Digital Object Indentifier 10.1109/TKDE.2011.165

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

Efficient Mining of Frequent ltemsets on
Large Uncertain Databases

Liang Wang, David W. Cheung, Reynold Cheng, Sau Dan Lee and Xuan Yang

Abstract—The data handled in emerging applications like location-based services, sensor monitoring systems, and data integration, are often
inexact in nature. In this paper, we study the important problem of extracting frequent itemsets from a large uncertain database, interpreted
under the Possible World Semantics. This issue is technically challenging, since an uncertain database contains an exponential number of
possible worlds. By observing that the mining process can be modeled as a Poisson binomial distribution, we develop an approximate
algorithm, which can efficiently and accurately discover frequent itemsets in a large uncertain database. We also study the important issue of
maintaining the mining result for a database that is evolving (e.g., by inserting a tuple). Specifically, we propose incremental mining algorithms,
which enable probabilistic frequent itemset results to be refreshed. This reduces the need of re-executing the whole mining algorithm on the
new database, which is often more expensive and unnecessary. We examine how an existing algorithm that extracts exact itemsets, as well
as our approximate algorithm, can support incremental mining. All our approaches support both tuple and attribute uncertainty, which are two
common uncertain database models. We also perform extensive evaluation on real and synthetic datasets to validate our approaches.

Index Terms—Frequent itemsets, uncertain dataset, approximate algorithm, incremental mining.

1 INTRODUCTION

The databases used in many important and novel applica-
tions are often uncertain. For example, the locations of users
obtained through RFID and GPS systems are not precise
due to measurement errors [22], [28]. As another example,
data collected from sensors in habitat monitoring systems
(e.g., temperature and humidity) are noisy [17]. Customer
purchase behaviors, as captured in supermarket basket
databases, contain statistical information for predicting
what a customer will buy in the future [3], [6]. Integration
and record linkage tools also associate confidence values to
the output tuples according to the quality of matching [16].
In structured information extractors, confidence values are
appended to rules for extracting patterns from unstructured
data [31]. To meet the increasing application needs of han-
dling a large amount of uncertain data, uncertain databases
have been recently developed [10], [16], [19], [20], [27].

Figure 1 shows an online marketplace application, which
carries probabilistic information. Particularly, the purchase
behavior details of customers Jack and Mary are recorded.
The value associated with each item represents the chance
that a customer may buy that item in the near future.
These probability values may be obtained by analyzing the
users’ browsing histories. For instance, if Jack visited the
marketplace ten times in the previous week, out of which
video products were clicked five times, the marketplace
may conclude that Jack has a 50% chance of buying videos.
This attribute-uncertainty model, which is well-studied in the
literature [6], [10], [20], [28], associates confidence values
with data attributes. It is also used to model location and
sensor uncertainty in GPS and RFID systems.

e L. Wang, D. Cheung, R. Cheng, S. D. Lee, and X. Yang are with the
Department of Computer Science, University of Hong Kong, Pokfulam Road,
Hong Kong.

E-mail: {lwang, dcheung, ckcheng, sdlee, xyang2}@cs.hku.hk

Customer Purchase Items
Jack (video:1/2), (food:1)
Mary (clothing:1), (video:1/3); (book:2/3)

Fig. 1. lllustrating an uncertain database.

To interpret uncertain databases, the Possible World Se-
mantics (or PWS in short) is often used [16]. Conceptually, a
database is viewed as a set of deterministic instances (called
possible worlds), each of which contains a set of tuples. A
possible world w for Figure 1 consists of two tuples, {food}
and {clothing}, for Jack and Mary respectively. Since {food}
occurs with a probability of (1 —3) x 1 =1, and {clothing}
has a probability of 1 x (1— 1) x (1—2) = Z, the probability
that w exists is 1 x 2, or §. Any query evaluation algorithm
for an uncertain database has to be correct under PWS. That
is, the results produced by the algorithm should be the same
as if the query is evaluated on every possible world [16].

Although PWS is intuitive and useful, querying or min-
ing under this notion is costly. This is because an uncertain
database has an exponential number of possible worlds.
For example, the database in Figure 1 has 23 = 8 possible
worlds. Performing data mining under PWS can thus be
technically challenging. In fact, the mining of uncertain data
has recently attracted research attention [3]. For example,
in [23], efficient clustering algorithms were developed for
uncertain objects; in [21] and [32], naive Bayes and decision
tree classifiers designed for uncertain data were studied.
Here, we develop scalable algorithms for finding frequent
itemsets (i.e., sets of attribute values that appear together
frequently in tuples) for uncertain databases. Our algo-
rithms can be applied to two important uncertainty models:
attribute uncertainty (e.g., Figure 1); and tuple uncertainty,
where every tuple is associated with a probability to indi-
cate whether it exists [15], [16], [19], [27], [34].

