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A b s t r a c t - - M a n y  algorithms have been proposed for mmmg boolean association rules However, 
very l i t t le  work has been done m mining quantitative association rules. Although we can transform 
quantitative attributes into boolean attributes, this approach Is not effective and is difficult to scale up 
for high-dimensional cases and also may result m many lmprectse association rules Newly designed 
algorithms for quantltatwe association rules still are persecuted by the problems of nonscalablllty and 
noise In this paper, an efficient algorithm, DRMmer, is proposed By using the notion of "density" 
to capture the characteristics of quantltatwe attributes and an efficmnt procedure to locate the "dense 
regmns", DRMlner not only can solve the problems of previous approaches, but also can scale up well 
for high-dimensional cases Evaluations on DRMlner have been performed using synthetic databases 
The results show that DRMiner is effective and can scale up quite linearly with the increasing number 
of attributes @ 2005 Elsevmr Ltd. All rights reserved. 

K e y w o r d s - - D a t a  mining, Quantitative association rules, Dense regions, Density measure, Algo- 
rithms 

1.  I N T R O D U C T I O N  

Data  mining, the effective discovery of correlations among the underlying data  in large databases, 
has been recognized as an important  area for database research and has also at t racted a lot of 
attention from the industry as it has many applications in marketing, financial, and retail sectors. 
One commonly used representation to describe these correlations 1s called assoczatwn ~Ies  as 

introduced in [1]. In this model, the set I = {zl, i 2 , . . . ,  ~m} is a collection of items or attributes. 
The database DB consists of a set of transactions, where each transaction is a subset of items 
in I .  An association rule is an implication of the form X ~ Y with X, Y c_ I and X A Y = 0. 
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The meaning of the rule is that a transaction containing items in X will likely contain items 
in Y so that  marketing strategy can be derived from thin implication, for instance. To determine 
whether an association rule is interesting, two measures are being used: support and confidence. 
An association rule, X ~ Y, has support s% in DB if s% of transactions in DB contain items 
in X U Y. The same association rule is said to have confidence c% if among the transactions 
containing items in X, there are c% of them containing also items in Y. So, the problem is 
to find all association rules which satisfy predefined minimum support and minimum confidence 
constraints. 

In this setting, attributes which represent the items are assumed to have only two values and 
thus are referred as Boolean attributes. If an 1tern is contained in a transaction, the corresponding 
attribute value will be 1, otherwise the value will be 0. Many interesting and efficient algorithms 
have been proposed for mining association rules for these Boolean attributes, for examples, a 
priom [1], DHP [2], and partition algorithms [3] (see also [4-8]). However, in a real database, 
attributes can be quantztatwe and the corresponding domains can have multiple values or a 
continuous range of values, for examples, age, salary. By considering this type of attributes, 
association rules like this one, (30 < age _< 39) and (50000 < salary < 79999) ~ (100000 _< 
loan < 300000), will be desirable. To handle these quantitative attributes, in this paper, a 
new measure called density will be Introduced. This new measure, together with the support 
and confidence measures, will lead to an efficient and scalable algorithm, Dl~Miner, for mining 
quantitative association rules. 

1.1. M o t i v a t i o n  for a D e n s i t y  M e a s u r e  

The motivation for a new density measure can best be illustrated by an example. Assuming that  
we have two quantitative attributes, A and B (see Figure 1). Each transaction in the database 
is mapped to a data point in this two-dimensional space using the corresponding values of the 
attributes as coordinates. Each unit in the grid of Figure 1 is called a cell. We want to find all the 
association rules of the form A C [xl, x2] ~ B _c [yl, y2], where xl ,  x2 E {0, a l ,  a2, a3, a4, ah, a6} 
with x2 > xl and Yl,Y2 E {O, bl, b2, b3, b4, bh} with y2 > Yl. And we further set the support 
threshold to five points and the confidence threshold to 50%. 

We can obviously obtain the following rules: 

• A C [ a l ,  a2]  ~ B C [b2, b3] (1 ) ,  

• A C_ [a2,  a5]  ~ B C_ [0, bh] (2 ) ,  

• A C [0, a6] ~ B C_ [0, bh] (3 ) .  

One can easily see that  with only the support and confidence measures, as long as a range has 
the minimum support, any larger range containing this range will also satisfy the support measure 
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Figure 1 Example of some quantitative rules. 
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threshold. Similarly, by enlarging the two ranges in both dimensions, it is very l~kely that the 
new ranges will satisfy the confidence constraint as well. This can lead to many "useless" rules. 

• Trivial Rule: Rules (2) and (3) will be considered as useless and not interesting because 
Rule (3) covers all possible values of both attributes while Rule (2) covers almost all 
possible values of both attributes. 

• Redundant Rule According to the above observation, from Rule (1), we can have all 
kinds of rules in the form A C_ [zl,z2] ~ B C [ul, u2] where [al, a2] C [zl,z2] and 
[b2, b3] C_ [ul, u2]. In this particular example, we can see that all these rules satisfy 
both the support and confidence constraints. However, these rules, when compared with 
Rule (1), are not very interesting because the increase in support of these rules is relatively 
a lot less than the increase in the sizes of the ranges. 

From the above example, intuitively, Rule (1) is much more preferable than both Rules (2) 
and (3). The reason is that the density of the region representing Rule (1) is much higher than 
the density of the regions representing Rules (2) and (3) (see Figure 1). Hence, if density is 
defined as a new measure, it is easy to get rid of the trivial and redundant rules. 

In a real application, when we map a database to a multidimensional space, we can notice 
that the data points (transactions) exhibit a "dense-regions-in-sparse-regions" property. In other 
words, the space is sparse but not uniformly so. That is, the data points are not distributed 
evenly throughout the multidimensional space. According to this kind of distribution and the 
density measure we have just introduced, the problem of mming quantitative association rules can 
be transformed to the problem of finding regions with enough density (dense regzons) and then 
map these dense regions to quantitative association rules. Note that generating association rules 
from dense regions is straight-forward. For example, if a dense region on dimensions A[al, a2], 
B[bl, b2], C[cl, c2] is identified, then rules like "g[al, a2] and B[bl, b2] ~ C[cl, c2]" or "B[bl, b2] 
and C[cl, c2] ~ A[al, a2]" can be generated easily. So, m this paper, we mainly focus on efficiently 
discovering dense regions. 

Our dense region discovery is a three-step process 

(1) We first map all database transactions into a high-dimensional space, which is partitioned 
into cells, and use a k-d tree to hold all non-empty cells in the space. In this step, the 
size of leaf node is carefully controlled so as to ensure that no dense region can be entirely 
located in one leaf node, therefore one leaf node can only contain one part of a dense region 
and that part must touch the boundaries of the leaf node. This property will facilitate 
the discovery of dense regions in the later steps. 

(2) For each leaf node, we may have a region that covers a possible part of a dense region (we 
call it a dense regwn cover). In this step, we identify and self merge the dense region cover 
set. The purpose of this merging is to make sure that dense regions are entirely located 
in this merged cover set. 

(3) Based on the merged cover set, we then identify the dense regions. 

