
The VLDB Journal (2012) 21:385–409
DOI 10.1007/s00778-011-0248-4

REGULAR PAPER

Efficient management of uncertainty in XML schema matching

Jian Gong · Reynold Cheng · David W. Cheung

Received: 14 October 2010 / Revised: 3 July 2011 / Accepted: 25 July 2011 / Published online: 25 August 2011
© Springer-Verlag 2011

Abstract Despite advances in machine learning
technologies, a schema matching result between two data-
base schemas (e.g., those derived from COMA++) is likely
to be imprecise. In particular, numerous instances of “pos-
sible mappings” between the schemas may be derived from
the matching result. In this paper, we study problems related
to managing possible mappings between two heterogeneous
XML schemas. First, we study how to efficiently generate
possible mappings for a given schema matching task. While
this problem can be solved by existing algorithms, we show
how to improve the performance of the solution by using
a divide-and-conquer approach. Second, storing and query-
ing a large set of possible mappings can incur large storage
and evaluation overhead. For XML schemas, we observe that
their possible mappings often exhibit a high degree of over-
lap. We hence propose a novel data structure, called the block
tree, to capture the commonalities among possible mappings.
The block tree is useful for representing the possible map-
pings in a compact manner and can be efficiently generated.
Moreover, it facilitates the evaluation of a probabilistic twig
query (PTQ), which returns the non-zero probability that a
fragment of an XML document matches a given query. For
users who are interested only in answers with k-highest prob-
abilities, we also propose the top-k PTQ and present an effi-
cient solution for it. An extensive evaluation on real-world
data sets shows that our approaches significantly improve

J. Gong (B) · R. Cheng · D. W. Cheung
Department of Computer Science, The University of Hong Kong,
Pokfulam, Hong Kong, People’s Republic of China
e-mail: jgong@cs.hku.hk

R. Cheng
e-mail: ckcheng@cs.hku.hk

D. W. Cheung
e-mail: dcheung@cs.hku.hk

the efficiency of generating, storing, and querying possible
mappings.

Keywords Data integration · Schema matching ·
Uncertainty · XML

1 Introduction

Schema matching methods, which derive the possible
relationship between database schemas, play a key role in
data integration [15]. In B2B platforms (e.g., Alibaba and
DIYTrade.com),1 each company involved has its own for-
mat of catalogs, as well as documents of different standards.
The use of schema matching streamlines trading and doc-
ument exchange processes among business partners. More-
over, important integration techniques like query rewriting
(e.g., [23]) and data exchange (e.g., [4]) depend on the
success of schema matching. Researchers have therefore
developed a number of automatic tools for generating schema
matchings (e.g., COMA++ [9], Clip [19], and Muse [3]).

In general, a schema matching result consists of a set of
edges, or correspondences, between pairs of elements in each
of the schemas. A similarity score, augmented to a corre-
spondence, indicates the likelihood that the pair of elements
involved carries the same meaning. Figure 1 shows two sim-
plified schemas used to represent a purchase order in two
common standards: XCBL and OpenTrans.2 A portion of
the matching result between these two schemas, generated
by COMA++, is also shown. For example, the element CON-
TACT_NAME(ICN) in the schema of Fig. 1b can correspond

1 Alibaba: http://www.alibaba.com,
DIYTrade: http://www.diytrade.com.
2 XCBL: http://www.xcbl.org, OpenTrans: http://www.opentrans.org.

123

http://www.alibaba.com
http://www.diytrade.com
http://www.xcbl.org
http://www.opentrans.org

386 J. Gong et al.

(a) (b)

Fig. 1 a A source schema and b a target schema used in e-commerce.
A line between a pair of schema elements represent a correspondence,
whose similarity scores is shown

to three ContactName elements (BCN, RCN, and OCN) in
the schema of (a).

As we can see in Fig. 1, the scores of the three correspon-
dences shown are quite close. Intuitively, ICN has similar
chances to correspond to each of the three elements in schema
(a). Then, how should this “uncertainty” of the relationship
among schema elements be handled? A possible way is to
consult domain experts to point out which correspondence is
the “true” one. In the absence of human advice, an alterna-
tive is to pick up the correspondence with the highest score
(e.g., RCN and BCN), or use some aggregation algorithms
(e.g., [12]). Unfortunately, this can lead to information loss.
Consider an XML twig query:

qT = //I P//I C N

that is issued on schema (b) (also called “target schema”).
This query inquires the contact name information of the
invoice party. Consider an XML document, shown in Fig. 2,
which conforms to schema (a) (or “source schema”). Using
the query rewriting approach [23], qT is first transformed to
a query that can be answered on the source schema, using the
correspondence provided by the schema matching. The query
answer generated on the source schema is then translated
back to the one that conforms to the target schema. Depend-
ing on the correspondence used, the query yields different
answers. For example, if IP is mapped to BP, and ICN to
RCN, then the query answer is “Bob”. If ICN is mapped to
OCN instead, then the answer becomes “Alice”. Notice that
the similarity scores in this example are very close, and so,
the query answers obtained by using any of these correspon-
dences should not be ignored.

Recent research efforts handle the uncertainty in a match-
ing by viewing it as a set of mappings [10,13]. For each
mapping, an element either has no correspondence or only
matches to one single element in another schema. Figure 3
shows five mappings derived from the matching in Fig. 1.
Notice that m3 contains only one correspondence from ICN
to RCN. The probability that each mapping exists is also
known. An advantage of this approach is that it reduces the

Order

SPBP

BOC

BCN

“Cathy”

OOC

OCN

“Alice”

...ROC

RCN

“Bob”

Fig. 2 An XML source document that conforms to the source schema
in Fig. 1a (left)

m1

Order~ORDER
BP~IP
BCN~ICN
RCN~SCN

...

m2
Order~ORDER

BP~IP
BCN~ICN
OCN~SCN

...

m3
Order~ORDER
SP~IP

RCN~ICN
OCN~SCN

BP~SP
...m4

Order~ORDER
BP~IP
RCN~ICN
BCN~SCN

...

m5
Order~ORDER

BP~IP
OCN~ICN
BCN~SCN

...

Fig. 3 Illustrating 5 mappings derived from the matching in Fig. 1.
For each mapping, an element either has no correspondence, or only
matches to one single element in another schema

need of human advice. More importantly, it retains the infor-
mation provided by different correspondences. Suppose that
the total probabilities for the mappings in Fig. 3 that contain
(ICN,BCN), (ICN,RCN), and (ICN,OCN) are, respectively,
0.3, 0.3, and 0.2. Then, the answer for qT is {(“Cathy”, 0.3),
(“Bob”, 0.3), (“Alice”, 0.2)}. Based on this model, we study
three interesting problems:

Problem 1 (Efficient mapping generation) We first study the
issues of generating possible mappings for a schema match-
ing. There is a growing need for managing personal data
scattered on computer desktops and mobile devices (e.g.,
Dataspace [22]), as well as retrieving information from user-
defined databases in the Internet (e.g., GoogleBase).3 Due to
the existence of numerous types of schemas, these systems
have to handle the integration efforts of these schemas in
a scalable manner. We examine the problem of efficiently
deriving mappings from a given matching task. Since a
matching may derive an exponential number of mappings, a
practical approach is to only extract from the matching the h
mappings with the highest probabilities. This is essentially an
h-maximum bipartite matching problem [12,21] and can be
solved by algorithms like [16,17]. Adopting these algorithms
to find the top-h mappings, however, suffers from the fact
that a large-size bipartite has to be created. We thus propose a
divide-and-conquer solution, where the bipartite graph is first

3 GoogleBase: http://base.google.com

123

http://base.google.com

Efficient management 387

b7b6b5

b3b2.a: ICNb1.a: ICN

b4.a: IP

ICN

(a) blocks on a leaf node

C: BCN~ICN
M: m1, m2

C: RCN~ICN
M: m3, m4

C: OCN~ICN
M: m5

(b) blocks on a non-leaf node

IP

ICN

C: BP~IP
BCN ~ ICN
M: m1, m2

C: SP~IP
RCN ~ ICN

M: m3

C: BP~IP
RCN ~ ICN

M: m4

...

C: SP~IP
RCN ~ ICN

M: m5

...

Fig. 4 Blocks and c-blocks: a block consists of a set of correspon-
dences and the mappings that share them. A c-block (bolded) requires
that the number of mappings that share the correspondences are larger
than some threshold

decomposed into smaller and disconnected “sub-bipartites”.
A bipartite-matching algorithm is then applied to each of
the sub-bipartites. The top-h mappings can then be found by
merging the results obtained from the sub-bipartites. Due to
the sparse nature of XML schema matchings, the speed of
generating possible mappings can be improved by an order
of magnitude in our experiments. Our solution is not limited
to any specific bipartite matching algorithm. Although we
address this problem in the context of XML schemas, our
technique can potentially be applied to relational schemas
also.

Problem 2 (Mapping compression) A matching between
XML schemas can have hundreds of correspondences. Thus,
a large number of mappings that contain many correspon-
dences can be obtained. Evaluating a query on these map-
pings can also be inefficient, since each of them has to be
examined. We thus propose an efficient representation of
mappings, based on the concept of blocks. Figure 4a shows
three blocks (b1, b2, b3) for the mappings in Fig. 3. Each of
them contains a correspondence with ICN, an element in the
target schema. For example, b1 contains(BCN,ICN), which
appears in both m1 and m2. In Fig. 4b, b4 contains two corre-
spondences:(BP,IP) and (BCN,ICN), which are owned
by both m1 and m2. A mapping can now be represented as
a set of pointers to the blocks. For example, two correspon-
dences of m3 ((SP,IP) and (RCN,ICN)) can be replaced
by a pointer to block b5. As another example, correspon-
dences (BP,IP) and (BCN,ICN), which are common to
both m1 and m2, can be replaced by their respective pointers
to b4. In fact, if many mappings share a large number of corre-
spondences, a “large” block can be created to store a single set
of these correspondences, thereby saving significant space
costs. In our experiments, there are 13 blocks, containing 20
correspondences each, between two XCBL and OpenTrans
schemas. Each set of correspondences is shared by 20% of
mappings. We use this intuition to develop the block tree, a
compact representation of mappings. This structure is simply
a target schema, whose elements are attached with blocks.

Figure 4 shows part of a block tree, where two lists of blocks
are attached to elements ICN and IP of the target schema
in Fig. 1. Our experimental study shows that the block tree
can compress mappings effectively. Moreover, if a query is
evaluated in the block tree, the part of the query relevant to
the block needs only be translated to the source schema once,
for all mappings that share the correspondences in the block.
This significantly reduces the query evaluation time.

How do we find the blocks described above? This ques-
tion is not easy to answer. As shown in Fig. 4, m3 forms
block b2 with m4, since they share (RCN,ICN); it also forms
a block itself, using (SP,IP) and (RCN,ICN). Finding all
these blocks can be costly, since every subset of each map-
ping’s correspondences needs to be checked. Keeping these
different blocks itself is space inefficient. Hence, our solution
does not derive all blocks; instead, we compute constrained
blocks or c-blocks in short. A c-block is essentially a block
that is deemed useful for mapping compression and query
evaluation. Its correspondences are guaranteed to be shared
by a sufficient number of mappings. In Fig. 4, the (circled)
c-blocks are b1, b2, and b4. Observe that the correspon-
dences stored in each of these blocks are shared by at least 2
mappings. Also, the target elements of the correspondences
associated with these blocks form a complete subtree of the
target schema. We study pruning rules for detecting blocks
that cannot be c-blocks. We also develop a novel algorithm
for creating a block tree, which only contains c-blocks. In
this algorithm, each mapping is assigned a signature, a suc-
cinct representation of how correspondences are shared by
the mapping. We demonstrate how to use signatures to con-
struct the block tree efficiently.

Problem 3 (Query evaluation) We also study how to use
the block tree to answer XML queries. We examine the twig
query, which specifies a “path” on the target schema, inquir-
ing documents defined on the source schema [18]. The query
qT that we illustrated in the proceeding text is an exam-
ple of this query. In view of numerous possible mappings
that exist between source and target schemas, we propose a
probabilistic twig query (or PTQ in short). A PTQ returns
a set of tuples (pat, prob), where prob is the probability
that a pattern in a document (pat) satisfies the twig query.
We develop an efficient algorithm that uses the block tree
to evaluate a PTQ. Our algorithm adopts the query rewriting
approach, a common method used for answering twig queries
under a single schema mapping [23]. Our algorithm recur-
sively decomposes the given query into subqueries accord-
ing to the correspondences specified by the blocks in the
block tree. We further present a variant of PTQ, called top-k
PTQ, which returns answers with the k highest probabilities.
This query can be useful to users who are only interested in
answers with high confidences. We demonstrate a simple and
efficient method for evaluating a top-k PTQ.

