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Abstract—In many applications that track and analyze spatiotemporal data, movements obey periodic patterns; the objects follow the

same routes (approximately) over regular time intervals. For example, people wake up at the same time and follow more or less the

same route to their work everyday. The discovery of hidden periodic patterns in spatiotemporal data could unveil important information

to the data analyst. Existing approaches for discovering periodic patterns focus on symbol sequences. However, these methods

cannot directly be applied to a spatiotemporal sequence because of the fuzziness of spatial locations in the sequence. In this paper, we

define the problem of mining periodic patterns in spatiotemporal data and propose an effective and efficient algorithm for retrieving

maximal periodic patterns. In addition, we study two interesting variants of the problem. The first is the retrieval of periodic patterns that

are frequent only during a continuous subinterval of the whole history. The second problem is the discovery of periodic patterns, whose

instances may be shifted or distorted. We demonstrate how our mining technique can be adapted for these variants. Finally, we

present a comprehensive experimental evaluation, where we show the effectiveness and efficiency of the proposed techniques.

Index Terms—Data mining, periodic patterns, spatiotemporal data.
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1 INTRODUCTION

THE efficient management of spatiotemporal data has
gained much interest during the past few years [14],

[16], [6], [15], mainly due to the rapid advancement in
telecommunications (e.g., GPS, Cellular networks, etc.),
which facilitate the collection of large data sets of such
information. Management and analysis of moving object
trajectories are challenging due to the vast amount of
collected data and novel types of spatiotemporal queries.

In many applications, the movements obey periodic
patterns, i.e., the objects follow the same routes (approxi-
mately) over regular time intervals. Objects that follow
approximate periodic patterns include transportation vehi-
cles (buses, boats, airplanes, trains, etc.), animals, mobile
phone users, etc. For example, Bob wakes up at the same
time and then follows, more or less, the same route to his
work everyday.

The problem of discovering periodic patterns from
historical object movements is very challenging. Usually,
the patterns are not explicitly specified, but have to be
discovered from the data. The patterns can be thought of as
(possibly noncontiguous) sequences of object locations that
reappear in the movement history periodically. In addition,
since we do not expect an object to visit exactly the same
location at every time instant of each period, the patterns
are not rigid but differ slightly from one occurrence to the
next. The approximate nature of patterns in the spatiotem-
poral domain increases the complexity of the mining tasks.
We need to discover, along with the patterns, a flexible

description of how they variate in space and time. Previous
approaches have studied the extraction of patterns from
long event sequences [7], [10]. We identify the difference
between the two problems and propose novel techniques
for mining periodic patterns from a large historical
collection of object movements.

In practice, periodic patterns may not be frequent in the
whole sequence. For instance, assume that Bob changes his
route to work after being transferred from department A to
department B. In this case, his route to department A is
frequent only during the time interval he works there. This
motivates us to study the problem of mining frequent
patterns and their validity eras, i.e., the (maximal) time ranges
(eras) during which these patterns are frequent.

In real applications, pattern occurrences in certain
periodic ranges may be shifted or distorted in time. For
instance, if Bob wakes up late on a certain day, the
movement to his work is shifted on that day (e.g., for
10 minutes). Or, Bob gets up at the usual time, but arrives at
the company a little late due to traffic congestion. Although
Bob follows the same route (pattern) to the company in the
above two cases, the corresponding pattern instances are
shifted and/or distorted. In this paper, we extend the
baseline pattern mining technique to include in the counting
of a pattern’s frequency its shifted or distorted instances.

The contributions of this paper are: 1) a new model of
partial periodic pattern discovery in spatiotemporal data,
2) an effective and efficient method for discovering the
periodic patterns from a long movement history, and
3) techniques that extend the mining approach to identify
variants of the periodic patterns: era patterns and shifted/
distorted patterns. The rest of the paper is organized as
follows: In Section 2, we review work related to the problem
under study. The baseline periodic pattern mining problem
is formally defined in Section 3. We describe the several
approaches presented in [11] and an additional time-
efficient technique in Section 4. Section 5 formally defines
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the problem variants and provides solutions for them. We
evaluate the effectiveness and efficiency of the proposed
methods experimentally in Section 6. Finally, Section 7
concludes this paper.

2 RELATED WORK

The problem of mining sequential patterns from transac-
tional databases has attracted a lot of interest since Agrawal
and Srikant introduced it in [2]. Each transaction contains a
set of items that are bought by some customer, and the
database consists of ordered lists of transactions. For
example, hða; bÞ; ða; cÞ; ðbÞi is a sequence containing three
transactions ða; bÞ, ða; cÞ, and ðbÞ. Given such a database, the
sequential pattern mining problem is to find ordered lists of
itemsets that appear in sequences with high frequency. For
instance, hðbÞ; ðaÞ; ðbÞi is a pattern which is supported by the
above sequence. The original sequential pattern mining
problem does not consider the periodicity character of a
transaction sequence.

Periodicity has only been studied in the context of time-
series databases. Indyk et al. [9] address the following
problem: Given a long sequence S and a period T , the aim is
to discover the most representative trend that repeats itself
in S every T timestamps. Exact search might be slow; thus,
[9] proposes an approximate technique based on sketches.
However, the discovered trend for a given T is only one and
spans the whole periodic interval. In [12], the problem of
finding association rules that repeat themselves in every
period of a data sequence is addressed. Elfeky et al. in [4]
tackle the problem of periodicity detection on a series of
nominal data, focusing on the automatic detection of the
period.

The discovery of multiple partial periodic patterns that
do not appear in every periodic segment is first studied in
[8]. Such a pattern is in the form of p0; p1; . . . ; pT�1, where
T is the given period, each pj ð0 � j < T Þ can be an
element (e.g., event type) or a wildcard �, which matches
any element in the sequence. The pattern may not repeat
itself in every period, but it must appear at least min sup
times (a user-defined parameter). A version of the well-
known a priori algorithm [1] is adapted for the problem of
finding such patterns. In [7], a faster mining method for
this problem is proposed, which uses a tree structure, the
max-subpattern tree, to count the support of multiple
patterns at two database scans. Specifically, during the
first pass, the set F1 of all frequent patterns with one non-�

element is identified (e.g., F1 ¼ fa����;�b���;��c��g). The
max-subpattern tree is rooted at a candidate max-pattern
Cmax, which is the maximal combination of all the patterns
in F1 (e.g., Cmax ¼ abc��). A node at level l of the tree (e.g.,
node �bc�� at level 2) has l non-� elements and l children at
the level below (e.g., �b��� and ��c��), which have one more
� in their patterns. Each node contains a counter for the
exact occurrences of its associated pattern. During the
second data pass, each period segment is inserted into the
tree, and the counters of the maximal patterns that appear
in the segment are increased. Therefore, the support of a
pattern associated with a node is the sum of the counters
along the path from the root to that node. Finally, the tree
is used by a priori to extract the frequent patterns.

Given an event sequence, Yang et al. in [20] study the
problem of finding asynchronous patterns, which appear in

at least a minimum number, min rep, of consecutive
periodic intervals, and groups of such intervals are allowed
to be separated by at most a time interval threshold,
max dis. This model is quite similar to mining patterns and
their validity eras, which we study in this paper; however,
we note two significant differences. First, we apply mining
on sequences of locations in a continuous space, whereas
[20] deals with sequences of categorical (event) data.
Second, we do not use parameters min rep and min dis to
restrict the definition of eras, but use only one parameter
(Section 5), considering the ratio of the periodic intervals
that contribute to a pattern and the total periodic intervals
in a sequence segment.

Ma and Hellerstein et al. in [10] study the problem of
finding sets of events that appear together periodically. In
each qualifying period, the set of events may not appear in
exactly the same positions, but their occurrences may be
shifted or disrupted due to the presence of noise. However,
this work does not consider the order of events in such
patterns. On the other hand, it addresses the problem of
mining patterns and their periods automatically. Yang et al.
also study the mining of surprising periodic patterns from
event sequences in [21]. They propose a new metric,
information gain, to validate the usefulness of a pattern.
Further, in [22], this work is extended for partial periodic
patterns with gap penalties.