1.2. R e l a t e d  W o r k  

It is natural to consider dense region discovering as a clustenzation problem [9]. There are many 
existing clustering algorithms that base on different techniques or models. For examples, [10-12] 
are density-based; [13] is cell or grid-based; [14,15] use randomized sampling; and [16] combines 
classical partition- and density-based techniques. However, general clustering algorithms may 
not be very appropriate for solving our problem. In general, most of the above algorithms are 
designed to discover clusters with arbitrary shapes, however, what we need is hyperrectangular 
clusters for generating sensible association rules. So, these methods are not directly applicable. 

Although hyperrectangular-shape clusters can be obtained by using specific distance measure 
such as the Manhattan distance, the density of the clusters cannot be guaranteed. If the region of 
the minimum bounding box of a cluster does not saUsfy the denmty threshold, further processing is 
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required. One possibility is to shrink the bounding box on some dimenslons. However, shrinking 
may not be able to achieve the required density. Another approach is to split and recluster 
the dusters by using some reeursive clustering techniques. Besides the high cost of performing 
recursive clustering, splitting could break the dense clusters into a large number of small clusters, 
which eventually would trigger costly merges. Finally, absorbing a few sparse points during the 
clusterization process could disturb tremendously the density of the found clusters. The problem 
is that a clustering algorithm inherently does not distinguish the points that  belong to some dense 
regions from the points in the sparse regions. The only exception is [14] that produces similar 
clusters as our method does, but its time complexity is exponential in the number of dimensions, 
so is not practical in general as usually the practmal cases have high dimensions. Moreover, most 
clustering algorithms require the number of clusters that need to be found as input, however, 
this number is not available in this case. 

Some others tried to apply the image analysis techniques to solve the problem. However, the 
number of dimensions that can be handled is restricted to two, or at most three, while it is easy to 
get more than four in real applications. Decision tree classifier is another approach, however, due 
to the problem of efficiency, it does not provide an effective solution For example, the SPRINT 
classifier [17] generates a large number of temporary files during the classification process. This 
causes numerous I /O operations and demands large disk space. To make things worse, every 
classification along a specific dimension may cause a splitting on some dense regions resulting 
in serious fragmentation of the dense regions. Costly merges are then needed to remove the 
fragmentation. In addition, many decision tree classifiers cannot handle large data set because 
they require all or a large portion of the data set to reside permanently in memory. 

There are a few other works trying to solve this mining problem for quantitative attributes. 
In [18], the authors proposed an Mgorithm which is an adaptation of the a prior~ algorithm for 
quantitative attributes. It partitions each quantitative attribute into consecutive intervals using 
equz-depth bins. Then adjacent intervals may be combined to form new intervals in a controlled 
manner. From these intervals, frequent ~temsets (c.f. large i temsets in a p r o m  algorithm) will 
then be identified. Association rules will be generated accordingly. The problems with this 
approach is that the number of possible interval combinations grows exponentially as the number 
of quantitative attributes increases, so it is not easy to extend the algorithm to higher-dimensional 
cases. Besides, the set of rules generated may consist of redundant rules for which they present 
a "greater-than-expected-value" interest measure to identify the interesting ones. 

Lent et al. also proposed an algorithm for mining quantitative attributes [19]. Their idea is 
to combine similar association rules to form interesting quantitative assoctation rules using the 
technique of clustering. The algorithm will map the whole database into a two-dimensional array 
with each entry representing an interval in each of the dimensions. Entries with enough support 
will be marked, then a greedy clustering algorithm using "bitwise AND" operation is used to 
locate the clusters. The drawback is that the algorithm is sensitive to noise. Although an image 
processing technique, called low-pass filter, is used to remove these noises, the algorithm is still 
sensitive to noise and noise is unavoidable in a real database. Also, the algorithm is basically 
designed for two quantitative attributes, so again it is not trivial how to extend the algorithm 
to an efficient one for higher-dimensional eases. There are other approaches that solve some 
special eases of mining quantitative association rules [20-22]. For examples, [20,21] only allow 
one quantitative attribute to appear on the right-hand side of the association rule while [22] can 
only discover rules with two quantitative attributes on the left-hand side of the rule. 

The noise problem and the problem of redundant rules of these approaches can be handled 
by the density measure in our approach. Also, our DRMiner does work on the general ease of 
mining quantitative association rules and can be used in higher-dimensional cases with scalable 
performance. It is hoped that this new approach can give more insights on this mining problem. 
The rest of the paper is organized as follows. Some preliminary definitions will be given in 
Section 2. Section 3 will describe the algorithm for discovering dense regions. Section 4 shows 
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the time and space complexity of our method. Section 5 evaluates our method by synthetic data, 
and Section 6 concludes the paper. 

2. S O M E  P R E L I M I N A R Y  D E F I N I T I O N S  

In the a pmori algorithm, two steps are used to produce association rules. In Step 1, fre- 
quent ltemsets are identified based on the support threshold. Then, in Step 2, associate rules 
are generated from those frequent itemsets that  also satisfy the confidence threshold. In a sire- 
ilar manner, we also produce meaningful quantitative association rules in two steps. In Step 1, 
hyperrectangular regions (to be defined below) are generated with respect to both support and 
density thresholds. In Step 2, among the regions identified in Step 1, we select those regions that 
also satisfy the confidence threshold. Then, association rules are generated from the selected 
hyperrectangular regions. Step 2 is trivial, so we focus on Step 1. To complete Step 1, there are 
two available strategies on how to use the density measure. The first approach is to generate all 
possible hyperrectangles based only on the support threshold. Then, use the density threshold to 
do the pruning. The other alternative is to adopt a new approach, which use both support and 
density thresholds in the process of generating hyperrectangles. In fact, the first approach is inef- 
ficient and even inapplicable, because it has to generate a huge amount of useless hyperrectangles 
for pruning, and because of the fact that  the number of range combination grows exponentially 
with the number of dimensions and the number of partitions of each dimension, so in many cases, 
it is impossible to get all possible hyperrectangles. On the contrary, the second approach is more 
efficient, because the pruning is carried out as the hyperrectangles generation is processed. Note 
that  the hyperrectangles identified in this step will be checked against the confidence threshold 
in Step 2. Before we discuss the details, we first give some useful definitions. 

DEFINITION 1. A quantitatwe assoczatwn rule Js represented as Yollows: A1 C [al,bl] A A2 C 
[a2, b2] A . . .  A A,~-I C_ [an-l,  b~-l] ~ An C [an, bn] 1 where A,(1 < z < n) is a quantitative 

attribute A nd  [a,, b,] is a range on the attribute A~ and a, < b,. 

A quantitative attribute usually contains values on a continuous range, partitioning provides a 
useful way to manage these values and to speed up the processing. To start  with, similar to other 
grid-based approaches, we first partition the range of each quantitative attribute into subranges. 
The d-dimensional space which is composed by attributes A1, A2 , . . . ,  Ad can then be regarded as 
a set of small regions which we call them cells. The partitioning is to facilitate a data structure 
(k-d tree) to store information on the useful regions for further processing. Fhrthermore, we are 
working on a high-dimensional space rather than the original database, so from now on we will 

refer "dimension z" as attribute z in the following context. 

