace-driven simulations.
Testbed experiments show that our design achieves signifi-
cantly lower GNN training time as compared to DistDGL [14]
(up to 48% on ogbn-products dataset [8]) with more effi-
cient network bandwidth utilization. Simulation studies fur-
ther demonstrate the effectiveness of our design, accelerating
training up to 67% compared to representative baselines across
various training settings, by exploiting strategical task place-
ments to minimize the overall data traffic and maximize the
utilization of heterogeneous network bandwidths, maximally
overlapping communication with computation, and efficiently
scheduling data traffic despite the varying data volumes.

II. BACKGROUND AND RELATED WORK

A. GNN Training

v

h2
v

Layer 2

Layer 1

v Node v

1-hop neighbor of v

2-hop neighbor of v
Aggregator

function

GNN layer

Fig. 1: An example of embedding calculation of
node v with a 2-layer GNN: embeddings of v’s
1-hop neighbors (l = 1) are computed using
hl
v = σ(hl−1

v ,AGGREGATEv′∈v’s neighborsf(h
l−1
v , hl−1

v′ , ev,v′)),
and then aggregated to derive v’s embedding, h2

v , using the
formula with l = 2. σ(·) and f(·) are trainable parameterized
functions, ev,v′ is the edge between v and v′, and AGGREGATE
is an aggregator function (e.g., mean, min, max).

GNNs learn effective graph embeddings by iteratively ag-
gregating neighborhood features (Fig. 1) [24][25]. The derived
embeddings can be further processed (e.g., using DNN layer,
softmax operation), to produce decisions for downstream tasks
(e.g., node classification, link prediction).

To construct a mini-batch for GNN training, a set of training
nodes are sampled from the input graph, and their L-hop
neighbors are used for embedding generation by an L-layer
GNN. Using features of all L-hop neighbors of the selected
training nodes may lead to GPU/CPU memory overflow or
high computation complexity. A common practice is to recur-
sively sample neighbors of each training node with a sampling
algorithm (e.g., [10][11]), and a sub-graph is formed among
the training node and its sampled L-hop neighbors. Each sub-
graph with its features renders one sample in the mini-batch.

Using mini-batches of graph samples, GNN training is
similar to DNN training: forward propagation is carried out
to compute a loss, and then backward propagation to derive
gradients of the GNN model parameters based on the loss,
using an optimization algorithm (e.g., stochastic gradient de-
scent); a gradient update operation follows, which involves
gradient aggregation among workers in distributed training and
application of updated parameters to the GNN model.

3

B. Distributed GNN Training Systems

Deep Graph Library (DGL) [23] is a package built for easy
implementation of GNN models on top of DL frameworks
(e.g., PyTorch [26], MXNet [27]). The recent release of DGL,
DistDGL [14], supports distributed GNN training on relatively
large graphs. It uses random sampling, colocates one worker
with one graph store, and does not pipeline GNN training
across iterations, leaving a large room for further performance
improvement. Euler [28] is integrated with TensorFlow [29]
for GNN training, which partitions a large graph in a round-
robin manner and splits feature retrieving requests to allow
concurrent transmissions; large data transfers still exist due
to its locality-oblivious graph partition. AliGraph [30] adopts
distributed graph storage, optimized sampling operators and
runtime to efficiently support GNNs. PyTorch Geometric [15]
is a deep learning library designed for irregularly structured
input data such as graphs. It supports multi-GPU training on a
single machine only, and users are advised to implement their
own graph store servers and samplers for training large-scale
graphs beyond a single machine. Dorylus [16], on the other
hand, distributes GNN training across serverless cloud func-
tion threads on CPU servers. It optimizes for cost effectiveness
and relies on specialized functions provided by AWS [31].
However, Dorylus introduces asynchronous computation into
the training process, which can negatively impact convergence
performance. Notably, all of these designs, except for DGL, do
not optimize the placement of tasks within a distributed GNN
training system. Large data traffic exists in these systems, and
careful transfer scheduling and task deployment can enhance
them for training time minimization.

C. Distributed Training Acceleration

NeuGraph [32] and PaGraph [18], which train GNN models
on a single machine, adopt full-graph training by loading entire
graphs into GPU memory, and are hence only feasible for
training over small graphs. Considering multi-server clusters,
ROC [33] splits the input graph over multiple GPUs or
machines to achieve workload balance, and adopts a mem-
ory management scheme to reduce CPU-GPU data transfer.
DistDGL [14] alleviates network transfer in distributed GNN
training by co-locating each worker with its samplers on the
same server, and partitioning the input graph with a minimum
edge cut method. P 3 [17] adopts hybrid parallel strategies
for distributed GNN training, colocating the first GNN layer
with the graph data and then redistributing activations for
later layers’ computation in a data-parallel manner. Further, a
number of works have optimized the distributed GNN system
from the perspectives of graph partition [34], caching [35],
etc. These studies focus on minimizing data transfer volumes
across devices/machines. Optimization of task placement and
execution scheduling is orthogonal to the existing efforts,
and our solution can complement them to fully accelerate
distributed GNN training. DGCL [36] is a recently proposed
communication library for distributed GNN training, which
decides data routing strategy for every graph node to the
requiring worker(s), considering the detailed interconnection
topology among workers. It focuses on full-graph training

(i.e., training with the whole graph without sampling), and
would require communication plan re-computation per epoch
if directly adopted into sampling-based training.

Task placement, computation and communication schedul-
ing have been studied for DNN training on non-graph data
[37][38][39]. The communication scheduling deals with ar-
ranging transmission time and order of gradient/parameter ten-
sors for parameter synchronization [38][39]. Placement studies
focus on worker placement to minimize interference [40]
instead of proximity to data, and DNN operator placement
to achieve model parallelism [41]. Computation scheduling
deals with fine-grained operator execution ordering, in case of
model- or pipeline-parallel DNN training [42][43][44]. Com-
pared to distributed DNN training, GNNs are largely trained
with data parallelism, incurring large graph data communi-
cation that blocks the computation and occupies a majority
of the training time (up to 80% [17]). Instead of operator-
level placement and scheduling of a GNN model, we study
placement of tasks (samplers, workers and parameter servers),
overlap both graph data transfer and tensor communication
with computation (the graph data traffic is magnitudes larger
than tensor transfers), and pipeline mini-batch training across
training iterations, which are all dedicated for GNN training
acceleration.

D. Communication Scheduling for Parallel Flows

The minimization of communication cost for parallel data
flows in distributed systems has been the subject of extensive
research in several works. RAPIER [45] presents an online
coflow (i.e., parallel flows) optimization framework for data-
intensive coflows. It makes joint decisions on coflow schedul-
ing and routing to minimize the average coflow completion
time. Chowdhury et al. [46] investigate coflow scheduling
across geo-distributed data centers. They propose a random-
ized 2-approximation algorithm for coflows with polynomially
sized release times and demands, and a (2+ ϵ)-approximation
design for coflows where release times and demands are
super-polynomial. Cheng et al. [47] propose NEAL, a cross-
layer approach that amalgamates application-layer data local-
ity scheduling with network-layer coflow scheduling. NEAL
models the data placement and coflow scheduling problem
as a mixed integer linear program, and employs a meta-
heuristic approach for scheduling decisions. However, all the
aforementioned works primarily focus on optimizing coflows
consisting of a single stage (i.e., no dependencies between
flows), whereas our problem involves complex dependencies
between tasks and flows, which significantly complicates the
scheduling and data placement process. Tian et al. [21] study
the scheduling of multi-stage coflows and propose an approx-
imation algorithm based on a relaxed linear formulation of
the problem. Nevertheless, they only consider offline problems
where the flow rates are known in advance. Shafiee et al. [48]
design an offline algorithm for scheduling coflow jobs with
directed acyclic graph structures. They propose a randomized
Delay-and-Merge algorithm, which randomly delays the start
time of each job and greedily merges delayed jobs to maximize
the networks. However, distributed GNN training introduces

4

dependent parallel flows with varying flow rates due to its
random node sampling process, which cannot be known in
advance. Despite this, we have developed an online task exe-
cution and flow scheduling algorithm that delivers competitive
performance.

III. PROBLEM MODEL

A. Distributed GNN Training System

We train a GNN model (with L embedding layers) in a
cluster of M physical machines. Partitions of a large graph
used for GNN training are stored on the M machines. Each
machine m ∈ [M]1 is equipped with R types of computational
resources (e.g., GPU, CPU and memory), with type-r resource
available at the amount of Cr

m. Let Bm
in (Bm

out) represent
the available incoming (outgoing) NIC bandwidth on machine
m. Besides heterogeneous bandwidth levels among machines,
computation capabilities on different machines can differ, e.g.,
machines with different GPU and CPU models.

There are several types of tasks in our distributed GNN
training job: (1) Graph store server: Each machine hosts a
graph store server, to maintain one graph partition (including
graph structure and node/edge features). (2) Sampler: Each
sampler selects training nodes, retrieves sampled node/edge
features from graph store servers and forms sub-graphs. (3)
Worker: Each worker carries out forward and backward com-
putation, and synchronizes model parameters with a parameter
synchronization scheme. A worker is typically associated with
one or multiple samplers, which supply mini-batches dedicat-
edly to the worker. We use Jg, Js and Jw to represent the sets
of graph store servers, samplers and workers, respectively, in
the training job.