All work above assumes that the elements in the
sequence are categorical; thus, the occurrences of elements
and patterns can be counted by incrementing a counter
every time they are observed in the sequence. However, this
basic counting technique may not directly be applied to a
spatiotemporal sequence since each spatial location in such
sequences is in the form of spatial coordinates and does not
typically repeat itself exactly. Chiu et al. [3] discretize real-
valued time series prior to mining and then identify the
most common subsequences in them. The mined patterns
are not essentially periodic and they are contiguous (i.e.,
there are no wildcards).

Previous work on spatiotemporal data mining focuses on
two types of patterns: 1) frequent movements of objects
over time and 2) evolution of natural phenomena, such as
forest coverage. Tsoukatos and Gunopulos [17] study the
discovery of frequent patterns related to changes of natural
phenomena (e.g., temperature changes) in spatial regions.
In general, there is limited work on spatiotemporal data
mining, which has been treated as a generalization of
pattern mining in time-series data (e.g., see [17], [13]). The
locations of objects or the changes of natural phenomena
over time are converted to categorical values. For instance,
we can divide the map into spatial regions and replace the
location of the object at each timestamp by the region-id
where it is located. Similarly, we can model the change of
temperature in a spatial region as a sequence of tempera-
ture values. Continuous domains of the resulting time-
series data are discretized prior to mining. In the case of
multiple moving objects (or time series), trajectories are
typically concatenated to a single long sequence. Then, an
algorithm that discovers frequent subsequences in a long
sequence (e.g., [23]) is applied. To our knowledge, there is
no prior work on discovering periodic patterns in spatio-
temporal data.
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3 PERIODIC PATTERNS IN OBJECT TRAJECTORIES

This section defines the problem of mining periodic
patterns in spatiotemporal data. Before the definition, we
first motivate our research by discussing why previous
work on event sequences is not expected to perform well
when applied on object trajectories.

In our model, we assume that the locations of objects are
sampled over a long history. In other words, the movement
of an object is tracked as an n-length sequence S of spatial
locations, one for each timestamp in the history, of the form
fðl0; t0Þ; ðl1; t1Þ; . . . ; ðln�1; tn�1Þg, where li is the object’s
location at time ti. If the difference between consecutive
timestamps is fixed (locations are sampled every regular
time interval), we can represent the movement by a simple
sequence of locations li (i.e., by dropping the timestamps ti,
since they can be implied). Each location li is expressed in
terms of spatial coordinates. Fig. 1a, for example, illustrates
the movement of an object in three consecutive days
(assuming that it is tracked only during specific hours,
e.g., working hours). We can model it with sequence
S ¼ fh4; 9i; h3:5; 8i; . . . ; h6:5; 3:9i; h4:1; 9i; . . .g. Given such a
sequence, a minimum support min sup ð0 < min sup � 1Þ,
and an integer T , called period, our problem is to discover
movement patterns that repeat themselves every T time-
stamps. A discovered pattern P is a T -length sequence of
the form r0r1 . . . rT�1, where ri is a spatial region or the
special character �, indicating the whole spatial universe.
For instance, pattern AB�C�� implies that, at the beginning
of the cycle, the object is in region A, at the next timestamp,
it is found in region B, then it moves irregularly (it can be
anywhere), then it goes to region C, and after that, it can go
anywhere, until the beginning of the next cycle, when it can
be found again in region A. The patterns are required to be
followed by the object in at least � ð� ¼ min sup � bnTcÞ
periodic intervals in S.

Existing algorithms for mining periodic patterns (e.g., [7])
operate on event sequences and discover patterns of the
above form. However, in this case, the elements ri of a
pattern are events (or sets of events). As a result, we cannot
directly apply these techniques for our problem, unless we
treat the exact locations li as discrete categorical values.
Nevertheless, it is highly unlikely that an object repeats an
identical sequence of hx; yi locations precisely. Even if the
spatial route is precise, the location transmissions at each
timestamp are unlikely to be perfectly synchronized. Thus,
the object does not reach the same location at the same time

every day, and as a result, the sampled locations at specific
timestamps (e.g., at 9:00 a.m. sharp, every day), are different.
In Fig. 1a, for example, the first daily locations of the object
are very close to each other; however, they are treated
differently by a straightforward mining algorithm.

One way to handle the noise in object movements is to
replace the exact locations of the objects by the regions
(e.g., districts, mobile communication cells, or cells of a
synthetic grid) which contain them. Fig. 1b shows an
example of an area’s division into such regions. Sequence
fA;A;C;C;C;G;A; . . .g can now summarize the object’s
movement and periodic pattern mining algorithms, like
[7], can directly be applied. Fig. 1c shows three (closed)
discovered patterns for T ¼ 6 and min sup ¼ 2

3 . A dis-
advantage of this approach is that the discovered patterns
may not be very descriptive if the space division is not
very detailed. For example, regions A and C are too large
to capture in detail the first three positions of the object
in each periodic instance. On the other hand, with
detailed space divisions, the same (approximate) object
location may span more than one different region. For
example, in Fig. 1b, observe that the third object positions
for the three days are close to each other; however, they
fall into different regions (A and C) at different days.
Therefore, we are interested in the automated discovering
of patterns and their descriptive regions. Before we present
solutions for this problem, we first define it formally.

Problem definition. Let S be a sequence of n spatial locations

fl0; l1; . . . ; ln�1g, representing the movement of an object

over a long history. Let T � n be a user-specified integer
called period (e.g., day, week, and month). A periodic
segment s is defined by a subsequence liliþ1 . . . liþT�1 of S,

such that i modulo T ¼ 0. Thus, segments start at positions

0; T ; . . . ; ðbnTc � 1Þ � T , and there are exactly m ¼ bnTc
periodic segments in S.1 Let sj denote the segment starting

at position lj�T of S, for 0 � j < m, and let sji ¼ lj�Tþi, for

0 � i < T .

Definition 1. A periodic pattern P is defined by a sequence

r0r1 . . . rT�1 of length T , such that ri is either a spatial region

or �. The length of a pattern P is the number of non-� regions

in P .
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Fig. 1. Periodic patterns with respect to predefined spatial regions. (a) An object’s movement. (b) A set of predefined regions. (c) Event-based
patterns.

1. If n is not a multiple of T , then the last n modulo T locations are
truncated, and the length n of sequence S is reduced accordingly.



A segment sj is said to comply with P , if for each ri 2 P ,
ri ¼� , or sji is inside region ri.

Definition 2. The support jP j of a pattern P in S is defined by
the number of periodic segments in S that comply with P .

We sometimes use the same symbolP to refer to a pattern and
the set of segments that comply with it. Let min sup be a
fraction in the range (0,1] (minimum support). A pattern P is
frequent if its support is larger than min sup �m.

A problem with the definition above is that it imposes no
control over the density of the pattern regions ri. In other
words, if the pattern regions are too relaxed (e.g., each ri is
the whole map), the pattern may always be frequent.
Therefore, we impose an additional constraint as follows:
Let SP be the set of segments that comply with a pattern P .
Then, each region ri of P is valid if the set of locations RP

i :
¼ fsji jsj 2 SPg forms a dense cluster. To define a dense
cluster, we borrow the definitions from [5] and use two
parameters � and MinPts. A point p in the spatial data set
RP
i is a core point if the circular range centered at p with

radius � contains at least MinPts points. If a point q is
within distance � from a core point p, it is assigned in the
same cluster as p. If q is a core point itself, then all points
within distance � from q are assigned in the same cluster as
p and q. If RP

i forms a single, dense cluster with respect to
some values of parameters � and MinPts, we say that
region ri is valid. If all non-� regions of P are valid, then P is
a valid pattern. We are interested in the discovery of valid
patterns only. In the following, we use the terms valid region
and dense cluster interchangeably, i.e., we often use the term
dense region to refer to a spatial dense cluster and the
points in it.

Fig. 2a shows an example of a valid pattern, if � ¼ 1:5
and MinPts ¼ 4. Each region at positions 1, 2, and 3 forms a
single, dense cluster and is therefore a dense region. Notice,
however, that it is possible that two valid patterns P and P 0

of the same length 1) have the same � positions, 2) every
segment that complies with P 0, complies with P , and
3) jP 0j < jP j. In other words, P implies P 0. For example, the
pattern of Fig. 2a implies the one of Fig. 2b (denoted by the
three circles). A frequent pattern P 0 is redundant if it is
implied by some other frequent pattern P .