123

388 J. Gong et al.

Fig. 5 Mappings, block tree, and probabilistic queries

Figure 5 summarizes the process of handling uncertainty
in schema matchings. Given a schema matching, an efficient
mapping generation algorithm is applied to derive a set of
possible mappings. Then, a block tree is derived for these
mappings through an efficient construction algorithm. Prob-
abilistic queries (e.g., PTQ and top-k PTQ) are then evaluated
on the block tree.

The rest of the paper is structured as follows. In Sect. 2, we
discuss the related work. We explain our approach in generat-
ing probabilistic mappings in Sect. 3. In Sect. 4, we describe
the details of the block tree structure and how it can be gen-
erated. We examine the evaluation of PTQ and top-k PTQ
in Sect. 5. In Sect. 6, we present the experimental results.
Section 7 concludes the paper with directions of the future
work.

2 Related work

Let us now examine the related work done in the field of
management of schema matching uncertainty, in Sect. 2.1.
We then briefly address the work done in the field of XML
integration, in Sect. 2.2.

2.1 Handling uncertainty in schema matching

As surveyed in Rahm and Bernstein [20], the result of schema
matching used in real-world applications is often uncertain.
To handle these uncertainties automatically, recent works
have investigated the representation of a schema matching
as a set of “probabilistic mappings”, i.e., each mapping has a
probability of being correct [8,10,12]. In [10], Halevy et al.
studied this model for relational tables.

Based on the relational probabilistic mapping model, [10]
studied the complexity of evaluating Selection-Porjection-
Join (SPJ) queries. Gal et al. [13] extended their algorithms
to answer aggregate queries (e.g., COUNT). Our research dif-
fers from these works, since we consider the evaluation of
queries on probabilistic mappings for XML schemas. We fur-
ther propose a compact representation of probabilistic XML
mappings called the block tree and use it to evaluate proba-
bilistic twig queries.

A few works have investigated the derivation of multiple
probabilistic mappings. In [8], Sarma et al. discussed the
generation of the mediate schema, as well as the derivation

of probabilities for the mappings between the mediate and
the source schemas. In [12,21], the authors pointed out that
given a schema matching (with a set of correspondence of
scores), finding the mappings with the k-highest probabil-
ities is essentially a k-maximum bipartite matching prob-
lem. These “top-k mappings” can be used to represent the
schema matching. The current fastest algorithms for deriv-
ing these mappings are based on Murty [16] and Pascoal
[17]. In Sect. 3, we explain how Pascoal’s algorithm can be
improved by employing a divide-and-conquer solution. Our
experiments show that this enhancement can be an order of
magnitude faster than that algorithm.

The work closest to us is Cheng et al. [7]. In that paper,
an algorithm was proposed to generate the block tree. That
method finds all c-blocks in exponential time. Our algorithm
finds all c-blocks in polynomial time and uses fewer input
parameters. We also develop a top-h mapping generation
algorithm, which is faster than the one discussed in Cheng
et al. [7].

We now summarize other approaches for managing
schema matching uncertainty. In [22], Salles et al. devel-
oped the concept of trails, which are probabilistic and scored
hints. The trails can be gradually included in the dataspace
system, in order to improve its query performance. Recently,
Agrawal et al. studied the problem of handling the uncer-
tainty in the source database [1]. As discussed in Sect. 1,
a simple way to remove matching uncertainty is to choose
the correspondence with the highest score, among the cor-
respondences attached to each target element. We will carry
out a qualitative study on this approach in Sect. 6. In [20],
the problem of generating different types of possible map-
pings (e.g., one-to-many) is studied. However, it is not clear
how they can be used to answer probabilistic queries. In this
paper, we assume that a possible mapping between target and
source elements is one-to-one. An interesting future work is
to consider other forms of possible mappings.

2.2 Data integration in XML

In [23], Yu et al. presented query rewriting approaches for
XML schemas. In [5], the authors discussed the evaluation
of queries using XML views. Berstein et al. [6] used a set of
operators to create and manipulate XML schema mappings.
Fuxman et al. [11] proposed the “nested mapping” semantic
for an XML schema mapping. Arenas and Libkin [4] stud-
ied the XML data exchange problem. To our understanding,
none of these work treats a schema matching as a distribution
of mappings. We present an efficient method for evaluating
a twig query over probabilistic XML mappings. Although
[14] discussed the evaluation of queries over “probabilistic
XML documents”, they address the representation of uncer-
tainty in the elements of an XML document, rather than the

123

Efficient management 389

Fig. 6 Possible mapping generation

Table 1 Notations and meanings used in this paper

Notation Meaning

Schema matching

S Source schema

T Target schema

U Schema matching between S and T

M Set of possible mappings between S and T

mi The i th mapping of M , with i ∈ [1, |M |]
pi The probability of mi

Block tree

b.C Set of correspondences of block b

b.M Set of mappings of block b

b.a Anchor of c-block

τ Confidence threshold of c-block

X A block tree for M

H Hash table associated with X

Probabilistic twig query

qT A probabilistic twig query
on T , with l nodes

dS An XML document which conforms to S

R Answers to qT

Ri Matches of qT on dS using mapping mi

pr(Ri) Probability that Ri is correct

imprecise relationship between source and target schemas as
studied by us.

3 Efficient possible mappings generation

We now discuss an efficient method for constructing possible
mappings, as shown in Fig. 6. Section 3.1 reviews existing
methods for producing these mappings. Section 3.2 presents
an enhancement, based on partitioning the schema match-
ing. We further discuss an improvement to this algorithm, in
Sect. 3.3. Table 1 summarizes the symbols used in this paper.

3.1 Finding top-h mappings

Let U be a given schema matching and S and T be the source
and target schemas of U . Let M be a set of mappings derived
from U , and mi ∈ M (where i ∈ [1, |M |]) be a mapping of

(a)

(b)

s4s3s2s1

t3t2t1

source
element

target
element

correspondence

s4s3s2s1

t3t2t1 s1' s2' s3' s4'

t3't2't1'

image
element

Fig. 7 Finding top-h mappings: a schema matching; b bipartite. If a
mapping returned by a bipartite matching algorithm contains an ele-
ment e that corresponds to its image, this means e does not correspond
to any other element

M . Let (x, y) be a correspondence of elements x and y, where
x and y belong to S and T , respectively. To find M , an element
in S can choose to match an element in T (based on the cor-
respondence information) or not match any element at all.
By enumerating these choices, all legal mappings between
S and T can be derived. The score of a possible mapping
mi is a function of scores of correspondences that appear
in mi (e.g., the sum of correspondence scores of mi [12]).
This score reflects the confidence that mi is correct. Since the
number of mappings can be exponentially large, in practice
a matching is represented as a set of h mappings, which have
the highest scores among the mappings [12]. The probability
values of the top-h mappings are then the normalized scores
of these mappings.

The retrieval of top-h mappings can be viewed as the
h-maximum bipartite matching problem [12]. If the score
of a mapping is the sum of its correspondence scores, a poly-
nomial time algorithm (e.g., Murty [16] and Pascoal [17])
can be used. To model the fact that an element may not cor-
respond to any other elements, an “image” of each element
in S (respectively T) is added to T (respectively S). A corre-
spondence between an element and its image is then added.
Figure 7 illustrates a matching and its bipartite graph. The
image nodes are shaded, and their correspondences are drawn
in dotted lines. Let S ·N and T ·N be the set of elements of S
and T , respectively. The complexity of finding top-h match-
ing, using Murty or Pascoal, is O(h(|S · N | + |T · N |)3).

3.2 Partitioning a schema matching

The real XML schemas used in our study contain up to hun-
dreds of elements. Thus, |S · N | and |T · N | can be large, and
the speed of top-h-mappings retrieval can be affected. This

123

390 J. Gong et al.

s3s1

t2t1 s1' s3'

t2't1' s4s2

t3 s2' s4'

t3'

Partition 1 Partition 2

Fig. 8 Partitions of Fig. 7, with image elements shown. Observe that
partitions 1 and 2 are disjoint, i.e., they do not share the same source or
target elements

can be a burden for systems like Dataspace and GoogleBase,
which maintain mappings for many user- and application-
defined schemas. We observe that a schema mapping can be
viewed as a set of partitions, which are “submatchings” of
a given schema matching. Figure 8 illustrates two partitions
derived from Fig. 7a. Notice that these partitions are disjoint,
i.e., they do not have the same elements or correspondences.
Deriving a top-h mapping from a matching U can be per-
formed as:

1. Obtain the top-h-mappings from each partition.
2. Generate the top-h-mappings by merging the mappings

in Step 1.

The advantage of this approach is that if partitions are small,
finding top-h-mappings on each partition is faster than on
U . In Fig. 8, for instance, the sizes of partitions 1 and 2
are respectively 4 and 3, which are smaller than the size-7
bipartite in Fig. 7. Next, we explain how to derive and merge
mappings in these partitions.

Deriving partitions

A partition is essentially a maximal connected subgraph of
the bipartite. Figure 8 shows two example partitions. Notice
that any two distinct partitions cannot share elements or cor-
respondences, or else they become a single partition. More-
over, for a given matching, there can only be one single set of
partitions. To find a partition, we randomly pick an element
(called seed) in S. Then, the partition that contains the seed
is generated by inserting to the partition all elements con-
nected to the seed and their correspondences with the seed.
This “seed expansion” process is repeated for the newly dis-
covered elements in the partition, until no more new element
can be found. The related algorithm (Algorithm 8) and its
analysis can be found in Appendix A.

3.3 Handling non-conflicting partitions

A detailed study of the partitions produced by Algorithm 8
reveals that many of these partitions only contain a few

s2s1

t3t2t1

0.8 0.7 0.5

[0,0]

[1,0] [0,1]

[2,0] [1,1]

[2,1]

l1

l2 l3

l4l5

l6

(b)(a)

I II

Fig. 9 Heap algorithm: a a remainder partition of two non-conflicting
partitions; b enumeration of vectors

correspondences. In our experiments, a matching can contain
hundreds of correspondences. Thus, many “small” partitions
can be obtained, and a lot of effort is needed to merge these
partitions.

To alleviate this problem, we observe that many partitions
handled by Algorithm 8 contain target elements that are not
shared by more than one source element. We call this kind
of partition a non-conflicting partition. Figure 9a illustrates
two non-conflicting partitions (I and II). Observe that in each
partition, none of the target elements are shared by more
than one source element. An example conflicting partitions
is {(s1, t1), (s3, t1)}, where target element t1 corresponds to
source elements s1 and s3.

An important observation for non-conflicting partitions is
that deriving a mapping for this kind of partitions is rather
simple—a sophisticated mapping algorithm, such as Murty,
is not necessary. For example, the top-2 mappings of parti-
tion I are simply {(s1, t1)} and {(s1, t2)}; for partition II, there
is only 1 mapping, i.e., {(s2, t3)}.

Based on this intuition, we develop an efficient algorithm
optimized for generating top-h mappings from non-
conflicting partitions. Let us define a remainder partition,
which is essentially a maximal collection of non-conflicting
partitions derived from the same matching. Figure 9a shows
a remainder partition, which contains two non-conflicting
partitions. An experiment on our schema matching data sets
shown in Table 2 shows that the size of the remainder partition
of a schema matching is on average 77.57% of the size of the
target schema. Moreover, the remainder partition contains
68 non-conflicting partitions on average. Hence, a remain-
der partition can contain a large number of non-conflicting
partitions.