For model parameter synchronization among workers, we
consider two popular synchronization schemes: the parameter
server (PS)-based [12], and the Ring AllReduce operation-
based [13] parameter synchronization. For PS-based parameter
synchronization, we leverage another type of task, parameter
server, to aggregate gradients from all workers, update the
GNN model parameters and distribute updated parameters to
all workers. Let Jps denote the set of PSs in a PS-based train-
ing job. For Ring AllReduce-based parameter synchronization,
Jps equals ∅ for the Ring AllReduce-based training job. A
ring is formed among workers during the Ring AllReduce
operation, with each worker receiving partial gradients from
its upstream worker, performing gradient aggregation, and
sending the results to the downstream worker in every step.
The synchronization includes two phases: ReduceScatter for
aggregating gradients, and AllGather for synchronizing the
aggregated gradients among workers. For a training job of
|Jw| workers, both ReduceScatter and AllGather take |Jw|−1
steps, respectively, yielding 2|Jw|−2 steps in total. We use Jj

a ,
j ∈ Jw, to denote the set of Ring AllReduce tasks associated
with worker j (i.e., tasks performing gradients aggregation
on worker j), and Ja to denote the set of all tasks in one
Ring AllReduce operation. Fig. 2 illustrates an example Ring
AllReduce operation among three workers, which takes 4
steps.

1[X] denotes set {1, 2, . . . , X}

W1

W2

W3

W1

W2

W3

W1

W2

W3

W1

W2

W3

W1

W2

W3

ReduceScatter AllGather

Ring

W1 W2

W3

Ring AllReduce

Gradient
Communication

Worker
Dependency

Fig. 2: Ring AllReduce

Graph Store Server 2
Graph Store Server 1

Node/
Edge

Features
···

Sampler 1

···

Sampler 2

Sampled
Sub-graph

Parameter
Server

Worker 2

Worker 1

GNN Model

Updated
Parameters

Gradients
Worker 3

Fig. 3: Distributed GNN training workflow

Let J denote the set of all tasks, i.e., J = Jg∪Js∪Jw∪Jps∪
Ja. We suppose the number of each type of tasks is specified
by the ML developer: the number of graph stores is M (as
each machine hosts exactly one graph partition), the number
of workers can be larger or smaller than M (considering a
machine may host multiple GPUs and CPUs, and a worker
typically consumes one GPU or CPU), the number of samplers
to serve each worker is usually fixed (e.g., 2 samplers per
worker). Each task j ∈ J occupies a wr

j amount of type-r
resource, ∀r ∈ [R]. For example, graph store servers, samplers
and PSs are commonly run on CPUs, while workers can run on
GPUs [18] or CPUs [14], and consume the respective memory.
Tasks of the same kind (e.g., all samplers) occupy the same
amount of resources. In addition, Ring AllReduce tasks in
Jj
a are colocated with their associated worker j, and share the

same set of computational resources with j (i.e., GPU). Hence,
we set the resource demands for all tasks in Ja to be 0. Let
pmj denote the execution time of task j in each iteration on
machine m.

In a training iteration, each sampler selects a number of
training nodes from the input graph and signals the graph store
servers to acquire neighbor information. Upon requests from a
sampler, a graph store server samples among L-hop neighbors
of the training nodes that it hosts (using a given sampling algo-
rithm), and sends the node/edge features back to the sampler.
The sampler then sends sub-graph samples to its associated
worker, which form a mini-batch from samples supplied by
its sampler(s), for forward and backward computation. For PS-
based training, computed gradients are sent from workers to
the PSs and then updated parameters are dispatched from PSs

5

to workers. For Ring AllReduce-based training, workers share
and update the gradients via the Ring AllReduce operation,
and apply the updated gradients locally. The workflow with
PS-based training is illustrated in Fig. 3.

B. Problem Formulation

We target overall training time minimization in our dis-
tributed GNN training job. Our design space includes two
subproblems.

1) Task Placement: We decide placements of all tasks in
the GNN training job on the machines, to maximize task par-
allelization and minimize communication traffic. Each server
hosts exactly one graph store server. The Ring AllReduce tasks
are colocated with their associated workers, e.g., tasks in Jj

a

are colocated with worker j. During distributed GNN training,
the placement of each task is determined at the beginning
of the training and remains unchanged throughout the entire
training process. We use binary variable ymj to indicate task
placement: ymj equals 1 if task j is deployed on machine m,
and 0, otherwise. The placement constraints are:∑

m∈[M]

ym
j = 1,∀j ∈ J (1)

∑
j∈J

wr
jy

m
j ≤ Cr

m, ∀m ∈ [M], r ∈ [R] (2)

ym
j = 1, ∀j ∈ Jg, j is placed on machine m (3)

ym
j = ym

j′ , ∀j ∈ Jj′
a , j′ ∈ Jw (4)

ym
j ∈ {0, 1}, ∀j ∈ J,m ∈ [M] (5)

Constraints in (1) ensure that every task is placed on one and
only one machine. (2) are resource capacity constraints on the
machines. (3) specifies the given placements of graph store
servers on machines. (4) guarantees the colocation of the Ring
AllReduce tasks and their associated workers. Fig. 4(a) shows
an example task placement of a PS-based GNN training job
on two machines.

2) Online Execution and Flow Scheduling: Suppose it
takes N iterations for the GNN model training to converge.
Given task placements, we decide the start time of each task
and transmission schedules of sampled data and tensor flows,
in each training iteration. We use m(j) to denote the machine
where task j resides, i.e., m(j) equals 1 if ymj is 1 and 0
otherwise. Let binary variable xt

j,n indicate the start time of
task j in iteration n: xt

j,n is 1 if task j in iteration n starts at
time t, and 0, otherwise. We use kt(j,n)→(j′,n′) to denote the
amount of traffic sent from task j of iteration n to task j′ of
iteration n′ at time t, including the following cases: sampled
graph data from a graph store server to a sampler or from a
sampler to a worker in the same iteration, gradients from a
worker to a PS, parameters updated at a PS (j) in iteration-n
training to a worker (j′) for iteration-(n + 1) training (n′ =
n + 1), or gradient communication from one worker’s task j
to its downstream worker’s task j′ during the Ring AllReduce
operation.

The execution schedule should respect execution dependen-
cies among tasks and flows, as follows:

x1
j,1 = 1, ∀j ∈ Jg (6)∑

t∈[T]

xt
j,n = 1, ∀j ∈ J, n ∈ [N] (7)

min{t|kt
(j,n)→(j′,n′) > 0, t ∈ [T]} ≥

∑
t∈[T]

txt
j,n + p

m(j)
j ,

∀j ∈ J, n ∈ [N], (j′, n′) ∈ succ(j, n),

j and j′ are on different servers (8)

max{t|kt
(j,n)→(j′,n′) > 0, t ∈ [T]} <

∑
t∈[T]

txt
j′,n′ , ∀j ∈ J,

n ∈ [N], (j′, n′) ∈ succ(j, n), j and j′ are on different servers (9)∑
t∈[T]

txt
j,n + p

m(j)
j ≤

∑
t∈[T]

txt
j′,n′ , ∀j ∈ J, n ∈ [N],

(j′, n′) ∈ succ(j, n), j and j′ are on the same server (10)

We ignore the training node selection time at a sampler,
and message passing from a sampler to a graph store server
for graph data requests, as the traffic volume is negligible.
Constraint (6) indicates that graph store servers run first to
sample neighbors. (7) ensures that each task in each training
iteration is scheduled once. Here T is a potentially large time
span in which our GNN training converges.

Among tasks and flows, there are the following execution
dependencies: (i) a sampler can start after receiving data from
all graph store servers in each iteration; (ii) in iteration n, a
worker can start after receiving a mini-batch of graph data
from its samplers and model parameters updated in iteration
n − 1 via PS or Ring AllReduce operation; (iii) for PS-
based training, a PS can start after receiving gradients from all
workers, computed in this iteration; (iv) for Ring AllReduce-
based training, the Ring AllReduce operation can start after
all workers compute their gradients locally; (v) the Ring
AllReduce tasks in one iteration follow the communication
dependencies as shown in Fig. 2, and tasks associated with
one worker can only be executed sequentially in one iteration.
We call (j′, n′) a successor of (j, n) if task j′ in iteration
n′ can only start after receiving data from task j in iteration
n, and succ(j, n) denotes the set of all successors of (j, n).
Constraint (8) specifies that transmission from (j, n) to its
successor (j′, n′) starts after (j, n) is done. (9) ensures that
task j′ in iteration n′ does not start before the transfer from
(j, n) to (j′, n′) is completed, if tasks j and j′ do not reside
on the same machine. We ignore data passing time between
tasks on the same machine, but specify execution dependency
among those tasks in (10).

Across training iterations, we require that task j in iteration
n+1 can only start after task j’s execution in iteration n has
been done (e.g., a sampler prepares training data for iteration
n before those for iteration n + 1), and data transfer (j, n +
1) → (j′, n′ + 1) cannot start before transmission (j, n) →
(j′, n′) has been completed. These inter-iteration dependencies
are formulated as in (11) and (12):∑

t∈[T]

txt
j,n + p

m(j)
j ≤

∑
t∈[T]

txt
j,n+1, ∀j ∈ J, n ∈ [N − 1] (11)

max{t|kt
(j,n)→(j′,n′) > 0, t ∈ [T]} <

min{t|kt
(j,n+1)→(j′,n′+1) > 0, t ∈ [T]}, ∀j ∈ J, n ∈ [N − 1],

(j′, n′) ∈ succ(j, n), j and j′ are placed on different servers (12)

6

Sampler 2

Parameter
Server 1

Worker 1

Machine 1

Graph Store
Server 2

Sampler 1

Graph Store
Server 1

Machine 2
Intra-machine

data communication
Inter-machine

data communication

(a) Task placement

G1,1
G2,1

(G1,1)→(S2,1)
(G2,1)→(S1,1)

W1,1 P1,1
(S2,1)→(W1,1) zzzzzz

j,n Execution of task j in iteration n
(j,n)→(j',n') Communication from (j, n) to (j', n')

S1,1

G1,2
G2,2

(G1,2)→(S2,2)
(G2,2)→(S1,2)

W1,2 P1,2

S1,2

G1,3
G2,3

(G1,3)→(S2,3)
(G2,3)→(S1,3)

W1,3 P1,3

time

S2,1 S2,2 S2,3
(S2,2)→(W1,2) (S2,3)→(W1,3)

S1,3

G - Graph store server S - Sampler
W - WorkerP - Parameter server

(b) Execution and flow schedule

Fig. 4: A PS-based distributed GNN training planning example: a job with 2 graph store servers, 1 worker with 2 samplers,
and 1 PS.