The frequent itemsets discovered from uncertain data are
naturally probabilistic, in order to reflect the confidence

1041-4347/11/$26.00 © 2011 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

1/2
13

1/6

o o o

Probability
o M M O

0 1 2
Support Count

Fig. 2. s-pmf of PFI {video} from Figure 1.

placed on the mining results. Figure 2 shows a Probabilistic
Frequent Itemset (or PFI) extracted from Figure 1. A PFI
is a set of attribute values that occurs frequently with a
sufficiently-high probability. In Figure 2, the support proba-
bility mass function (or s-pmf in short) for the PFI {video} is
shown. This is the pmf for the number of tuples (or support
count) that contain an itemset. Under PWS, a database
induces a set of possible worlds, each giving a (different)
support count for a given itemset. Hence, the support of a
frequent itemset is described by a pmf. In Figure 2, if we
consider all possible worlds where itemset {video} occurs
twice, the corresponding probability is .

A simple way of finding PFIs is to mine frequent patterns
from every possible world, and then record the probabilities
of the occurrences of these patterns. This is impractical,
due to the exponential number of possible worlds. To
remedy this, some algorithms have been recently devel-
oped to successfully retrieve PFIs without instantiating all
possible worlds [6], [30], [35]. These algorithms can verify
whether an itemset is a PFI in O(n?) time (where n is
the number of tuples contained in the database). However,
our experimental results reveal that they can require a
long time to complete (e.g., with a 300k real dataset, the
dynamic programming algorithm in [6] needs 30.1 hours
to find all PFls). We observe that the s-pmf of a PFI can
be captured by a Poisson binomial distribution, for both
attribute- and tuple-uncertain data. We make use of this
intuition to propose a method for approximating a PFI’s
pmf with a Poisson distribution, which can be efficiently
and accurately estimated. This model-based algorithm can
verify a PFl in O(n) time, and is thus more suitable for large
databases. We demonstrate how our algorithm can be used
to mine threshold-based PFls, whose probabilities of being
true frequent itemsets are larger than some user-defined
threshold [6]. Our algorithm only needs 9.2 seconds to find
all PFIs [33], which is four orders of magnitudes faster than
the method in [6].

Customer Purchase Items
Jack (video:1/2), (food:1)
Mary (clothing:1), (video:1/3); (book:2/3)
Tony (video:1/2)

Fig. 3. The new database after inserting new customer
information.

Support Count

Fig. 4. s-pmf of PFI {video} from Figure 3 .

2

Mining evolving databases. We also study the important
problem of maintaining mining results for changing, or
evolving, databases. The type of evolving data that we
address here is about the appending, or insertion of a
batch of tuples to the database. Tuple insertion is common
in the applications that we consider. For example, a GPS
system may have to handle location values due to the
registration of a new user; in an online marketplace appli-
cation, information about new purchase transactions may
be appended to the database for further analysis. Figure 3
shows a new database, which is the result of appending
the purchase information of Tony, a new customer, to the
database in Figure 1. Notice that these new tuples may
induce changes to the mining result. For example, if the
new database (Figure 3) is considered, the s-pmf of the
PFI {video} (Figure 2) becomes the one shown in Figure 4.
Hence, we need to derive the PFIs for the new database.
A straightforward way of refreshing the mining results
is to re-evaluate the whole mining algorithm on the new
database. This can be costly, however, when new tuples
are appended to the database at different time instants. In
fact, if the new database DT is similar to its older version,
D, it is likely that most of the PFIs extracted from D
remain valid for D*. Based on this intuition, we develop
incremental mining algorithms, which use the PFIs of D to
derive the PFIs of DT, instead of finding them from scratch.
In this paper, we propose an incremental mining algorithm
for the method studied in [6], which discovers exact PFIs.
We also examine how our model-based algorithm, which
discovers approximate PFIs, can be extended to handle
evolving data. As our experiments show, when the change
of the database is small, running our incremental mining
algorithms on D™ is much faster than finding PFIs on
D7 from scratch. In an experiment on a real dataset, our
model-based, incremental mining algorithm addresses a 5-
fold performance improvement over its non-incremental
counterpart.

