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Abstract—Distributed machine learning with multiple concur-
rent workers has been widely adopted to train large deep neural
networks (DNNs). Parameter synchronization is a key component
in each iteration of distributed training, where workers exchange
locally computed gradients through an AllReduce operation or
parameter servers, for global parameter updates. Parameter
synchronization often constitutes a significant portion of the
training time; minimizing the communication time contributes
substantially to DNN training speed-up. Standard ring-based
AllReduce or PS architecture work efficiently mostly with homo-
geneous inter-worker connectivity. However, available bandwidth
among workers in real-world clusters is often heterogeneous,
due to different hardware configurations, switching topologies,
and contention with concurrent jobs. This work investigates the
best parameter synchronization topology and schedule among
workers for most expedited communication in distributed DNN
training. We show that the optimal parameter synchronization
topology should be comprised of trees with different workers
as roots, each for aggregating or broadcasting a partition of
gradients/parameters. We identify near-optimal forest packing to
maximally utilize available bandwidth and overlap aggregation
and broadcast stages to minimize communication time. We
provide theoretical analysis of the performance bound, and
show that our scheme outperforms state-of-the-art parameter
synchronization schemes by up to 18.3 times with extensive
evaluation under various settings.

I. INTRODUCTION

Deep neural networks (DNNs) trained on large datasets have
been widely used to drive various applications in domains
including computer vision [1], natural language processing [2],
and robotics [3]. To train a large DNN model (e.g., Bert [2]),
the workload is typically distributed to multiple concurrent
workers, to expedite model convergence with parallel training.
Data parallelism is the most widely adopted paradigm to
train DNNs for production applications [4]. With data-parallel
training, each worker has a copy of the DNN model, computes
parameter updates (i.e., gradients) based on the local dataset
iteratively, and exchanges gradients with other workers for
global model updates in each training iteration.

Allreduce algorithm [5] and parameter server (PS) architec-
ture [6] are commonly adopted for exchanging gradients and
updating global parameters among workers. This process is
referred to as communication or parameter synchronization in
distributed machine learning (ML). Such communication may
occupy 50-90% of per-iteration training time [7] [8], which can
be especially high in clusters with fast GPUs but relatively low
inter-GPU connection bandwidth. Therefore, minimizing the
communication time can contribute substantially to distributed
DNN training speed-up.

Standard ring-based Allreduce [5] or PS architecture works
most efficiently in homogeneous environments (i.e., with the
same worker configurations and inter-worker bandwidth) [9].
In a production ML cluster, workers in a training job are
commonly configured with the same type of GPUs. However,
inter-GPU connectivity is often heterogeneous, depending on
whether the workers reside on the same physical server or
not, the inter-GPU connection type in the servers and across
servers, what the available bandwidth is on inter-server links
(due to contention with concurrent jobs in the cluster), etc.

A few recent studies have addressed heterogeneous inter-
worker connectivity [8]–[11].Hierarchical parameter synchro-
nization plans have been proposed [10]–[13] to maximally
exploit available bandwidth in inter-server switching topolo-
gies, such as fat-tree [14] and BCube [15], but they still rely
on the symmetry of the topologies. Blink [8] advocates that
workers communicate through spanning trees inside a machine
for gradient aggregation and then among machines using ring
Allreduce for parameter synchronization, before broadcasting
updated parameters inside each machine. However, it is less
efficient when the number of workers participating in the
current round of communication varies across machines, as
intra-machine gradient aggregation may finish at different
time.

This paper seeks to answer the following question: given
any inter-GPU connectivity and bandwidth, what is the best
parameter synchronization scheme among a specified set of
workers in a distributed DNN training job, to fully utilize
the available bandwidth and minimize the communication
time? The parameter synchronization scheme specifies how
the gradient/parameter chunks should be exchanged among
workers, in terms of the interchange topologies and the amount
of gradient/parameter data to exchange on the topologies.

To identify the best communication scheme, we first reveal
that parameter synchronization in general can be modeled
into two stages, gradient/parameter reduce and updated pa-
rameter broadcast, and the best reduce or broadcast topology
for any indivisible gradient/parameter chunk is a tree. We
then aim at optimal packing of directed Steiner trees in the
GPU inter-connection network, while these trees are rooted at
different workers and responsible for reduce or broadcast of
different gradient/parameter chunks. We carefully quantify the
communication time on each reduce/broadcast tree, derive the
best chunk assignment among trees, and formulate an optimal
reduce and broadcast tree packing problem to minimize overall
parameter synchronization time. Adopting an efficient primal-



dual algorithm framework, we identify the set of reduce and
broadcast trees through an efficient ellipsoid algorithm that
exploits the minimum Steiner tree problem as an oracle, and
then compute the proportion of chunks to allocate to each tree
accordingly. Beyond the basic case of no reduce and broadcast
overlap, we further explore the potential of overlapping the
reduce and broadcast stages for communication time reduction.

Our algorithm design is supported by solid theoretical
analysis. We also carry out extensive evaluations under various
realistic inter-GPU connectivity settings, comparing with state-
of-the-art parameter synchronization schemes. Our evaluation
results reveal that our proposed scheme can reduce up to 2.9
times of the communication time when all workers participate
in parameter synchronization, and up to 18.3 times in cases
of partial active workers, as compared with state-of-the-art
parameter synchronization schemes, including Blink [8], Ring
Allreduce [5] and more.