DEFINITION 2. Given a relational database with d attributes, and all its transactions mapped  

into a d-dimensional space such that each transaction is a data point  in this d-dimensional space 
with its ~th (1 < i < d) attribute value be the m d e x  on ~th dimension, a ithyperrectangular 

region r is defined by d ranges, namely [al, b~], [a2, b2],. , [ad, bd] where [a .  b,] is a range on 
the z th attribute with a~ <_ b, for all 1 < z <_ d. A hyperrectangular regmn with volume 

v~ = the number  of  cells in the region, denslty p~ = (number of  points)/v~ is called a dense 

region if: 

(1) Dr ~ Pmm (a user specified density threshold). 

(2) each cell in r has its density >_ Plow (a user specified density threshold and Pmm >Plow). 

In Definition 2, Condition (1) is intuitive. For Condition (2), let us recall Figure 1, sup- 
pose Pmm is two points in one cell. It  is clear that  ([hi, a2], [b2, b3]) is a dense region and 
([al, a2], [0, b3]), ([al, a2], [bl, b4]), ([al, a2], [b2, bb]).. ,  are also dense regions They are all re- 
gions containing both ([al, a2], [b2, b3]) and some empty cells. In other words, a region with high 

lit is easy to extend this definition to include more than one attmbute on the right-hand s~de of the rule. 



476 W LIAN et al 

density can swallow empty (or sparse cells) to produce lots of dense regions. This contradicts to 
our original purpose. Therefore we introduce Condition (2), that  is, we do not want high density 
regions to swallow cells with very low density. 

REMARK. Note that  if the density of a region is a lot higher than Pmin, it is still possible for a 
high density region to swallow some cells with smaller density (which is higher than Plow. One 
quick solution is to prune back the border areas that  have density which is relatively a lot lower 
than the density of the core region. Also, it is recommended that  the values of Pmln and Plow 
should not be set to have a big difference in real applications. 

3. D I S C O V E R I N G  D E N S E  R E G I O N S  

Recall that  in our approach, finding dense regions is decomposed into three steps, in this section 
we will first formulate the dense region discovery problem as an optimization problem. Then, we 
show the details of the three steps. 

3.1. Problem Statement of Discovering Dense  Regions 

We formulate the dense region discovering problem as follows. Let S = D1 × D2 × ". .  × Dd 

be a d-dimensional space such that, for 1 < ,  < d, Dt = {x I x E At, L, ~ x < H,} is a range in 
a totally ordered domain At, bounded above and below by H, and Lt, respectively. This space 
contains a set of data points D = {vl ,v2, . . .  ,vn}, where D is a subset of S. The space S is 
partitioned into equal size cells such that  the ceil length on the ~th dimension is e,. That  is, the 
zth dimension is divided into cnt  = (H,  - L t ) / c t  equal intervals. We use CP = (cl ,  c 2 , . . . ,  Cdl to 
denote a cell-based p a r t i t w n  of S. We use cell as the basic unit to reference the coordinates of 
regions. We use r = [(ll, 12,. . . ,  ld), ( h i ,  h 2 , . . . ,  hd)] t o  denote a region representing a subspace 
whose projection on the/-dimension is the interval [Lt + ctl , ,  L ,  + c,h,]. The volume of a region is 

the total number of data points that  the region can hold. The density of a region r is the number 
of data points that  fall in r divided by the volume of r. We denote the volume of a region r by v,, 
and its density fir. And Prom is the density requirement for dense regions. Because the final rules 
we mined should satisfy the support threshold, so the volume of a dense region corresponding 
to a rule should also be large enough to satisfy the support threshold. Hence we give Vmln as 
the volume threshold a dense region should satmfy, plow is another density threshold that  each 
cell should satisfy in a dense region. This is because we do not want to combine empty or near 
empty cells in a dense region. Let supra1 n and N be the support threshold and the total number 

of points, respectively. Then, we require that  Vmln >_ SUPmln *D- 
Given a d-dimensional space S, a set of data points D in S, a cell based partition CP on S, 

together with three input thresholds Prom, Plow, and Vmm , discovering the dense regions in S is 
to solve the following optimization problem. 

Table 1. Problem s t a t emen t  of dmcovermg dense regions. 

Objective '  

Cons t r amts  

To find a set of dense regions ( r l , r2 ,  . ,rn) such tha t  E r r ,  is maximized 

p~. :> pro,., (i = I, . . , n )  

all cells c l m  vr, have Pcl _> Plow, (z = 1 . . . . .  n).  

3.2. The DRMiner  Algorithm for Discovering Dense  Regions 

In this section, we describe an efficient heuristic-based algorithm to locate the dense regions. 
Note that  our algorithm does not guarantee an optimal solution to the optimization problem 
in Section 3 1, but is efficient enough to locate dense regions for the purpose of identifying 
quantitative association rules. 

A dense region is a connected set of cells each of which has a density higher than plow. In 
the following, we will call this type of cells admisszble cells. Among the admissible cells, those 
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that  have density higher than Pmm are called dense cells. Also, any cell which is not empty is 
called a valid cell. Hence, a dense region must be a connected set of admissible cells. One way to 
discover dense regions is to use a multidimensional array to represent all the cells in the space and 

store the number of data  points of each cell in the array. Then the whole space can be traversed 
along all possible directions to locate and grow dense regions. This is very inefficient, the array 
in general would be very large and could not be stored in the memory. Also, many cells in the 
array are empty and contribute nothing to the mining of dense regions. Another approach is to 
use a tree-hke data structure to store and index all the valid cells. 2 Thin would require much less 
memory space; however, locating neighboring cells in a dense region may need to traverse many 
nodes on the tree. So, neither of these two approaches is an ideal solution. We have integrated 
these two approaches into the much more efficient algorithm DRMiner. 

The following are the three main steps of the DRMiner. 

(1) A cell-based k-d tree is built to store the valid cells in the space together with the number 
of points in each cell. We have observed that if the leaf nodes in the tree are small enough, 
then every dense region must touch some boundaries of some leaf nodes. Therefore, dense 
regions can be grown from the boundaries of the leaf nodes. 

(2) A dense regzon cover set (a set with several dense regions) is then grown inside some leaf 
nodes from their boundaries, and then this cover set is self merged across boundaries. 
Subsequent search of the dense regions is restricted in this merged cover set. Most zm- 

portantly, the szze of thzs merged cover set wzll be m the order of that of the dense regwns 
and hence ~s much smaller than the whole space. 

(3) The cells in each cover can then be traversed to find out the exact dense regions in the 
cover. Note that  most leaf nodes corresponding to sparse regions would not be involved 
in the covers grown in Step (2). This effectively prune away most of the sparse regions in 
the searching in Step (3) above 

The algorithm DRMiner has two Important merits. 

(a) it can identify very efficiently a set of small subspaces, the cover set, for finding the dense 
regions; 

(b) the searching is limited in each cover separately; 

there is no need to traverse between covers. In the following, we will explain the techniques in 
DRMiner in details. 

Step 1. Build k-d Tree 

We build a k-d tree to store the valid cells in the space S. For every point in the set of data 
points D, the cell which it belongs to will be inserted on the tree. Besides the cell coordinates, 
the tree also keeps track of the number of points in each cell. A k-d tree is very suitable for 
our dense region discovering problem, because every node splitting is done along one dimension. 
Hence, the resulted nodes are in fact rectangular regions in the space such that  the union of all 
the leaf nodes covers the whole space. The following theorem defines the splitting criterion on 
our k-d tree. 