Further, the following constraint specifies the total traffic
transmitted from task j in iteration n to task j′ in iteration n′,
as denoted by d(j,n)→(j′,n′). The traffic volume is decided ac-
cording to whether it is graph data transfer from a graph store
server to a sampler or from a sampler to a worker (decided by
the graph sampling algorithm in use), or gradient/parameter
tensor transfer between a worker and a PS (depending on the
GNN model size) or during a Ring AllReduce operation.∑

t∈[T]

kt
(j,n)→(j′,n′) = d(j,n)→(j′,n′), ∀j ∈ J, n ∈ [N],

(j′, n′) ∈ succ(j, n), j and j′ are placed on different servers (13)

The total incoming (outgoing) traffic at machine m should not
exceed its available bandwidth at each time t:∑
n∈[N]

∑
j∈J:ym

j =1

∑
(j′,n′)∈succ(j,n):ym

j′ =0

kt
(j,n)→(j′,n′) ≤ Bm

out,

∀m ∈ [M], t ∈ [T] (14)∑
n∈[N]

∑
j∈J:ym

j =0

∑
(j′,n′)∈succ(j,n):ym

j′ =1

kt
(j,n)→(j′,n′) ≤ Bm

in,

∀m ∈ [M], t ∈ [T] (15)

We aim at minimizing the makespan of all N iterations
of GNN training, which is computed as maxt∈T,j∈J{txt

j,N +

p
m(j)
j }. Given task placements {ymj }, the execution and flow

scheduling problem is formulated as:
min max

t∈T,j∈J
{txt

j,N + p
m(j)
j } (16)

subject to:

(6)–(15)
xt
j,n ∈ {0, 1}, ∀j ∈ J, n ∈ [N], t ∈ [T] (17)

kt
(j,n)→(j′,n′) ≥ 0, ∀j ∈ J, n ∈ [N], t ∈ [T],

(j′, n′) ∈ succ(j, n), j and j′ are placed on different servers (18)

Problem (16) is a generalization of the strongly NP-hard
multi-stage coflow scheduling problem (MSCSP) [21], by
grouping transmission between the same types of tasks in one
iteration as one coflow (e.g., data transmission from all graph
store servers to all samplers). In addition, the key challenge
with our problem lies in the unknown graph data volume
transferred between graph store servers and samplers: graph
sampling is typically a random algorithm [10], the training
nodes and their neighbors selected vary from one training
iteration to the next, and hence the sizes of node/edge features
to transfer change and are unknown beforehand. Consequently,
our execution scheduling is an online problem.

TABLE I: Notation

T total time span
J set of all tasks

Jg/Js/Jw/ set of graph store servers/samplers/workers/
Jps/Ja PSs/Ring AllReduce tasks

M # of machines
N # of training iterations
R # of resource types
Cr

m available amount of type-r resource on machine m
Bm

in (Bm
out) avail. incoming (outgoing) bandwidth of machine m

pmj execution time of task j in one iteration on machine m

d(j,n)→(j′,n′) amount of traffic transmitted from task j of
iteration n to its successor task j′ of iteration n′

wr
j type-r resource demand of task j

ymj task j is placed on machine m (1) or not (0)
m(j) the machine that task j is placed
xt
j,n task j of iteration n starts at t (1) or not (0)

kt
(j,n)→(j′,n′) amount of traffic transmitted from task j of

iteration n to its successor j′ of iteration n′ at t

In the following, we first design an online algorithm for
task execution and flow transmission schedule, assuming task
placements are given; next, we devise the task placement
scheme that minimizes the total training time in conjunction
with scheduling. An example task and flow schedule is given
in Fig. 4(b), where we depict task execution and flow com-
munication for the first three training iterations, based on the
task placement in Fig. 4(a). Each training iteration is denoted
using a different color.

Key notation is summarized in Table I for ease of reference.

IV. ONLINE EXECUTION AND FLOW SCHEDULING

We begin by introducing our online algorithm, OES, for
task execution and flow transmission. To minimize the training
makespan, we maximize GPU utilization by promptly ini-
tiating task execution once all necessary data are received.
Regarding flow transmission, we implement a strategy of
balanced bandwidth allocation among all active flows on
each server. This approach prevents any individual flow from
becoming a bottleneck that could impede the overall training
process. Consequently, we can effectively reduce the training
makespan in a competitive manner.

A. Scheduling Algorithm

Given placements {ymj }, we design an online algorithm that
decides start time of each task (xt

j,n) and flow transmission
(kt(j,n)→(j′,n′)) over time.

7

We maintain two flow sets: (i) Fact, that stores every active
flow (j, n) → (j′, n′) which currently has started but not
finished transmission yet; (ii) Fpend, to store every pending
flow (j, n) → (j′, n′) whose predecessor task (j, n) has
been done, and that has not started because its predecessor
flow (j, n − 1) → (j′, n′ − 1) in the previous iteration has
not completed transmission yet. For each task (j, n), we use
F(j, n) to represent the set of flows that originate from (j, n)
to tasks that reside on other machines (than where j is).

Algorithm 1: Online Execution Scheduling - OES
Input: T, J,M,N, {ymj }
Output: {xt

j,n}, {kt(j,n)→(j′,n′)}, TOES

1 Initialize Fact and Fpend to ∅
2 x1

j,1 ← 1,∀j ∈ Jg
3 for t ∈ [T] do
4 if every (j,N), j ∈ J is done (aka training has

converged) then
5 TOES ← t− 1 break
6 for (j, n) ∈ {(j, n)|j ∈ J, n ∈ [N]} do
7 xt

j,n ← 1 if (j, n) is available
8 if (j, n) finished at t− 1 then
9 for (j, n)→ (j′, n′) ∈ F(j, n) do

10 if (j, n− 1)→ (j′, n′ − 1) ∈ Fact ∪ Fpend

then
11 add (j, n)→ (j′, n′) to Fpend

12 else
13 add (j, n)→ (j′, n′) to Fact

14 for every flow (j, n)→ (j′, n′) finished at t− 1 do
15 if (j, n+ 1)→ (j′, n′ + 1) ∈ Fpend then
16 remove (j, n+1)→ (j′, n′+1) from Fpend

17 add (j, n+ 1)→ (j′, n′ + 1) to Fact

18 for m ∈ [M] do
19 calculate ∆m

in and ∆m
out according to (19) (20)

20 for (j, n)→ (j′, n′) ∈ Fact do
21 kt(j,n)→(j′,n′) ← min{Bm′

in /∆m′

in , Bm
out/∆

m
out},

where ymj = 1 and ym
′

j′ = 1

22 return {xt
j,n}, {kt(j,n)→(j′,n′)}, TOES

Our online scheduling algorithm is in Alg. 1. We start by
running graph store server processing for the first training
iteration at t = 1 (line 2). Then at each time t, we run every
task that has received all required data and hence is available
to execute (line 7). For each task (j, n) completed at t − 1,
consider every flow (j, n) → (j′, n′) ∈ F(j, n) in t: if the
flow’s predecessor flow (j, n− 1)→ (j′, n′ − 1) is in Fact or
Fpend (indicating it not done yet), we add (j, n)→ (j′, n′) to
Fpend; otherwise, it is scheduled to transmit in t and added to
Fact (lines 8-13). In addition, for every flow (j, n)→ (j′, n′)
ended at t − 1, we check if its successor flow (j, n + 1) →
(j′, n′ +1) is in Fpend: if so, we move it from Fpend to Fact

and start the flow transmission (lines 14-17). For every flow
(j, n) → (j′, n′) which transfers in t, supposing j placed on

m and j′ on m′, we set its traffic volume kt(j,n)→(j′,n′) at t
to min{Bm′

in /∆m′

in , Bm
out/∆

m
out} (lines 18-21). ∆m

in (∆m
out) is

the ingress flow degree (egress flow degree) on machine m,
counting the number of active flows entering and exiting from
m, respectively:

∆m
in = |{(j′, n′)→ (j, n)|(j′, n′)→ (j, n) ∈ Fact, y

m
j = 1}|

(19)
∆m

out = |{(j, n)→ (j′, n′)|(j, n)→ (j′, n′) ∈ Fact, y
m
j = 1}|

(20)
In this way, we balance flow rates among flows going into and
out of each machine, ensuring no individual flow becoming the
bottleneck. The algorithm terminates when the whole training
process is done, i.e., all tasks of the last training iteration are
completed (lines 4-5).

The procedure of distributed GNN training generates fluctu-
ating and intensive data flows, and it also introduces complex
task dependencies that our algorithm, OES, is designed to
address. Our approach dynamically responds to uncertainties
during training: a flow is initiated once the corresponding
tasks are finalized, and tasks are launched when all necessary
data flows are available. This strategy inherently ensures the
fulfillment of task flow dependencies. By distributing server
bandwidth equally among active flows, our design prevents
the training process from stalling due to a single bottleneck
flow. Moreover, this approach can effectively manage dynamic
flows, as it is supported by the Linux traffic control sys-
tem [49], thereby ensuring minimal scheduling overhead.

B. Theoretical Analysis

Let Fone iter denote the set of all inter-machine flows in one
training iteration, including the transfer of updated parameters
computed in this iteration from PS to workers. We define the
one-iteration ingress flow degree ∆̂m

in and one-iteration egress
flow degree ∆̂m

out:

∆̂m
in =

|{(j′, n′)→ (j, n)|(j′, n′)→ (j, n) ∈ Fone iter, y
m
j = 1}| (21)

∆̂m
out =

|{(j, n)→ (j′, n′)|(j, n)→ (j′, n′) ∈ Fone iter, y
m
j = 1}| (22)

and the maximum degree ∆:

∆ = max
m∈[M]

{max{∆̂m
in, ∆̂

m
out}} (23)

which represents the maximum number of incoming or out-
going flows at any machine in one training iteration.