II. BACKGROUND AND RELATED WORK

A. Distributed DNN Training

Synchronous data-parallel training has been most commonly
adopted for learning DNN models in production ML clus-
ters [4]. The training dataset is partitioned among multiple
workers. At each worker, the local dataset is further divided
into mini-batches of samples. In each training iteration, each
worker processes one mini-batch to obtain a loss and then
computes gradients based on the loss; then, it exchanges
locally-computed gradients with others to obtain global pa-
rameter updates, apply updated parameters to the local model,
and proceed to the next training iteration.

B. Communication Paradigms

The following two parameter synchronization paradigms are
dominant in today’s production ML workloads [16] [17].

Parameter Server (PS) architecture [6] (Fig. 1(a)). PS nodes
are included in the training, which maintain a global copy of
parameters. The workers send their locally-computed gradients
to the PSs that maintain the respective parameters. Then PSs
update their maintained global parameters with a particular
updating formula, e.g., using averaged gradients to update
parameters with stochastic gradient descent (SGD) method.
The workers then pull updated parameters from the PSs.

AllReduce. The workers synchronize parameter updates di-
rectly with each other using an AllReduce algorithm. Ring
AllReduce [5] (Fig. 1(b)) is commonly adopted [17]: N
workers are inter-connected as a ring; the parameters at each
worker are split into N chunks. In the i-th round, the worker w
concurrently sends the (w−i+1)%N -th chunk to its successor
worker along the ring and receives the (w − i)%N -th chunk
from its predecessor worker. Then, it averages the received
chunk with corresponding parameters. After N − 1 rounds
of communication, each worker obtains one fully averaged
chunk. Then, each worker sends its fully averaged chunk
to the successor, who will pass it on along the ring; after
another N−1 rounds, all workers receive all globally updated
parameters. We refer to the first N − 1 rounds as the reduce

stage and the latter N − 1 rounds as the broadcast stage.
Ring AllReduce is proven to be bandwidth optimal [18],
i.e., each worker achieves parameter synchronization with the
minimum amount of data communication, in a homogeneous
environment with the same bandwidth between each pair of
workers. However, it is less efficient when the bandwidth of
inter-work connections differs.

To reduce parameter synchronization latency, hierarchical
ring AllReduce [10], 2D-torus [13] and 2-D mesh [12] based
AllReduce algorithms have been proposed, which first reduce
parameters inside worker groups, then conduct ring AllReduce
across groups and finally broadcast updated global parameters
inside each group. A double binary tree algorithm [19] is used
in NCCL 2.4 [20], which uses two concurrent reduce/broadcast
trees for synchronizing two partitions of parameters. Nonethe-
less, these schemes still assume homogeneous bandwidth
between workers.
C. Physical Topologies

1) Inter-worker Connections: PCIe is a common type of
connections between GPUs. The PCIe link between two de-
vices can vary from 1 to 32 lanes and each lane is full-duplex,
e.g., with 4GB/s per direction with PCIe 5.0 [21]. NVLink
is another inter-GPU link type, supporting 25GB/s communi-
cation for each direction in one link [22]. Across machines,
InfiniBand links are commonly used, with throughput up to
50GB/s in each direction [23], e.g., achieved with InfiniBand
GPUDirect-RDMA [24] [25].

2) Topologies: Inside a machine, GPUs are typically
mounted through PCIe switches and communicate through
the CPUs with QuickPath Interconnect (QPI) [25], or directly
inter-connected through NVLink (e.g., as in NVIDIA DGX-
1 [26] and DGX-2 [27]). For cross-machine communication,
the typical network topology in a data center running ML
workloads includes a two-layer or three-layer fat-tree, [14]
[28], BCube [15], and DCell [29], while the inter-connection
network among workers in a single ML job is part of the data
center topology, which varies according to the placement of
the workers in the data center.

D. Existing Parameter Synchronization Schemes on Different
Physical Topologies

Blueconnect [11] is designed on the fat-tree structure [14]
and leverages network capacity through concurrent reduce-
scatter and all-gather. The reduce-scatter operation iteratively
reduces parameters in three levels of rings, making each
worker obtain one totally reduced chunk. Then each worker
broadcasts the reduced chunk on the three levels of rings
through an all-gather operation. Wang et al. [30] argue that
fat-tree does not match well the traffic pattern in DNN training
and propose BML on the BCube [15] topology, utilizing
two-level switches. The workers first obtain the partially
reduced parameters through level-0 switches in groups and
then communicate through level-1 switches to obtain the
totally reduced parameters. Both schemes require a symmetric
network topology to achieve optimal bandwidth utilization
through different levels of switches.



(a) PS: reduce and broadcast (b) Ring Allreduce: N-1 reduce steps and N-1 broadcast steps

Figure 1: PS and Ring All-reduce

Considering an arbitrary inter-worker connection topology,
Matcha [31] decomposes the topology into matchings and car-
ries out concurrent communication among different sampled
worker pairs in each round. It requires carefully designed
sampling methods to ensure model convergence; the band-
width on connections between not sampled nodes is unused
and thus wasted in the current round of communication.
Plink [32] uses one reduce/broadcast tree inside each machine,
and further uses tree Allreduce for inter-machine parameter
synchronization. However, the inter-machine connections are
idle when conducting intra-machine reduce/broadcast, while
the intra-machine connections are idle when conducting inter-
machine communication. Blink [8] is the most similar work
to ours: it packs spanning trees in the intra-machine topology
for parameter reduce, synchronizes locally-reduced parameters
through ring Allreduce among machines, and then broadcasts
updated parameters within each machine. However, it fails
when only part of workers participate in the communication
and does not utilize the bandwidth of inter-machine bandwidth
effectively. Instead, we pack Steiner trees to connect active
workers in the whole topology.