THEOREM 1. Let  Vmm be the min imum volume of  a dense region, and V~l be the volume of  a 
cell. Let  R be a hyperrectangle in S.  I f  the number  of  admissible cells in R is less than Vmm/Vcl , 

then no dense region can be completely contained in R. 

PROOF. Since the volume of a dense region must be larger than vm,,, it must contain at least 
Vmm/Vcl admissible cells. Hence no dense region can be completely contained in R. 

Following Theorem 1, we split a leaf node zn the k-d tree whenever zt has more than Vmm/Vcl 

adm~sszble cells By doing that, we can guarantee that  a dense region will always touch some 

2This index is built  on vahd ra ther  than  admmslble cells just  because we not only use thin index for discovering 
dense region, but  also use It to suppor t  generat ing rules, so all points  must  be m this  index. 
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boundaries of some leaf node, i.e., it can never be contained in a single node without touching 
any boundary. Figure 2 shows the case that a dense region is split across four nodes on a k-d tree. 
Note that  we follow the standard routine of a general k-d tree to choose the splitting attribute. 
That  is, we randomly give an order to M1 attributes, then follow this order to do the splitting 
one by one. If the last attribute is reached, we may start  a new round. 

Y 

yl 

x2 

n3 t n4 
I 

, , L |  

nl n2 
xl X 

Figure 2. Dense regions spht across boundarms 

S t ep  2. G r o w  a n d  Self  M e r g e  D e n s e  R e g i o n  Cove r  Set  on  B o u n d a r i e s  

Let R be the region associated with a leaf node of the k-d tree which has been built previously 
to store the vahd cells. Let A be the set of admissible cells in R. (In the following, when we say a 
dense region in R, we mean the part of a dense region that  falls in R.) If the minimum bounding 
box MBOX(A) of A does not touch any boundary of R, then according to Theorem 1, R cannot 
contain any dense region, and hence can be ignored in the mining of dense regions. On the other 
hand, if this is not the case, then we will grow covers from the boundary to contain the dense 
regions in R. 

Suppose MBOX(A) does intersect with some boundaries of R. Let k be a boundary (a d - 1- 
dimension hyperplane) of R. Let B C_ A be the set of admissible cells touching k. Let P 
be the projection of MBOX(B) on k. It is straight forward to see that  the projection on k 
of any dense region in R which touches k will be contained in P. Let X be the axis per- 
pendicular to k. (Note that  X has been divided into intervals by the cell partition.) Let 
F -- {I  I I is an interval on X, 3 a cell c E A - B, such that  the projection of c on X is I}. Let 
T be the maximal connected set of intervals in F which touches the boundary k. (The existence 
of T is guaranteed by B since it touches k.) The region P × T is called the dense region cover 

grown from k in R. 

THEOREM 2. Let  C be a dense region cover grown from a boundary k in a region R.  I f  r is a 

dense region in R which touches k, then r n R C_ C. 

PROOF. It follows directly from the description of dense region cover. 

Figure 3 is an example of finding dense region cover in a leaf node. The filled cells are the 
admissible cells in the node. Assume the boundary (X, xl)  is the boundary from which the cover 
will be grown. P is the projection on the boundary, and T is the maximal connected set of 
intervals touching the boundary. P x T is the cover from the boundary (X, xl).  Note that  the 
cover contains all dense regions which touch the boundary (X, xl).  

Figure 4 is the procedure GrowDenseRegCover used to compute the dense region cover set in 
a leaf node of the k-d tree. In line 8 of GrowDenseRegCover, the procedure CellOnBoundary 
returns the admissible cells in A that  touch the boundary k and stores them m B. If B is not 
empty, then a dense region cover will be grown from k in line 10 with the procedure GrowCover 
according to the definition of dense region cover. After a cover has been grown, all admissible cells 
in the cover will be removed from the set of admissible cell A. Before the procedure is repeated 
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Figure 3 Finding dense region cover m the leaf node. 

on another  boundary,  the min imum bounding box of the remaining admissible cells not  covered 

yet will be tested against all boundaries in Step (6). If it does not  touch any boundary, then 

no more cover is needed; and the procedure returns the found covers. This is also il lustrated in 

Figure 3: once the cover P × T is removed, the MBOX of the remaining admissible cells, (cells a, 

b, c), would not touch any boundary;  hence, no more cover is needed. 

/* PROCEDURE : GrowDenseRegCover */ 

/* Input : N: a leaf node of k-d tree, with a set of valid cells */ 

/* Output. Dc. dense region cover set m N */ 

1) A = { admissible cells in N }, 

2) let R be the region associated with N, 

3) O -= set the boundaries of R, 

4) P c =  0, 

5) for each boundary k E O , do { 

6) if MBOX(A) does not touch any boundary in O then 

7) return Dc, /* dense region cover set have been found */ 

8) B -- CellOnBoundary(A, k),/* B contains all cells m A that touch k */ 

9) if (B ¢ @) then ( 

10) D = GrowCover(A, B, _R, k);/* grow cover from k */ 

11) Dc = Dc t2 {D}; /* insert the cover found into Dc */ 

12) A = A -  (c I c E D}; /* remove cells m D from A */ 

13) if (A ~-- ~) then return Dc, 

14) } 
15) } 

Figure 4 The procedure of GrowDenseRegCover 

M e r g e  d e n s e  r e g i o n  c o v e r  s e t  

Since the k -d  tree may split a dense region across several nodes, the dense region cover set 

of the leaf nodes need to be merged at the split boundary. For example, in Figure 2, the dense 

region has been separated into four pieces at the split positions of the k -d  tree. After the dense 

region cover sets in n l  and n2 have been found, they will be merged along the split position at 

X = xl .  The result of merging will be attached to the nonleaf nodes at (X : xl) .  Subsequently, 

it will be merged further with the cover sets from n3 and n4, and the resulting cover of the whole 
dense region will be at tached to the node at (Y : Yl). 
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When merging cover set from two sibling nodes on the k-d tree, each node may have more 

than one cover touching the same boundary as a result of previous merging. In that case, we will 

merge any two from the two nodes which touch each other on the boundary and the cover will be 
extended to their minimum bounding box. This merging will be performed recursively until no 
more merging can be done between the two nodes. This merging procedure will guarantee that 
a dense region will not be divided up into different cover set. 

The D R M i n e r  algorithm 

We have described the first two steps of DRMiner. In Figure 5, we presented the whole 
algorithm. 

DRMiner has three main steps. The first step (lines 1-4) is to read data points from D and 

build the k-d tree to store all valid cells. The second step (lines 5-8) is to grow and merge the 
dense region cover set from the nodes on the tree. In general, we can assume that all the valid 
cells can be counted in the memory, because the number of cells is much smaller than the number 

of data points. We will have to use chunking to handle the cells if the memory is not enough. This 

will be discussed in Section 4. In the third step (lines 9-12), we search for dense regions within 
each cover found. We use an array to store all the ceils in a cover and use a greedy procedure 
FindDenseRegion to scan the cover and grow dense regions from the array. Since the cover set 
has volumes in the same order as the dense regions they contain, it is much smaller than the 

volume of the whole space. Hence, in general, we can assume that the array storing the cells in 
a cover can be built in the memory. Again, we discuss how to handle the case of not enough 
memory in next section. What remains to be discussed is the procedure FindDenseRegion. 