To summarize, we develop a model-based algorithm,
which can reduce the amount of effort of scanning the
database for mining threshold-based PFIs. We also develop
two incremental mining algorithms, for extracting exact
and approximate PFIs. All our algorithms can support both
attribute and tuple uncertainty models. We study the time
complexity of our approaches. Experiments on both real
and synthetic datasets reveal that our methods significantly
improve the performance of PFI discovery, with a high
degree of accuracy.

The rest of the paper is organized as follows. In Section 2,
we review the related works. Section 3 defines the problems
to be studied. Section 4 describes efficient and accurate
methods for computing s-pmf. In Section 5, we present our
algorithm for discovering threshold-based PFls. The exact
and approximate algorithms for maintaining PFIs on evolv-
ing databases are respectively presented in Sections 6 and
7. Section 8 reports our experimental results. We conclude
in Section 9.

2 RELATED WORK

Mining frequent itemsets is an important problem in data
mining, and is also the first step of deriving association

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

rules [4]. Hence, many efficient itemset mining algorithms
(e.g., Apriori [4] and FP-growth [18]) have been proposed.
While these algorithms work well for databases with pre-
cise values, it is not clear how they can be used to
mine probabilistic data. Here we develop algorithms for
extracting frequent itemsets from uncertain databases. Al-
though our algorithms are developed based on the Apriori
framework, they can be considered for supporting other
algorithms (e.g., FP-growth) for handling uncertain data.

For uncertain databases, [2], [14] developed efficient fre-
quent pattern mining algorithms based on the expected
support counts of the patterns. However, [6], [30], [35]
found that the use of expected support may render impor-
tant patterns missing. Hence, they proposed to compute
the probability that a pattern is frequent, and introduced
the notion of PFL In [6], dynamic-programming-based so-
lutions were developed to retrieve PFIs from attribute-
uncertain databases. However, their algorithms compute
exact probabilities, and verify that an itemset is a PFI in
O(n?) time. Our model-based algorithms avoid the use of
dynamic programming, and are able to verify a PFI much
faster (in O(n) time). In [35], approximate algorithms for
deriving threshold-based PFlIs from tuple-uncertain data
streams were developed. While [35] only considered the
extraction of singletons (i.e., sets of single items), our
solution discovers patterns with more than one item. Re-
cently, [30] developed an exact threshold-based PFI mining
algorithm. However, it does not support attribute-uncertain
data considered in this paper. In a preliminary version of
this paper [33], we examined a model-based approach for
mining PFls. Here, we study how this algorithm can be
extended to support the mining of evolving data.

Other works on the retrieval of frequent patterns from
imprecise data include: [9], which studied approximate
frequent patterns on noisy data; [24], which examined
association rules on fuzzy sets; and [26], which proposed
the notion of a “vague association rule”. However, none
of these solutions are developed on the uncertainty models
studied here.

For evolving databases, a few incremental mining al-
gorithms that work for exact data have been developed.
For example, in [11], the Fast Update algorithm (FUP) was
proposed to efficiently maintain frequent itemsets, for a
database to which new tuples are inserted. Our incremental
mining framework is inspired by FUP. In [12], the FUP,
algorithm was developed to handle both addition and
deletion of tuples. ZIGZAG [1] also examines the efficient
maintenance of maximal frequent itemsets for databases
that are constantly changing. In [13], a data structure,
called CATS Tree, was introduced to maintain frequent
itemsets in evolving databases. Another structure, called
CanTree [25], arranges tree nodes in an order that is not
affected by changes in item frequency. The data structure
is used to support mining on a changing database. To our
best knowledge, maintaining frequent itemsets in evolving
uncertain databases has not been examined before. We
propose novel incremental mining algorithms for both exact
and approximate PFI discovery. Our algorithms can also
support attribute and tuple uncertainty models.

Table 1 summarizes the major work done in PFI mining.

3

Here, “Static Algorithms” refer to algorithms that do not
handle database changes. Hence, any change in the data-
base necessitates a complete execution of these algorithms.

TABLE 1
Our Contributions (marked [/]).
Uncertainty | Static Incremental
Model Algorithms Algorithms
. Exact [6] Exact [/]
Attribute Approx. [/] Approx. [y/]
Exact [30] Exact [/]
Tuple Approx. (singleton) [35]
Approx. (multiple items) [y/] Approx. [V]

3 PROBLEM DEFINITION

We now discuss the uncertainty models used in this paper,
in Section 3.1. The problem of mining threshold-based PFls
is then described in Section 3.2.