III. PROBLEM MODEL

A. System Abstraction

We consider a data-parallel DNN training job with V
workers. The workers are inter-connected using an arbitrary
physical network. Without loss of generality, each worker
runs on one device (e.g., GPU). The worker inter-connection
topology can be described by a graph G = (V, E), where
V is the set of devices (workers), and e ∈ E indicates a
connection between two devices. Considering that the links
between devices are mostly full-duplex in today’s data centers,
G is a directed graph: for workers u and v, we have two
edges e = −→uv and e′ = −→vu indicating two directions of
the connection, with the same bandwidth be = be′ . be = 0
indicates that there is no connection from u to v.

Let Ṽ denote the given set of N workers to synchronize
parameters in the current round of communication. We have
Ṽ ⊆ V (i.e., N ≤ V ), to allow flexibility in all cases other
than ideal synchronous training. For example, when worker
computation speeds differ, parameters can be synchronized
among a subset of workers of similar speeds, instead of
all (similar to asynchronous training [33] [9]). We refer to
the workers in Ṽ as active workers in the current round of
communication.

Let C be the set of parameters in the DNN model. We
consider that the global parameter update is calculated by
averaging parameter updates from all active workers.

B. Reduce-Broadcast Communication

We model the parameter synchronization procedure among
active workers in two stages: (i) reduce, where locally-
computed gradients or parameters are passed around the
workers for averaging; (ii) broadcast, where the worker with
a completely reduced parameter chunk1 sends the updated pa-
rameter chunk to all other workers. This two-stage abstraction
can represent common parameter synchronization schemes,
e.g., the PS architecture and AllReduce algorithms.

With the PS architecture (Fig. 1(a)), active workers send
local gradients to PS nodes (reduce stage), and PSs send
updated parameters back to the workers (broadcast stage). The
communication topology can be viewed as S trees rooted at S
PSs. Each tree is employed to reduce and broadcast a subset
of model parameters that the respective PS maintains.

For Ring AllReduce (Fig. 1(b)), the first |Ṽ| − 1 communi-
cation steps correspond to the reduce stage and the next |Ṽ|−1
communication steps are the broadcast stage. Two chain-shape
trees (with N − 1 edges each) are rooted at each worker: one
responsible for reducing a chunk of |C|/|Ṽ| parameters, and
the other for broadcasting the completely reduced chunk.

Then, we show that for any indivisible parameter chunk ci,
the optimal broadcast topology can only be a tree, and so does
its optimal reduce topology. Note that the data communication
direction in a reduce tree is different from that in the broadcast
tree of the same root: gradients/parameters are transmitted
towards the root in the reduce tree, while updated parameters
are sent outwards from the root in the broadcast tree.

Property 1. The best reduce or broadcast topology for an
indivisible parameter chunk ci is a tree.

The property holds as each worker only needs to send
(receive) the chunk to (from) one other worker for reduce
(broadcast) in the optimal case, as the chunk is indivisible.
We aim to construct the optimal collections of reduce and
broadcast trees, and then schedule parameter chunks to each
tree to maximally utilize available bandwidth in the worker
graph G and thus minimize parameter synchronization time
among active workers.

C. Communication Time

In a reduce (broadcast) tree, the reduce (broadcast) time is
the maximum chunk delivery time between the root and any
leaf node. We show that the reduce (broadcast) communication

1The worker has a complete average of these parameters of all workers, or
it has the averaged gradients of the parameters from all workers and applies
it to obtain the updated parameters.



time along a tree is decided by the size of the parameter chunk
and minimum bandwidth of links in the tree.

Property 2. Omitting gradient/parameter processing time at
each worker (i.e., averaging for reduce and forwarding for
broadcast) and assuming the parameter chunk ci can be
divided into infinitely small sub-chunks for pipelined trans-
mission, the communication time for reducing (broadcasting)
parameter chunk ci in a reduce (broadcast) tree Ri is asymp-
totically Ttree = |ci|

mine∈Ri
be

.

Proof. When splitting the parameter chunk ci to s equal-sized
sub-chunks, the time taken for transmitting one sub-chunk
from worker v directly to worker v′ is |ci|/sbe

, where be is

the bandwidth of edge e =
−→
vv′. Denote this as one unit of

transmission time. Consider the case of a reduce tree. We
need at most N − 1 units of transmission time for the first
sub-chunk to reach the root and another s − 1 units for the
rest s−1 sub-chunks to be received by the root. Therefore, we
need at most s+N −2 units of transmission time for the root
to receive the chunk from worker v. Let Ri denote the set of
edges on the path from v to the root in the reduce tree. The
total communication time from v to the root is no larger than
(s+N−2)× |ci|/s

mine∈Ri
be

= s+N−2
s × |ci|

mine∈Ri
be

. When s� N ,
we have s+N−2

s → 1. Consequently, the communication time
for reducing the chunks from all workers in the reduce tree
is at most Ttree = |ci|

mine∈Ri
be

. We can prove the case of the
broadbast tree in the same way.

Based on Property 2, the effective bandwidth of reduce
(broadcast) along the tree Ri is w(Ri) = mine∈Ri

be.
To maximally utilize the bandwidth of all inter-worker

connections, we identify a collection of reduce (broadcast)
trees, and then partition parameters C to chunks c1, c2, . . .
for reduce (broadcast) in different trees. Along each tree, the
parameter chunk is further divided into small sub-chunks,
which are transmitted one after another in the pipelined
manner, to maximize concurrent link usage and approach the
ideal communication time given in Property 2. An illustration
is given in Fig. 2.

The following property further gives the best parameter
assignment to the reduce (broadcast) trees for minimizing
communication time.