We now present a top-h mapping generating algorithm that
uses the remainder partition and other partitions. The details
are shown in Algorithm 1. First, the function partition_rmd
finds out all the conflicting partitions and the remainder par-
tition from the schema matching (Step 1). This function is
modified from the original algorithm (function partition in
Algorithm 8): if the current partition, obtained by expand-
ing a seed, is non-conflicting, then it is merged into the

123

Efficient management 391

Algorithm 1 Partitioning Algorithm (with Remainder
Partitions)
Input: source schema S, target schema T , schema matching U ,
number of mappings h
Output: top-h mappings
1: {P1, . . . , Pl , Prmd } ← parti tion_rmd(U)

2: top_h_mappings ← biparti te_match(P1)

3: for i = 2 to l do
4: current_mappings ← biparti te_match(Pi , U)

5: merge(top_h_mappings, current_mappings)
6: end for
7: top_h_mapping_rmd ← remainder_match(Prmd)

8: merge(top_h_mappings, top_h_mapping_rmd)

9: return top_h_mappings
function parti tion_rmd
Return: remainder partition, conflicting partitions
1: R← ∅, Prmd ← ∅
2: f lag[e] ← FALSE, ∀e ∈ S · N
3: while ∃seed ∈ S · N , f lag[seed] = FALSE do
4: P ← expand(seed, U) // P is a new partition
5: if is_con f licting(P) then
6: R← R ∪ {P}
7: else
8: Prmd ← Prmd ∪ {P}
9: end if
10: f lag[e] ← TRUE, ∀e ∈ source node of P
11: end while
12: return R, Prmd

remainder partition Prmd , instead of being created as a
separate partition (Steps 5–9). In the end, Prmd , as well as the
conflicting partitions, are returned. For the partitions not in
the remainder partition, it generates the top-h mappings from
them using the same biparti te_matching function used in
Algorithm 8 (Steps 2–6); for the remainder partition, a new
function remainder_match is used (Step 7), which is then
merged with the top-h mappings in the other partitions, in
order to obtain the complete top-h mappings (Step 8).

The function remainder_match, which finds the top-
h mappings from a remainder partition, is detailed in
Algorithm 2. It first sorts the correspondences for each source
schema element according to the descending order of similar-
ity (Step 1). A vector of integer values, l, is used to uniquely
represent a mapping m, where the i th source element chooses
the correspondence ranked the (l[i] + 1)th among all of its
correspondences. The vector l is initialized and pushed to a
heap at the beginning (Step 2–3). We use |l| to denote the
size of the vector, where |l| equals to the number of source
elements in the remainder partition. The variable c maintains
the minimal score of all the mappings that can be identified
by the vectors in the heap, where the function find_score
returns the score of a mapping identified by a vector l (Step
4). At each iteration of the while loop (Steps 6–16), a vector
l is popped from the heap (Step 7) and is used to create a
mapping in the result (Step 8). Afterward, the function grow
generates a set of vectors L from l, which contains a set of
vectors that can potentially be used to create a mapping in the

Algorithm 2 Function remainder_match
Return: top-h mappings of the remainder partition
1: sort_correspondence(U)

2: l ← [0, . . . , 0]
3: heap.push(l)
4: c← f ind_score(l)
5: rst ← {}
6: while |rst | < h and heap is not empty do
7: l ← heap.pop()

8: rst ← rst ∪ {new mapping(l)}
9: L ← grow(l)
10: for all l ′ ∈ L do
11: if (|heap| < h or f ind_score(l ′) ≥ c) then
12: heap.push(l ′)
13: c = min(c, f ind_score(l ′))
14: end if
15: end for
16: end while
17: return rst
function grow(int[] l)
Return: a set of vectors
1: L ← {}
2: for i := |l| − 1 to 0 do
3: if l[i] + 1 is valid then
4: l ′ = [l[0], . . . , l[i − 1], l[i] + 1, l[i + 1], . . . , l[|l|]]
5: L = L ∪ {l ′}
6: end if
7: if l[i] > 0 then
8: break
9: end if
10: end for
11: return L

result (Step 9); the vectors in L that can be a top-h mapping
is then pushed to the heap (Steps 10–15). The above iteration
ends when h mappings are returned, or no more mappings
can be created (i.e., the heap is empty).

Given a vector l, the function grow returns L , which is a
set of vectors that: 1) have not been enumerated before and
2) may be used to create a mapping whose score is among the
top-h ones. In detail, it iterates forward from l[|l|−1], the last
component of l: if the current component, say, l[i], can be
extended to get a new valid vector (which implies that l[i]+1
is smaller than the total number of correspondences of the i th
source element), then a new vector is created and added to
L (Steps 3–6). The above iteration ends when it encounters
a non-zero component, or all the components are visited.

Now, we use an example to illustrate how Algorithm 1
generates the top-h mappings from the remainder partition
shown in Fig. 9a. First, the vector l1 : [0, 0] is pushed to the
heap and then popped up to create the top-1 mapping. In the
mapping created from l1, since l1[0] = l1[1] = 0, the source
element s1 and s2 choose their correspondences ranked the
(0 + 1)th among all of their correspondences, i.e., the corre-
spondence with the highest similarity, which are t1 and t3,
respectively. Afterward, l1 is used to produce two vectors
l2 : [1, 0] and l3 : [0, 1], which are pushed to the heap. In the
next iteration, l2 is popped and the top-2 mapping is created

123

392 J. Gong et al.

from l2, where s1 and s2 matches t2 and t3, respectively; after-
ward, l4 : [1, 1] and l5 : [2, 0] is produced from l2 and are
pushed to the heap. Notice that when l3 is popped, no new
vector is produced: the last component of l3 is non-zero, and
so [1, 1]will not be computed; [0, 2] is invalid, since it means
that s2 chooses its third correspondence, which does not exist.
Finally, six mappings can be created on this remainder par-
tition. The above process is illustrated in Fig. 9b. Notice that
no redundant mapping is created during the process.

Correctness of the algorithm

Let us use ml to denote the mapping associated with a vector
l. The function score(m) returns the score of a mapping m.
We first show the following lemma.

Lemma 1 Let l1 : [c1, . . . , c|S|] and l2 : [c′1, . . . , c′|S|] be
two different vectors, if for all 1 ≤ i ≤ |S|, ci ≤ c′i , then
score(ml1) ≥ score(ml2).

Proof By definition of a mapping vector, all correspon-
dences are sorted and named in descending order of their
similarities. In addition, the score of mapping is a monotonic
function of correspondence similarities, which implies that
score(ml1) ≥ score(ml2). ��

We now prove that Algorithm 2 is correct, i.e., it gener-
ates all valid top-h mappings. Suppose that this is not true.
This means that there exists some valid top-h mapping m′
which cannot be yielded by Algorithm 2, i.e., there exists at
least one correspondence in m′ not generated by Algorithm
2. Let us suppose that this correspondence originates from
the j th element of the source schema, and suppose that the
first non-zero value of the vector of m′ is ck , where k is the
index of the vector l ′. We can then write the vector l ′ of m′
as follows: l ′ = [0 · · · 0

︸ ︷︷ ︸

(k−1) 0′s

, ck, . . . , c j , . . . , c|S|].

To generate l ′, the function grow() can start by the vec-
tor [0 · · · 0

︸ ︷︷ ︸

(k−1) 0s

, 1, 0 · · · 0
︸ ︷︷ ︸

(|S|−k) 0s

]. Since m′ cannot be found, there

exists another mapping, m′′, which must be generated by the
function grow() before getting m′. Since m′′ is not placed
in the heap, m′ cannot be generated. This implies that : (1)
all values of the vector of m′′ are less than or equal to all
values of the vector of m′ and (2) m′′ is not in the top-h, and
score(m′′) < c.

By Lemma 1, we know that score(m′) < score(m′′).
Thus, m′ must not be in the top-h mapping as well. Hence,
m′ is not a valid mapping, which contradicts our assumption.
Algorithm 2 is thus correct.

Complexity analysis

Let U be a schema matching, the total sizes of all conflicting
partitions of U be |U1|, and the size of the remainder parti-

tion be |U2|, where |U1| + |U2| = |U |. We first analyze the
conflicting partitions. Based on the analysis of Algorithm 8,
the complexity of generating the top-h mappings from all
conflicting partitions is

CF = O

(

h|U1|3
l2 +

(|U1|2
l
+ |U1|

))

Next, we analyze the remainder partition. Suppose the
remainder partition contains |S′| source elements and |T ′|
target elements. According to the definition of a non-con-
flicting partition, the total number of correspondences of the
remainder partition is at most |T ′|. Therefore, sorting all the
correspondences needs O(|T ′| log |T ′|). The while loop in
Algorithm 2 iterates at most h times. Heap pop and push
need O(log h). Function grow needs O(|l| × (|l| + log h)),
where |l| is O(|S′|). Function find_score and create_map-
ping is linear with the size of source schema S. Therefore, the
overall time complexity of Algorithm 2 is: O(|T ′| log |T ′| +
h|S′|(|S′| + log h)), which is less than:

CR = O(|U2| log |U2| + h|U2|(|U2| + log h))

Hence, the complexity of Algorithm 1 is: O(CF+CR), which
is polynomial with h and the schema matching size.

The space complexity of Algorithm 2 is dominated by
heap, which is linear with h. Each entry in heap is linear
with |U2|. Therefore, the total space cost is O(h|U2|), which
is polynomial with h and the remainder partition size.

Next, we discuss how to represent the probabilistic map-
pings that are generated with the partitioning algorithms. A
simple way is to store them as a set of possible mappings
with probabilities, where each possible mapping is a set of
correspondences. However, the space cost of this method
can be high, especially when there are a large number of
possible mappings. In the next section, we introduce a novel
data structure which can represent the possible mappings in a
compact manner, and more importantly, can support efficient
query evaluation over the possible mappings.

4 The block tree

The block tree is a compact representation of possible map-
pings. In this section, we discuss how to construct a block
tree (Fig. 10). In particular, we explain the concepts of blocks,
c-blocks, and the block tree, in Sect. 4.1. Sections 4.2 and 4.3
discuss how to efficiently create a block tree. We discuss how
to combine mapping generation and block tree construction
in Sect. 4.4. We use the five possible mappings, illustrated in
Fig. 3, as a running example.

123

Efficient management 393

Fig. 10 Constructing a block tree

4.1 Blocks, c-blocks, and block tree

A block is a collection of correspondences shared by one or
more mappings between schema S and schema T . Formally,

Definition 1 A block b has two components:

– A set b.C of correspondences in U and
– A set b.M of IDs of mappings, where b.M ⊆ M ; for each

mi ∈ b.M(1 ≤ i ≤ |M |), b.C ⊆ mi .

Example Figure 4a shows three blocks, each of which
contains a correspondence with element ICN in the target
schema. For instance, b1.C = {(BCN,ICN)} and b1.M =
{m1, m2}. This means that (BCN,ICN) appears in m1 and
m2 (Fig. 3). In Fig. 4b, b4.C = {(BP,IP),(BCN,ICN)},
and b4.M = {m1, m2}.

Ideally, if all blocks can be retrieved, we can obtain a
comprehensive view about how mappings overlap. This is
prohibitively expensive, since a huge number of blocks can
be produced. In fact, as we will discuss in Sect. 5, it is not nec-
essary to generate every block; those with correspondences
shared by sufficient mappings and systematically organized
are already useful for providing low storage cost and high
query performance. We formalize these “useful blocks” by
the notion of constrained blocks (or c-blocks):

Definition 2 A c-block, b, is a block such that:

– b is associated with a target schema element b.a (called
anchor);

– For every element y of the subtree rooted at b.a, there
exists source schema element x such that (x, y) ∈ b.C ;

– |b.C | is exactly the number of elements rooted at b.a and
– The number of mappings in b, i.e., |b.M |, must not be

less than �τ × |M |�, where τ ∈ [|M |−1, 1] is called the
confidence threshold.

In this definition, when τ = |M |−1, the correspondences
of the block are shared by at least one possible mapping; when
τ = 1, its correspondences are shared by all mappings.

Example In Fig. 4, |M | = 5. Let τ = 0.4. Then, b3 can-
not be a c-block, because the number of mappings in b3 is 1,
which is less than 0.4×5 = 2. However, b4 is a c-block (with

b4.C = {(BP,IP),(BCN,ICN)}, b4.M = {m1, m2}, and
b4.a = IP). This is because: (1) In b4.C , there exists a cor-
respondence for every descendant of IP (here ICN is the
only descendant of IP) and (2) |b4.M | ≥ 2. Thus there are
“enough” mappings that share b4.C . We circle all the con-
strained blocks in the figure.

Definition 3 Given a set of c-blocks defined for a schema
matching U , a block tree X has the following properties:

– X is a tree with the same structure as that of T ;
– For every node e ∈ X , e is associated with a linked list

of zero or more c-blocks; and
– For every c-block b linked to e, b.a = e.

Example Figure 4 illustrates two nodes of X (ICN and IP)
for the matching in Fig. 1. In (a), ICN, a leaf node, contains
a linked list of c-blocks (b1 and b2). In (b), IP is a non-leaf
node and is linked to block b4, with anchor b4.a equal to IP.