Lemma 1. In any time step t, ∆m
in (∆m

out) are no larger than
∆̂m

in (∆̂m
out), for any m ∈ [M].

The detailed proof is given in Appendix A.
Let TOES denote the overall training makespan achieved

by Alg. 1. During the execution scheduled by Alg. 1, we now
define a continuous execution chain as a chain O : oL →
oL−1 → · · · → o1, starting from the execution of one of the
graph store servers in iteration 1 to the last task in iteration N ,
strictly following either the execution dependency or the inter-
iteration dependency and being executed continuously with no
gap. Each component in such a chain O represents either a
task or a data flow between tasks. Hence, the execution and

8

data communication time of every continuous execution chain
covers the overall training makespan TOES .

Lemma 2. There exists at least one continuous execution
chain, O, during the distributed GNN training scheduled by
Alg. 1.

The detail proof is given in Appendix B.

Theorem 1. The overall training makespan achieved by
Alg. 1, TOES , is no larger than ∆ times the optimal objective
value T ∗ of the offline execution scheduling problem (16), i.e.,
the competitive ratio of the online algorithm in Alg. 1 is ∆.

Proof. Given Lemma 2, we consider one such continuous
execution chain O. Denote the total execution time of the task
in O as psum. Supposing that there are I data transmissions
in O, we use d1 to dI to denote the amount of data for each
transmission. In addition, we use min

i (mout
i) to denote the

server where the i-th flow comes to (from). Clearly, in the
optimal offline scheduling strategy with makespan T ∗, the
chain O also needs to be executed sequentially. Hence, we
have that:

T ∗ ≥ psum +
∑
i∈[I]

di

min{Bmin
i

in , B
mout

i
out }

(24)

In addition, we also have that TOES equals the time for
executing whole chain O. And in the execution of chain O,
following Lemma 1, the i-th flow are transferred with a data

rate at least min{Bmin
i

in /
̂
∆

min
i

in , B
mout

i
out /∆̂

mout
i

out }. Consequently,
we have:

TOES ≤ psum +
∑
i∈[I]

di

min{Bmin
i

in /
̂
∆

min
i

in , B
mout

i
out /

̂
∆

mout
i

out }
(25)

Combining (24) and (25), we have:

TOES ≤ psum +
∑
i∈[I]

di

min{Bmin
i

in /
̂
∆

min
i

in , B
mout

i
out /

̂
∆

mout
i

out }

≤ ∆(psum +
∑
i∈[I]

di

min{Bmin
i

in , B
mout

i
out }

)

≤ ∆× T ∗

V. EXPLORATORY TASK PLACEMENT

In distributed GNN training, the communication pattern
adheres to an iterative paradigm, wherein data flows exist be-
tween task pairs in each iteration, albeit with fluctuating sizes.
Consequently, strategic placement of tasks via co-location
can effectively eliminate their communication throughout the
entirety of the training process. We adopt the Markov Chain
Monte Carlo (MCMC) search framework [22] to identify
an optimal placement solution that minimizes the training
makespan with our online scheduling Alg. 1. We begin by
constructing a feasible initial placement solution, Y0 = ymj 0

,
followed by generating a sequence of placements Y1,Y2, . . .,
until a time budget I is exhausted. The initial placement is
constructed using a dynamic programming approach. Lever-
aging task dependencies during training, our design constructs

an execution directed acyclic graph for each possible task
placement. We are thus inspired to propose a critical-path-
based cost function to evaluate the quality of a particular task
placement based on its execution graph. Herein, a placement
with a lower cost is more likely to achieve a reduced training
makespan when utilizing our online scheduling algorithm,
OES. By viewing each placement as a sample within the
solution space, we employ the MCMC search framework to
iteratively explore this space. This approach ensures that a
placement with a lower cost is more likely to be encountered
during the search process.

A. Constructing Initial Feasible Placement

A feasible task placement solution should respect resource
capacity constraints in (2). We first randomly order the M
machines into {m1,m2, . . . ,mM}. Note that placements of
graph store servers are given (one on a machine), and the Ring
AllReduce tasks are collocated with their associated workers.
Let [qs, qw, qps, i] indicate that we can pack qs samplers, qw
workers and qps PSs within the first i machine (m1 to mi)
without violating resource capacities, and (qs, qw, qps, i) be a
particular partial placement of putting qs samplers, qw workers
and qps PSs on machine mi. We use Aqs,qw,qps,i to denote an
exact placement associated with [qs, qw, qps, i], specifying how
many samplers, workers and PSs are placed in each of the i
machines, to make up for the total numbers of qs, qw and
qps. Let Ω(i) be the set of all [qs, qw, qps, i]’s with i fixed and
qs ∈ [|Js|], qw ∈ [|Jw|], qps ∈ [|Jps|].

We use dynamic programming to construct a feasible
placement solution. We first consider all feasible placements
(qs, qw, qps, 1) on m1. Let ηs denote the maximal number
of samplers that can be hosted by any machine, i.e. ηs =
maxm∈[M] minr∈[R]:wr

j>0⌊C ′r
m/wr

j ⌋, any j ∈ Js (C ′r
m is avail-

able type-r resource on m excluding that occupied by the
graph store server). Similarly, we can define an upper bound
on the number of workers and PSs per machine, ηw and ηps.
For every possible combination of qs ∈ {0}∪ [min{|Js|, ηs}],
qw ∈ {0}∪[min{|Jw|, ηw}] and qps ∈ {0}∪[min{|Jps|, ηps}],
we check if the capacity constraints on m1 are satisfied. For
every feasible solution found, we add [qs, qw, qps, 1] to Ω(1),
and set Aqs,qw,qps,1 = {(qs, qw, qps, 1)}.

Next, we iteratively construct Ω(i) based on Ω(i − 1)
until finding a complete feasible solution of placing all |Js|
samplers, |Jw| workers and |Jps| PSs onto the machines. For
each [qs, qw, qps, i − 1] ∈ Ω(i − 1), we examine whether
|Js| − qs samplers, |Jw| − qw workers and |Jps| − qps PSs
can be fit into machine mi. If so, we have identified a
complete feasible placement solution that packs all tasks
within the first i machines: Asolution = A(qs, qw, qps, i−1)∪
{(|Js|−qs, |Jw|−qw, |Jps|−qps, i)}. Otherwise, we find every
feasible placement (q′s, q

′
w, q

′
ps, i) with q′s ∈ {0} ∪ [|Js| − qs],

q′w ∈ {0} ∪ [|Jw| − qw], and q′ps ∈ {0} ∪ [|Jps| − qps]
that satisfies capacity constraint on machine mi; and if
[qs+q′s, qw+q′w, qps+q′ps, i] is not in Ω(i) yet, we add it into
Ω(i), and set A(qs + q′s, qw + q′w, qps + q′ps, i) to be the union
of A(qs, qw, qps, i − 1) and {(q′s, q′w, q′ps, i)}. We build from
Ω(2) to Ω(M) and return the first complete feasible place-

9

Algorithm 2: Initial Placement Solution Construction
- IFS

Input: J,M,R, {Cr}, {wr
j}

Output: Y0
1 Randomly order m machine as {m1,m2, . . . ,mM}

Ω(m)← ∅,∀m ∈ [M]
2 for qs, qw, qps ∈ [ηs], [ηw], [ηps] do
3 if qs samplers, qw workers, and qps parameter

servers can be packed in m1 then
4 add (qs, qw, qps, 1) to set Ω(1)
5 A(qs, qw, qps, 1)← {< qs, qw, qps, 1 >}

6 for i ∈ {2, 3, . . . ,M} do
7 for (qs, qw, qps, i− 1) ∈ Ω(i− 1) do
8 if |Js| − qs samplers, |Jw| − qw workers, and

|Jps| − qps parameter servers can be packed
in mi then

9 Asolution ← A(qs, qw, qps, i− 1) ∪
{< |Js| − qs, |Jw| − qw, |Jps| − qps, i >}

10 Generate the initial placement solution
Y0 = {ymj }0 based on Asolution

11 return Y0
12 for q′s, q

′
w, q

′
ps ∈ [ηs], [ηw], [ηps] do

13 if q′s samplers, q′w workers, and q′ps
parameter servers can be packed in mi

then
14 if qs + q′s ≤ |Js| and qw + q′w ≤ |Jw|

and qps + q′ps ≤ |Jps| then
15 add (qs + q′s, qw + q′w, qps + q′ps, i)

to set Ω(i)
16 A(qs + q′s, qw + q′w, qps + q′ps, i)←

A(qs, qw, qps, i− 1) ∪
{< q′s, q

′
w, q

′
ps, i >}

ment solution. We summarize our initial placement solution
construction algorithm in Alg. 2, referred to as IFS.

Theorem 2. IFS identifies a feasible placement solution
within polynomial time.

Proof. Alg. 2 searches all the tuples (qs, qw, qps,m) through
the construction of Ω(1) to Ω(M). If a feasible solution exists,
it must correspond to one of the tuples, indicating that Alg. 2
can find the feasible solution.

The construction of Ω(1) requires O(ηsηwηpsR) time.
Giving Ω(m − 1), for every tuple in it, we can com-
pute all related tuples in Ω(m) in O(ηsηwηpsR) time.
Since there are at most O(|Js||Jw||Jps|) tuples in Ω(m −
1), the construction of Ω(m) giving Ω(m − 1) takes
O(|Js||Jw||Jps|ηsηwηpsR). Consequently, the time complex-
ity of Alg. 2 is O(M |Js||Jw||Jps|ηsηwηpsR).

B. Searching for Better Placements
Starting from the initial feasible placement, we iteratively

search for better placement solutions, according to a cost(Y)
defined on the overall training makespan of placement Y .