Property 3. Given the set of reduce (or broadcast) trees,
{R1, . . . ,Rr}, the minimum reduce (or broadcast) commu-
nication time is achieved when the model parameters C are
allocated to the reduce (or broadcast) trees in proportion to
the trees’ effective bandwidth, i.e., with |ci| ∝ w(Ri), at
Tstage = |C|∑

i∈{1,...,r} w(Ri)
= |ci|

w(Ri)
,∀i ∈ {1, . . . , r}.

Proof. Let |ci|
w(Ri)

= γ, ∀i ∈ {1, . . . , r}. We have∑
i∈{1,...,r} |ci|∑

i∈{1,...,r} w(Ri)
= |C|∑

i∈{1,...,r} w(Ri)
= γ as well. According

to Property 2, the communication time in each tree Ri is
γ. Since all reduce (broadcast) trees can transmit chunks
in parallel, the minimum communication time in the reduce
(broadcast) stage is achieved at Tstage = γ.

Table I: Notation

Notation Description
G G = (V, E): inter-connection topology among workers

in V with edge set E
Ṽ set of active workers
N # of active workers
C parameters in the DNN model
I(v) reduce trees rooted at worker v
J (v) broadcast trees rooted at v (in pure broadcast stage)
K(v) broadcast trees rooted at v (in overlapped broadcast stage)
xie (xje) whether e is in tree i ∈ I(v) (j ∈ J (v))
be available bandwidth of edge e
α,A α-approximate minimum Steiner tree algorithm A
wi weight (effective bandwidth) of tree i
χ(v) aggregate weight of reduce/broadcast trees rooted at v

D. Optimal Reduce and Broadcast Tree Packing Problem

Let I(v) be the set of possible reduce trees and J (v) be the
set of possible broadcast trees inter-connecting active workers
Ṽ in graph G, rooted at worker v, ∀v ∈ Ṽ . Each reduce
(broadcast) tree is a Steiner tree with directed edges pointing
towards (outward from) the root, spanning all active workers
(possibly including some other workers as relays). We use
vector xi ∈ {0, 1}|E| (xj ∈ {0, 1}|E|) to describe a reduce
(broadcast) tree i ∈ I(v) (j ∈ J (v)): xie = 1 (xje = 1) if
directed edge e is in the tree and xie = 0 (xje = 0), otherwise,
∀e ∈ E. Let wi (wj) be the weight of reduce tree i (broadcast
tree j), denoting the bandwidth that each of its edges occupies
in the respective physical link. A reduce (broadcast) tree in set
I(v) (J (v)) of weight 0 is not selected for reduce (broadcast).

Let Cv be the set of parameter chunks allocated for reduce
and broadcast by trees rooted at worker v. That is, these
chunks are reduced by the reduce trees I(v) rooted at worker
v; worker v obtains updated parameters and then broadcasts
these parameters along the broadcast trees J (v). Note that the
set of reduce trees I(v) can differ from the set of broadcast
trees J (v). On the other hand, the total effective bandwidth of
trees in I(v) and J (v) equals, as the same set of parameters
Cv are reduced by trees in I(v) and broadcast by trees in J (v),
i.e.,

∑
i∈I(v) wi =

∑
j∈J (v) wj .

Base on Property 3, the parameters are allocated to the
trees in proportion to the corresponding effective bandwidth.
Therefore, the reduce time for Cv over all reduce trees rooted
at v is T (v)

reduce =
|Cv|∑

i∈I(v) wi
, ∀v ∈ Ṽ , and the reduce time of

all chunks is:
Treduce =

∑
v∈Ṽ |Cv |∑

v∈Ṽ
∑

i∈I(v) wi
=

|C|∑
v∈Ṽ

∑
i∈I(v) wi

(1)

Similarly, the broadcast time of all updated parameters is
Tbroadcast = |C|∑

v∈Ṽ
∑

j∈J (v) wj
. Then the total communication

time among N active workers is:

Tcomm =
|C|∑

v∈Ṽ
∑

i∈I(v) wi
+

|C|∑
v∈Ṽ

∑
j∈J (v) wj

. (2)

Our optimization problem to identify the optimal sets of
reduce and broadcast trees and allocate bandwidth to the
trees is formulated as follows, which minimizes the parameter
synchronization time in Eqn. (2) (the size of parameters |C| is
fixed according to the DNN model and is hence omitted from
the objective function). Notations are summarized in Table I.



(a) Active: worker A, B, D (b) Reduce trees rooted at A and D (c) Broadcast trees rooted at A and D

Figure 2: Reduce and broadcast trees: an example with 4 GPUs and 3 active workers

minimize
1∑

v∈Ṽ
∑

i∈I(v) wi
+

1∑
v∈Ṽ

∑
j∈J (v) wj

(3)

subject to ∀v ∈ Ṽ :
∑

i∈I(v)

wi =
∑

j∈J (v)

wj (3a)

∀e ∈ E :
∑
v∈Ṽ

∑
i∈I(v)

wix
i
e ≤ be (3b)

∀e ∈ E :
∑
v∈Ṽ

∑
j∈J (v)

wjx
j
e ≤ be (3c)

∀v ∈ Ṽ, i ∈ I(v), j ∈ J (v) : wi ≥ 0, wj ≥ 0. (3d)

Constraints in (3a) indicate that the same set of chunks
are reduced by trees rooted at v and then broadcast by trees
rooted at v. Constraints in (3b) bound the aggregate bandwidth
consumption of reduce trees by the capacity of each edge,
and (3c) are the bandwidth constraints for broadcast trees. In
this formulation, reduce trees and broadcast trees do not share
link bandwidth, assuming that the broadcast stage starts after
parameter reduce procedures on all reduce trees finish. We will
design efficient algorithms to approximately solve this problem
in the following section. In Sec. V, we further investigate the
case where reduce stage and broadcast stage may overlap as
much as the network bandwidth and chunk reduce-broadcast
dependencies allow.