4.2 Constructing the block tree

To understand how the block tree can be generated, we first
present some useful observations, which can be used to derive
efficient algorithms for constructing the block tree.

Lemma 2 Let t be a non-leaf node, with a c-block bt . Let
(s, t) be the correspondence with target node t in the corre-
spondence set bt .C, and s is some node in schema S. Suppose
(s, t) is shared by a set Mt of mappings. Let d1, . . . , d f be
child nodes of t . Then, for every di , there exists a c-block,
bdi , with anchor di , such that:

bt .C = {(s, t)} ∪
⎛

⎝

f
⋃

i

bdi .C

⎞

⎠ (1)

bt .M = Mt ∩
⎛

⎝

f
⋂

i

bdi .M

⎞

⎠ (2)

Proof We can express bt .C as {(s, t)} ∪ (
⋃ f

i di .C), where
di .C is the set of correspondences with target nodes forming
a complete subtree rooted at di (i = 1, . . . , f), the i th child
node of t . Since bt is a c-block, (s, t), as well as di .C , must be
shared by the set bt .M of mappings, where |bt .M | ≥ τ×|M |.
Note that Mt (the set of mappings that share (s, t)) must be
a superset of bt .M . Moreover, since each di .C is shared by
bt .M , a c-block bdi can be created with bdi .a = di , bdi .M =
bt .M and bdi .C = di .C . Hence, Lemma 2 is correct. ��

Essentially, Lemma 2 states that a c-block of a non-leaf
node t can be efficiently generated from the c-blocks at its
children. We can further deduce that:

Corollary 1 Let t be a non-leaf node. If t has a c-block, then
each of its child nodes must have at least one c-block.

123

394 J. Gong et al.

Proof Let b be a c-block of t . By definition of a c-block,
all correspondences b.C originate from the nodes under the
subtree of t . Also, the number of mappings that share b.C
must not be less than τ × |M |. Let di be any one of the child
nodes of t . Then, we can construct a block b′ with anchor
di and with the subset of correspondences in b.C that have
target nodes rooted at di . The correspondences of b′ must be
shared by not less than τ × |M | mappings. Hence, b′ must
also be a c-block. ��

Therefore, if a node does not have any c-block, we can
immediately conclude that its parent must have no c-block.
By visiting the block tree nodes in a bottom-up manner, some
high-level nodes may not need to be examined.

Algorithm 3 shows the block tree construction process.
Step 1 constructs a block tree, X , which has the same edges
and nodes as that of the target schema T . Step 2 uses a global
variable, count, to record the number of c-blocks generated so
far. Then, Step 3 initializes a hash table, H , whose hash key is
the path in T , and hash value is that node’s location in X . We
will explain how H is used to answer queries in Sect. 5. Step
4 calls construct_c_block to generate c-blocks for node t . We
then perform “mapping compression” in Step 5. Observe that

Algorithm 3 construct_block_tree
Input: schema T , mapping set M , confidence threshold τ

Output: block tree X , hash table H
1: X ← ini t_block_tree(T)

2: count ← 0
3: Let H be a hash table of block tree nodes
4: construct_c_block(X.root)
5: remove_duplicate_corr(X, M)

6: return X, H
function construct_c_block(node t)
Return: number of blocks created
1: if t is leaf then
2: num_blk_count ← ini t_block(t)
3: if num_blk_count > 0 then
4: insert_hash_entr y(H, t)
5: end if
6: return num_blk_count
7: else
8: // t is a non-leaf node
9: mark ← TRUE
10: for all di in t’s child nodes do
11: if construct_c_block(di) = 0 then
12: mark ← FALSE
13: end if
14: end for
15: if mark = FALSE then
16: return 0
17: else
18: num_blk_count ← gen_non_lea f (t)
19: if num_blk_count > 0 then
20: insert_hash_entr y(H, t)
21: end if
22: return num_blk_count
23: end if
24: end if

a c-block stores mappings that share correspondences, and
so we only need to store a copy of these correspondences.
The function remove_duplicate_corr performs a preorder
traversal over X : for each mapping recorded in a c-block, we
replace its correspondences with a pointer to the block in X .
Finally, Step 6 returns X and H .

The recursive function construct_c_block, which is first
invoked on X ’s root, performs a postorder traversal over X .
It takes a node t as input, generates c-blocks for t , and returns
the number of them created. We consider two cases:
CASE 1: t is a leaf node. ini t_block(t) is called (Step
2), whose job is to generate c-block(s) for t according to the
mapping set M . Essentially, ini t_block(t) groups the map-
pings in M according to their correspondences and creates
c-blocks for groups that have enough mapping. If the num-
ber of c-blocks is non-zero, we add t’s path from root and
its location in the block tree to H (Steps 3–5) and return the
number of blocks created.

Algorithm 4 describes the function ini t_block, which
conceptually assigns all mappings in M to a set of groups
(which are blocks), such that each group contains a distinct
source node s which matches t . Step 1 creates a block at t
for mapping m1. Then, for every mapping mi (where i =
2, . . . , |M |), it calls f ind_node, which examines whether
mi contains the correspondence specified in b · C (Step 4).
If this is true, we insert mi to b (Step 6). Otherwise, a new
block is created for mi (Step 8). Steps 13–20 filter the blocks
that contain the number of shared mappings less than τ and
update the total number of blocks created so far, count . A
parameter MAX_B is used to control the maximal number of
c-blocks generated. The number of newly created blocks is
returned in Step 21.

Algorithm 4 Function ini t_block(node t)
Return: number of blocks created for t
1: create_block(t, m1)

2: for i = 2, . . . , |M | do
3: for all block b at t do
4: s ← f ind_node(b, mi)

5: if s is found then
6: insert (b, mi)

7: else
8: create_block(t, mi)

9: end if
10: end for
11: end for
12: count_new← 0
13: for all block b at t do
14: if |b · M | ≥ τ × |M | and count < MAX_B then
15: count_new← count_new + 1
16: count ← count + 1
17: else
18: delete b
19: end if
20: end for
21: return count_new

123

Efficient management 395

IP

b4

b3

ICN

g2g1

b2

b1
C: BCN~ICN

M: m1, m2

C: RCN~ICN
M: m3, m4

C: OCN~SCN
M: m2, m3

SCN

C: BCN~SCN
M: m4, m5

b5

C: BP~IP
M: m1, m2, m4, m5

C: BP~IP, BCN~ICN
M: m1, m2

SP

...

ORDER

g3
C: Order~ORDER

M: m1, m2, m3, m4, m5

Path Node
ORDER.IP
ORDER.IP.ICN

ORDER.SP.SCN

m1

Order~ORDER

RCN~SCN
...

m2
Order~ORDER

OCN~SCN
...

b2.C

b3.C

b2.C

b4.C

m4
Order~ORDER
BP~IP

...

b4.C

m5
Order~ORDER
BP~IP

OCN~ICN

...

b5.C b5.C

m3
Order~ORDER

SP~IP

BP~SP
...

(a)

(b) (c)

Fig. 11 Examples of a mappings, b hash table, and c block tree. The
set of correspondences of a mapping that can be found in a c-block is
replaced by a pointer to that c-block. The hash table is used to support
query evaluation

CASE 2: t is a non-leaf node. In Algorithm 3, Step 9
initializes mark to TRUE. Then, Steps 10–14 perform con-
struct_c_block for each child node of t and see whether any
one of them returns zero. If this happens, t cannot have
any c-block (Corollary 1). So, mark is set to FALSE (Step
12), and zero value is returned (Steps 15–16). Otherwise,
gen_non_leaf is executed (Step 18), to generate all c-blocks
for t . We will elaborate on this important function later. Steps
19–22 create a hash entry for t and return the number of
blocks generated.

Figure 11 illustrates the block tree and the supporting data
structure for the sample mappings in Fig. 3. The block tree
has the structure of a target schema, with each node contain-
ing a linked list of c-blocks. The dash-lined boxes in each
mapping indicate the part of the correspondences that are
stored in the block tree. For example, the correspondences
{(BP, IP), (BCN, ICN)} of m1 and m2 are stored in block
b5. The hash table stores the name of a target element and its
link to the corresponding node in the block tree.

4.3 Generating a non-leaf node in a block tree

We now discuss the important function gen_non_lea f ,
which generates c-block(s) for a non-leaf node. In fact, a
simple way of implementing it has been proposed in Cheng
et al. [7]. To find out the c-blocks of a non-leaf node t , [7] sim-
ply considers all combinations of c-blocks in the child nodes
of t . More specifically, it enumerates all combinations of t’s
initial blocks (returned by the function ini t_block), as well
as the c-blocks of each child node of t . By using Lemma 2,
each combination of blocks becomes a candidate c-block of
t , which can then be tested to see if they are real c-blocks
or not. Since the number of candidate c-blocks generated is
exponential to the number of possible mappings, a parameter
MAX_F is used in Cheng et al. [7] to restrict the number of

bt1

c1

t

c2

b21

b22

b23

C: ...
M: m1,m2,m3,m4,m5

C: ...
M: m6,m8,m9,m10

C: ...
M: m1,m3,m5

C: ...
M: m4,m6,m8,m9

b11

b12

C: ...
M: m2,m10

(a)

c1

t

c2

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

1 1 2 -1 2 2 2
2 2 2 1 2 1 -1

3 2 2 -1 2 2 3

(b)

C: ...
M: m1,m3,m5,m7,m9

C: ...
M: m2,m4,m6,m8

b1

b2

block bt1 bt1 bt2 bt2

1

2

1

2

1

2

3

1 1 1
1 1 1

1 1 1

Fig. 12 Examples of a nodes of the block tree, b signatures of the
mappings. A mapping signature facilitates the construction of a non-
leaf node in a block tree

failed cases (i.e., a candidate tested not a real c-block) to be
no more than MAX_F.

The problem with the procedure discussed above is that it
is hard to determine MAX_F. We found from our experimen-
tal results that if MAX_F is too large, gen_non_lea f involves
a large number of candidate c-block tests and increases the
running time significantly. On the other hand, if MAX_F is
too small, some valid c-blocks may not have a chance to be
generated. Hence, the query effectiveness of the block tree
can be reduced. Our new algorithm presented here avoids
using MAX_F and still finds out all c-blocks for a non-leaf
node, in polynomial time.

Our observation is that finding all c-blocks of a non-leaf
node t does not necessitate the enumeration of all c-blocks
in its child nodes. Notice that the number of the c-blocks of
t cannot be larger than |M |; in addition, the only case for
the number of c-blocks of t equals to |M | is when: (1) each
mapping in M contains a distinct set of correspondences for
the subtree rooted at t , and (2) τ = |M |−1. We create a sig-
nature for each mapping m, which is a vector of integers with
length (t. f anout + 1), where the fanout of t equals to the
number of t’s children. Each initial block of t is assigned a
distinct integer ID (starting from 1); the IDs of the c-blocks
of each of t’s children are assigned similarly, as shown in
Fig. 12a. The first component of the mapping mi ’s signature
stores the ID of the initial block of t containing mi ; the i th
(1 < i ≤ t. f anout + 1) component of the signature stores
the ID of the c-block of the i th child of t containing mi .
Notice that the signatures of all the mappings can be found
by scanning the blocks of t and t’s children once. Mappings
with identical signatures may yield a c-block, since they must
contain the same set of correspondences for the nodes in the
subtree of t .

123

396 J. Gong et al.

We now illustrate the algorithm with an example. In
Fig. 12a, the non-leaf node t has two children, namely c1

and c2. In addition, t has two initial blocks, namely b1 and
b2, while c1 and c2 have two and three c-blocks, respec-
tively. The ID of each block is illustrated on the right of the
block. Figure 12b shows the signatures of the mappings after
gen_non_lea f is completed. For example, mappings m1, m3

and m5 share the signature [1, 1, 1] (shown in bold lines),
while m6 and m8 share the signature [2, 2, 2]. If τ = 0.2
and |M | = 10, two blocks will be created for t : bt1, which
contains m1, m3, and m5; and bt2, which contains m6 and m8.