Definition 3. The mining periodic patterns problem
searches for all valid periodic patterns P in S, which are
frequent and nonredundant with respect to a minimum
support min sup.

For simplicity, we use frequent pattern to refer to a valid,
nonredundant frequent pattern.

4 MINING PERIODIC PATTERNS

In this section, we present techniques for mining frequent
periodic patterns and their associated regions in a long
history of object trajectories. We first address the problem of
finding frequent 1-patterns (i.e., of length 1). Then, we
propose two methods to find longer patterns: a bottom-up,
level-wise technique, denoted by STPMine1 (SpatioTem-
poral periodic Pattern Min(e)ing 1), and a faster top-down
approach, referred to as STPMine2. Finally, we present a
simplified version of the top-down approach, which solves
the problem approximately, but it is very efficient.

4.1 Obtaining Frequent 1-Patterns

Including automatic discovery of regions in the mining
task does not allow for the direct application of techniques
that find patterns in sequences (e.g., [7]) as discussed. In
order to tackle this problem, we propose the following
methodology: We divide the sequence S of locations into T
spatial data sets, one for each offset of the period T . In
other words, locations fli; liþT ; . . . ; liþðm�1Þ�Tg go to set Ri,
for each 0 � i < T . Each location is tagged by the id j 2
½0; . . . ;m� 1� of the segment that contains it. Fig. 3a shows
the spatial data sets obtained after decomposing the object
trajectory of Fig. 1a. We use a different symbol to denote
locations that correspond to different periodic offsets and
different colors for different segment-ids.

Observe that a dense cluster r in data setRi corresponds to
a frequent pattern, having � at all positions and r at position i.
Fig. 3b shows examples of five clusters discovered in data
sets R1, R2, R3, R4, and R6. These correspond to five 1-
patterns (i.e., r11

�����, �r21
����, etc.). In order to identify the

dense clusters for each Ri, we can apply a density-based
clustering algorithm like DBSCAN [5]. Clusters with less
than� ð� ¼ min sup �mÞ points are discarded, since they are
not frequent 1-patterns according to our definition. Cluster-
ing is quite expensive and it is a frequently used module of
the mining algorithms, as we will see later. DBSCAN [5] has
quadratic cost to the number of clustered points, unless an
index (e.g., R-tree) is available. Since R-trees are not available
for every arbitrary set of points to be clustered, we use an
efficient hash-based method. For the sake of readability, we
include the details of this method in the Appendix.
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Fig. 2. Redundancy of patterns. (a) A valid pattern. (b) A redundant
pattern.

Fig. 3. Locations and regions per periodic offset. (a) T -based decom-
position. (b) Dense clusters in Ris.



4.2 A Level-Wise, Bottom-Up Approach

Starting from the discovered 1-patterns (i.e., clusters for
each Ri), we apply a variant of the level-wise Apriori-TID
algorithm [1] to discover longer ones, as shown in Fig. 4.
The input of our algorithm is a collection L1 of frequent
1-patterns, discovered as described in Section 4.1; for each
Ri, 0 � i < T , and each dense region r 2 Ri, there is a
1-pattern in L1. Pairs hP1; P2i of ðk� 1Þ-patterns in Lk�1,
with their first k� 2 non-� regions in the same position
and different ðk� 1Þth non-� position, create candidate
k-patterns (lines 4-6). For each candidate Pcand, we perform
a segment-id join between P1 and P2, and if the number of
segments that comply with both patterns is at least
min sup �m, we run a pattern validation function to check
whether the regions of Pcand are still clusters. After the
patterns of length k have been discovered, we find the
patterns at the next level, until there are no more patterns
at the current level, or there are no more levels.

In order to facilitate fast and effective candidate genera-
tion, we use the MBRs (i.e., minimum bounding rectangles) of
the pattern regions. For each common non-� position i, the
intersection of the MBRs of the regions for P1 and P2 must be
nonempty; otherwise, a valid superpattern cannot exist. The
intersection is adopted as an approximation for the new
pattern Pcand at each such position i. During candidate
pruning, we check for every ðk� 1Þ-subpattern of Pcand if
there is at least one pattern in Lk�1, which agrees in the non-�

positions with the subpattern and the MBR-intersection with
it is nonempty at all those positions. In such a case, we accept
Pcand as a candidate pattern. Otherwise, we know that Pcand
cannot be a valid pattern, since some of its subpatterns (with
common space covered by the non-� regions) are not
included in Lk�1.

Function validate_pattern takes as input a k-candidate
pattern Pcand and computes a number of actual k-patterns
from it. The rationale is that the points at all non-� positions
of Pcand may not form a cluster anymore after the join of P1

and P2. Thus, for each non-� position of Pcand, we recluster
the points. If, for some position, the points can be grouped
to more than one cluster, we create a new candidate pattern

for each cluster and validate it. Note that, from a candidate
pattern Pcand, it is possible to generate more than one actual
pattern eventually. If no position of Pcand is split to multiple
clusters, we may need to recluster the non-� positions of
Pcand, since some points (and segment-ids) may be
eliminated during clustering at some position.

To illustrate the algorithm, consider the 2-patterns P1 ¼
r1xr2y

� and P2 ¼ r1w
�r3z of Fig. 6a. Assume that MinPts ¼ 4

and � ¼ 1:5. The two patterns have a common first non-�

position and MBRðr1xÞ overlaps MBRðr1wÞ. Therefore, a

candidate 3-pattern Pcand is generated. During candidate

pruning, we verify that there is a 2-pattern with non-�

positions 2 and 3 which is in L2. Indeed, such a pattern can

be spotted at the figure (see the dashed lines). After joining

the segment-ids in P1 and P2 at line 9 of STPMine1, Pcand
contains the trajectories shown in Fig. 6b. Notice that the

locations of the segment-ids in the intersection may not form

clusters anymore at some positions of Pcand. This is why we

have to call validate_pattern, in order to identify the valid

patterns included in Pcand. Observe that the segment-id

corresponding to the lowermost location of the first position

is eliminated from the cluster as an outlier. Then, while

clustering at position 2, we identify two dense clusters,

which define the final patterns r1ar2br3c and r1dr2er3f .
Although the algorithm of Fig. 4 can find all partial

periodic patterns correctly, it can be very slow due to the
huge number of region combinations to be joined. If the
actual patterns are long, all their subpatterns have to be
computed and validated. In addition, a potentially huge
number of candidates need to be checked and evaluated. In
this section, we propose a top-down method that can
discover long patterns more efficiently,

After applying clustering on each Ri (as described in
Section 4.1), we have discovered the frequent 1-patterns
with their segment-ids. The first phase of the STPMine2
algorithm (Fig. 8) replaces each location in S with the
cluster-id it belongs to or with an empty value (e.g., �) if the
location belongs to no cluster. For example, assume that we
have discovered clusters fr11; r12g at position 1, fr21g at
position 2, and fr31; r32g at position 3. A segment fl1; l2; l3g,
such that l1 2 r12, l2 =2 r21, and l3 2 r31, is transformed to
subsequence fr12

�r31g. Therefore, the original spatiotem-
poral sequence S is transformed to a symbol sequence S0.

Now, we could use the mining algorithm of [7] to
discover all frequent patterns of the form r0r1 . . . rT�1 fast,
where each ri is a cluster in Ri or �. However, we do not
know whether the results of the sequence-based algorithm
are actual patterns, since the contents of each non-� position
may not form a cluster. For example, fr12

�r31g may be
frequent, however, if we consider only the segment-ids that
qualify this pattern, r12 may no longer be a cluster or may
form different actual clusters (as illustrated in Fig. 6). We
call the patterns P 0 which can be discovered by the
algorithm of [7] pseudopatterns, since they may not be valid.