Let χ(v) =
∑
i∈I(v) wi =

∑
j∈J (v) wj , denoting the

aggregate weight of reduce or broadcast trees rooted at v. Op-
timization problem (3) can then be converted to the following:

maximize
∑
v∈Ṽ

χ(v) (4)

subject to ∀v ∈ Ṽ :
∑

i∈I(v)

wi = χ(v) (4a)

∀v ∈ Ṽ :
∑

j∈J (v)

wj = χ(v) (4b)

∀e ∈ E :
∑
v∈Ṽ

∑
i∈I(v)

wix
i
e ≤ be (4c)

∀e ∈ E :
∑
v∈Ṽ

∑
j∈J (v)

wjx
j
e ≤ be (4d)

∀v ∈ Ṽ, i ∈ I(v), j ∈ J (v) : (4e)
wi ≥ 0, wj ≥ 0, χ(v) ≥ 0. (4f)

Given xie’s and xje’s (aka given the reduce and broadcast
trees), optimization problem (4) is a linear program (LP) with
|Ṽ | variables, χ(v)’s, and no more than |Ṽ |(kr+kb) variables,
wi’s (kr and kb are the maximal number of reduce or broadcast
trees at each root, respectively). However, the choices of x ∈
{0, 1}|E| is exponential at 2|E|, leading to exponentially-many

potential trees and corresponding variables in the LP. Instead
of finding all trees, we will use an efficient algorithm to find
a polynomial number of Steiner trees Ĩ(v) and J̃ (v) for each
root v ∈ Ṽ , and use these trees for reduce and broadcast, with
weights computed by solving the LP efficiently.

IV. PARAMETER SYNCHRONIZATION TOPOLOGY
CONSTRUCTION

In this section, we design an efficient algorithm to find the
reduce and broadcast trees for parameter synchronization.

When the broadcast stage happens after the entire reduce
stage is finished, problem (3) is separable into two sub-
problems, for finding the set of reduce trees and the set of
broadcast trees, respectively. Finding reduce (broadcast) trees
connecting active workers in the given graph is essentially
a directed Steiner forest packing problem [34], with directed
Steiner trees rooted at different active workers. When all the
workers in the graph are active, the Steiner trees become
spanning trees, while optimal directed spanning forest packing
can be computed in polynomial time [35]. In the general case,
the directed Steiner forest packing problem is NP-hard [34].

We follow the primal-dual framework proposed by Jain et
al. [36] in our algorithm design to identify a set of reduce
(broadcast) trees, achieving a proven approximate ratio to the
optimum. We will present our algorithm using the case of
finding broadcast trees (i.e., broadcast forest packing), while
reduce forest packing can be computed similarly except for
reversing the direction of edges in the algorithm.

The sub-problem of packing broadcast trees in problem (3)
is equivalent to the following (wj’s are variables):

maximize
∑
v∈Ṽ

∑
j∈J (v)

wj (5)

subject to ∀e ∈ E :
∑
v∈Ṽ

∑
j∈J (v)

wjx
j
e ≤ be (5a)

∀v ∈ Ṽ, j ∈ J (v) : wj ≥ 0 (5b)

The dual problem of (5) is as follows:

minimize
∑
e∈E

beye (6)

subject to ∀v ∈ Ṽ, ∀j ∈ J (v), :
∑
e∈E

yex
j
e ≥ 1 (6a)

∀e ∈ E : ye ≥ 0 (6b)

We solve the dual problem (6) following the Ellipsoid
algorithm in [36] and identify a set of Steiner trees to use.
We add constraint

∑
e∈E beye ≤ D to the dual problem, and



find the minimum D∗ through binary search that makes the
following set YD non-empty:
YD =

{
y ∈ R|E|

+ |
∑
e∈E

beye ≤ D,
∑
e∈E

yex
j
e ≥ 1, ∀j ∈ J

}
(7)

Our Ellipsoid algorithm proceeds as follows. In each itera-
tion, we evaluate whether

∑
e∈E beye ≤ D is satisfied. If not,

we cut down the set of feasible points by the objective cut
defined by

∑
e∈E beye = D (removing the

∑
e∈E beye > D

part) and update ye’s to the center of the new feasible set.
If

∑
e∈E beye ≤ D, we call an algorithm A to find the

approximate minimum Steiner tree x̃ in the graph with edge
weight ye’s. For the identified Steiner tree, if

∑
e∈E yex̃e ≥ 1,

ye’s are feasible, the current set YD 6= ∅ and D > D∗;
otherwise, we cut the feasible set using the cutting plane∑
e∈E yex̃e = 1 (removing the

∑
e∈E yex̃e < 1 portion), and

update ye’s to be the center of the new feasible set. The tree
packing algorithm to solve the dual problem is given in Alg. 1.

We then use the Steiner trees found by algorithm A through-
out the Ellipsoid algorithm steps as J̃ in the primal problem,
and solve the resulting LP to compute corresponding wj’s (set
wj = 0,∀j ∈ J − J̃ ), resulting in a polynomial number of
variables to compute. Especially, the number of trees in J̃ is
polynomial at O(

√
DK|Ṽ|), where K is the maximum number

of iterations that the ellipsoid algorithm runs, and
√
D is due

to the binary search for the dual objective in (6).
There exist efficient algorithms to approximately solve the

minimum Steiner tree problem [37]. The following theorem
shows that if algorithm A that we use to find the minimum
Steiner tree has an approximation ratio of α, then the approx-
imation ratio is also α when we use the set of trees output by
Alg. 1 to solve problem (5), as compared to solving it using
all possible Steiner trees.