Algorithm 5 shows the details of gen_non_lea f . First,
Step 1 executes ini t_block on t . Conceptually, it treats t as a
“leaf node” and attempts to construct potential c-blocks for
t based on its correspondences. If none is found, no c-blocks
can be created at t , and zero is returned (Step 2). Otherwise,
it detaches the block list created by ini t_block and moves
it to a temporary list, listt (Step 4). In Step 6, it initiates a
new signature for each mapping m in M , which is a vector

Algorithm 5 Function gen_non_lea f (node t)
Return: number of blocks created for t
1: if ini t_block(t) = 0 then
2: return 0
3: end if
4: Let listt ← detached block list of t
5: count_new← 0 // number of new c-blocks
6: create a new signature sig(mi), for each mi ∈ M
7: pos ← 1
8: sig_update(t, pos)
9: for all c ∈ t.children do
10: sig_update(c, pos)
11: end for
12: discard any mi ∈ M , if mi ’s signature contains -1
13: sort M in ascending order of the signature’s components
14: for all Mi ⊆ M such that Mi contains maximal mappings with

identical signatures do
15: if |Mi | ≥ τ × |M | then
16: b← create_block(Mi)

17: attach_to_node(b, t)
18: count_new← count_new + 1
19: count ← count + 1
20: end if
21: if count ≥MAX_B then
22: break
23: end if
24: end for
25: if count_new > 0 then
26: insert_hash_entr y(H, t)
27: end if
28: discard listt , and sig[mi] for all mi ∈ M
29: return count_new
procedure sig_update(node n, int pos)
1: for all bi of n’s block do
2: for all m j ∈ bi .M do
3: sig(m j)[pos] ← i
4: end for
5: end for
6: pos ← pos + 1

[−1, . . . ,−1] with length (t. f anout + 1). Then, in Steps
7–11, it updates the signatures with node t and its children.
Procedure sig_update modifies the posth component of the
signatures according to the blocks associated with a node n: if
the mapping m j is found in the i th block of n, then the posth
component of sig(m j), the signature of m j , is set to be i .

Finally, the algorithm finds out all subsets of mappings
Mi which contains at least τ × |M | mappings with identical
signatures (Steps 14–24). In order to find out all such subsets,
M is sorted first according to the signatures of mappings, and
then scanned once to find out all such subsets of mappings.
Notice that those mappings with signatures containing “-1”
would not be considered for generating c-blocks (Step 12);
they must not be included in any c-block. A c-block for t is
created from each of these subsets based on Lemma 2: the
mapping IDs consist of each mapping’s ID in the subset, and
the correspondence set consists of the union of the corre-
spondences for t and t’s children contained arbitrarily in the
subset. A parameter MAX_B is used to control the maximal
number of c-blocks generated (Step 21): when the algorithm
finds M AX_B c-blocks, it stops finding new c-blocks.

Space costs

Each block has at most |T | correspondences and |M |
mappings, and a size of at most |T | + |M | units. Notice
that the maximum number of c-blocks generated is MAX_B.
On the other hand, each node in T can have at most τ−1

c-blocks. Since a block tree has |T | nodes, the total number of
c-blocks in the block tree cannot be larger than τ−1|T |.
Therefore, the total space occupied by c-blocks is min
(MAX_B, τ−1|T | × (|T | + |M |)). The hash table size is
O(|T |). The total size used for storing all the signatures is
(f + 1)|M |, where f is the maximum fanout.

Time costs

We first analyze function init_block, which generates
c-blocks at a leaf node. A leaf node t can have O(|S|) blocks,
and each block can contain O(|M |) mappings. In Step 3,
find_node, which looks for a given mapping in a block with
binary search, is O(log |M |). Therefore, init_block requires
a time complexity of

CL = O(|M ||S| log |M |) (3)

Next, we analyze function gen_non_lea f _sig, which
generates c-blocks at a non-leaf node. Signatures initializa-
tion needs O(f |M |) to clear the existing components in the
current signature of each mapping. Updating of signatures
needs O(f |M |), since the total number of mappings con-
tained in the blocks of each node (either t or t’s child) is at
most |M |. Sorting the mappings and finding all subsets of
mappings with identical signatures needs O(f |M | log |M |),

123

Efficient management 397

since there are total |M | vectors, and the length of each vector
is f + 1. The cost of inserting all new blocks into the hash
table (Steps 25–27) is O(|T |), since the hash table has size
O(|T |). Therefore, producing c-blocks at a non-leaf node,
using Algorithm 5, has a cost of

CN = O(f |M | log |M | + |T |) (4)

Function construct_c_block uses a postorder traversal, where
each node is visited once. Let h = �log f |T |� be the height of
the block tree, then the total number of leaf nodes is O(f h),
and the total number of non-leaf nodes is O(|T | − f h).
Therefore, the total cost of construct_c_block is O(f hCL +
(|T |− f h)CN), which is less than O(|T |(CL+CN)). The cost
of remove_duplicate_corr is O(|M ||T |). Hence, the space
and the construction time complexities of the block tree are
polynomial with the number of mappings and the size of the
schema matching.

4.4 An integrated approach of block tree construction

We have so far assumed that all the h mappings are created by
a mapping generation algorithm, before they are used to con-
struct a block tree. If the number of mappings is large, a sig-
nificant amount of space can be consumed. We now describe
an “integrated approach”, which generates the block tree dur-
ing the mapping derivation process. This method consists of
four steps:

Step 1. Divide the bipartite corresponding to a schema
matching (Sect. 3.1) into a parent bipartite and a
set of child bipartites. For any two bipartites, their
correspondences do not share the same source or
target element. The partitioning has to “preserve”
the structure of the target schema. For example, in
Fig. 13, a target element p, which is also a leaf node
of the parent bipartite, is connected to two child
bipartites that contain the child subtrees of p. This
process can be done by using a postorder traversal
of the target schema.

Step 2. For each child bipartite, execute the mapping gen-
eration and the block tree construction algorithms
discussed before. We then obtain a set of mappings
and a block tree for every child bipartite. Notice
that the set of mappings associated with each child
bipartite is independent of each other, because their
correspondences do not share the same source or
target elements. The block tree of every child bipar-
tite is also independent of each other.

Step 3. The mappings of the child bipartites that belong to
the same parent target node p in the parent bipartite
are merged to find the top-h mapping in the subtree
under p, using the merging algorithm discussed in

Fig. 13 Partitioning of the target schema in the integrated approach

Sect. 3.2. Then, the c-blocks attached to the root
of the block trees of the child bipartites are used
to generate the c-blocks for p. For each mapping
found, the references of their correspondences to
the new c-blocks are updated accordingly.

Step 4. Repeat Step 3 until the root of the target schema
is reached. If no more c-blocks are generated at a
node, we just merge the mappings from the child
subtrees, in order to obtain the required mappings.
Finally, the hash table used by the block tree is
created.

The above steps generate a “partial” block tree while
discovering mappings, in a bottom-up approach. It does not
require all mappings to be known before the block tree is
constructed. If a schema matching changes, this approach
may also allow the block tree to be updated. Suppose that
a correspondence is inserted between a source and a target
element. If this correspondence happens to be inserted to the
same child bipartite e, then in Steps 1 and 2 above, we only
have to generate the mappings and the block tree for e. The
costs of deriving the block tree for the new schema match-
ing can thus be reduced. Next, we study how the block tree
supports query evaluation.

5 Evaluating twig queries over block trees

We now study the Probabilistic Twig Query (PTQ), which
provides query answers over possible mappings. We describe
its definition in Sect. 5.1. As shown in Fig. 14, a PTQ
can be evaluated on a block tree. Section 5.2 explains how
this can be done efficiently. We discuss the top-k PTQ in
Sect. 5.3.

5.1 The probabilistic twig query

Let us briefly review a twig query. A twig pattern, q, is
a tree, where each node has a label (e.g., I C N) and an
optional predicate (e.g., I C N = “Alice”). Each node has

123

398 J. Gong et al.

Fig. 14 Evaluating probabilistic twig queries

an edge labeled either ‘/’ (parent–child edge) or ‘//’ (ances-
tor-descendant edge). For example, in Fig. 1, a twig query
q = /O RDE R//I C N asks for a contact name of the pur-
chase order. Given a document d and a twig pattern q with l
nodes, a match of q in d is a set of nodes {n1, . . . , nl} from
d, such that for each node ni (1 ≤ i ≤ l), the label and
the predicate (if any) of the i th node in q is satisfied by ni ;
in addition, the structural relationship (i.e., parent–child or
ancestor–descendant) of the nodes in q is the same as that of
{n1, . . . , nl}.4

In schema matching, the twig pattern qT (called target
query) is posed against target schema T , but the XML docu-
ment of interest, dS , conforms to source schema S. An answer
to qT is then a “match” of qT on dS—which can be obtained
by translating (or rewriting) qT into a source query qS accord-
ing to a mapping m. Then, qS is answered on dS by finding all
the matches of qS on dS . Each match to qS is then translated
through m, in order to become an answer of qT .

As discussed before, the uncertainty of matching between
source and target schemas can be modeled as a set of possi-
ble mappings with probabilities. If these possible mappings
have similar probability values, for querying purposes it is
better not to consider only one of them; instead, we consider
the query result for each mapping. The result of a query then
becomes a set of document fragments with probabilities.

Now, let a possible mapping mi ∈ M is true, having prob-
ability pi , where

∑

1≤i≤|M| pi = 1. The following gives the
semantics of a probabilistic twig query.

Definition 4 Given a set of possible mappings M and a doc-
ument dS conforming to source schema S, a Probabilistic
Twig Query (PTQ) over target schema T , denoted by qT ,
is a twig pattern on T , which returns a set of pairs R =
{(Ri , pr(Ri)}(1 ≤ i ≤ |M |), where Ri is the set of matches
of q on dS through mapping mi and pr(Ri) is the non-zero
probability that Ri is correct.

Basic solution

Algorithm 6 illustrates query_basic, a straightforward solu-
tion to PTQ. Step 1 prunes all “irrelevant” mappings. A map-
ping m is irrelevant if it does not contain a correspondence

4 We assume all nodes in q are distinct. If this does not hold, q is con-
verted into multiple subqueries, each of which having distinct nodes.
We then combine the answer of each subquery to form the answer of q.

Algorithm 6 (query_basic) Basic Query Evaluation
Input: PTQ qT , mapping set M , document dS
Output: Answer R to PTQ qT

1: M ′ ← f ilter_mappings(M, qT)

2: return twig_quer y(qT , M ′, dS)

function twig_query(quer y q, mapping set M ′, document dS)

Return: Answer R to PTQ q
1: R← ∅
2: for all mi ∈ M ′ do
3: qS ← rewri te(qT , mi)

4: Ri ← match(ds, qS)

5: R← R ∪ {(Ri , pi)}
6: end for
7: return R

for every query node in qT . Hence, there will not be any
match for qT on dS through m with a non-zero probability.
The f ilter_mappings function scans each mapping, and
removes all irrelevant ones. Step 2 then invokes twig_query
on the mappings not filtered, i.e., M ′.

In twig_query, Step 1 initializes the query result R. For
each mapping mi ∈ M ′, we translate qT , using mi , to a source
query qS (Step 3), and match the query pattern on dS (Step
4), in order to obtain a result Ri . Note that the probability
that Ri is correct is exactly the probability that mi is true,
i.e., pi . Hence, we can put (Ri , pi) in R (Step 5), and return
R in Step 7.

Complexity

Function f ilter_mappings is O(|M ||q||S|), as for each
mapping mi ∈ M and for each node n in q, it checks whether
mi contains a correspondence for n. Function rewri te is
O(|q|h), where h is the maximal depth of a node in q;
the function match is O(|q|2|ds |) [18]. The total cost is
O(|M ||q|(|S| + h + |q||ds |)).

The problem of query_basic is that the result of qT for each
mapping mi has to be obtained independently. Note that this
involves translating the query and results using mi , and also
retrieving the data from a source document. This process can
be expensive if (1) not many mappings are filtered and (2)
a mapping has many correspondences. Let us examine how
the block tree can alleviate these problems.

5.2 Evaluating PTQ with the block tree

The process of supporting PTQ execution with a block tree
is illustrated in Fig. 15. Let the root node of a given query
qT be r . We first traverse the block tree X to get the node t
that matches r . The c-blocks attached to t can then be used
to improve the performance of evaluating qT . Intuitively, we
only execute qT once for all the mappings indicated in each
c-block of t , since these mappings have the same correspon-
dences rooted at r . If t does not contain any c-block, we
decompose q into three subqueries:

123

Efficient management 399

t

...

u1

r

u2

w

Path Node
...

r.u2…..w
...

r.u2….w

b1
C: ...
M: ...