Algorithm 3: Exploratory Task Placement - ETP
Input: T, J,M,R, {Cr

m}, {wr
j}

Output: Ymin

1 Y0 ←IFS(J,M,R, {Cr
m}, {wr

j}); Ymin ← Y0
2 , ,min_makespan = OES(T, J,M,N,Y0)
3 Construct the execution DAG based on Y0
4 Derive the critical path length in the DAG, CPY0

5 min_cost ← CPY0

6 for z ∈ {0, 1, . . . , I − 1} do
7 randomly select a task j from J \ (Jg ∪ Ja)
8 construct Mavail of j
9 randomly select a machine m from Mavail

10 construct new placement solution Y ′

11 Construct the execution DAG based on Y ′

12 Derive the critical path length in the DAG, CPY′

13 π(Yz → Y ′)←
min{1, exp(βcost(Yz)− βcost(Y ′))}

14 if rand()≤ π(Yz → Y ′) then
15 Yz+1 ← Y ′

16 if no resource violation with Yz+1 and
CPY′ < (1 + γ)min_cost then

17 if CPY′ <min_cost then
18 min_cost← CPY′

19 , , T ′
Y′ = OES(T, J,M,N,Y ′)

20 if T ′
Y′ < min_makespan then

21 min_makespan ← T ′
Y′

22 Ymin ← Y ′

23 else
24 Yz+1 ← Yz

25 return Ymin

Cost design. Practically, task placements should be decided
before training starts and remain fixed during training (to
avoid the substantial overhead of VM/container migration and
flow redirection). The online nature of execution scheduling
is due to the size variation of sampled graph data; we should
identify a placement that works best in expectation of the
traffic variation. To this end, we profile task execution time
and inter-task traffic volumes by running the GNN training
for some iterations (50 as in our evaluation), and produce their
distributions.

A typical GNN training job takes thousands of iterations [8],
making directly simulating the overall training time scheduled
by Alg. 1 over N iterations prohibitively time-consuming.
Hence, we propose a cost function that is both efficient to
calculate and can accurately represent the performance with
the placement Y .

Given the current placement Y , we construct an execution
directed acyclic graph (DAG) G = (V,E), where the vertex
set V includes all tuples of every task in each iteration
(i.e. (j, n),∀j ∈ J, n ∈ [N]), and all the inter-machine data
transmissions between tasks (i.e. (j, n)→ (j′, n′),∀j ∈ J, n ∈
[N], (j′, n′) ∈ succ(j, n), j and j′ are placed on different
servers). The edge set E consists of all the dependencies
between vertexes in V , including the execution dependencies
defined through (8) to (10) and the inter-iteration dependencies

10

G1,1

G2,1

(G1,1)→(S2,1)

(G2,1)→(S1,1)

W1,1

(S2,1)→(W1,1)

S1,1

S2,1

P1,1

G1,2

G2,2

(G1,2)→(S2,2)

(G2,2)→(S1,2)

W1,2

(S2,2)→(W1,2)

S1,2

S2,2

P1,2

j,n Execution of task j in iteration n
(j,n)→(j',n') Communication from (j, n) to (j', n')

G - Graph store serverS - Sampler
W - Worker P - Parameter server

Execution dependency
Inter-iteration dependency

Fig. 5: An execution DAG example

defined in (11) and (12). We give an example of an execution
DAG for two iterations of training in Fig. 5, based on the
training system and placement specified by Fig. 4.

We assign a weight α(v) to every vertex v in V , denoting
the execution/data communication time of the vertex. For
vertex (j, n) denoting the component execution, we set the
expected time α(v) to be p

m(j)
j . For vertex (j, n) → (j′, n′)

representing the data transmission, we set the corresponding
α(v) as follows:

α(v) =
d(j,n)→(j′,n′)

min{Bm(j′)
in /∆̂

m(j′)
in , B

m(j)
out /∆̂

m(j)
out }

(26)

where ∆̂
m(j′)
in and ∆̂

m(j)
out are the one-iteration ingress/egree

flow degree defined in Eqn. (21) and Eqn. (22), respectively.
The following theorem establishes the connection between the
critical path in G (i.e. the path with the largest aggregated
weights) and the training time of all N iterations by Alg. 1,
TOES .

Theorem 3. Given the placement Y and the constructed DAG
G, the makespan achieved by Alg. 1, TOES , is no larger
than the critical path length, CPY , (i.e. length of the longest
weighted path) in G.

Proof. Note that in the proof of Theorem 1, we find a con-
tinuous execution chain O whose execution covers the overall
training time TOES . Now, we can map every part in O to
its corresponding vertex in G to form a path, whose weighted
length is denoted as CPO. Consequently, combining Eqn. (25)
and each vertex’s weight, we ensure that TOES ≤ CPO. Since
CPY is the length of the longest weighted path, we have
TOES ≤ CPO ≤ CPY .

Theorem 3 shows that the critical path length in G, CPY , is
an upper bound of the overall training time TOES , indicating
that we can leverage CPY to judge the quality of the current
placement. The critical path length in G can be calculated
efficiently [50], with time complexity O(|V |+ |E|). However,
the data communication traffic volume d(j,n)→(j′,n′) cannot
be known in advance. Therefore, we can replace d(j,n)→(j′,n′)

with d̄(j,n)→(j′,n′) drawn from the distribution generated by
the profiled data, and derive the critical path length CPY . The
cost of placement Y is:

cost(Y) = CPY(1+
∑

m∈[M],r∈[R]

max{

∑
j∈J

wr
jy

m
j − Cr

m

Cr
m

, 0}) (27)

where CPY is multiplied by 1 plus a penalty term for resource
violation (computed as the sum of capacity violation percent-
ages over all types of resources and all machines).
Search process. Our search explores the solution space by
transferring from one placement Yz to another Yz+1, for a
total of I transfers (the time budget). Give Yz , we uniformly
randomly sample a task j ∈ J \ (Jg ∪ Ja). Let Mavail denote
the set of machines other than the one where j is placed in
Yz , which can host j adhering to relaxed resource capacity
constraints:∑

j∈J

wr
jy

m
j ≤ (1 + µ)Cr

m, ∀m ∈ [M], r ∈ [R] (28)

Here, the capacity constraints are relaxed by a µ factor to allow
full exploration in the placement space. For example, when the
violation factor µ is set to 100% (default in our evaluation),
every feasible solution can be identified if an infinite time
budget I is allowed: Setting µ to 100% is equivalent to
allowing a duplicate set of machines (i.e., each machine has
doubled its resource capacities). Therefore, we can transit
from any feasible placement Y to any other feasible Ŷ by
moving each task from its placement in Y to the duplicate
of the machine where it is placed in Ŷ . The new placement
on the set of duplicate machines is feasible since Ŷ is a
feasible placement solution. If the computational resources of
all machines are quite sufficient to host the training tasks, we
can set µ to a smaller value for better search efficiency.

Next, we uniformly randomly choose one server m ∈
Mavail to move j to, and come up with the new placement
solution Y ′. We compute a probability (β > 0 is a hyper-
parameter set to 0.1 in our evaluation, whose smaller value
increases the tendency of our search process to jump out of
local optima):

π(Yz → Y ′) = min{1, exp(βcost(Yz)− βcost(Y ′))} (29)

With probability π(Yz → Y ′), we use Y ′ as Yz+1: if
cost(Y ′) ≤ cost(Yz), we accept Y ′ as Yz+1 (probability is 1);
otherwise, we still accept Y ′ as the next state with probability
π(Yz → Y ′) (for exploration) and maintain Yz+1 the same
as Yz with probability 1 − π(Yz → Y ′). Our state transition
as designed above ensures that the probability of visiting Y
is linear to exp(−βcost(Y)) [22], i.e., solutions with lower
costs are more frequently visited than ones with larger costs.

Although Theorem 3 shows that CPY is an indicator of the
training makespan, placement with the minimum CPY may not
be the placement achieving the minimum training makespan.
We address this gap by occasionally simulating the training
makespan of placements of small CPY . Throughout this
exploratory process, we use min_cost to track the minimum
CPY without any resource violation. Whenever we transit to a
new placement Y ′, if Y ′ does not violate any original resource
capacity constraints, and cost(Y ′) ≤ (1+γ)×min_cost, we
simulate training under placement Y ′ using Alg. 1, with time
and traffic volume drawn from the profiled distributions, and

11

Algorithm 4: Distributed GNN Training Planning
(DGTP)

Input: T,N, J,M,R, {Cr
m}, {wr

j}
Output: Ymin, {xt

j,n}, {kt(j,n)→(j′,n′)}
1 Ymin ← ETP(T, J,M,R, {Cr

m}, {wr
j})

2 {xt
j,n}, {kt(j,n)→(j′,n′)}, TOES ←

OES(T, J,M,N,Ymin)
3 return Ymin, {xt

j,n}, {kt(j,n)→(j′,n′)}

derive the training makespan T ′
Y′ . Here γ is a hyperparameter,

and is set to 0.1 in our evaluation.
We return the best feasible placement found after I transi-

tions, which does not violate any original resource capacity
constraints in (2), and leads to the minimum (simulated)
training time as compared to all other feasible placements
whose training time was simulated. Alg. 3 summarizes our
exploratory task placement algorithm (ETP).

C. Complete Distributed GNN Training Planning Algorithm

Our complete distributed GNN training planning (DGTP)
algorithm is given in Alg. 4. We first leverage Alg. 3 to identify
the best placement Ymin and then use Alg. 1 to decide the task
and flow schedules {xt

j,n}, {kt(j,n)→(j′,n′)} based on Ymin, in
an online manner.

VI. PERFORMANCE EVALUATION

We evaluate DGTP by both testbed experiments and simu-
lation studies.