Theorem 1. Given an α-approximate algorithm A for the
minimum Steiner tree problem, problem (5) can be solved with
an α-approximate ratio in polynomial-time, using the primal-
dual approach.

Proof. Let D∗ be the minimum value of dual problem (6),
computed with all possible broadcast trees in J . Let D̃ be
the result produced by Alg. 1, which packs Steiner trees
in J̃ found by algorithm A. We have D̃ ≤ D∗ as D̃ is
computed on a relaxed problem with fewer constraints. The
output J̃ of Alg. 1 ensures that if and only if y ∈ YD̃,
the weight of trees in J̃ is greater or equal than 1, i.e.,
y(x̃) =

∑
e∈E yex̃e ≥ 1,∀x̃ ∈ J̃ . Since algorithm A is α-

approximate, the approximate minimum Steiner tree x̃k found
in iteration k of Alg. 1 with edge weights yk has weight
αyk(x∗k) ≥ yk(x̃k) ≥ yk(x∗k), where x∗k is the exact
minimum Steiner tree. Therefore, for the feasible solution ỹ
produced by Alg. 1, it satisfies αỹ(x∗) ≥ ỹ(x̃) ≥ 1, ∀x̃ ∈ J̃ ,
which leads to ỹ(x∗) ≥ 1

α . Given that x∗ is the exact minimum
Steiner tree under weight ỹ, we know ỹ(x) ≥ ỹ(x∗) ≥ 1

α ,
∀x ∈ J . In other words,

∑
e∈E ỹexe ≥

1
α , ∀x ∈ J and

hence
∑
e∈E(αỹe)xe ≥ 1, ∀x ∈ J . Therefore, (αỹ) is feasible

solution for original dual problem and
∑
e∈E be(αỹe) ≥ D∗.

Accordingly, D̃ =
∑
e∈E beỹe ≥

1
αD
∗.

Algorithm 1: Packing Trees

1 Input A: α-approximate algorithm for minimum
Steiner tree problem; K: number of iterations to run
the ellipsoid algorithm

2 Output J̃ : trees to pack
3 for v ∈ Ṽ do
4 Drb := large enough number // upper bound of D
5 Dlb := 0 // lower bound of D
6 ye := random(0, 0.1), ∀e ∈ E
7 while Drb > Dlb do
8 D := (Drb +Dlb)/2
9 k := 0

10 while k < K do
11 if

∑
e∈E beye > D then

12 Cut feasible set of ye’s by∑
e∈E beye = D and set ye’s to the

new center
13 else
14 x̃ := minimum Steiner tree rooted at v

found by A.
15 if

∑
e∈E yex̃ < 1 then

16 J̃ (v) := J̃ (v) ∪ {x̃}
17 Cut feasible set of ye’s by∑

e∈E yex̃e = 1 and set ye’s to the
new center of the ellipsoid

18 else
19 Drb := D
20 break
21 end
22 k = k + 1
23 end
24 end
25 Dlb := D
26 end
27 end

Let P̃ (P ∗) be the optimal value of primal problem (5)
solved based on trees in J̃ (J ). By duality of linear program,
we have P̃ = D̃ and P ∗ = D∗. Consequently, P̃ satisfies
1
αP
∗ ≤ P̃ ≤ P ∗.

Therefore, using the Steiner trees produced by Alg. 1 in
problem (5), we can solve the LP (5) to achieve an α-
approximate solution. The Ellipsoid algorithm to solve the
dual problem in Alg. 1 runs in polynomial time and produces
O(
√
DK|Ṽ|) trees. Given the trees, the primal LP can be

solved in polynomial time too.
We use Alg. 1 to produce the set of broadcast trees and

the set of reduce trees, respectively. Then we use these trees
in solving problem (4), i.e., solving the linear program to
derive weights associated with the reduce and broadcast trees,
ensuring that the total bandwidth of reduce trees equals that of
the broadcast trees at each root. The following theorem gives
the approximation ratio of our approach in solving the original
problem (3).



Theorem 2. Problem (3) can be solved with an α-approximate
ratio in polynomial time.

Proof. Let χ̃(v) be the aggregate weight of reduce/broad-
cast trees rooted at v computed by our approach on the
reduce/broadcast trees found by Alg. 1, and χ∗(v) be the
optimum computed on all possible reduce/broadcast trees.
Based on Theorem 1, we know that when we use Alg. 1 to
reduce the trees to pack from I(v) (J (v)) to Ĩ(v) (J̃ (v)),
computed weights w̃i’s (w̃j’s) satisfy 1

αw
∗
i ≤ w̃i ≤ w∗i

( 1
αw
∗
j ≤ w̃j ≤ w∗j ) and constraints (3b) ((3c)). Note that

w̃i and w̃j , and w∗i and w∗j may be scaled down from their
computed values by solving the respective problem (5) to
satisfy constraint (3a). Therefore, the aggregate weight of trees
χ̃(v) =

∑
i∈I(v) w̃i =

∑
j∈J (v) w̃j satisfies 1

α

∑
v∈Ṽ χ

∗
(v) ≤∑

v∈Ṽ χ̃(v) ≤
∑
v∈Ṽ χ

∗
(v). Let O∗ be the optimum objective

value of problem (3). Therefore, the objective value of problem
(3) achieved by our approach, Õ = 2∑

v∈Ṽ χ̃(v)
, satisfies:

O∗ ≤ Õ ≤ αO∗. Based on similar time complexity analysis
as in proof of Theorem 1, problem (3) can be solved by our
approach in polynomial time too.