...

b2
C: ...
M: ...

...

...qT H X

Fig. 15 Query evaluation using a block tree: given a subtree rooted at
w, its respective position in the node t in the block tree X is located. A
hash table can be used to facilitate this process. The c-blocks associated
with t are then used to evaluate the twig query rooted at w

– q0, with a single node r ;
– q1, with the subtree of qT rooted at u1; and
– q2, with the subtree of qT rooted at u2.

Query q0 is simple and is evaluated directly with the exist-
ing twig query method; q1 and q2 are computed recursively.
For example, q2 is decomposed into subqueries until a node,
w, contains a c-block. Then, the subquery issued at w use
the c-blocks stored in t to facilitate query evaluation. The
answers to the subqueries are then joined to form the final
query answer. To speed up the retrieval of t , we can use the
hash table H obtained during block tree construction. Recall
that each entry in H contains a path in the target schema
and a pointer to some block tree node corresponding to that
path. If r is found in H , we use H to obtain t . In Fig. 15, for
instance, H contains the block tree node t that corresponds
to query node w.

Let us now study the details of this method. First, we
use filter_mappings to remove irrelevant mappings. Then,
we invoke twig_query_tree (Algorithm 7). First, qT ’s root is
searched from block tree X (Step 1). As discussed before,
the hash table associated with the block tree can be used to
speed up this step. If a node t is found, then query_subtree
is invoked in Step 3 to answer qT . (We explain the details of
this function later.) Otherwise, there are two cases:

(1) qT contains a single node: we answer qT by calling
twig_query (Steps 5–6);

(2) qT has one or more children: we call spli t_query(qT)

to decompose qT into subquery q0, which contains qT ’s
root node only, and a set of subqueries q1, . . . , q f , each
of which is rooted at qT ’s i th (1 ≤ i ≤ f) child, where
f is the fanout of qT ’s tree (Step 9). The subquery q0

is evaluated using twig_query, while other subqueries
are evaluated by recursively calling twig_query_tree,
at the subtree of X rooted at t (Step 11–13). Next, we
join the results from these subqueries. Let R(q j) be
the query result for query q j . Then, for each mapping
mi , we combine Ri (q0) with results at child nodes, i.e.,
Ri (q1), . . . , Ri (q f) (Steps 14–19). Note that a match f0

Algorithm 7 (twig_query_tree) PTQ evaluation with block
tree
Input: PTQ qT , relevant mappings M ′, document ds , block tree X
Output: query answers to qT

1: t = f ind_node(qT .root, X)

2: if t has a c-block then
3: return quer y_subtree(qT , t, M ′, dS)

4: else
5: if qT is a leaf then
6: return twig_quer y(qT , M ′, ds)

7: else
8: R← ∅
9: (q0, q1, . . . , q f) ← spli t_quer y(qT) // q0 is the root of qT ,

and q1, . . . , q f are qT ’s children
10: R(q0)← twig_quer y(q0, M ′, dS)

11: for all j ∈ [1, f] do
12: R(q j)← twig_quer y_tree(q j , M ′, dS, t)
13: end for
14: for all i ∈ [1, |M ′|] do
15: for all j ∈ [1, f] do
16: Ri (q0)← stack_ join(Ri (q0), Ri (q j))

17: end for
18: R← R ∪ {(Ri (q0), pi)}
19: end for
20: return R
21: end if
22: end if
function quer y_subtree(PT Q qT , node t, mappings M ′,

document dS)

Return: Answer to qt

1: Let Ms ← ∅ // all mappings involved at t
2: Let Y ← ∅ // query result for blocks at t
3: for all b ∈ blocks at t do
4: y ← twig_quer y(qT , {b.C}, dS)

5: for all mi ∈ b.M do
6: Y ← Y ∪ {(y, pi)}
7: Ms ← Ms ∪ {mi }
8: end for
9: end for
10: Z ← twig_quer y(qT , M ′ − Ms , dS)

11: return Y ∪ Z

in Ri (q0) can join with a match f j in Ri (q j) if f j ’s root
is a child of f0. Essentially, this is a binary structural join
process and can be supported efficiently with a stack-
based join algorithm [2] (Step 16). The combined result
is included in R (Step 18), which is returned in Step 20.

The query_subtree function uses c-blocks at node t to
support efficient evaluation of query subtree qT (which has t
as the root node). For every c-block b associated with t , a twig
query is issued on a single mapping that comprises only the
correspondence set of b, i.e., b.C (Step 4). The query result,
y, is then replicated for all mappings that share these corre-
spondences (i.e., b.M), in Steps 5–6. The set Ms is the union
of all the mappings that appear in the c-blocks at t (Step 7).
This set is used to answer qt for mappings that are included
in a c-block. For other mappings (i.e., M ′ − Ms), we invoke
twig_query to evaluate them directly (Step 10). Finally, we
return the answers generated by all mappings in M ′.

123

400 J. Gong et al.

Notice that the query performance can be affected by the
number of c-blocks generated. For example, if we use a small
value of MAX_B during block tree construction, then fewer
c-blocks can be generated. This makes the size of Ms small,
so that Step 10 involves visiting a larger number of map-
pings (|M ′ − Ms |). However, the query correctness will not
be affected by using fewer c-blocks. This is because in the
end of the function query_subtree, it considers all the pos-
sible mappings that are not contained in the block tree and
uses them to return a set of query answers Z . Therefore, for
the worst case where there is no c-block, Z would contain all
the query answers.

Compared with query_basic, which treats each mapping
independently, our method can achieve faster performance
for mappings that share correspondences. The price for this
is the cost of decomposing/merging subquery results. In
the worst case, no block is found in the block tree, and
twig_query needs to be evaluated for every node of qT . The
most expensive function in the decomposition/merge pro-
cess, stack_join, combines the result for each edge in qT in
O(|qT | · |ds |) times [2]. If qT has E edges, the worst-case
cost of decomposition-and-join is O(|E | · |qT | · |ds |). Our
experiments show that this is rare, and the additional over-
head does not override the benefit of using the block tree for
query evaluation.

5.3 Top-k probabilistic twig query

A query user may only be concerned about answers with high
probabilities. To facilitate a user for expressing this prefer-
ence, we propose a variant of PTQ, called top-k PTQ, as
follows:

Definition 5 A top-k Probabilistic Twig Query, or top-k
PTQ, is a PTQ, where only k answer tuples {(Ri , pr(Ri)}
(1 ≤ i ≤ |M |), whose probabilities are among the highest
probabilities of query answers, are returned.

Essentially, this query allows a user to obtain query
answers with the k-highest probabilities. If there are more
than k answers with the k highest probabilities, we assume
that any one subset of these answers need to be returned.

A top-k PTQ can be evaluated by first computing its PTQ
counterpart and then return the answer tuples with the k high-
est probabilities. This is not the fastest method, however.
Instead, we insert the following two steps at the end of the
filter_mappings function (which prunes mappings before the
twig_query_tree is evaluated):

– Sort the mapping set M ′ in ascending order of the prob-
ability of each mapping in M ′.

– Return the first k mappings in M ′.

This change must be correct, since the answers to a top-k
PTQ must be derived from k distinct mappings with the high-
est probabilities. By using this method, the number of map-
pings considered by twig_query_tree can be reduced, thereby
achieving a higher query performance.

6 Experimental results

We now present our results. Section 6.1 discusses the exper-
iment setup. In Sect. 6.2, we discuss the experiment results
on the data sets commonly used in the geospatial and
e-commerce applications.

6.1 Setup

We have used two data sets, namely, Geospatial data set and
E-Commerce data set, in our experiment.

Geospatial data sets

We used a geospatial data set called CityGML,5 which is an
implementation of the application schema for the Geogra-
phy Markup Language, an international standard for spatial
data exchange issued by the Open Geospatial Consortium
(OGC).6 CityGML is a popular model used for represent-
ing urban objects, and multiple versions have been released.
We have downloaded several XML schemas and documents
from the Resources section7 of the website (the subsections
of Schema download and CityGML data sets). In the 0.4.0
version, it uses a large schema to represent all kinds of urban
objects (building, waterbody, bridge, etc), while in the
1.0.0 version, it uses separate schemas to represent each cat-
egory of objects. We downloaded the version 0.4.0 schema,
as well as the schemas for the building and waterbody objects
in the 1.0.0 version of the schemas. The part related to build-
ing and waterbody of the version 0.4.0 schema is extracted.
Then, we used COMA++8 to find the matchings between
two versions of the schemas. We then obtain two matching
results, namely, M S1 and M S2 (Table 2, where CG.4 is the
version 0.4.0 version of the schema, and CG1B and CG1W
refer to the building and waterbody schema in the 1.0.0
version of the schema respectively).

In Table 2, each matching, named “ID”, has a source
schema S and a target schema T , which contain |S| and |T |
elements respectively. We have used the default matching
option of COMA++, namely, context, to perform the schema

5 CityGML: http://www.citygml.org.
6 OGC: http://www.opengeospatial.org.
7 CityGML Resources: http://www.citygml.org/index.php?id=1522.
8 COMA: http://dbs.uni-leipzig.de/Research/coma.

123

http://www.citygml.org
http://www.opengeospatial.org
http://www.citygml.org/index.php?id=1522
http://dbs.uni-leipzig.de/Research/coma.

Efficient management 401

Table 2 Schema matchings

ID S |S| S.depth S.width T |T | T.depth T.width Cap. o-ratio

Geospatial datasets

M S1 CG.4 86 26 30 CG1B 378 26 30 323 0.92

M S2 CG.4 86 26 30 CG1W 84 26 30 119 0.85

E-commerce datasets

MC1 Excel 48 5 12 Paragon 69 6 12 47 0.63

MC2 Noris 66 4 10 Paragon 69 6 12 41 0.64

MC3 OT 247 9 16 Apertum 166 7 7 77 0.87

MC4 XCBL 1076 10 25 Apertum 166 7 7 226 0.84

MC5 XCBL 1076 10 25 CIDX 39 8 12 127 0.82

MC6 XCBL 1076 10 25 OT 247 9 16 619 0.91

MC7 OT 247 9 16 XCBL 1076 10 25 619 0.91

matching tasks. Using this option, the matching method
returns context-dependent correspondences. The capacity
(Cap.) is the number of element correspondences of the
matching. The o-ratio, which we will detail later, measures
the degree of overlap among the set of possible mappings
used in the matching.

E-commerce data sets

We also used a variety of real XML schemas commonly
used in e-commerce. These include the OpenTrans (OT) and
XCBL schemas, as well as schemas provided by COMA++.
Based on these schemas, we generate seven more matching
results, namely, MC1, . . . , MC7 (Table 2).

Source documents

We used a set of geospatial XML files as the source docu-
ments. Those files are downloaded from the website of City-
GML,9 which contain the geospatial information of urban
objects in different cities. The details of the source docu-
ments DS1-DS6 are shown in Table 3. The largest source
document, DS6, whose size is about 36MB, contains 301,509
elements. We also examined queries on the data with the
e-commerce schemas. An XML document Order.xml,
chosen from the XCBL sample file autogen_ f ull containing
3473 nodes, is used as the source document for the e-com-
merce data set.

Target queries

We tested four queries, namely, QS1, . . . , QS4, on the
matching geospatial data set M S1, as shown in Table 4. We
also tested ten queries, namely, QC1, . . . , QC10 in Table

9 CityGML data set: http://www.citygml.org/index.php?id=1539.

Table 3 Geospatial XML documents

ID File name Size (MB)

DS1 Koenigswinter_Drachenfelsstrasse_v0.4.0 3

DS2 Berlin_Pariser_Platz_v0.4.0 4

DS3 CityGML_British_Ordnance_Survey_v0.4.0 4

DS4 waldbruecke_v0.4.0 7

DS5 080305SIG3D_Building_Levkreuz 28

DS6 Berlin_Alexanderplatz_v0.4.0 36

4, on the e-commerce data set MC4. These queries cover
different portions of the target schema and have a variety of
sizes.

We implemented the block tree, with |M | = 500, τ =
0.2, and MAX_B = 500 by default. We also implemented the
Pascoal’s algorithm [17], an advanced version of Murty’s
algorithm [16], in order to efficiently generate top-h map-
pings. Our experiments are run on a PC with Intel Core Duo
2.66GHz CPU and 2 Gigabyte RAM. The algorithms are
implemented in C++. Each data point is an average of 50
runs.