/*  Input: S. whole space; D. data  points, CP: cell based partition; 

Pmm, P l o w ,  V m m :  thresholds, 
l I O( D1, D2, . . . , Did)" dimension order. 

/*  Output:  dense regions in S. */  

/*  Step 1: build the k-d tree */  

1) T r  = Initialize the  k-d tree, 

2) for each point p E D do { 

3) if the cell c containing p has not been inserted on Tr,  then insert c in Tr; 

4) increase the  count of c by 1 , 

/*  leaf nodes of Tr  are split according to the criterion defined m Theorem 1; */  

} 
/*  Step 2' grow dense regmn cover set on the  k-d tree */  

5) for every leaf node of N of T r  do 

6) CrowDenseRegCover ( N), 

/*  grow dense region cover set in N */  

7) for every non-leaf node of Tr, merge the dense region cover set of its children; 

8) assign the  resulted dense region cover set to DC, 

/*  Step 3. search dense regions in the dense region cover set in D C  */ 

9) Dr = O, 

10) for each dense region cover dc E D C  do { 

11) dr = FzndDenseReg~on(dc, O ) ; / *  find dense region in dc, O t s  the dimension order */  

12) Dr = Dr U dr, 

]3) } 
14) return Dr,  

Figure 5 DRMiner. 
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/*  Procedure . FlndDenseReglon */  

/*  Input. C: a dense region cover , 

O. selected dimension order O( Drl , D~ . . . . .  D~d) */  

/*  Output.  D R  . set of dense regions m C */  

1) build an array A to store all the ceils in C, 

2) D R  = •, 

3) for each cell c in A scanned in the order O, do{ 

4) if (c is not inside any dense region in D R  and pd -> Pm~n) then { 

5) r = GrowRegion(c) ; /*  grow dense region r from the  seed c * /  

6) if V(r)  >_ Vmm then 

7) D R  = D R  12 {r}, 

s) } 
9) } 
10) return DR,  

/*  Procedure " GrowReglon */  

/*  Input. c a seed ; O(D~I, D~2, , Did). dimension order, 

/*  Output.  r : a dense region m C */  

I) r ' = e ;  
2) repeat{ 

3) for k from D~ to D~ do{ /*  k is the dimension index */  

4) dir = 1 ; /*  first grow on the positive direction * /  

5) repeat{ 

6) repeat{ 

7) 5 .---- 5(r, k, dir), /*  get the mcrement  */  

8) if (all cells in ~ are admissible and p(r 12 5) >_ Prom ) 

9) then r = r 12 ~, /*  add the  increment to the dense region */  

11) } until (r cannot be expanded anymore), 

12) dlr .=  dir - 2, /*  grow on the negative direction (dm ---- --1) */  

13) }until dlr < - 1 ;  

14) } /*  for loop end */  

15) }until (r does not change), 

16) return r; 

Figure 6 Procedure of FmdDenseRegion. 

Step 3. Find Dense Regions (Procedure FindDenseRegion) 

Suppose C is a dense region cover. We store all the cells in C (including cells with no data 
point) in a multidimensional array so that  we can scan the cells in C to search for dense regions. 

. . .  D ! The order of scanning in C is determined by a preselected dimension ordering O(D~, D~, , d), 
i.e., first on dimension D~, then on D~, etc. During the scanning, FindDenseRegion first locates 
a seed cell, which is a dense cell, then uses the seed to grow a maximal dense region along the 
dimension order. After a dense region is found, FindDenseRegion repeats the searching in the 
reminding cells of C until all cells have been scanned. Figure 6 is the procedure FindDenseRegion. 

In line 5 of FindDenseRegion, the procedure GrowRegion is called to grow a dense region from 
a seed. It grows the region in the same order as the scan order: first in the positive direction 
of D~; then in the negative direction of D~; then in the positive direction of D~;, etc.; until all 
dimensions and directions are examined. It  iterates this growing process on all directions until 
no expansion can be found on any dimension. In the first dimension, GrowRegion grows a dense 
region by adding cells to the seed. Once after the first dimension, it grows by adding trunks of cells 
to the seed. We call the trunk of cells added to the dense region in each step an mcremen t .  If a 
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dense region r = [(al, a 2 , . . ,  ad), (bl, b 2 , . . ,  bd)] grows into the positive direction of dimension k, 
we denote the increment by 5(r, k, 1). Similar, the increment of r on the negative direction of 
dimension k is denoted by 5(r, k , - 1 ) .  GrowRegion determines the increment 5(r, k, dir) of r on 
dimension k as the trunk [(Ud,..., u2, ul), (Vd, . . . ,  V2, Vl)], where 

u~ = a,, v~ = b~, if 1 < i < d, 

Uk = ak, vk : bk ~- 1, if dir = 1; 

u k = a k - - 1 ,  v k = b k ,  i f d i r = - l .  

i ~ /~ ;  

In line 7 of GrowRegion, the increment first grows into the positive direction, then the negative 
direction (line 12). It  repeats this on all dimensions until r cannot grow anymore (line 15). Note 
that  the growing is limited in the region defined by the cover. Since the cover set are much 
smaller than the whole space, running FindDenseRegion is much more efficient than scanning 
the whole space for dense regions. Note that  using different orders in growing the dimensions in 
FindDenseRegion may result in different dense region configuration. However, the total volumes 
resulted from different orderings should be very close. 

3.3.  G e n e r a t e  Q u a n t i t a t i v e  A s s o c i a t i o n  R u l e s  

Now we can transform dense regions to quantitative association rules. Since density threshold 
is already satisfied, we only need to consider whether support and confidence thresholds are 
satisfied. From the definition, a quantitative association rule is of the form: A1 C [al, bl] A A2 _C 
[a2, 52] A ' - -  A An-1 C [an-l,bn-1] ~ An C_ [an, bn] where As (1 <__ z < n) is a quantitative 
attribute. It  is obvious that  the rule defines a dense region by the ranges for each As. Let this 
dense region be denoted by R~. And let the orthographic projection of R~ on the hyperplane 
formed by dimensions A1, A2,. •., An-1 be denoted by Rn-1. Because of orthographic projection, 
the length of R,~-I on sth dimension is the same as that  of R,~, where 1 < ~ < n - 1. Now the 
support of this potential association rule that  generated from R~ is the number of points failing 
m P~, and the confidence of this potential rule is the number of points falling in Rn over the 
number of points falling in Rn-1. If both of the support and confidence requirements are satisfied, 
then a quantitative association rules is successfully generated from the dense region Rn. See an 
example in Figure 7. We can see a three-dimensional box R n  in the three-dimensional space, and 
a two-dimensional shadow below it which is Rn-1, that is, the orthographic projection of P~ on 

the plane formed by dimensions A1 and A2. 
As we perform the same checking on all the dense regions, we can get all the quantitative 

association rules. 
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Figure 7. Example of counting support and confidence. 
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4. TIME C O M P L E X I T Y  A N D  M E M O R Y  
LIMITATION IN DISCOVERING D E N S E  REGIONS 

In this section, we will first give the time complexity of algorithm DRMiner, then we show how 
to handle the problem of memory limitation. 

4.1. Complexity of DRMiner 

In this section, we will analyze the complexity of DRMmer. Let N be the number of data 
points, and Nc be the number of valid cells. Also, let the number of leaf node on the k-d tree Tr 

be Nd, and Cp be the average number of valid cells in a leaf node. According to the splitting 

criterion and Theorem 1, Cp <_ Vmln/Vcl. 
The complexity of inserting a point into the k-d tree consists of two parts . 