V. PARTIALLY OVERLAPPED REDUCE AND BROADCAST

In Sec. IV, problem (3) is solved based on the separation of
reduce and broadcast stages, i.e., a root v does not broadcast
the updated parameter chunks Cv until it has reduced all
chunks. It is worth noting that in the reduce stage, every
worker sends the chunk(s) towards the root, and there might
be bandwidth left unused on links pointing outwards from
the root. Therefore, to fully utilize the network bandwidth
for expediting parameter synchronization, a root can start
broadcasting updated parameters (i.e., sub-chunks) after re-
ducing part of a chunk. Furthermore, we can release allocated
bandwidth of some reduce trees for such advanced broadcast,
if that helps in expediting overall parameter synchronization
completion.

We refer to the advanced parameter broadcast during the
reduce stage as overlapped broadcast, and the broadcast after
the reduce stage has completed as the pure broadcast stage.
Let K(v) denote the set of broadcast trees rooted at v for
overlapped broadcast, and wk be the weight (i.e., effective
bandwidth) of broadcast tree k ∈ K(v). Vector xk ∈ {0, 1}|E|
describes broadcast tree k ∈ K(v). Cres represents the set of
updated parameters to broadcast in the pure broadcast stage,
which can be obtained by excluding the chunks broadcasted
during the overlapped broadcast stage from the whole set of
parameters, i.e., |Cres| = |C|−Treduce×(

∑
v∈Ṽ

∑
k∈K(v) wk).

Based on Property 3 and Eqn. (2), the overall communication
time for parameter synchronization is now:

Tcomm =
|C|∑

v∈Ṽ
∑

i∈I(v) wi
+

|Cres|∑
v∈Ṽ

∑
j∈J (v) wj

=
|C|∑

v∈Ṽ
∑

i∈I(v) wi
+

|C| −
|C|

∑
v∈Ṽ

∑
k∈K(v) wk∑

v∈Ṽ
∑

i∈I(v) wi∑
v∈Ṽ

∑
j∈J (v) wj

(according to Eqn. 1)

=
|C|∑

v∈Ṽ
∑

i∈I(v) wi
+

|C|∑
v∈Ṽ

∑
j∈J (v) wj

(1−
∑

v∈Ṽ
∑

k∈K(v) wk∑
v∈Ṽ

∑
i∈I(v) wi

)

Let χ(v) =
∑
i∈I(v) wi =

∑
k∈K(v) wk +

∑
j∈J (v) wj be

the aggregate weight of reduce or broadcast trees rooted at v.
We further have:
Tcomm

=
|C|∑

v∈Ṽ χ(v)

+
|C|∑

v∈Ṽ
∑

j∈J (v) wj
×

∑
v∈Ṽ (χ(v) −

∑
k∈K(v) wk)∑

v∈Ṽ χ(v)

=
2|C|∑

v∈Ṽ χ(v)

Allowing overlap of reduce and broadcast stages, the opti-
mization problem to identify the optimal sets of reduce trees
and broadcast trees (in both overlapped and pure broadcast
stages) with allocated bandwidths is as follows:

maximize
∑
v∈Ṽ

χ(v) (8)

subject to

∀v ∈ Ṽ : χ(v) =
∑

i∈I(v)

wi (8a)

∀v ∈ Ṽ : χ(v) =
∑

k∈K(v)

wk +
∑

j∈J (v)

wj (8b)

∀v ∈ Ṽ :
∑

i∈I(v)

wi ≥
∑

k∈K(v)

wk (8c)

∀e ∈ E :
∑
v∈Ṽ

∑
i∈I(v)

wix
i
e +

∑
v∈Ṽ

∑
k∈K(v)

wkx
k
e ≤ be (8d)

∀e ∈ E :
∑
v∈Ṽ

∑
j∈J (v)

wjx
j
e ≤ be (8e)

∀v ∈ Ṽ, i ∈ I(v), j ∈ J (v), k ∈ K(v) :

wi, wj , wk, χ(v) ≥ 0 (8f)

Constraints in (8c) ensure that at each root, the aggregated
reduce bandwidth in the reduce stage is no smaller than
the aggregated broadcast bandwidth for overlapped broadcast
because root can only broadcast an updated chunk after it has
received the reduced chunk. The overlapped broadcast trees
share bandwidth on links with the reduce trees (Constraints
(8d)) as they happen simultaneously.

To solve the problem (8), we generate reduce trees and
broadcast trees, respectively, using Alg. 1. We use the obtained
broadcast trees in both overlapped and pure broadcast stages
(but the allocated bandwidth to the broadcast trees may differ
in the overlapped and pure broadcast stages). Given the trees
(i.e., xei ’s, xek’s and xej’s), we solve the linear program in
(8) and obtain the corresponding tree weights for reduce,
overlapped broadcast, and pure broadcast.

Theorem 3. Problem (8) can be solved within an α-
approximate ratio in polynomial time.

Proof. We use Alg. 1 to find the reduce/broadcast trees Ĩ(v),
J̃ (v), K̃(v). Therefore, similar to the proof of Theorem 2, w̃’s
that satisfy constraints in problem (8) also satisfy 1

αw
∗ ≤ w̃ ≤

w∗. Therefore the aggregate weight χ̃(v) =
∑
i∈Ĩ(v) w̃i =∑

k∈K̃(v) w̃k +
∑
j∈J̃ (v) w̃j satisfies 1

αχ
∗
(v) ≤ χ̃(v) ≤ χ∗(v). In

other words, we can obtain at least 1
α aggregate weight of the

original problem by solving the updated problem with trees
generated by Alg. 1.