A. Testbed Experiments

Implementation. We implement DGTP using Python on DGL
0.8.2 [23] and PyTorch 1.12.0 [26] with 1043 LoC for the
training system and 1544 LoC for the search and schedul-
ing algorithms. Parameter synchronization through a PS or
the Ring AllReduce operation is built on PyTorch. We use
the Stochastic Fairness Queueing provided by tc qdisc [49]
to control flow transmission rates according to our online
scheduling algorithm, dynamically assigning ongoing data
flows into separate queues and ensuring fairness among them
with negligible scheduling overhead.
Testbed. Our testbed consists of 4 GPU servers inter-
connected by a Dell Z9100-ON switch, with 50Gbps peak
bandwidth between any two servers. Each server is equipped
with one 50GbE NIC, one 8-core Intel E5-1660 CPU, two
GTX 1080Ti GPUs and 48GB DDR4 RAM. To emulate
resource heterogeneity, we use tc to limit the bandwidth
capacity of two servers to 10Gbps.
GNN model and datasets. We train one representative GNN
model (three layers of hidden size 256), GraphSage [2], on
two graph datasets: ogbn-products [8] (an Amazon product co-
purchasing graph) and Reddit [2] (consisting of Reddit posts
within a month and connections between posts if the same user
comments on both posts). We implement uniformly random
sampling of neighbors of training nodes, with different fan-
outs (the number of neighbors to sample) at different hops,
set according to the official training script provided by the
DGL team and other existing studies [2][14]. Same as in

DistDGL [14], we set the mini-batch size on both datasets to
2000 (subgraphs). We use Adam optimizer [51] with a learning
rate of 0.001 during the training.

TABLE II: Benchmark datasets

Dataset #Nodes #Edges Feature
Vector Length Fan-out

ogbn-products 2.4M 61.8M 100 5, 10, 15
Reddit 0.2M 114.6M 602 5, 10, 25

ogbn-papers100M 0.1B 1.6B 128 12, 12, 12

We use 4 graph store servers, 6 workers (each requiring
3GB memory, 1 logical CPU core and 1 GPU card), and
1 PS (requiring 5GB memory, 1 logical CPU core) to train
the GNN model. We partition the input graph with METIS
partitioner [19] among graph stores. Each worker is associated
with two samplers (each requiring 7GB memory, 2 logical
CPU cores). We profile data to drive our search algorithm
over 50 iterations of training on each dataset.
Baseline. We compare DGTP with a modified version of Dist-
DGL [14] that enables inter-server communication between a
worker and its samplers. DistDGL adopts a placement scheme
that maximally colocates each worker with its associated sam-
plers within one server, and uses the system default scheduling
strategy (running a task when ready and sending data in FIFO
queues).
End-to-end training performance. We compare the end-to-
end training convergence time between DGTP and DistDGL.
The offline search to obtain DGTP’s task placements can
be done within 3 minutes (we only simulate 20 iterations
of GNN training to obtain T ′

Y during search, and set the
exploratory time budget to 10000). Fig. 6 shows the training
progress to achieve a 90% target accuracy over the validation
sets. We demonstrate the training speed-up of our design
relative to DistDGL across four different configurations, as
shown in Table III. The speed-up is calculated using the
formula Time-to-Convergence of DistDGL−Time-to-Convergence of DGTP

Time-to-Convergence of DistDGL . In
PS-based training, DGTP outperforms DistDGL by 28% in
terms of the training speed-up on ogbn-products, and 26% on
Reddit. Moreover, in Ring AllReduce-based training, DGTP
outperforms DistDGL by 26% on ogbn-products, and 24% on
Reddit.

ogbn-products Reddit
PS-based training 28.45% 26.54%

Ring AllReduce-based training 26.11% 24.00%

TABLE III: Training Speed-up

Resource usage. We also examined resource usage during PS-
based training. We observed similar GPU, CPU and memory
usage between DGTP and DistDGL, as task execution in both
systems is constantly blocked by the large data transfers.
Fig. 7 shows the bandwidth usage on the four servers. We
observe that DGTP has a much better network usage on both
datasets: DGTP can identify task placements that exploit the
heterogeneous bandwidth levels well, while communication
in DistDGL is often bottlenecked on the low-bandwidth inter-
server connections (two pairs of its worker and samplers have
to be separated onto different servers due to non-sufficient
resources on the same servers).

12

0 2500 5000 7500 10000 12500 15000
Training time (second)

1

2

3

4

5

6

7

Tr
ai

ni
ng

 L
os

s

DGTP loss
DistDGL loss
DGTP accuracy
DistDGL accuracy

40%

50%

60%

70%

80%

90%

Va
lid

at
io

n
Ac

cu
ra

cy
(a) PS-based training on ogbn-
products dataset

0 2000 4000 6000 8000
Training time (second)

0

2

4

6

8

10

12

14

Tr
ai

ni
ng

 L
os

s

DGTP loss
DistDGL loss
DGTP accuracy
DistDGL accuracy

40%

50%

60%

70%

80%

90%

Va
lid

at
io

n
Ac

cu
ra

cy

(b) PS-based training on Reddit
dataset

0 5000 10000 15000
Training time (second)

1

2

3

4

5

6

7

8

Tr
ai

ni
ng

 L
os

s

DGTP loss
DistDGL loss
DGTP accuracy
DistDGL accuracy

40%

50%

60%

70%

80%

90%

Va
lid

at
io

n
Ac

cu
ra

cy

(c) Ring AllReduce-based train-
ing on ogbn-products dataset

0 2000 4000 6000 8000 10000
Training time (second)

0

2

4

6

8

10

12

14

Tr
ai

ni
ng

 L
os

s

DGTP loss
DistDGL loss
DGTP accuracy
DistDGL accuracy

30%

40%

50%

60%

70%

80%

90%

Va
lid

at
io

n
Ac

cu
ra

cy

(d) Ring AllReduce-based train-
ing on Reddit dataset

Fig. 6: Training loss & validation accuracy: DGTP vs. DistDGL

0 20 40 60 80 100 120
Training time (second)

0

2

4

6

8

10

12

14

Ba
nd

wi
dt

h
Us

ag
e

(G
bp

s) DGTP
DistDGL

(a) ogbn-products

0 20 40 60 80 100 120
Training time (second)

0

5

10

15

20

Ba
nd

wi
dt

h
Us

ag
e

(G
bp

s) DGTP
DistDGL

(b) Reddit

Fig. 7: Total network bandwidth usage: DGTP vs. DistDGL

0 5000 10000 15000 20000
Training time (second)

1

2

3

4

5

6

7

Tr
ai

ni
ng

 L
os

s

DGTP loss
DistDGL loss
DGTP accuracy
DistDGL accuracy

40%

50%

60%

70%

80%

90%

Va
lid

at
io

n
Ac

cu
ra

cy

Fig. 8: Training in the het-
erogeneous testbed: DGTP vs.
DistDGL

Homogeneous
Testbed

Heterogeneous
Testbed

0

250

500

750

1000

1250

Se
ar

ch
 T

im
e

ETP
Simulated Time

Fig. 9: Search Time: different
cost criteria

1000 2000 4000 8000
Per-sampler Batch Size

1.0

1.5

2.0

2.5

3.0

Tr
ai

ni
ng

 T
im

e
(s

ec
)

1e3
DGTP
DistDGL
OMCoflow
MRTF

(a) ogbn-products

1000 2000 4000 8000
Per-sampler Batch Size

2.5

3.0

3.5

4.0

4.5

Tr
ai

ni
ng

 T
im

e
(s

ec
)

1e4
DGTP
DistDGL
OMCoflow
MRTF

(b) ogbn-papers100M

Fig. 10: Training time: different batch sizes

1 1.2 1.4 1.6
PMR

0.0

0.5

1.0

1.5

Tr
ai

ni
ng

 T
im

e
(s

ec
)

1e3

DGTP
DistDGL
OMCoflow
MRTF

(a) ogbn-products

1 1.2 1.4 1.6
PMR

0

1

2

3

4

Tr
ai

ni
ng

 T
im

e
(s

ec
)

1e4

DGTP
DistDGL
OMCoflow
MRTF

(b) ogbn-papers100M

Fig. 11: Training time: different PMRs

Heterogeneous testbed. We further evaluated DGTP in a
heterogeneous testbed, consisting of two GTX 1080Ti GPU
servers described before and two Tesla V100 GPU servers.
Each V100 server is equipped with 4 Tesla V100 GPUs,
two 10-core Intel Xeon E5-2630 v4 CPUs, 256GB DDR4
RAM and a 100GbE NIC. The four servers are interconnected
by a Dell Z9100-ON switch, with NIC bandwidth of the
two 1080Ti servers limited to 10Gbps. We train DGTP and
DistDGL on ogbn-products with Ring AllReduce, and increase
the number of workers to 8. Fig. 8 depicts the training progress
of DGTP and DistDGL, showing superiority of DGTP in the
heterogeneous environment, which achieves a training speed-
up of 48% as compared to DistDGL.

Search time. We now evaluate the effectiveness of our
exploratory task placement design. We compare the search
time of our design, ETP, with the algorithm that directly
uses the simulated training time, T ′

Y′ , as the cost for PS-
based training on ogbn-products in both the homogeneous
and heterogeneous training testbeds. Both algorithms search
for 10000 steps and are able to identify the placement with
similar training efficiency. As shown in Fig. 9, our design
achieves significantly less searching time as compared to the
simulated-training-time-based method.

B. Simulation Studies

Settings. We further evaluate DGTP in detail by simulating
the training of the GraphSage model on: 1) ogbn-products
on 8 machines using 8 graph store servers, 16 workers
each with 2 samplers, and 1 PS; and 2) ogbn-papers100M
(Microsoft Academic Graph dataset described in Table II)
on 16 machines using 16 graph store servers, 20 workers
each with 4 samplers, and 1 PS. We simulate 5 epochs of
training (i.e., each sampler goes through the whole set of
training nodes specified by the dataset for five times) on
ogbn-products (actual training of GraphSage on ogbn-products
converges in 5 epochs, as we observed in our experiment), and
25 epochs on ogbn-papers100M (convergence time according
to ogbn-papers100M official leaderboard [52]). Our simulation
is driven by profiled data collected by training the model on
the respective datasets in our testbed.