To discover the actual patterns, we apply some changes
in the original algorithm of [7]. While creating the max-
subpattern tree, we store with each tree node the segment-
ids that correspond to the pseudopattern of the node. In this
way, one segment-id goes to exactly one node of the tree.
However, S could be too large to manage in memory. In
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Fig. 4. Level-wise pattern mining.



order to alleviate this problem, while scanning S, for every

segment s we encounter, we perform the following

operations:

. First, we insert the segment to the max-subpattern
tree, as in [7], increasing the counter of the candidate
pseudopattern P 0 that s corresponds to after the
transformation. An example of such a tree is shown
in Fig. 7. This node can be found by finding the
(first) maximal pseudopattern that is a superpattern
of P 0 and following its children, recursively. If the
node corresponding to P 0 does not exist, it is created
(together with any nonexistent ancestors). Notice
that the dotted lines are not implemented and not
followed during insertion (thus, we materialize the
tree instead of a lattice). For instance, for a segment
with P 0 ¼ f�r21r31g, we increase the counter of the
corresponding node at the second level of the tree.

. Second, we insert an entry hP 0:id; s:sidi to a file F ,
where P 0:id is the id of the node of the lattice that
corresponds to pseudopattern P 0 and s:sid is the id
of segment s. At the end, file F is sorted on P 0:id to
bring together segment-ids that comply with the
same (maximal) pseudopattern. For each pseudo-
pattern with at least one segment, we insert a pointer
to the file position, where the first segment-id is

located. Nodes of the tree are labeled in breadth-first
search order for reasons we will explain shortly.

Instead of finding frequent patterns in a bottom-up
fashion, we traverse the tree in a top-down, breadth-first
order. For every pseudopattern with at least min sup �m
segment-ids, we apply the validate_pattern function in
Fig. 5 to discover potentially valid patterns. All segment-ids
that belong to a discovered pattern are removed from the
current pseudopattern. The rationale is that we are inter-
ested in patterns that are not spatially contained in some
superpattern, so we use only those segment-ids that are not
included in a pattern to verify its subpatterns.

Thus, after scanning the first level of the lattice, we may
have discovered some patterns, and we may have shrunk
segment-id lists of the pseudopatterns. Then, we move to
the next level of the lattice. The support of a pseudopattern
P 0 at each level is the recorded support of P 0 plus the
supports of all its superpatterns (recall that a segment-id is
assigned to the maximal pattern it complies with). The
supports of the superpatterns can be immediately accessed
from the lattice. If the total support of the candidate is at
least min sup �m, then the segment-ids have to be loaded
for application of validate_pattern. The segment-ids of a
superpattern may already be in memory from previous
level executions. If not, they are loaded from the file F .
After validation, only the disqualified segment-ids are kept
to be used at lower level patterns. Traversal continues until
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Fig. 5. Validating a new pattern.

Fig. 6. Example of STPMine1. (a) 2-patterns. (b) Generated 3-patterns.

Fig. 7. Example of max-subpattern tree.

Fig. 8. Top-down pattern mining.



there are no more patterns or it is not possible to find more

patterns at lower levels of the lattice.
The fact that segment-ids are clustered in F according to

the breadth-first traversal of the lattice minimizes random

accesses and restricts the number of loaded blocks to

memory. The segment-ids for a superpattern remain in

memory to be used at lower level validations. If we run out

of memory, the segment-ids of the uppermost lattice levels

are rewritten to disk, but this time, possibly to a smaller file

if there were some deletions.
A pseudocode for STPMine2 is shown in Fig. 8. Initially,

the tree and the segment-ids file are created and linked. Then,

for each level, we find the support of a pseudopattern jP 0j at

level k by accessing only the supports of its superpatterns

P 00 � P at level kþ 1, since we are accessing the tree in

breadth-first order. If jP 0j 	 min sup �m, we validate the

pattern as in STPMine1, and if some pattern is discovered, we

remove from P 0 all those segment-ids that comply with the

discovered pattern. Thus, the number of segment-ids

decreases as we go down the levels of the tree, until it is

not possible to discover any more patterns, or there are no

more levels. Notice that the patterns discovered here are only

maximal, as opposed to STPMine1, which discovers all

frequent patterns. However, we argue that maximal patterns

are more useful, compared to the huge set of all patterns. In

addition, as we show in the experimental section, STPMine2

is much faster than STPMine1 for data, which contain long

patterns.

4.3 A Simplified Algorithm: STPMine2-V2

In our definition, a pattern P is valid if 1) its frequency

exceeds min sup �m and 2) the locations in RP
i form a single

dense cluster for all non-� positions in P . Property 2) incurs

a high computational burden to the mining algorithms,

since it must be validated for every candidate pattern.

Repetitive applications of the clustering algorithm and

maintenance of the segment-ids that comply with each node

of the max-subpattern tree are required.
In this section, we discuss a simplified version of our

mining algorithm which considers the second property only

in the discovery of frequent 1-patterns. In other words, after

computing the dense regions at each Ri, we do not

revalidate any clusters anymore. As a result, we need not

use the segment-id lists at each node, but simply consider

their counters to measure the pattern frequency. This

mining technique is identical to STPMine2, excluding the

validation and reassignment of segment-ids; thus, we call it

STPMine2-V2.
Note that STPMine2-V2 is more inaccurate compared to

STPMine2, since it may discover patterns that are not

valid according to the definition by merging shorter actual

patterns. In addition, the regions that define the patterns

discovered by STPMine2-V2 are identical to the regions of

the clusters forming frequent 1-patterns (e.g., the region

refinement of the example in Fig. 6 is not performed). On

the other hand, STPMine2-V2 is expected to be signifi-

cantly faster than STPMine2. In Section 6, we validate the

benefits and disadvantages of this simplification.

4.4 Performance Analysis

4.4.1 Time

Let the length of the maximal pattern be ‘max. STPMine1
needs to scan the data sequence ‘max times, verifying at the
lth level all l-patterns. STPMine2 and STPMine2-V2 only
need to scan the sequence two times: first to compute the
frequent 1-patterns and then to construct the max-sub-
pattern tree(s). For verifying an l-pattern P , both STPMine1
and STPMine2 must perform clustering l times, once for
each non-� position of P . Clustering has typically linear cost,
as discussed in the Appendix. STPMine2-V2 saves time
compared with STPMine2 since it just needs to calculate the
support of a pattern, but does not recluster the points at
each non-� position; however, both methods have the same
(linear) asymptotic performance.

4.4.2 Space

As far as the space is concerned, STPMine1 generates and
validates candidates level-by-level, so its space complexity
depends on the maximum number of candidates at a level.
This typically corresponds to the number of candidates in
the middle of the lattice of the examined space. In the worst
case, if ‘max is the longest pattern length, the number of
‘max

2 -candidates is the number of cluster combinations at
‘max

2 non-� positions. This number can be estimated after the
frequent 1-patterns have been extracted and it is in the same
order as the space required to store the max-subpattern
tree(s) of STPMine2 and STPMine2-V2. The space required
to store these trees has been analyzed in [7]. In summary, all
three methods have the same worst-case space complexity,
but as discussed above, STPMine2 and STPMine2-V2 are
much more time-efficient than STPMine1.

5 VARIANTS OF PERIODIC PATTERNS

As discussed in Section 1, the patterns followed by objects
can be frequent only in some intervals of the whole
movement history. In this section, we study the identifica-
tion of periodic patterns and their associated validity eras,
i.e., the time range(s) in which these patterns are frequent.
In addition, we study the problem where pattern occur-
rences in certain time ranges may be shifted or distorted in
time; in this case, mining is also adapted to consider such
instances when computing the frequency of a pattern.

5.1 Patterns with Validity Eras

Let S be the trajectory of a moving object and T be a period.
Based on them, we can define a set of m segments of S
which are candidate pattern instances, as discussed in
Section 3. For instance, segment sj spans T consecutive
locations in S, starting from lj�T .

Definition 4. An era ½b; e� is the subsequence of S, from the
beginning of segment sb until the end of se. The time span of
the era ½b; e� is e� bþ 1.

Era ½b; e� is a superset of era ½b0; e0� iff b � b0 and e 	 e0;
accordingly, ½b0; e0� is a subset of ½b; e�.
Definition 5. A periodic pattern with a validity era, abbreviated

as era pattern, refers to a periodic pattern associated with
some era, P ¼ r0r1 . . . rT�1½b; e�.
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Example. In Fig. 1c, the era of subsequence AACBDG
AAACHG is [1, 2] ðT ¼ 6Þ, whereas the era of the whole
sequence is [0, 2]. Examples of era patterns are
AA���G½0; 2� and AAC��G½0; 1�.