(1) the time to locate a leaf node which is O(log(Nx)), where Nx is the number of leaf nodes; 
(2) the time to insert the point in the node which is in the order of d × log(Cp), where d is 

the number of dimensions. 

Hence the complexity of building the k-d tree is m the order of N × (log(N/Cp) + d × log(Cp)). 
Since Cp is bounded by Vmm/Vcb O(N × logN) is an upper bound on the time complexity to 
bmld the k-d tree. 

The complexity of computing the dense region cover set in a leaf node is determined by the 
number of admissible cells in the node which is bounded by Cp. The cost of finding touching ad- 
missible cells for a boundary, minimum bounding box for a set of admissible cells, and computing 
a cover from a boundary, are all linear to the number of admissible cells. Therefore the time for 
computing the dense region cover set is O(Nd × d × Cp), which is bounded by O(d × N). 

Since the k-d tree is a binary tree, the number of nodes that require to perform dense-region- 
cover merging is at most Nd -- 1. The complexity of the merge in each node is O(d × Nx log(N~)). 
where N~ is the size of cover set involved in each merge. In general, Nx is very small, and 

is bounded in the worst case by the number of dense regions which is also a small number. 
Therefore, the complexity of the merging is bounded by O(d × N). 

The procedure FindDenseRegion needs to scan all the admissible ceils once in every cover. For 
each admissible cell, it will at most check all its 2d neighboring cells. Hence the complexity of 
finding the dense regions m a cover is O(d × No), where Nc is the number of cells in the cover. 
Since the volume of the cover set is on the same order as that of the dense regions, the time to 
find all dense regions is bounded by d × N. 

In summary, the complexity for the second and third steps is linear to N and d. The dominating 
cost is in the building of the k-d tree, which is bounded by O(N × log(N/C)). This shows that 
DRMiner is a very efficient algorithm. 

4.2. Space  C o m p l e x i t y  Analys is  

In general, we work on the cell level, that is, we only store information on valid cells, not every 
data points. Therefore, the memory space required to store k-d is O(C), where C is the total 
number of valid cells, which should not be too big in most c a s e s .  3 This also depends on the cell 
size. However, if there is not enough memory, the tree can be stored on disk, and the computing 
of dense region cover set can be performed separately on different branches. Cover sets from 
different branches can be merged afterwards. 

In the last step of finding dense regions from their cover set, since dense regions have high 
density and their cover set have the same order of capacity, the array built from a cover in 
general should not be too big to fit in the memory. However, if it happens that a cover cannot 
be fully contained in the available memory, then chunking can be used to partition the cover. 

3In the worst case when each cell contains only one data point, the total number of valid cells C is the same as 
the total number of data points. 
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dense regions can be computed in each chunk separately [28]. At the end, an additional step of 
merging the dense regions found from the chunks is required. 

5. E X P E R I M E N T A L  R E S U L T S  

Some experiments have been carried out to assess the performance of DRMiner. All the 
experiments are performed on a Sun Sparc 5 workstation running Solaris 2.6 with 64M main 
memory. Here we use synthetic data to evaluate the performance of DRMiner. Details of synthetic 
data generation will be discussed in Section 5.1. The evaluation of discovering dense regions will 
be shown in Section 5.2 

5.1. Generat ion  of  Synthet i c  D a t a b a s e  

In the performance studies, we use synthetic database to evaluate the performance of DRMiner. 
The main parameters for synthetic database generation are listed in Table 2. The databases that  
we used for the experiments are generated by a two-step procedure. The procedure is governed 
by several parameters, which gives the user control over the structure and distribution of the 
generated data tuples. In the first step of the procedure, a number of potential non-overlapping 
dense regions are generated. In the second step, points are generated with in each potential dense 
region, as well as the remaining space. For each generated point, a tuple corresponding to that 
point is generated. 

Table 2. Input parameters of data generation. 

Parameter Meaning 
d no of dimensions 

L~ length of dimenmon 

ps density of the sparse region 

m average multiplimty for the whole space 

Ndr no. of dense regions 
average length of dense regions m dimension 

a~ standard deviation of the length of d.r m dimension 

par average density of dense regions 

~har average multiphcity for the dense regions 

The data for the experiments are generated by a two-step procedure. The user first specifies 
the number of dimensions (d) and the length (L 0 of each dimension of the multidimensional 
space in which data points and dense regions are generated. In the first step, a number (Ndr) 
of non-overlapping hyper-rectangular regions, called "potentially dense regions", are generated. 
The lengths of the regions in each dimension are carefully controlled so that  they follow a normal 
distribution with the mean (i~) and variance given by the user. 

In the second step, data points are generated in the potential dense regions as well as the whole 
space, according to the density parameters (~dr) specified by the user. Within each potential 
dense region, the generated data points are distributed randomly. Each data point is next used 
to generate one or more tuples, which are inserted to an initially empty database. The average 
number of tuples per space point is specified by the user. 

This procedure gives the user flexible control on the number of dimensions, the lengths of the 
whole space as well as the dense regions, the number of dense regions, the density of the whole 
space as well as the dense regions, and the size of the final database. 

5.1.1. S tep  1. Generat ion  of  potent ia l ly  dense  regions  

This step takes several parameters as shown in Table 2. The first few parameters determine the 
shape of the multidimensional space containing the data. The parameter d specifies the number 
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of dimensions of the space, while the values L~ (z = 0, 1, 2 , . . . ,  d - 1) specify the length of the 
space in each dimension. Valid coordinate values for dimension i are [0, L~). Thus, the total 
volume of the space VDCS is given by 

d-1 

v os = I I  (1) 
$=0 

The parameter ps is the average density of the sparse region, which is the parts of the space 
not occupied by any dense regions. Density is defined as the number of tuples divided by the 
total hyper-volume. On average, each point corresponds to m tuples in the final database. This 
parameter is called the "multiplicity" of the whole space Therefore, the number of data tuples 
generated, Nt, will be 

Art = m.  g , ,  (2) 

where Np is the total number of distinct points m the space. 
The next parameter Ydr specifies the total number of potentially dense regions to be generated. 

The potentially dense regions are generated in such a way that overlapping is avoided. The 
length of each region in dimension ~ is a Caussian random variable with mean r~ and standard 
deviation ~r,. Thus, the average volume of each potentially dense region is 

d-1 

V d r :  H ~ "  (3) 
~ 0  

The position of the region is a uniformly distributed variable, so that the region will fit within the 
whole multidimensional space If the region so generated overlaps with other already generated 
regions, then the current region is shrunk to avoid overlapping. The amount of shrinking is 
recorded, so that the next generated region can have its size adjusted suitably. This is to maintain 
the mean lengths of the dense regions to be [~. If a region cannot be shrunk to avoid overlapping, 
it is abandoned and another region generated instead. If too many attempts have been made 
without successfully generating a new region which does not overlap with the existing ones even 
after shrinking, the procedure aborts. The most probable cause for thin is that the whole space is 
too small to accommodate so many nonoverlapping potentially dense regions of such large sizes. 