(a) 4 GPUs inside a machine (b) 8 GPUs inside a machine (c) Topology of 4 machines (d) Inter-connections of 4 machines

Figure 3: Intra-machine and Inter-machine Connection Topologies.

Figure 4: Per-round communication time: all workers are active

VI. PERFORMANCE EVALUATION

A. Methodology

Settings. We simulate training of a DNN model over 2, 4, and
8 machines. Each machine is equipped with 4 or 8 GPUs, with
intra-machine GPU connectivity given in Fig. 3(a) and (b). The
machines are placed on a rack, connected to a ToR (top of
rack) switch, and then to an aggregation switch, as illustrated
in Fig. 3(c) (with the example of 4 machines). Fig. 3(d)
shows inter-connectivity abstraction among 4 machines; inter-
machine bandwidth is decided by available bandwidth along
the physical path between the machines. Intra-machine con-
nections have bandwidth around 100Gbps in each direction
for machines using PCIe inter-GPU connect [21] [25], and
around 300Gbps on machines with NVLink [22]. By default,
machines use PCIe inter-connect. We evaluate our scheme in
different networks with 10Gbps, 25Gbps, 40Gbps, or 100Gbps
inter-machine connection bandwidth (in each direction), re-
spectively. The parameter size of the DNN model is 1.33GB,
around the size of a BERT-LARGE model [2].
Baselines. We compare our scheme (allowing reduce and
broadcast overlap, unless stated otherwise), with state-of-the-
art parameter synchronization paradigms: (i) Blink [8]; (ii)
Plink [32]; (iii) Ring Allreduce [5]; (iv) Double Binary Trees
as in NCCL 2.4 [20] [19]; (v) PS architecture. Please refer to
Sec. II for details of these schemes.

B. All Workers are Active

Fig. 4 presents the parameter synchronization time in each
communication round when training the model with different
number of GPUs and inter-GPU bandwidths, with all workers

participating in parameter synchronization. Here, A×B means
A machines with B GPUs each. We observe that the commu-
nication time with our scheme is 2.9, 2.1, 1.2 times smaller
than the optimum among baselines, when the inter-machine
bandwidth is 10 Gbps, 25 Gbps, and 40 Gbps, respectively.
Our scheme achieves the same communication time as the
PS architecture when the inter-machine and intra-machine
bandwidth is at the same level (i.e., 100 Gbps), as one one-hop
tree rooted at each worker constitutes the best topology which
utilizes all bandwidth on all links. The excellent performance
with our method compared to baselines is due to that: 1) as
compared to Blink and Plink, we consider the intra-machine
and inter-machine paths together, minimizing the influence of
bottleneck connections on the overall communication time;
2) we choose the paths that minimize the communication
time with proven performance bound instead of using simple
heuristics; 3) we use packing tree methods, and can maximally
use all connections without being limited by the specific
structures like rings and double trees.
C. Different Active Worker Distributions

We next vary the distribution of active workers when we
train the model on 4 machines and each holds 4 GPUs. In
Fig. 5, (A,B,C,D) denotes A, B, C, and D active workers in
each machine, respectively. The results shows that our scheme
achieves superior performance consistently in all cases. Our
scheme reduces up to 18.3 times the communication time
when compared to optimal baselines. The advantages of our
method are more obvious in settings where the inter-machine
bandwidth is much less than intra-machine bandwidth and
fewer workers are active. In addition to efficient communi-



Figure 5: Per-round communication time: different active worker distributions among 4 machines with 4 GPUs each.

Figure 6: Per-round communication time: different active worker distributions on 8 machines with 8 GPUs each.

Figure 7: Overlap vs. non-overlap under different active worker distributions on 4 machines with 4 GPUs each.

cation among active workers, our method may use inactive
workers as relays in the communication, which improves the
overall utilization of available connections (when non-active
workers are not synchronizing their parameters).

We further examine different active worker distributions
on 8 machines and each holds 8 GPUs, simulating a DGX-
1 system (Fig. 3(b)). The inter-machine bandwidth is set to
100 Gbps. For each machine, we use 2G to denote choosing
active workers A and G, 3G to denote choosing workers A,
B, and G, and 4H to denote choosing workers A, B, G,
and H; further, we use a single number to denote choosing
workers with consecutive indices, e.g., 6 means choosing
workers A−F . The 8-element vector in Fig. 6 corresponds to
such active worker selection on the 8 machines. Our scheme
exhibits persistent excellent performance in all cases and
reduces communication time for at least 1.44 times compared
to optimal results among the baselines.

D. Reduce/broadcast overlap vs. non-overlap

We further examine the gain of overlapping reduce and
broadcast trees with 100Gbps Intra-machine bandwidth. In

Fig. 7, we observe that the overlapped broadcast can reduce
up to 30% communication time compared to no reduce and
broadcast overlap, especially in networks with larger inter-
machine bandwidth.

VII. CONCLUSION

This paper studies optimal parameter synchronization topol-
ogy and schedule for data-parallel distributed DNN training,
under any inter-GPU connectivity and bandwidth. We de-
sign algorithms to construct parameter reduce and broadcast
trees, optimally decide parameter chunks allocated to the
trees, and allow the best overlap of reduce and broadcast,
for expedited communication for parameter synchronization.
We evaluate the proposed scheme extensively under various
realistic settings and demonstrate its superior performance in
communication time reduction compared to state-of-the-art
parameter synchronization schemes.
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