Recall that SP is the set of segments that comply with a
pattern P . We use bmin and emax to represent the minimum
and maximum segment-ids in SP , respectively. Given ½b; e�,
a subset of ½bmin; emax�, let SP½b;e� contain all the segments in
SP with segment-ids in ½b; e�, and jSP½b;e�j denote the number
of segments in SP½b;e�.
Definition 6. Given min sup and MinPts, the era pattern
P ½b; e� is a valid era pattern if jSP½b;e�j 	MinPts and2

jSP½b;e�j
e� bþ 1

	 min sup:

Definition 7. Consider two era patterns P ¼ r0r1 . . . rT�1½b; e�
and P 0 ¼ r00r01 . . . r0T�1½b0; e0�. P is a superpattern of P 0 if
1) ri ¼ r0i or r0i ¼� for 0 � i < T and 2) ½b; e� is a
superset of ½b0; e0�.

In practice, SP½b;e� may be a subset of SP 0½b0;e0 �.
Example. Consider three valid patternsP ¼ r0r1r2r3

�½0; 100�,
P 0 ¼ r0r1r2

��½0; 100�, a n d P 00 ¼ r0r1r2r3
�½20; 100�. L e t

SP½0;100� contain segments with ids f0; 20; 21; . . . ; 98; 100g,
andSP 0½0;100� contain one more segment with id 99. Although
SP½0;100� is a subset of SP 0½0;100�, P is a superpattern of P 0

according to the definition. Similarly, P is a superpattern
of P 00 as well. However, P 00 is not a superpattern of P 0,
since the second condition of Definition 7 is not satisfied.

An era pattern P is maximal if it has no proper valid
superpattern. Below is a formal definition of the problem
studied in this section.

Definition 8. The mining era patterns problem aims to find
all the maximal valid era patterns, given a sequence S, a
period T , a minimum support min sup ð0 < min sup � 1Þ,
and cluster parameters � and MinPts.

5.1.1 Discovering Patterns and Their Validity Eras

We adapt the STPMine2-V2 algorithm (see Section 4.3),
which we found the most efficient in our experimental
study. As in Section 4, we follow two steps: detecting valid

1-patterns and discovering the patterns with longer length.
We start by discovering the dense cluster(s), riðsÞ, from Ri

for each period offset i. By setting the ith position to be ri
and all the other period positions to be �, we get a candidate
1-pattern. All these candidates are put in a set C1 for
computing their validity eras. In addition, S is replaced by
S0, a sequence of spatial regions and noise �.

Recall that SP contains the segments complying with a
candidate 1-pattern P . Let SPsid denote the set of segmentids
in SP . To compute eras for a candidate pattern P in C1, we
run the algorithm in Fig. 9. The goal is to find the eras with
the maximum time spans that render the pattern frequent.
Parameter QQera is a FIFO queue containing all the candidate
eras that need to be validated for a pattern P . Initially, it
contains only one era ½b; e�, where b and e are the minimum
and maximum values in SPsid. If the era with the maximum
time span does not make the pattern frequent, its two
greatest subsets are inserted into QQera, and the algorithm
continues until a valid era for the pattern is found or no
interval of length greater than MinPts exists (line 3). This
algorithm is not restricted for 1-patterns, but could also be
used to identify validity eras for patterns with arbitrary
lengths.

Note that the algorithm may output multiple (maximal)
validity eras for a given pattern. In order to avoid exploding
the space of potential solutions, we choose to terminate it
when the first era is output. Since the contents of QQera are in
descending order of their time spans, the first interval to be
output is guaranteed to be the longest. Alternatively, we
may collect all maximal eras and pick a subset that consists
of maximal nonoverlapping intervals. This allows us to
detect a pattern which is frequent in different segments of
the history.

For finding the longer era patterns, we adapt STPMine2-
V2 to a new algorithm, which we call EPMine (Era periodic
Pattern Min(e)ing). Next, we describe how to compute the
candidate max-subpatterns, build max-subpattern trees,
and derive valid patterns from them.

A max-subpattern is formed by combining the valid
1-patterns, as discussed in Section 4. To determine the era of
a max-subpattern P , we take the union of the eras from the
1-patterns that define P . The union of a set of eras
f½b1; e1�; ½b2; e2�; . . . ½bk; ek�g is defined by ½minki¼1 bi;maxki¼1 ei�.
In addition, we require that the eras of the 1-patterns that
form a max-subpattern P have a nonempty intersection;
otherwise, there can be no valid instance of P . For example,
for three 1-patterns: a��½0; 10�, �b�½1; 9�, and ��c½2; 11�, the
max-subpattern is abc½0; 11�. The computation of candidate
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2. We use the first condition since we need to have at least MinPts points
in each valid region for a pattern P .

Fig. 9. Get valid era for candidate pattern P .



max-subpatterns requires one scan of the 1-patterns if these
are ordered by validity time.

After forming the candidate max-patterns, EPMine builds
the max-subpattern tree for each of them. Sequence S0 is then
scanned and each segment is inserted into the trees whose
era contains the corresponding segment-id. Valid era
patterns are derived from a max-subpattern tree by scanning
it in a breadth-first order; for each candidate pattern P , the
set SPsid is extracted, the initial era ½b; e� is obtained by the
minimum and maximum sid in SPsid, and the algorithm of
Fig. 9 is eventually run.

5.2 Shifted and Distorted Patterns

Recall that sj denotes a segment starting at position j � T .
Given a tolerance integer � ð0 � � � bT=2cÞ, a segment
starting at position j � T þ d, �� � d � � , is denoted by sj½d�
(note that sj½0� ¼ sj).
Definition 9. Given a sequence S and an integer � , a segment
sj½d�, �� � d � � , is a shifted pattern instance of a pattern
P if it complies with P , i.e., P ’s occurrence in S is shifted at
most � timestamps forward or backward from its expected
position j � T .

Example. Let T ¼ 5 and S0 ¼ r0r1r2r3r4r0r0r1r4r3r2r0r1r3r3

be the transformed sequence after replacing the locations
in S by spatial regions. The pattern r0r1

�r3
� has one

nonshifted instance, s0, starting at position 0, and two
shifted pattern instances, s1½1� and s2½1�, starting at
positions 6 ð1 � T þ 1Þ and 11 ð2 � T þ 1Þ.

There are cases, where the pattern instances are not
simply shifted, but they are distorted.

Definition 10. A segment sj½d�, �� � d � � , is a distorted

instance for a pattern P ¼ r0r1 . . . rT�1 with length Plen, with
respect to � , if there exist Plen ordered locations in sj½d� such
that 1) these locations follow the order of non-� elements in P ,
and 2) for every non-� element in P , its period offset differs at
most � from the period offset of its related location in sj½d�.

Example. Consider a segment s0 ¼ l0l1l2l3l4 and let � ¼ 1. If
l1 2 r0, l2 2 r2, and l4 2 r3, s0 is a distorted instance of
pattern P ¼ r0

�r2r3
�.

Two pattern instances (segments) overlap if they have
some locations in common. For example, s0½1� ¼ l1l2l3l4l5
overlaps with s1 ¼ l5l6l7l8l9 since they have l5 in common.

Definition 11. If a pattern P has more than min sup �m
(shifted/distorted) pattern instances in S, such that no two
instances overlap, then P is a frequent pattern with shifted/
distorted instances. Given a sequence S, minimum support
min sup ð0 < min sup � 1Þ, cluster parameters � and
MinPts, and maximum shifting/distortion parameter
� ð0 � � � bT=2cÞ, the problem of discovering

shifted/distorted patterns aims at finding all frequent
patterns with shifted/distorted instances from S.

5.2.1 Mining Patterns with Shifted and/or Distorted

Instances

As discussed in Section 4.1, 1-patterns can be mined after
we divide the sequence S of locations into T data sets and

apply clustering to each of them. In order to consider
shifted/distorted pattern instances in this process, for an
object location at offset position i, instead of generating a
single point in the corresponding data set Ri, we generate a
point at all �-neighbor positions

Rði��Þ mod T ; Rði��þ1Þ mod T ; . . . ; Rðiþ�Þ mod T :

Consider, for instance, the fifth position of day 1 in Fig. 3a
and assume that � ¼ 1. Instead of generating a single “tu”
point at that location, we generate one “tu” point (to file R5),
one “+” point (to file R4), and one “
” point (to file R6). In
other words, there is a data replication with a factor
2 � � þ 1; however, this ensures that shifted/distorted
patterns are counted in the supports of the actual positions.