In this paper, we focus on the geospatial data set. For the
e-commerce data set, the observation is similar, and we only
present their representative results. A more comprehensive
discussion of the e-commerce data set experiments can be
found in Cheng et al. [7].

6.2 Results

1. Top-h mapping generation. We first compare the per-
formance of the three top-h mapping generation algorithms
mentioned in Sect. 3: (1) the murty algorithm (Pascoal’s
improved method), (2) Algorithm 8 in Appendix A (called
parti tion here), and (3) Algorithm 1 (called heap here).
Figure 16a shows the time needed (Tg) on each match-

123

http://www.citygml.org/index.php?id=1539

402 J. Gong et al.

Table 4 Queries used in the experiment

ID Matching PTQ Meaning

Geospatial datasets

QS1 MS1 //Building//lod1Solid//posList Return the coordinates of a building’s vertices

(1st level-of-detail)

QS2 MS1 //Building//lod2Solid//posList Return the coordinates of a building’s vertices

(2nd level-of-detail)

QS3 MS1 root/Building/lod3Solid//posList Return the coordinates of a building’s vertices

(3rd level-of-detail)

QS4 MS1 root[./Building/lod3Solid//LinearRing] Return the shapes of all buildings

(3rd level-of-detail, in the form of a linear ring)

E-commerce datasets

QC1 MC4 Order/DeliverTo/Address[./City][./Country]/Street Return the street name of the delivery address

for a given order

QC2 MC4 Order/DeliverTo/Contact/EMail Return the email address of the recipient

of a given order

QC3 MC4 Order/DeliverTo[./Address/City]/Contact/EMail Return the email address of the recipient with a

given city name

QC4 MC4 Order/POLine[./LineNo]//UnitPrice Return the unit prices for all items in a given order

QC5 MC4 Order/POLine[./LineNo][.//UnitPrice]/Quantity Return the unit prices and quantities of all items

in a given order

QC6 MC4 Order/POLine[./BuyerPartID][./LineNO] Return the unit prices and quantities of items with

[//UnitPrice]/Quantity have buyer IDs and line numbers

QC7 MC4 Order[./DeliverTo//Street]/POLine[.//BuyerPartID] Return the quantities of items with specified buyer

[.//UnitPrice]/Quantity IDs, unit prices, and street names

QC8 MC4 Order[./DeliverTo[.//EMail]//Street]/POLine Return the quantities of items with specified unit

[.//UnitPrice]/Quantity prices, for a recipient with a specified

email address and street

QC9 MC4 Order[./Buyer/Contact]/POLine[.//BuyerPartID] Return the quantities of items of an order with

/Quantity a specified buyer ID

QC10 MC4 Order[./Buyer/Contact][./DeliverTo//City] Return the buyer ID of an order, with the city address

//BuyerPartID of the recipient specified

ing in Table 2. Notice that the y-axis in both Fig. 16a and
b is logarithmic. We observe that parti tion consistently
outperforms murty (96% on average). This is because the
bipartite of the schema matching is sparse, and the number
of partitions is large (it ranges from 22 for MC2 to 966
for MC4). We also see that heap addresses significant
improvement over parti tion (69% on average, maximal
93% on MC4). The reason behind this improvement is that
the size of the remainder partition is generally large on all
the schema matchings we tested—the average size of the
remainder partition is 77.57% of the target schema size.
Hence, developing a bipartite matching algorithm tailored
for the remainder partition is justified.
Next, Fig. 16b compares the scalability of murty,
parti tion, and heap in terms of h, on the schema matching

M S1. We measure the time used for generating 100–500
possible mappings with different methods. We observe that
although these three methods are all polynomial with the
number of mappings, parti tion outperforms murty 98%
on average. Moreover, the average running time of heap is
35% faster than parti tion. Our approaches can therefore
improve Tg significantly.
2. Mapping overlap. Now, we examine the degree of over-
lap among the possible mappings generated from a schema
matching. For this purpose, we define the o-ratio of two
mappings mi and m j as

|mi∩m j |
|mi∪m j | , which is the fraction of

the number of shared correspondences between mi and m j

over the number of the total distinct correspondences of
them. We also define the o-ratio of M as the average of the
o-ratio between all pairs of mappings in M . Table 2 shows

123

Efficient management 403

(a)

(b)

Fig. 16 Top-h mapping generation performance

that the o-ratio values for the mapping sets are between
0.53 and 0.92. Hence, there exists a high overlap among the
mappings. Next, we study how well the block tree exploits
this property.
3. Space efficiency of block tree. Given a mapping set
M , let B be the total number of bytes required to store the
block tree and the hash table for M , as well as the mappings
of M (with correspondences removed). Let BM be the total
number of bytes required to store the original mappings of
M . Table 5 shows the number of c-blocks generated and the
block tree size information, for each matching in Table 2.
We define the compression ratio as max(1− B

BM
, 0). This

metric captures the amount of space saved by representing
M with a block tree, which can be affected by the number
of c-blocks generated.
Figure 17a shows the compression ratio on all the schema
matchings under the default setting. We observe that the
compression ratios for most schema matchings are above
50%. For example, for MS1, the compression ratio is 97%.
This is because a large number of c-blocks (376) can be
generated for this matching (Table 5). For MC5, the com-
pression ratio is the lowest, since the number of c-blocks
generated is the fewest (45) among all matchings that we
have considered. Although the o-ratio for MC5 is high, the
overlap of mappings happens mainly at the higher levels
of the target schema. However, since the degree of overlap
at the lower levels (e.g., leaf nodes) of the target schema is

Table 5 No. of c-blocks and block tree size (in KB)

Matching # c-blocks block tree size BM B

M S1 376 116 4,150,613 128,669

M S2 91 20 128,723 24,586

MC1 78 16 4,080,857 199,962

MC2 80 28 594,745 30,332

MC3 180 39 127,822 45,121

MC4 174 55 78,350 66,911

MC5 45 10 19,051 18,365

MC6 232 75 148,889 112,411

MC7 500 161 13,466,000 215,456

(a)

(b)

Fig. 17 Space efficiency of the block tree

low, few c-blocks are generated. In MC5, we found forty
c-blocks at the leaf level and five c-blocks at the second-last
non-leaf nodes. This results in a low compression ratio.
To study how the number of c-blocks affects the compres-
sion ratio, we examine M S2, by decreasing the number
of blocks generated through increasing the threshold. The
number of blocks generated and the compression ratio is
shown in Fig. 17b. We observe that when the number of
blocks decreases, the compression ratio drops accordingly.
4. Effectiveness of c-blocks. From Fig. 17b, we observe
that the number of c-blocks drop much slower after around
τ = 0.1. This means that the number of mappings con-
tained in many c-blocks is larger than τ×|M |. Next, Fig. 18

123

404 J. Gong et al.

Fig. 18 Effectiveness of c-blocks: distribution of different sizes
of c-blocks

shows the distribution of c-block sizes, in terms of the num-
ber of correspondences contained in the c-blocks in M S2.
The x-axis is the fraction of target nodes that are contained
in the correspondence set of the c-block, and the y-axis is
the number of c-blocks of that size.
We observe that there is a large proportion (57%) of
c-blocks whose sizes are larger than one. The largest
c-block contains 14 correspondences. This covers about
17% of all target schema elements and is shared by more
than τ = 20% of all possible mappings. The average size
of all c-blocks is 4.8. Hence, c-blocks can effectively cap-
ture the high overlap among mappings.
5. Block tree construction. Next, we study the block tree
creation algorithm presented in Cheng et al. [7]. For conve-
nience, we call this algorithm combination. As discussed
in Sect. 4.3, combination uses parameter MAX_F to control
the maximal number of false trials. By default, MAX_F is
500. Let us analyze its performance on the schema match-
ing M S2.
Figure 19a shows the block tree generation time (Tc) and
the number of c-blocks generated, by varying the value of
MAX_F. We notice that the number of c-blocks generated
is sensitive to MAX_F: in order to improve the query per-
formance by generating more c-blocks, we need to increase
MAX_F; however, the running time also increases accord-
ingly. Figure 19b shows the maximal number of valid
c-blocks that can be generated and the minimal number of
false trials needed for generating those c-blocks, for differ-
ent τ . We observe that in order to generate more c-blocks
by decreasing τ , we need to increase the minimal MAX_F
accordingly. As we can see, the minimum value of MAX_F
has a large fluctuation with respect to τ . Therefore, it is hard
to set a proper value for MAX_F.
Next, we compare combination with the new block tree
construction algorithm proposed in Sect. 4.3. Let us call
this algorithm signature. Figure 19c shows the block tree
construction time of combination and signature, under dif-

(a)

(b)

(c)

Fig. 19 Effect of M AX_F on block tree generation time

ferent MAX_F values. Observe that signature consistently
outperforms combination and is not sensitive to MAX_F.
Figure 20a shows the block tree generation time of combi-
nation and signature on all the schema matchings shown
in Table 2. We observe that signature outperforms combi-
nation by 33.27% on average. On M S1, the improvement
is the largest (73.04%), since a large combination of child
c-blocks needs to be enumerated in combination. On MC7,
the improvement is small, since the target schema is large,
and most target elements have identical correspondences
in the possible mappings. Therefore, few trials are needed
to generate all the c-blocks. To conclude, signature gen-
erates exact number of c-blocks faster, without the need
of specifying MAX_F. Moreover, signature is easier to use
than combination, since it involves fewer parameters.
Figure 20b shows the block tree construction time for dif-
ferent M AX_B values for combination and signature. We

123

Efficient management 405

(a)

(b)

(c)

Fig. 20 Block tree construction methods: combination versus
signature

observe that signature always performs faster. Notice that
both lines flatten when M AX_B = 120, since the number
of c-blocks is smaller than this value.
Figure 20c shows the overall time for creating the block
tree, which is equal to the sum of mapping generation time
(using heap/partition) and the block tree construction time
(using signature/combination). We observe the use of heap
and signature always yields the best performance.
6. Query performance. Next, we study the query perfor-
mance. We use the schema matching M S1 and the source
document DS1 for analysis. We denote Algorithms 6
and 7 as basic and block tree, respectively. Unless stated
otherwise, we assume that the version of the block tree that
employs the hash table is used.
Figure 21a shows the number of c-blocks generated and
the query evaluation time (Tq1) of QS1 using block tree,

(a)

(b)

(c)

Fig. 21 Query performance of block tree (Geospatial datasets)

where the block tree is derived by the combination algo-
rithm. The figure also shows the query evaluation time
(Tq2) with the blocks generated by the new algorithm,
signature. We observe that when MAX_F equals to 10, Tq1

is 31.2% worse than Tq2. When MAX_F increases, more
c-blocks are generated, which can support query evalua-
tion. Therefore, Tq1 decreases accordingly. When MAX_F
becomes large enough to generate all the 385 c-blocks, Tq1

converges to Tq2. From this experiment, we conclude that
the signature algorithm offers better query support than
combination.
Figure 21b shows the query evaluation time of basic and
block tree for the query QS1, by varying the number of
mappings. We notice that block tree consistently outper-
forms basic for a wide range of possible mapping sizes. In
addition, block tree is less sensitive to the number of map-
pings. From Fig. 21c, we observe that block tree-based
query evaluation time increases slightly as the h becomes
larger.

123

406 J. Gong et al.

(a)

(b)

(c)

(d)

Fig. 22 Query performance on source documents (Geospatial
data sets)

Figure 22a shows the query evaluation time of QS1
for all the source documents shown in Table 3, under
the default setting. The y-axis is in logarithm scale. We
notice that block tree significantly outperforms basic on all
source documents and improves basic at 98% on average.