We consider four types of resources on each machine:
memory, CPU, GPU and network bandwidth. The available
memory size on each machine is set within [32, 128]GB, the
number of available CPU cores between [4, 16], the number of
available GPUs within [1, 4], and network bandwidth among
{10Gbps, 20Gbps, 50Gbps}.
Baselines. We reuse DistDGL as our baseline, following a

13

placement scheme that maximally colocates each worker with
its associated samplers within one server, and leveraging our
online task execution and flow scheduling design OES for
scheduling. Apart from DistDGL, we further compare DGTP
with two flow scheduling schemes (in which we use the same
placements as computed by DGTP and a task starts immedi-
ately once its dependencies have been cleared): (i) OMCoflow,
a state-of-the-art online coflow scheduling algorithm [53] that
groups flows to the same task as one coflow, and sets the flow
rates in each coflow inversely proportional to predicted flow
finish time (supposing it is the only coflow in the network);
(ii) MRTF, which schedules flows according to the minimum
remaining time first (MRTF) heuristic.

Different per-sampler batch sizes. A larger per-sampler
batch size (a worker’s mini-batch size divided by the number
of samplers it uses) results in larger sampling data traf-
fic, potentially yielding more communication overhead when
poorly planned. As Fig. 10 shows, DGTP outperforms all
three baselines, reducing the training makespan by up to
25% compared to DistDGL. Larger data traffic is incurred for
training on ogbn-papers100M due to the larger fan-outs, and its
training environment is more complex (with more servers, re-
source heterogeneity, etc.). We identify DGTP’s larger speed-
up on ogbn-papers100M is because DGTP can find better task
placements that reduce the overall data traffic during training
and schedule the traffic over the complex network environment
well. Further, DGTP can achieve more than 30% less training
time as compared to OMCoflow, and up to 67% to MRTF, on
the two datasets. The advantage of DGTP improves with batch
size. These indicate that DGTP can efficiently schedule flow
transfers to minimize the overall training time in an online
manner. Furthermore, we note that the average training speed-
up in comparison to OMCoflow, which utilizes the same task
placements as DGTP, remains relatively consistent in the two
settings, i.e., 18% with the ogbn-products training setting, and
23% with the ogbn-papers100M training setting. Conversely,
the average training speed-up of our design in comparison to
DistDGL experiences a significant increase, jumping from 9%
with the ogbn-products training setting to 29% with the ogbn-
papers100M training setting. This substantial performance
improvement suggests that as the workload increases, strategic
task placement can yield significantly larger performance gains
compared to online flow scheduling.

Different peak-to-mean ratios. We compute a peak-to-mean
ratio (PMR) for flows from graph store servers to samplers, as
the maximum data flow rate between any (graph store server,
sampler) pair divided by the average flow rates among all
such flows. The PMR in our profiled data during training
with DGTP is 1.16 on ogbn-products and 1.08 on ogbn-
papers100M. We scale up and down the transmitted graph
data sizes to simulate different PMRs. Intuitively, a larger
PMR indicates more intensive traffic volume fluctuation, more
challenging for online scheduling. In Fig. 11, DGTP exhibits
stable performance as the PMR changes, and outperforms
representative baselines by up to 55%.

VII. CONCLUSION

This paper designs efficient placement and scheduling al-
gorithms for distributed GNN training over heterogeneous
clusters, with various resource availability. We propose a
competitive online execution algorithm that schedules training
task execution and flow transfers for both graph data sampling
and parameter synchronization with either PS or Ring AllRe-
dec architecture. We also design an explorative algorithm
to decide the placement of every task in a short period of
time, which, in conjunction with online task/flow scheduling,
minimizes the overall training makespan. According to both
homogeneous and heterogeneous testbed experiments, our
design reduces the end-to-end training time by up to 48%
as compared to a state-of-the-art distributed GNN training so-
lution. Simulation studies further demonstrate that our design
significantly outperforms representative schemes by minimiz-
ing the total data traffic and maximizing the bandwidth usage
through task placement, and strategically scheduling tasks
and flows to overlap computation with communication and
reduce total communication time. While our design has made
significant strides towards efficient distributed GNN training,
several promising avenues remain for future exploration. One
limitation of our current model is the assumption of a homoge-
neous network with a classic starfish topology. Investigating
the impact of bandwidth heterogeneity on performance in a
topology more reflective of real-world conditions represents a
meaningful direction for future research. Moreover, extending
our approach to scenarios where multiple GNN training jobs
operate concurrently on the same cluster is a promising
prospect. Future efforts could involve designing a joint task
placement search algorithm for all jobs, and orchestrating
online task and flow scheduling for the jobs.

APPENDIX A
PROOF OF LEMMA 1

Proof. Without loss of generality, let us consider a time step
t. Due to the inter-iteration dependency (12), there will be at
most one data flow from task j to task j′. As a result, for
any active flow (j, n) → (j′, n′) in Fact, we can substitute
the flow with its counterpart one (i.e. the same flow from task
j to task j′) in the first iteration. Let us substitute all flows
in Fact with their counterparts in the first iteration and denote
the new set as F ′

act. Clearly, we can still obtain the same ∆m
in

and ∆m
out with F ′

act.
Noting that Fone iter includes all inter-server flows from

the first iteration, we have F ′
act ⊆ Fone iter. Consequently,

∆m
in ≤ ∆̂m

in and ∆m
out ≤ ∆̂m

out.

APPENDIX B
PROOF OF LEMMA 2

Proof. We construct one continuous execution chain reversely
by setting o1 as the last task (i.e., the parameter server or
the last task in the Ring AllReduce), denoted as (jlast, N), in
iteration N that finishes at TOES . We use t̃(ol) to denote the
start time of ol,∀l ∈ [L]. Now, considering t̃(o1), there are
two possibilities:

1): All flows to o1 finish before t̃(o1).

14

2): At least one flow to o1 finishes at t̃(o1).
The first possibility indicates that the execution of the same

task for previous batch ((jlast, N − 1) in this case) finishes at
t̃(o1). Therefore, we can add the execution of (jlast, N − 1)
to chain O denoted as o2. Now we extend O further by one
task to cover more part of the total makespan TOES .

For the second possibility, without loss of generality, we
consider one flow, denoted as f1, to o1 finishing at t̃(o1). We
can add the flow f1 to chain O as o2. Now, considering the
start time of f1, t̃(f1), there are two cases:
▷ Case 1: The task that f1 originates from finished at t̃(f1).
In this case, we can add the task to O as o3. We use o3 and

o2 to further extend O, covering more makespan.
▷ Case 2: The task that f1 originates from finished before

t̃(f1).
Case 2 indicates that there exists another flow f2 that blocks

the transmission of f1 due to the inter-iteration dependency.
Now, we add both f1 and f2 to chain O as o2 and o3. Consider
f2, there are again two cases as f1. We can follow the same
procedure to add either another flow f3 or a task to O. We
repeat the procedure until we add a task to O.

In conclusion, we add one task and possibly several flows
to extend our chain O that the execution of one part starts
immediately after the completion of its previous one. For the
newly added task, there are again two possibilities as o1 and
we can follow the same process as above to further extend the
coverage of makespan by adding another task to O. Eventually,
we can construct a continuous execution chain O to cover the
entire makespan TOES .

REFERENCES

[1] T. N. Kipf and M. Welling, “Semi-Supervised Classification with Graph
Convolutional Networks,” in Proc. of ICLR, 2017.

[2] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive Representation
Learning on Large Graphs,” in Proc. of NIPS, 2017.

[3] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph Attention Networks,” in Proc. of ICLR, 2018.

[4] F. Errica, M. Podda, D. Bacciu, and A. Micheli, “A Fair Comparison
of Graph Neural Networks for Graph Classification,” in Proc. of ICLR,
2020.

[5] X. Li, Y. Shang, Y. Cao, Y. Li, J. Tan, and Y. Liu, “Type-Aware
Anchor Link Prediction across Heterogeneous Networks Based on Graph
Attention Network,” in Proc. of AAAI, 2020.

[6] P. Frasconi, M. Gori, and A. Sperduti, “A General Framework for
Adaptive Processing of Data Structures,” IEEE Transactions on Neural
Networks, 1998.

[7] S. Cao, W. Lu, and Q. Xu, “GraRep: Learning Graph Representations
with Global Structural Information,” in Proc. of ACM CIKM, 2015.

[8] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and
J. Leskovec, “Open Graph Benchmark: Datasets for Machine Learning
on Graphs,” in Proc. of NeurIPS, 2020.

[9] A. Sinha, Z. Shen, Y. Song, H. Ma, D. Eide, B.-J. Hsu, and K. Wang,
“An Overview of Microsoft Academic Service (MAS) and Applica-
tions,” in Proc. of WWW, 2015.

[10] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “Graph-
SAINT: Graph Sampling Based Inductive Learning Method,” in Proc. of
ICLR, 2020.

[11] J. Chen, T. Ma, and C. Xiao, “FastGCN: Fast Learning with Graph
Convolutional Networks via Importance Sampling,” in Proc. of ICLR,
2018.

[12] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su, “Scaling Distributed Machine
Learning with the Parameter Server,” in Proc. of USENIX OSDI, 2014.

[13] A. Gibiansky, “Bringing hpc techniques to deep learning,” Baidu Re-
search, Tech. Rep., 2017.

[14] D. Zheng, C. Ma, M. Wang, J. Zhou, Q. Su, X. Song, Q. Gan,
Z. Zhang, and G. Karypis, “DistDGL: Distributed Graph Neural Network
Training for Billion-Scale Graphs,” in IEEE/ACM Workshop on Irregular
Applications: Architectures and Algorithms, 2020.