We adopt STPMine2-V2 to SPMine (Shifted/distorted
Pattern Min(e)ing) in Fig. 10 to facilitate the counting of
longer (shifted/distorted) pattern instances. SPMine also
works in a top-down manner, starting the pattern validation
from the max-subpattern Pmax and continuing down to
patterns of shorter lengths level-by-level. SPMine does not
utilize the max-subpattern tree, but it still generates max-
subpatterns by combining the frequent 1-patterns which
have non-� elements at different period offsets. For example,
from 1-patterns �r1

���, ���r3
�, and ����r4, we get the max-

subpattern �r1
�r3r4.

The pseudocode of Fig. 10 describes how to extract
frequent patterns from Pmax. We examine the subpatterns of
Pmax level-by-level. For each candidate subpattern P , which
is formed by a set of clusters, one for each non-� position i,
we initialize a pointer pi to the first point in each cluster ri.
Then, we perform a merge-join by synchronously scanning
the contents of the clusters and attempting to find shifted/
distorted pattern instances from the sets of points currently
indexed by each pi (lines 6–15). Given the current pointer
positions, if the set of locations is a valid shifted/distorted
pattern instance, then we increase all pointers, as we do not
want to count more instances that share locations with the
current one. Otherwise, if there is a pair of points with
identical locations (which have been clustered to different
offsets due to replication), we increase the pointer in the
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cluster which corresponds to the largest offset (lines 7-8). If
there is no such pair of identical points, we increase the
pointer with the smallest timestamp (lines 9-10). Finally (line
16), we report the pattern if it is found to be frequent. Note
that we do not discover patterns whose superpatterns are
frequent in order to improve the scalability of the method.

Example. Assume that we run SPMine to retrieve the
distorted patterns and initially get clusters r0 :¼
fl0; l5; l10g and r1 :¼ fl1; l5; l6; l7; l11g. Consider a candi-
date pattern P ¼ r0r1

���, and let � ¼ 1. ðl0; l1Þ is the first
point-id pair from the two sets, falling into the same
segment, so they contribute 1 to jP j. The next pair, ðl5; l5Þ,
contains identical ids so it does not contribute to P .
Keeping p0 ¼ l5 from r0 unchanged, we get the next
location, p1 ¼ l6, from r1. The current locations ðl5; l6Þ
form a segment and add 1 to P ’s frequency. Then, we
proceed to location pair ðl10; l7Þ (not an instance) and,
finally, continue to the contributing join pair ðl10; l11Þ.

Because of the replication effect, SPMine may generate
redundant candidates. In order to alleviate this problem, we
can weigh the replicated points with a number antipropor-
tional to their distance from their actual temporal positions,
in order to penalize distortion and increase accuracy. In
counting the 1-patterns after clustering, a non-� element
which is shifted � positions from its expected period offset
is given the support 1� � 
 w, where w can be any value in
(0,1) depending on how much the user wants to take into
account the shifted/distorted pattern instances. Consider
the example of Fig. 3 and let � ¼ 1 and w ¼ 0:5. For
counting the support of ����r5

�, we give, for each exact “tu”
point, a weight 1, but for “þ” and “
” points, only a weight
0.5; these are approximate and should be treated with
reduced significance in counting. When counting the
occurrences of an l-pattern P ðl 	 2Þ, we add for each
pattern instance the maximal weight of all the non-�

elements in it. We denote this weighted variant of SPMine
by SPMine-w, while we use SPMine-b to refer to the
original method with w ¼ 0.

6 EXPERIMENTAL EVALUATION

We implemented and evaluated the mining techniques
presented in the paper. The language used was C++ and the
experiments were performed on a Pentium III 700MHz
workstation with 1GB of memory, running Unix. Because of
the lack of real data, we generated synthetic data that
simulate periodic movements. We introduce our synthetic
data generator in Section 6.1 and show the effectiveness and
efficiency test results in Section 6.2 and Section 6.3.

Setting the mining parameters. We assume that the
period T is known by the user and given as an input
parameter. In many applications (including Bob’s daily
activities example mentioned in Section 1), this is a realistic
assumption. The automatic derivation of T from the data is
an issue, which is out of the scope of this paper. We note
that current periodicity detection algorithms (e.g., [4]) may
not be applicable to our problem, since these methods apply
to a priori discretized data. In addition, if the actual period
is no greater than � compared to T , the shifted/distorted
mining variant could be used to discover the patterns. In the
future, we plan to study their adaptation for our problem.

The two clustering parameters, MinPts and �, used to
control the density of a region can generally be determined
by the sampling method proposed in [5]. In our experi-
ments, we work with synthetically generated data, for
which � and MinPts can be derived from the parameters of
the data generator.

6.1 Synthetic Data Generator

In order to test the effectiveness and efficiency of the
techniques under various conditions, we designed a
generator for long object trajectories, which exhibit periodi-
city according to a set of parameter values. These parameters
are the length n of the time history (in timestamps), the
period T , the length ‘ of the maximal frequent patterns
followed by the object ð‘ � T Þ, and a probability f for a
periodic segment in the object’s movement to comply with
no hidden patterns (i.e., the movement during this segment
is irregular).

Before generating the movement, the approximate
regions for the maximal periodic patterns are determined.
Let P be a generated pattern. A random circular route is
generated in space, and for each non-� position i in P , a
spatial location lPi (i.e., point) on that route is determined,
such that the distance between two non-� positions on the
route is proportional to their temporal distance in the
pattern. Afterwards, the movement of the object is
generated. For every periodic segment s, we determine
whether s should be a noise (i.e., irregular) segment or not,
given the probability f .

If s is a regular segment, a random maximal pattern P is
selected, and the object’s movement is generated as follows:
If the next segment location to be generated corresponds to
a non-� position i of P , the location li is generated randomly
and within a distance E from the spatial location lPi of the
non-� position. E ranges from 0 to 2 percent of the map size.
Otherwise (i.e., l corresponds to a � position), li is generated
randomly, but such that the movement is targeted to the next
periodic location. In other words, 1) li moves with respect to
the previous segment location li�1 toward the next non-�

position j, and 2) its distance from the previous location li�1

is the spatial distance between li�1 and lPj divided by
j� iþ 1, i.e., the temporal distance between these two
positions. In order to prevent regular movements, both the
distance and direction angle are distorted. Specifically, we
add to the angle (in radians) a random number in ½�1; 1�
and the distance is multiplied by a number between [1.5,
0.8].3 If s is a noise segment, the object can move every-
where in space. The movement is determined by a random
direction angle (with respect to the previous location), and a
random distance in ½0;maxwalk�, where maxwalk is used to
control the maximum walking distance of the object between
two timestamps. In order to avoid extreme jumps, after half
of the movements in a noise segment, the rest are generated
to target to the next periodic position, using the method
described above.

For generating the era patterns, we add to the generator
one more parameter En to determine the number of hidden
era patterns. Given T , the generator first produces
En patterns. Given the length n of the desired sequence S,
an era pattern is hidden in a subsequence of S, each of
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which contains approximately n
En

consecutive locations. In
generating a subsequence that covers one era pattern, a
segment in it contributes to its hidden era pattern with
probability 1� f .

To generate shifted/distorted pattern instances, we
divide the generated segments that comply with some
hidden pattern into � þ 1 partitions, and the segments in
partition i ð0 � i � �Þ are shifted/distorted i timestamps
forward or backward after a coin-flip.

6.2 Effectiveness

The first experiment demonstrates the effectiveness of the
baseline mining techniques proposed above in Section 4.
We generated a small data set, with n ¼ 1; 000 (i.e., there are
only 1,000 locations in the object’s trajectory). T is set to 20,
and the object follows a single periodic pattern P at 39 out
of 50 segments, whereas the movement is irregular in
11 segments. Fig. 11a shows the object trajectory, where the
periodic movement can roughly be observed. For this data
set, ‘ ¼ 10, i.e., there are 10 non-� positions in P . Fig. 11b
shows the maximal frequent pattern P of length 10,
successfully discovered by STPMine1 and STPMine2 when
min sup ¼ 0:6. The non-� positions are 6, 7, 9, 10, 11, 12, 13,
15, 18, and 19. We plot the object’s movement, interpolated
using only the non-� positions. The discovered pattern is
identical to the generated one. The dense regions are
successfully detected by the clustering module, and the
spatial extents of the pattern are minimal.