(a)

(b)

(c)

Fig. 23 Query performance of block tree (e-commerce data sets)

For other queries (QS2, QS3, QS4), we observe similar
results (Fig. 22b, c, d).
Figure 23a shows the running time of QC1-QC10 on the
schema matching MC4, using the block tree generated by
the signature approach, where h is 100. We observe that
block tree outperforms basic for all queries we tested. For
example, the query time of block tree is 27.18% faster
than that of basic for Q2 and is 78.27% faster for Q5. On
average, block tree is 54.60% faster than basic. When h is
500, a similar trend can be observed in Fig. 23b. In these
two figures, non-hashing shows the running time of the
block tree-based query evaluation method without using
the hash table. We notice that when hash table is used in

123

Efficient management 407

(a)

(b)

Fig. 24 Results on query answer quality

the querying process, the query performance improves by
8% on average.
Figure 23c presents the evaluation time of query QC10, by
running basic, block tree, and non-hashing on the matching
MC4, for different values of h. For all methods, the time
required increases with h, since more mappings need to be
handled. Both block tree and non-hashing perform better
than basic. Also, block tree runs faster than non-hashing,
due to the use of the hash table.
Next, we examine the evaluation of query QS1 on matching
MS1. Figure 24a shows the 50 highest answer probabili-
ties, for h = 500. Since the probabilities of the mappings
are close to each other, their corresponding answer proba-
bilities are also similar. Figure 24b illustrates: (1) the prob-
ability of the top-1 query answer (i.e., Pr(Ans1)), and (2)
the sum of probabilities of top h query answers. We observe
that Pr(Ans1) is not dominant, especially when h is large.
Thus, it is better to consider a set of possible mappings than
just the mapping with the highest probability.
7. Top-k PTQ. We then investigate top-k PTQ, using the
schema matching M S1. Figure 25a shows the performance
of top-k PTQ under different values of k for the query
QS1. As k increases, more mappings need to be consid-
ered, so Tq increases accordingly. The normal curve refers
to a PTQ without using the top-k constraint. We can see
that by placing the top-k constraint on the query, its perfor-

(a)

(b)

(c)

(d)

Fig. 25 Top-k query performance

mance can be significantly improved when k is small (e.g.,
35.83% when k = 50). When k is larger than the number
of results, the method top-k needs more time than normal,
due to the sorting overhead of finding the top-k mappings.

123

408 J. Gong et al.

Figure 25b shows the performance of top-k PTQ under dif-
ferent values of k for query QC10 on the e-commerce data
set MC4. We observe that by placing the top-k constraint
on the query, its performance can also be significantly
improved (e.g., 91.75% when k = 50). Figure 25c shows
the performance of normal and top-k for different number
of mappings h, on the data set MC4 and query QC10,
with k = 100. For the basic method, its time increases
sharply as h becomes larger, since it needs to process every
mapping; for the top-k method, its time increases when h
varies from 50 to 100, since the number of mappings to
be processed is more (from 50 to 100). When h > 100,
the query evaluation time then increases slightly, since the
block tree size increases with the number of mappings.
Finally, Fig. 25d compares the performance of normal and
top-k for different queries, with k = 100. We observe that
top-k is on average 73% faster than normal.

7 Conclusions

The need of managing uncertainty in data integration has
been growing in recent years. In this paper, we studied the
problem of handling uncertainty in XML schema matching.
We exploited the observation that XML mappings have a
high degree of overlap and proposed the block tree to store
common parts of mappings. A fast method for construct-
ing the block tree was proposed based on the signatures of
mappings. We also studied how to efficiently evaluate PTQ
and top-k PTQ with the aid of the block tree. By noticing
that XML schema matchings are often sparse, we proposed
to partition the matchings. We further propose a bipartite
matching algorithm customized for the remainder partition,
in order to improve the performance of the mapping genera-
tion process.

In the future, we would consider how the block tree can
facilitate the evaluation of other types of XML queries (e.g.,
XQuery and keyword query). We will study how to perform
incremental update of the block tree due to insertion and dele-
tion of correspondences. We will also consider the querying
of probabilistic XML documents [14], under an uncertain
schema matching later.

Acknowledgments “This work was supported by the Research Grants
Council of Hong Kong (GRF Project 711309E). We would like to thank
the anonymous reviewers for their insightful comments”.

Appendix

A The partitioning algorithm (Sect. 3.2)

Algorithm 8 describes the details of the partitioning process.
First, U is partitioned in Step 1. Then, the top-h mappings

Algorithm 8 Partitioning algorithm
Input: source schema S, target schema T , schema matching U ,
no. of mappings h
Output: top-h mappings
1: {P1, . . . , Pl } ← parti tion(U)

2: top_h_mappings ← biparti te_match(P1)

3: for i = 2 to l do
4: current ← biparti te_match(Pi)

5: merge(top_h_mappings, current)
6: end for
7: return top_h_mappings
function parti tion(schema matching U)

Return: Set of partitions R
1: R← ∅
2: f lag[e] ← FALSE, ∀e ∈ S · N
3: while ∃seed ∈ S · N , f lag[seed] = f alse do
4: P ← expand(seed, U) // P is a new partition
5: R← R ∪ {P}
6: f lag[e] ← TRUE, ∀e ∈ source node of P
7: end while
8: return R

are computed from each partition using a standard algorithm
(e.g., [16,17]), and are merged to obtain the top-h map-
pings for U (Steps 2–6). The top-h mappings are returned in
Step 7.

Complexity analysis

The partition function produces a set of partitions, using the
seed expansion process that we have discussed (Step 4).This
is repeated for every element in S not yet visited, so that all
partitions can be found (Steps 3–7). The complexity of par-
tition is O(|U |), or O(|S|×|T |). The merge function derives
top-h-mappings Z from the combination of two partitions.
Since these two partitions are disjoint, Z can be found by
considering only the top-h-mappings obtained from the two
partitions, i.e., top_h_mappings and current. If the number
of partitions for U is l, the average size of a partition is |U |/ l.
Then, the average complexity of merge is O((

|U |
l)2).

On average, a partition has |S|+|T |l elements. Assuming a
fast
algorithm like Pascoal [17] is used, the average complexity of
generating top-h mappings from a partition is O(h(

|S|+|T |
l)3).

Since there are l partitions, the average complexity of Algo-

rithm 8 is O(
h(|S|+|T |)3

l2 + (
|U |2

l + |U |)), the former and the
latter term being the bipartite-matching and merging-parti-
tioning costs, respectively.

References

1. Agrawal, P., Sarma, A.D., Ullman, J., Widom, J.: Foundations
of uncertain-data integration. Proc. VLDB Endow. 3(1–2), 1080–
1090 (2010)

123

Efficient management 409

2. Al-Khalifa, S., Jagadish, H.V., Patel, J.M., Wu, Y., Koudas, N.,
Srivastava, D.: Structural joins: a primitive for efficient XML query
pattern matching. In: Proceedings of the 18th International Confer-
ence on Data Engineering, ICDE’02, pp. 141–152. IEEE Computer
Society, Washington (2002)

3. Alexe, B., Chiticariu, L., Miller, R.J., Pepper, D., Tan, W.C.:
Muse: a system for understanding and designing mappings. In:
Proceedings of the 2008 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’08, Vancouver, Canada, pp.
1281–1284. ACM, New York. ISBN: 978-1-60558-102-6 (2008)

4. Arenas, M., Libkin, L.: XML data exchange: consistency and
query answering. J. ACM 55(2), 1–72 (2008). http://doi.acm.org/
10.1145/1346330.1346332

5. Arion, A., Benzaken, V., Manolescu, I., Papakonstantinou, Y.:
Structured materialized views for XML queries. In: Proceedings
of the 33rd international conference on Very Large Data Bases,
VLDB’07, Vienna, Austria, pp. 87–98. VLDB Endowment. ISBN:
978-1-59593-649-3 (2007)

6. Bernstein, P.A., Melnik, S.: Model management 2.0: manipulat-
ing richer mappings. In: Proceedings of the 2007 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’07,
Beijing, China, pp. 1–12. ACM, New York. ISBN: 978-1-59593-
686-8 (2007)

7. Cheng, R., Gong, J., Cheung, D.W.: Managing uncertainty of XML
schema matching. In: ICDE, pp. 297–308 (2010)

8. Das Sarma, A., Dong, X., Halevy, A.: Bootstrapping pay-as-you-go
data integration systems. In: Proceedings of the 2008 ACM SIG-
MOD International Conference on Management of Data, SIGMOD
’08, Vancouver, Canada, pp. 861– 874. ACM, New York. ISBN:
978-1-60558-102-6 (2008)

9. Do, H.H., Rahm, E.: COMA: a system for flexible combination of
schema matching approaches. In: Proceedings of the 28th Inter-
national Conference on Very Large Data Bases, VLDB ’02, Hong
Kong, China, pp. 610–621. VLDB Endowment (2002)

10. Dong, X.L., Halevy, A., Yu, C.: Data integration with uncer-
tainty. VLDB J. 18(2), 469–500 (2009)

11. Fuxman, A., Hernandez, M.A., Ho, H., Miller, R.J., Papotti, P.,
Popa, L.: Nested mappings: schema mapping reloaded. In: Pro-
ceedings of the 32nd International Conference on Very Large Data
Bases,VLDB ’06, Seoul, Korea, pp. 67–78. VLDB Endowment
(2006)

12. Gal, A.: Managing uncertainty in schema matching with top-k
schema mappings. J. Data Semant. VI, 90–114 (2006)

13. Gal, A., Martinez, M.V., Simari, G.I., Subrahmanian, V.S.: Aggre-
gate query answering under uncertain schema mappings. In: Pro-
ceedings of the 2009 IEEE International Conference on Data Engi-
neering, pp. 940–951. IEEE Computer Society, Washington. ISBN:
978-0-7695-3545-6 (2009)

14. Kimelfeld, B., Kosharovsky, Y., Sagiv, Y.: Query efficiency in prob-
abilistic XML models. In: Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’08,
Vancouver, Canada, pp. 701–714. ACM, New York. ISBN: 978-1-
60558-102-6 (2008)

15. Lenzerini, M.: Data integration: a theoretical perspective. In: Pro-
ceedings of the Twenty-First ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS ’02, Madi-
son, Wisconsin, pp. 233–246. ACM, New York. ISBN: 1-58113-
507-6 (2002)

16. Murty, K.G.: An algorithm for ranking all the assignment in
increasing order of cost. Oper. Res. 16, 682–687 (1986)

17. Pascoal, M., Captivo, M., Clímaco, J.: A note on a new variant of
Murty’s ranking assignments algorithm. 4OR 1(3), 243–255 (2003)

18. Qin, L., Yu, J.X., Ding, B.: Twiglist: make twig pattern
matching fast. In: Proceedings of the 12th International
Conference on Database Systems for Advanced Applications,
DASFAA ’07, Bangkok, Thailand, pp. 850–862. Springer, Berlin.
ISBN: 978-3-540-71702-7 (2007)

19. Raffio, A., Braga, D., Ceri, S., Papotti, P., Hernández, M.A.: Clip:
a tool for mapping hierarchical schemas. In: Proceedings of the
2008 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’08, Vancouver, Canada, pp. 1271–1274. ACM,
New York. ISBN: 978-1-60558-102-6 (2008)

20. Rahm, E., Bernstein, P.: A survey of approaches to automatic
schema matching. VLDB J. 10(4), 334–350 (2001)

21. Roitman, H., Gal, A., Domshlak, C.: Providing top-k alternative
schema matchings with ontomatcher. In: Proceedings of the Inter-
national Conference on Conceptual Modeling (2008)

22. Vaz Salles, M.A., Dittrich, J.P., Karakashian, S.K., Girard, O.R.,
Blunschi, L.: iTrails: pay-as-you-go information integration in
dataspaces. In: Proceedings of the 33rd International Conference
on Very Large Data Bases, VLDB ’07, Vienna, Austria, pp. 663–
674. VLDB Endowment. ISBN: 978-1-59593-649-3 (2007)

23. Yu, C., Popa, L.: Constraint-based XML query rewriting for data
integration. In: Proceedings of the 2004 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD ’04, Paris,
France. pp. 371–382. ACM, New York. ISBN: 1-58113-859-8
(2004)

123

http://doi.acm.org/10.1145/1346330.1346332
http://doi.acm.org/10.1145/1346330.1346332

	Efficient management of uncertainty in XML schema matching
	Abstract
	1 Introduction
	2 Related work
	2.1 Handling uncertainty in schema matching
	2.2 Data integration in XML

	3 Efficient possible mappings generation
	3.1 Finding top-h mappings
	3.2 Partitioning a schema matching
	3.3 Handling non-conflicting partitions

	4 The block tree
	4.1 Blocks, c-blocks, and block tree
	4.2 Constructing the block tree
	4.3 Generating a non-leaf node in a block tree
	4.4 An integrated approach of block tree construction

	5 Evaluating twig queries over block trees
	5.1 The probabilistic twig query
	5.2 Evaluating PTQ with the block tree
	5.3 Top-k probabilistic twig query

	6 Experimental results
	6.1 Setup
	6.2 Results

	7 Conclusions
	Acknowledgments
	Appendix
	A The partitioning algorithm (Sect. 3.2)

	References