[15] M. Fey and J. E. Lenssen, “Fast Graph Representation Learning with
PyTorch Geometric,” in Proc. of ICLR, 2019.

[16] J. Thorpe, Y. Qiao, J. Eyolfson, S. Teng, G. Hu, Z. Jia, J. Wei,
K. Vora, R. Netravali, M. Kim et al., “Dorylus: Affordable, Scalable, and
Accurate GNN Training with Distributed CPU Servers and Serverless
Threads,” in Proc. of USENIX OSDI, 2021.

[17] S. Gandhi and A. P. Iyer, “P3: Distributed Deep Graph Learning at
Scale,” in Proc. of USENIX OSDI, 2021.

[18] Z. Lin, C. Li, Y. Miao, Y. Liu, and Y. Xu, “PaGraph: Scaling GNN
Training on Large Graphs via Computation-aware Caching and Parti-
tioning,” in Proc. of ACM SoCC, 2020.

[19] G. Karypis and V. Kumar, “A Fast and High Quality Multilevel Scheme
for Partitioning Irregular Graphs,” SIAM Journal on Scientific Comput-
ing, 1998.

[20] Y. Jiang, Y. Zhu, C. Lan, B. Yi, Y. Cui, and C. Guo, “A Unified Ar-
chitecture for Accelerating Distributed DNN Training in Heterogeneous
GPU/CPU Clusters,” in Proc. of OSDI, 2020.

[21] B. Tian, C. Tian, H. Dai, and B. Wang, “Scheduling Coflows of Multi-
stage Jobs to Minimize the Total Weighted Job Completion Time,” in
Proc. of IEEE INFOCOM, 2018.

[22] C. J. Geyer, “Practical Markov Chain Monte Carlo,” Statistical Science,
1992.

[23] M. Wang, L. Yu, D. Zheng, Q. Gan, Y. Gai, Z. Ye, M. Li, J. Zhou,
Q. Huang, C. Ma et al., “Deep Graph Library: Towards Efficient and
Scalable Deep Learning on Graphs,” in ICLR Workshop on Representa-
tion Learning on Graphs and Manifolds, 2019.

[24] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural Message Passing for Quantum Chemistry,” in Proc. of ICML,
2017.

[25] S. Cai, L. Li, J. Deng, B. Zhang, Z.-J. Zha, L. Su, and Q. Huang,
“Rethinking Graph Neural Architecture Search from Message-passing,”
in Proc. of IEEE/CVF CVPR, 2021.

[26] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: An Imperative Style, High-
Performance Deep Learning Library,” in Proc. of NeurIPS, 2019.

[27] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang, “MXNet: A Flexible and Efficient Machine
Learning Library for Heterogeneous Distributed Systems,” in NIPS
Workshop on Machine Learning Systems (LearningSys), 2016.

[28] (2021) Euler Graph Library. [Online]. Available:
https://github.com/alibaba/euler

[29] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “TensorFlow: A System for
Large-Scale Machine Learning,” in Proc. of USENIX OSDI, 2016.

[30] K. Zhao, W. Xiao, B. Ai, W. Shen, X. Zhang, Y. Li, and W. Lin,
“AliGraph: An Industrial Graph Neural Network Platform,” in Proc. of
SOSP Workshop on AI Systems, 2019.

[31] AWS Lambda, 2021. [Online]. Available:
https://aws.amazon.com/lambda

[32] L. Ma, Z. Yang, Y. Miao, J. Xue, M. Wu, L. Zhou, and Y. Dai,
“NeuGraph: Parallel Deep Neural Network Computation on Large
Graphs,” in Proc. of USENIX ATC, 2019.

[33] Z. Jia, S. Lin, M. Gao, M. Zaharia, and A. Aiken, “Improving the
Accuracy, Scalability, and Performance of Graph Neural Networks with
ROC,” in Proc. of MLSys, 2020.

[34] T. Liu, Y. Chen, D. Li, C. Wu, Y. Zhu, J. He, Y. Peng, H. Chen, H. Chen,
and C. Guo, “BGL: GPU-Efficient GNN Training by Optimizing Graph
Data I/O and Preprocessing,” arXiv preprint arXiv:2112.08541, 2021.

[35] J. Yang, D. Tang, X. Song, L. Wang, Q. Yin, R. Chen, W. Yu, and
J. Zhou, “GNNLab: A Factored System for Sample-based GNN training
over GPUs,” in Proc. of EuroSys, 2022, pp. 417–434.

[36] Z. Cai, X. Yan, Y. Wu, K. Ma, J. Cheng, and F. Yu, “DGCL: An Efficient
Communication Library for Distributed GNN Training,” in Proc. of ACM
EuroSys, 2021.

[37] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang, Z. Hu, J. Wei,
P. Xie, and E. P. Xing, “Poseidon: An Efficient Communication Archi-
tecture for Distributed Deep Learning on GPU Clusters,” in Proc. of
USENIX ATC, 2017.

[38] A. Jayarajan, J. Wei, G. Gibson, A. Fedorova, and G. Pekhimenko,
“Priority-Based Parameter Propagation for Distributed DNN Training,”
in Proc. of Systems and Machine Learning (SysML), 2019.

15

[39] S. Shi, X. Chu, and B. Li, “MG-WFBP: Merging Gradients Wisely
for Efficient Communication in Distributed Deep Learning,” IEEE
Transactions on Parallel and Distributed Systems, 2021.

[40] Y. Bao, Y. Peng, and C. Wu, “Deep Learning-based Job Placement in
Distributed Machine Learning Clusters,” in Proc. of IEEE INFOCOM,
2019.

[41] A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner, R. Larsen, Y. Zhou,
N. Kumar, M. Norouzi, S. Bengio, and J. Dean, “Device Placement
Optimization with Reinforcement Learning,” in Proc. of ICML, 2017.

[42] S. Wang, D. Li, and J. Geng, “Geryon: Accelerating Distributed CNN
Training by Network-level Flow Scheduling,” in Proc. of IEEE INFO-
COM, 2020.

[43] J. H. Park, G. Yun, M. Y. Chang, N. T. Nguyen, S. Lee, J. Choi,
S. H. Noh, and Y.-r. Choi, “HetPipe: Enabling Large DNN Training on
(Whimpy) Heterogeneous GPU Clusters through Integration of Pipelined
Model Parallelism and Data Parallelism,” in Proc. of USENIX ATC,
2020.

[44] X. Yi, S. Zhang, Z. Luo, G. Long, L. Diao, C. Wu, Z. Zheng, J. Yang, and
W. Lin, “Optimizing Distributed Training Deployment in Heterogeneous
GPU Clusters,” in Proc. of ACM CoNEXT, 2020.

[45] Y. Zhao, K. Chen, W. Bai, M. Yu, C. Tian, Y. Geng, Y. Zhang, D. Li,
and S. Wang, “Rapier: Integrating Routing and Scheduling for Coflow-
Aware Data Center Networks,” in Proc. of IEEE INFOCO), 2015.

[46] M. Chowdhury, S. Khuller, M. Purohit, S. Yang, and J. You, “Near
Optimal Coflow Scheduling in Networks,” in Proc. of ACM SPAA, 2019.

[47] L. Cheng, Y. Wang, Q. Liu, D. H. Epema, C. Liu, Y. Mao, and J. Murphy,
“Network-Aware Locality Scheduling for Distributed Data Operators in
Data Centers,” IEEE Transactions on Parallel and Distributed Systems,
vol. 32, no. 6, pp. 1494–1510, 2021.

[48] M. Shafiee and J. Ghaderi, “Scheduling coflows with dependency graph,”
IEEE/ACM Transactions on Networking, vol. 30, no. 1, pp. 450–463,
2021.

[49] M. A. Brown, “Traffic Control HOWTO,” Guide to IP Layer Network,
2006.

[50] R. Sedgewick and K. Wayne, Algorithms. Addison-Wesley Professional,
2014.

[51] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

[52] GraphSAGE res incep, 2021. [Online]. Available:
https://github.com/mengyangniu/ogbn-papers100m-sage

[53] H. Tan, S. H.-C. Jiang, Y. Li, X.-Y. Li, C. Zhang, Z. Han, and F. C. M.
Lau, “Joint Online Coflow Routing and Scheduling in Data Center
Networks,” IEEE/ACM Transactions on Networking, 2019.

Ziyue Luo received his Ph.D. degree from the
Department of Computer Science, The University of
Hong Kong in 2022. He received the B.Eng. degree
from Wuhan University, China, in 2018. His research
interests include cloud computing, network function
virtualization, and distributed machine learning sys-
tems.

Yixin Bao received her Ph.D. degree from the
Department of Computer Science, The University
of Hong Kong in 2020. She received her B.Eng.
degree from the Department of Automation, Xi’an
Jiaotong University, in 2015. Her research interests
include cloud computing, machine learning systems,
and online learning algorithms.

Chuan Wu received her B.Engr. and M.Engr. de-
grees in 2000 and 2002 from the Department of
Computer Science and Technology, Tsinghua Uni-
versity, China, and her Ph.D. degree in 2008 from the
Department of Electrical and Computer Engineering,
University of Toronto, Canada. Between 2002 and
2004, She worked in the Information Technology
industry in Singapore. Since September 2008, Chuan
Wu has been with the Department of Computer
Science at the University of Hong Kong, where she
is currently a Professor. Her current research is in the

areas of distributed machine learning systems and algorithms, and intelligent
elderly care technologies. She is a senior member of IEEE, a member of
ACM, and served as the Chair of the Interest Group on Multimedia services
and applications over Emerging Networks (MEN) of the IEEE Multimedia
Communication Technical Committee (MMTC) from 2012 to 2014. She is
an associate editor of ACM/IEEE Transactions on Networking and IEEE
Transactions on Cloud Computing. She was the co-recipient of the best paper
awards of HotPOST 2012 and ACM e-Energy 2016. She received an Amazon
Research Award on AWS AI in 2021.