We also developed and tested a technique that applies
directly the data mining algorithm for event sequence data
[7]. The space is divided using a regular M 
M grid. Then,
each location of S is transformed to the cell-id which
encloses the location. For instance, if we assume that all
locations are in a unit [0, 1] 
 [0, 1] space, a location l ¼
hx; yi is transformed to a cell with id by �Mc �M þ bx �Mc.
Then, we use the algorithm of [7] to find partial patterns
that are described by cell-ids. We call this the grid-based
mining method. The time and space complexity of this
method is asymptotically the same to that of STPMine2-V2
(analyzed in Section 4.4); the grid-based algorithm only
saves the (linear) cost of applying clustering for identifying
the frequent 1-patterns. However, as shown later,
STPMine2-V2 is much more effective. Fig. 11c shows a
maximal pattern P 0 discovered by this grid-based techni-
que when using a 10
 10 grid. P 0 has the largest length
among all discovered patterns; however, it is only 4
(whereas the actual pattern P has 10 non-� positions). The
non-� positions of P 0 are 6, 10, 13, and 18, captured by cells
c64, c43, c34, and c47, respectively. We repeated the

experiment using different grid granularities; for a 20 

20 grid, no pattern is generated, whereas with a 5 
 5 grid,
we get a maximal 9-pattern, which, however, is not very
descriptive as the cells are very big. Thus, with a grid with
fine granularity, frequent regions which span multiple cells
cannot be identified (e.g., the cluster r [19], [1] is split
between cells c47 and c57 and neither of these cells has
higher support than min sup �m), whereas, with a grid of
low granularity, the patterns are formed by very large
regions. From this small example, we can see the
importance of discovering the periodic patterns and their
descriptive regions effectively.

STPMine2-V2 also finds the maximal pattern with
length 10 shown in Fig. 11d. This pattern has the same
non-� positions as that in Fig. 11b, and the region for each
non-� position is represented with the MBR (Minimum
Bounding Rectangle) of its associated initial cluster. Thus,
STPMine2-V2 retrieves comparative results to STPMine1
and STPMine2 in finding the descriptive regions and
patterns. As discussed before, STPMine 1 and STPMine2
identify the same maximal patterns which are used to
generate data. STPMine2-V2 finds patterns similar to that
of STPMine2 except that the non-� regions are a little
larger (i.e., a little less descriptive) than the more accurate
ones discovered by STPMine2 (see Fig. 6).

Fig. 12 shows the effectiveness of EPMine in discover-
ing patterns and their valid eras. For generating the data
file in Fig. 12a, we set parameters T ¼ 10, En ¼ 2,
min sup ¼ 0:8, and the total number of segments to 20.
Given min sup ¼ 0:8, we could find the two patterns
hidden in the sequence with validity eras [0, 9] and [10,
19], respectively.

We now compare the effectiveness of SPMine-b and
SPMine-w in finding shifted/distorted patterns on two
generated data sets. Table 1 shows the length of patterns
found by each of these two methods. Table 1a displays the
result for a small data set to generate which we set T ¼ 10,
n ¼ 25K, and maximal pattern length ‘ ¼ 8. In most cases,
both SPMine-b and SPMine-w could find the hidden pattern
used to generate the sequence. However, SPMine-w some-
times misses some non-� positions. For example, when � ¼ 4,
it can only find patterns of length 7, which are shorter than
the hidden patterns (8). This problem is more obvious in
Table 1b, which shows the result on a big data set, for which
the generation parameters are n ¼ 1M, T ¼ 50, and the
maximal pattern length ‘ ¼ 5. When � ¼ 3; 4; 5, SPMine-w
finds patterns shorter than the hidden maximal pattern
while SPMine-b could find the generated hidden patterns.
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Fig. 11. Effectiveness comparison. (a) Input file. (b) P by STPMine. (c) A grid-based P 0. (d) P by STPMine2-V2.



6.3 Efficiency

In the next set of experiments, we validate the efficiency of
the proposed techniques under various data settings. First,
we compare the costs of the (ineffective) grid-based
method, STPMine1, STPMine2, and STPMine2-V2 as a
function of the length of the maximal hidden pattern. We
generated a sequence S of n ¼ 1M object locations, and set
T ¼ 100 and min sup ¼ 0:7. For this and subsequent
experiments, we used � ¼ 0:005 and MinPts ¼ 200 in the
clustering module.

Fig. 13a plots the results. Naturally, the grid-based
approach is the fastest method since it performs no
clustering and no refinement of the discovered regions.
However, as shown in the previous section, it misses the
long patterns in all tested cases. Moreover, its efficiency is
due to the fact that a large fraction of actual 1-patterns
are missed and the search space is pruned. STPMine1 is
very slow when the hidden patterns are long. Like most
bottom-up mining techniques, it suffers from the huge
number of candidates that need to be generated and
validated, and, therefore, it is inapplicable for the tested
cases where the hidden patterns have more than 10 non-�

positions. STPMine2 is very efficient and scales well
because it uses the first phase to identify fast large
patterns that are potentially useful. Even when recluster-
ing fails for the maximal candidate patterns, the actual
patterns are discovered usually only after few hops down
the max-subpattern tree. Observe that, even though

STPMine2 performs clustering a large number of times,
it is not significantly slower than the ineffective grid-
based approach. Interestingly, it outperforms the grid-
based method when there is a single hidden pattern with
length equal to T . In this case, the grid method spans
many actual clusters between grid cells and splits the
actual pattern to multiple maximal frequent patterns, the
support of which is expensive to count in the large lattice.
STPMine2-V2 is faster than the original version STPMine2
because it does not need to perform the reclustering.
Furthermore, the difference in their execution time rises
when the maximal pattern length increases since, for
getting maximal patterns with longer length, STPMine2
takes more time in the process of reclustering. In
addition, with the increase of the maximal pattern length,
the execution time of STPMine2-V2 goes down slightly
while that of STPMine2 rises a little. This is because more
time is used in the initial cluster process to generate
frequent 1-patterns when the length of maximal pattern is
shorter. We use five (10) and 100 (80) to test the effect of
extremely (very) short and long pattern lengths on the
performance, while 50 represents the moderate pattern
length.

In the next experiment, we test the effects of period
length on the same database size, but with different values
of T . The length of the maximal hidden pattern is 0:5 � T in
all cases. Again, n ¼ 1M and min sup ¼ 0:7. Fig. 13b
compares the costs of the grid-based approach, STPMine2.
and STPMine2-V2; we do not include the cost of STPMine1
since this method is very slow for long patterns. The figure
shows that the costs of the three methods are almost
invariant to T for a constant database size n. If T is small,
then there are few, but large files to be clustered by
STPMine1. On the other hand, for large T , there are many,
but small Ri to be clustered.

We also test the scalability to the length n of the
spatiotemporal sequence S. Fig. 13c shows the costs of
STPMine2, STPMine2-V2, and the grid-based approach as a
function of n, when T ¼ 100 and the maximal pattern length
is 50.4 Observe that all methods are scalable since the
database size is only linearly related to the cost of finding
and validating the maximal patterns. STPMine2-V2 shows
better performance because of the reasons we mentioned
already. In summary, STPMine2 and STPMine2-V2 are
effective and efficient techniques for mining periodic
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TABLE 1
Effectiveness Comparison for Shifted/Distorted Pattern

Mining Methods

(a) Small data set. (b) Big data set.

4. Trajectories with millions of positions can be commonly tracked by
sampling very frequent intervals (e.g., seconds) over a long history (e.g.,
months).

Fig. 12. Example of mining patterns and their valid eras. (a) Data file. (b) Pattern 1. (c) Pattern 2.



patterns and their accurate descriptive regions in spatio-
temporal data.