To each potentially dense region are assigned two numbers--the density and the average mul- 
tiplicity. The density of each potentially dense region is generated so that it follows a Gaussian 
random variable with mean/~dr  and standard deviation/~dr/20. This means that on average, each 
potentially dense region will have fidr • "~dr points generated in it. The average multiplicity of the 
region is a Poisson random variable with mean rhdr. These two assigned values are used in the 
next step of the data generation procedure. 

5.1.2. S t ep  2. G e n e r a t i o n  of  po in ts  and  tup les  

The next step takes in the potentially dense regions generated in Step 1 as parameter, and 
generates points in the potentially dense regions as well as the whole space. Tuples are then 
generated from these generated points according to the multiplicity values. 

To generate the data, a random point in the whole space is picked. The position of the point 
is determined by uniform distribution. The point is then checked to see if it fails into one of the 
potentially dense regions. If so, it is added to that region. Otherwise, it is added to the list of 
"sparse points". This procedure is repeated until the number of points accumulated in the sparse 
point list has reached the desired value p s ( V D C S  - -  Ydr ' Vdr)- 

Next, each potentially dense region is examined. If it has accumulated too many points, 
the extra points are dropped. Otherwise, uniformly distributed points are repeatedly generated 
within that potentiMly dense region until enough points (i.e. Pdr" Vdr) have been generated. After 
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this, all the points in the multidimensional space have been generated according to the required 
parameters as specified by the user. The total number of points generated is the sum of the 
number of points generated in the sparse region as well as the dense regions. Thus, 

N p  -~ p s ( V D C s  --  Ndr .  Vdr) -~- Pdr Vdr 

= P s "  V D C S  + g d r '  Vdr" (/~dr -- f l s ) .  
(4) 

Finally data tuples are generated from the generated points. For each point in a potentially 
dense region, a number of tuples occupying that point is generated. This number is determined 
by an exponentially distributed variable with mean equal to the value assigned as "multiplicity" 
for that region in the previous step. For each point in the sparse list, we also generate a number 
of tuples. But this time, the number of tuples is determined by an exponentially distributed 
variable with a mean which achieves an overall multiplicity of m for the whole space, so that 
equation (2) is satisfied. From equations (1), (2), (3), and (4), we get 

d - 1  

N t  = m .  ps  " l - I  L ,  -~ N d r  . (fidr - -  Ps )  • l~ . (5) 

So, the total number of tuples (Nt) generated can be controlled by adjusting the parameters. 
Thus, the size of the database can be easily controlled. 

5.2. Evaluation of Discovering Dense Regions 

In this section, we will show the experimental result of discovering dense regions, and our focus 
is the speed of DRMiner with different dimension number and different percentage of sparse 
points and other factors. The speed is measured by the time used to discovering dense region. 
Our expectation is the speed of DRMiner can be scalable under different conditions. 

Here, Pmm, Plow, and Vmi, are all inputs to experiments. To simplify the experiment, we use a 
default cell volume of 20 for the cells in DRMiner. In this section, we simply refer the average 
dense region density Pdr as the dense region density, and the minimum density threshold Pmm 
as the density threshold. We also set Plow -- Pm,n/2 and Vmm ----- 4096 and Pm~, = Pdr,  in all the 
experiments below expect other specification. 
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Figure 8. Speed of DRMmer on different number of dimenmons. 
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5.2.1. Effec t  of  D R M i n e r  on  different  n u m b e r  of  d i m e n s i o n s  

In these set of experiments, we fixed the volume of the d-dimensional space and increased the 
number of dimensions from two to seven. The d-dimensional space has a volume of 2 × 101° with 
different dimensional lengths. Ndr ~- 10, Pdr=20%. The average volume of a potential dense 
region is 5 × 105, and the number of data points in the whole d-dimensional space is about one 
million, in which about 5% are sparse points. 

Figure 8 clearly shows that  the speed of DRMiner does not increase exponentially as the number 
of dimensions increases. This is what we have expected from the complexity analysis. 

5.2.2. Effect  o f  D R M i n e r  on  different  n u m b e r  of  sparse  p o i n t s  

In Section 5.2.1, we have studied the performance of DRMiner on high-dimensional case. Here, 
we investigate the speed of DRMiner for different percentage of sparse points. Here, we fix the 
number of dimension to 3 and the three-dimensional space has a volume of 2 × 10 l° with different 
dimensional lengths. Ndr = 10, ~dr----20%. And the number of points in dense regions is about 
one million. We increase the percentage of sparse points in the total number of points from 1% 
to 100%, Figure 9 shows the result. 

In Figure 9, we can see that  the speed of DRMiner is slightly affected by the percentage of sparse 
points when the sparse point percentage is less than 20% and not greatly affected w.r.t. 50%. 
This is because although the number of sparse points in this space is increased, this increasing 
does not greatly affect the density of sparse region. And this means that  the density difference 
between dense region and sparse region is still great, so the dense region cover will not be enlarged 
significantly, this in turn only leads to slightly increasing of the time cost of DRMiner. However, 
when most of the points becomes sparse points, the time consuming increase sharply. 
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Figure 9 Speed of DRMmer on different number of dimensions 

5.2 .3 .  Effect  of  D R M i n e r  on  larger d a t a b a s e  s i ze  

We also studied the effect of increasing the size of our input database. Here, we fixed the 
number of dimension to three, and Ndr = 10, the size of the whole space is 2 × 101°. The size of 
Database changes from containing 0.5 millin data points to containing four million data points, 
while the portion of the sparse points is fixed to 5% to the total number of points. Figure 10 
shows the result. 
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Figure 10. Speed of DRMiner  with different da tabase  sLZe. 

From Figure 10, we can notice that  the speed increases linearly as the number of points 
increases, which is comparable to our analysis in Section 4. 

5.2.4. Effect of  D R M i n e r  on  dif ferent  n u m b e r  of  dense  regions 

Besides above experiments, we also test the speed performance of DRMiner with different 
number of dense regions from 5 to 100. Again, these experiments are in a three-dimensional 
space with the total volume of it is 2 x 10 l°, and the total number of points is around one million 

with 5% of them are sparse points. Figure 11 gives the result. 

In Figure 11, we can see the speed is decreased as the number of dense regions increasing. The 
reason is first:the size of each dense region becomes smaller. This reduces the amount of splitting 

of the dense regions across the k-d tree nodes; and second as the size of dense region decreased, 
the size of dense region cover set becomes smaller accordingly. This in turn speed up the dense 
region growing in these dense region cover set. 
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Figure 11 Speed of DRMiner  with different number  of dense  regions 
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REMARK. Beside the above experiments, we have also examined the effect of uniformly dis- 
tributed data on our algorithm We summarized the findings as follows. The following data sets 
are considered: 

(1) data  set with uniform density _< Plow; 
(2) data  set with uniform density _> Pmin; and 
(3) date set with uniform density which is between Plow and Pmin. 

For Data  Sets (1) and (2), our algorithm works fine, but our algorithm may take a long time to 
complete (or even fails) because it is likely that  the dense region may cover the whole hyperspace. 

6. C O N C L U S I O N  

In this paper, we have introduced a "density" measure for mining quantitative association rules. 
Using this density measure and an efficient algorithm for locating dense regions, an efficient 
algorithm, DRMiner, is developed for quantitative attributes. This DRMiner not only solves 
the problems of previous algorithms, but also can scale up well for high-dimensional cases as 
supported by the preliminary experimental results. In fact, the techniques presented in this 
paper can also be applied in other areas. For example, DRMiner is useful in indexing OLAP data 

for reducing the query response time [23]. 

A major weakness of our method is that  it requires the user to specify many thresholds, this 
may be difficult in many cases. However using our algorithm is still valuable to get to know 
more about the data. Another problem unsolved is the dimension curse, we have done extensive 
experiments in less than ten-dimensional space, and notice in case of above ten dimension, our 
method performs poor. This is because that  k-d-tree can not efficiently handle high-dimensional 
data. Therefore we will t ry to seek help from other more robust multidimensional index structures 
in the future. 

There are several other possible directions for future research regarding this work. As men- 
tioned in the paper, based on the current definition of a dense region, it may be possible that  for 
an extremely high density region to swallow regions with relatively low density. It  is expected 

that  this may create a problem if the densities of the dense regions vary a lot. The impact of 
this needs more investigation. There can be a number of possible solutions to this problem. We 
can either expand each region as large as possible according to the current definition, then prune 
back the border areas that  have density that  are relatively a lot lower than the density of the 
core region. Or we can refine the definition to make sure that  only regions with relatively similar 
density can be merged. Note that  the algorithm we developed in the paper is a heuristic-based 
approach, thus does not guarantee an optimal solution to the optimization problem stated in 
Section 3. It  is interesting to develop an algorithm (possibly using a dynamic programming 
approach) that  can output an optimal solution to the problem. Also, the algorithms may not 
perform very well in some extreme cases, for example, for data set with uniform density which is 
between plow and Pmm- It  is worthwhile to have an algorithm which fits for more cases. 

R E F E R E N C E S  
1 R. Agrawal and R Smkant, Fast algorithms for mining association rules, In Proceedings of the PO th Interna- 

tzonal Conference on Very Large Databases", Santiago, Chile, September 1994, pp. 487-499. 
2. J S. Park and M -S. Chen and PS.  Yu, An effective hash-based algorithm for mmmg association rules", In 

Proceedzngs of the A CM SIGMOD Internatwnal Conference on Management of Data", San Jose, CA, May 
1995, pp 175-186. 

3. A Savasere, E. Ommcinskl and S Navathe, An efficmnt algorithm for mining association rules in large 
databases, In Proceedings Of the 21 st Internatwnal Conference on Very Large Databases, Zurich, Switzer- 
land, September 1995, pp 432-444 

4. R. Agrawal, S. Ghosh, T Immhnskl, B Iyer and A. Swami, An interval classffier for database mining appli- 
cations, In Proceedings of the 18 tu Internatwnal Conference on Very Large Databases, Vancouver, Canada, 
August 1992, pp. 560-573. 



490 W LIAN et al. 

5 D.W. Cheung, V.T. Ng, A W Fu and Y.J Fu, Efficmnt mining of association rules m distributed databases", 
Special Issue in Data MInzng. IEEE Transactions on Knowledge and Data Engznesring 8 (6), 911-022, 
(1996) 

6 D W Cheung and Y Xiao, Effect of data skewness in parallel mimng of association rules, In Proceedings 
of the 2 ~d Pac~fic-Asza Conference on Knowledge D~scovery and Data M~nlng, Melbourne, Australia, April 
1998, pp. 291-314 

7. J. Hun and Y. Fu, Discovery of multiple-level association rules from large databases, In Proceedings Of the 
21 sl Internatwnal Conference on Very Large Databases, Zurmh, Switzerland, September 1995, pp. 420-431. 

8. H. Toivonen, Sampling large databases for association rules, In Proceedings o/the 2~  nd  Internatwnal Con- 
ference on Very Large Databases, Mumbai, India, September 1996, pp. 134-145. 

9 S Sarawagl, Indexing OLAP data, BuUet~n of the Technical Committee on Data Eng~neemng, IEEE Com- 
puter Society 20 (1), 432-444, (1997). 

10. M. Ester, H Krmgel, J Sander and X Xu, A density-based algorithm for discovering clusters m large spatial 
databases with noise, In Proceedzngs of the 2 nd International Conference on Knowledge Discovery and Data 
Mining, Menlo Park, CA, August 1996, pp 226-231 

11. M Ankerst, M. Breumg, H. Krmgel and J Sander, OPTICS. Ordering points to identify the clustering 
structure, In Proceedzngs of the A CM SIGMOD Conference on Management of Data, pp. 49-60, (1999). 

12 X Wang and H. Hamilton, DBRS' A density-based spatial clustering method with random sampling, In 
Proceedzngs of the 3 rd  Pacific-Asia Conference on Knowledge Dzscovery and Data M~n~ng, Seoul, Korea, 
May 2003, pp 563-575 

13 W. Wang, J Yang and R. Muntz, STING A statistical Inforraatlon grid approach to spatial data mining, In 
Proceedings of the 23 rg Internatwnal Conference on Very Large Databases, Athens~ Greece, August 1997, 
pp 186-195 

14 R. Agrawal, J. Gehrke, D Gunopulos and P. Raghavan, Automatm subspaee clustering of high dimensmnal 
data for data mining applications, In Proceedings of the A CM SIGMOD Conference on Management of Data, 
Seattle, WA, 1998, pp 94-105. 

15. R. Ng and J Hun, Efficmnt and effective clustering methods for spatial data mining, In Proceedings of the 
20 tu Internatwnal Conference on Very Large Databases, 1994, pp 144-155 

16 A Denton, Q. Ding, W. Pernzo and Q. Ding, Efficient hmrarchical clustering of large data sets using P-trees, 
In Proceedzngs of the 15 tu Internatwnal Conference on Computer Applicatzons in Industry and Eng~neemng 
(CAINE'02), San Diego, CA, November 2002, pp. 138-141. 

17 J Shale, R. Agrawal and M Mehta, SPRINT' A scalable parallel classffier for data mining, In Proceedings of 
the 22 nd InternaLwnal Conference on Very Large Databases, Bombay, India, September 1996, pp 544-555. 

18 R Srlkant and i% Agrawal, Mining quantitative association rules m large relatmnal tables, In Proceedings of 
the ACM SIGMOD Conference on Management of Data, Montreal, Canada, June 1996, pp. 1-12. 

19 B. Lent, A. Swam1 and J Wldom, Clustering associatmn rules, In Proceedings of Internatzonal Conference 
on Data Eng~nesmng, Birmingham, U K., April 1997, pp 220-231 

20 Y Aumann and Y. Lmdell, A statistical theory for quantitative associatmn rules, Journal of Intelhgent 
Informatzon Systems 20 (3), 255-283, (2003). 

21. G Webb, Discovering associatmns with numerm varmbles, In Proceedings of the 7 th ACM SIGKDD Inter- 
national Conference on Knowledge D~scovery and Data Mining, 2001, pp 383-388. 

22. T Fukuda, Y Morimoto, S. Morishlta and T Tokuyama, Data mining with optimized two-dimensional 
association rules, A CM Transactions on Database Systems ( TO DS) 26 (2), 179-213, (2001). 

23. D W. Cheung, B. Zhou, B Kao, H Kan and S.D. Lee, Towards the building of a dense-region based OLAP 
system, Data and Knowledge Engzneering 36, 1-27, (2001). 