Fig. 14 shows the performance of the era pattern mining
method and the shifted/distorted pattern mining ap-
proaches. Fig. 14a demonstrates the scalability of EPMine.
For this test, we set T be 100 and vary the number of
locations n in the sequence from 100K to 3M. The running
time is plotted with different En (the number of era
patterns). All maximal patterns in the generated data set
could be found. It is clear that EPMine scales linearly to the
number of locations for different En, which is compatible
with the results in Fig. 13c. In addition, for the same n, the
running time slightly increases with En because more
candidates need to be validated.

Fig. 14b illustrates the scalability of the shifted/distorted
pattern mining methods. In this experiment, we fix T ¼ 100,
� ¼ 2, and vary n from 50K to 1M. Note that SPMine-w and
SPMine-b have a similar performance because the weighted
counting reduces the candidate support only a little. Fig. 14c
demonstrates how the tolerance parameter � affects the
mining time when n ¼ 1M and T ¼ 50. The time increases
almost linearly with � , since the clustered locations increase
by a factor of 2 � � þ 1 and the maximal candidate patterns
are longer for bigger � .

7 CONCLUSION

In this paper, we studied the discovery of periodic patterns
from a long spatiotemporal sequence. We identified the
differences of the problem in comparison to mining periodic
patterns from event sequences and described effective and
efficient algorithms for solving it. Our methods employ
spatial clustering to retrieve frequent 1-patterns and adapt
bottom-up and top-down mining techniques for longer

patterns. In addition to the baseline problem, we defined
and solved two practicable variants. The first is the
discovery of periodic patterns that are not frequent in the
whole time span of the sequence, but only in a time interval,
called validity era, which is to be discovered automatically.
To solve this problem, we adjust the definition of periodic
patterns to be associated with a maximal validity interval
and we adapt the mining algorithms to identify the validity
eras for patterns while counting their supports. The second
mining variant counts shifted or distorted instances of
patterns. We redefined frequent 1-patterns to consider such
instances and refined the mining algorithm to discover
longer patterns.

Topics for future work include the automatic discovery
of the period T related to frequent periodic patterns and the
discovery of patterns with distorted period lengths. For
instance, the movement of an object may exhibit periodicity,
however, the temporal length of the period may not be fixed
but could vary between pattern instances. Public transpor-
tation vehicles may have this type of periodicity, since
during heavy traffic hours, a cycle can be longer that usual.
Building indices based on distorted and shifted patterns is
also an interesting direction for future work.

APPENDIX

Our mining algorithms apply density-based clustering to

identify the spatial regions that are components of the mined

patterns. We devised an efficient hash-based implementa-

tion of DBSCAN [5], which typically achieves linear

performance. The pseudocode of this method is shown in

Fig. 15. Given clustering parameters � and MinPts, we

partition the space using a regular grid of �
ffiffi

2
p 
 �

ffiffi

2
p cells and

hash each point to be clustered into the cell that contains it.

CAO ET AL.: DISCOVERY OF PERIODIC PATTERNS IN SPATIOTEMPORAL SEQUENCES 465

Fig. 14. Efficiency test of era pattern and shifted/distorted pattern mining. (a) EPMine: Cost versus database size. (b) SPMine: Cost versus database
size. (c) SPMine: Cost versus � .

Fig. 13. Efficiency test. (a) Cost versus max-subpattern length. (b) Cost versus period length. (c) Cost versus database size.



In its first phase, the algorithm performs a pass over the cells

and uses their hash counters to determine whether a cellCi is

dense (i.e., it contains at least MinPts points) or not. A dense

cell Ci is always a part of a cluster, since the maximum

possible distance between any two points in it is at most �

(the diagonal of the cell). Therefore, any point there is a core

point, based on the definition of [5]. The pass of lines 2-4

finds all pairs ðCi; CjÞ of dense cells with distance no greater

than � to each other and checks whether there is at least a pair

of points ðpi; pjÞ; pi 2 Ci; pj 2 Cj, such that distðpi; pjÞ � �. In

that case, the corresponding clusters are merged, because pi
and pj are both core points and one is in the �-neighborhood

of the other. Consider, for example, cell C26 in the grid of

Fig. 16 and assume that MinPts ¼ 4. All cells within the

bold line are �-neighbors ofC26 (i.e., they could contain points

within � distance from a point in C26). Since C26 is dense (it

has four points), all �-neighbor cells before it (the shaded cells

in the figure) are examined for potential merging with C26, if

they are also dense. During this process, C24 and C26 are

merged to the same cluster.
In the second phase (lines 5-16), the algorithm again

scans the cells, treating this time sparse ones (i.e., cells with
jCij < MinPts). For each point p in a sparse cell Ci, we first
compute the number p:sup of p’s �-neighbors in Ci and in
sparse �-neighbor cells of Ci. If p:sup 	MinPts, we already
know that p is a core point. Next, we check the dense
�-neighbors of Ci. For each such cell Cj, if p is already known
to be a core point and we could find a point p0 2 Cj such
that distðp; p0Þ � �, we add p and its �-neighborhood points in
the cluster of Cj. If p is not yet known to be a core point (i.e.,
p:sup < MinPts), then we scan cell Cj and increase p:sup as
p’s neighbors are found in Cj, until no more points exist in
Cj or p becomes a core point. As soon as p is known to be a

core point, merging is performed with the cluster of Cj. If p
is a found to be an �-neighbor of a dense cell, but it is not a
core point yet, then we link p as density-reachable from Cj
and include it into Cj’s cluster. If p is later found to be a core
point, Cj’s cluster is merged with any other clusters close to
p and the �-neighborhood of p. Finally (lines 13-16), if p is
found to be a core point, p’s cluster is expanded from the
next points in Ci (and succeeding cells) that are �-neighbors
of p, like in the original DBSCAN algorithm. A subtle point
to note is that, once we start expanding the cluster that
includes point p (line 16), we proceed working with points
and dense cells related to that cluster only. When the whole
cluster is identified, we return to point p and process the
next unassigned point in Ci or succeeding cells.

Fig. 16 exemplifies the functionality of the algorithm.
Assume thatMinPts ¼ 4. As discussed, cellsC24 andC26 are
identified as dense and they are merged in the first phase of
the algorithm (lines 2-4). In the second phase of the
algorithm, when sparse cell C25 is examined, we find p,
with initial p:sup ¼ 1. Then (line 8), we update p:sup ¼ 2 by
searching the �-neighbor cells of C25 that are sparse (i.e., C32).
Next, we check dense �-neighbor cells of C25, starting from
C24. We find a point there in p’s neighborhood and update
p:sup ¼ 3. Since p is not yet a core point, it is just linked to the
cluster of C24 (as density-reachable). After we check C26, we
find another neighbor of p there, thus p:sup ¼ 4 and now p
becomes a core point. Now, if we know that the cluster
containing C24, C26, and p has one more point in C32, then we
move to C32 to process that point and expand the cluster as
necessary (line 16).

Our method achieves the same result as that of
DBSCAN, while being much faster. The original DBSCAN
algorithm has worst-case Oðn2Þ cost, since finding the
�-neighborhood of any point requires a scan of the database.
The cost can be reduced to Oðn lognÞ if a spatial index
facilitates neighborhood retrieval. Such indices do not exist
for the arbitrary sets of points that are clustered by the
mining algorithm. Of course, an index could be built on-the-
fly before clustering, but our grid-based method avoids this.
It requires one scan of the data to create the grid-based
partitions. Then, the dense cells are merged at a single pass
and many computations are saved, since we know (without
any search) that all points in such cells are core points.
Finally, sparse cells are handled at a single pass of the
database, since �neighborhoods are efficiently found from
the neighboring cells of the current point. In practice, the
cost of our method is linear to the database size.
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Fig. 15. Grid-based clustering algorithm.

Fig. 16. Clustering example.



Grid-based clustering has also been used by STING [18]

and STING+ [19], albeit the aim of these methods is to

provide a data summary for fast (approximate) range query

evaluation. These algorithms split the space into cells and

use a hierarchical structure to organize them; the points in a

cell are put to a cluster only if the density of the cell is no

less than MinPts
��2 . The points in the sparse cells are not

considered at all. The clusters of STING are similar to those

of DBSCAN only when the granularity of the bottom-level

cells is close to zero. Our method is essentially different

from STING, since it is merely a grid-based efficient

implementation of DBSCAN.
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