3.1

Let V be a set of items. In the attribute uncertainty
model [6], [10], [20], [28], each attribute value carries some
uncertain information. Here we adopt the following vari-
ant [6]: a database D contains n tuples, or transactions. Each
transaction, ¢; is associated with a set of items taken from V.
Each item v € V exists in t; with an existential probability
Pr(v e t;) € (0,1], which denotes the chance that v belongs
to t;. In Figure 1, for instance, the existential probability
of video in tj,c is Pr(videojacr) = 1/2. This model can
also be used to describe uncertainty in binary attributes. For
instance, the item wvideo can be considered as an attribute,
whose value is one, for Jack’s tuple, with probability 1, in
tuple track-

Under the Possible World Semantics (PWS), D generates
a set of possible worlds W. Table 2 lists all possible worlds
for Figure 1. Each world w; € W, which consists of a subset
of attributes from each transaction, occurs with probability
Pr(w;). For example, Pr(ws) is the product of: (1) the proba-
bility that Jack purchases food but not video (equal to 3); and
(2) the probability that Mary buys clothing and video only
(equal to §). As shown in Table 2, the sum of possible world
probabilities is one, and the number of possible worlds
is exponentially large. Our goal is to discover frequent
patterns without expanding D into possible worlds.

Attribute and Tuple Uncertainty

TABLE 2
Possible Worlds of Figure 1.
W Tuples in W Prob.
wy {food}; {clothing} 1/9
wa {food}; {clothing, video} 1/18
w3 {food}; {clothing, book} 2/9
Wy {food}; {clothing, book, video} 1/9
ws {food, video}; {clothing} 1/9
We {food, video}; {clothing, video} 1/18
wy {food, video}; {clothing, book} 2/9
ws | {food, video}; {clothing, book, video} | 1/9

In the tuple uncertainty model, each tuple or transaction
is associated with a probability value. We assume the
following variant [15], [34]: each transaction ¢t; € D is
associated with a set of items and an existential probability

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

Pr(t;) € (0,1], which indicates that ¢; exists in D with
probability Pr(t;). Again, the number of possible worlds
for this model is exponentially large. Table 3 summarizes
the symbols used in this paper.

3.2 Probabilistic Frequent Itemsets (PFI)

Let I C V be a set of items, or an itemset. The support of I,
denoted by s(I), is the number of transactions in which I
appears in a transaction database [4]. In precise databases,
s(I) is a single value. This is no longer true in uncertain
databases, because in different possible worlds, s(I) can
have different values. Let S(w;, I) be the support count of
I in possible world w;. Then, the probability that s(/) has
a value of 4, denoted by Pr’(i), is:

>

w; EW,S(wj,I)=i

Pri(i) = Pr(w;) (1)

Hence, Pr!(i)(i = 1,...,n) form a probability mass function
(or pmf) of s(I), where n is the size of D. We call Pr! the
support pmf (or s-pmf) of I. In Table 2, Prwdeo(Q) = Pr(wg)+
Pr(ws) = ¢, since s(I) = 2 in possible worlds ws and ws.
Figure 2 shows the s-pmf of {video}.

Now, let minsup € (0,1] be a percentage value, which is
generally used to define minimal support in a deterministic
database. An itemset I is said to be frequent in a database
D if s(I) > msc(D), where msc(D) = minsup x n is called
the minimal support count of D [4]. For uncertain databases,
the frequentness probability of I, denoted by Pry,(I), is
the probability that an itemset is frequent [6]. Notice that
Prireq(I) can be expressed as:

Prieg(I)= > Pri(i))

i>msc(D)

In Figure 2, if minsup = 1, then ‘msc(D) =
Prjreq({video}) = Privide0} (1) 4 ppivideoy gy _ 2.

Using frequentness probabilities, we can determine
whether an itemset [is frequent. In this paper, we adopt
the definition in [6]: [is a Threshold-based PFI if its
frequentness probability is larger than some user-defined
threshold [6]. Formally, given a real value minprob € (0,1],
I is a threshold-based PFI, if Prfyq(I) > minprob. We call
minprob the frequentness probability threshold.

Here, we would like to mention the following theorem,
which was discussed in [6]:

THEOREM 1 (Anti-Monotonicity): Let S and I be two
itemsets. If S C I, then Pryeq(S) > Priyeq(l).

This theorem will be used in our discussions.

We derive efficient s-pmf computation methods in Sec-
tion 4. Then, Section 5 examines how these methods facil-
itate efficiency discovery of approximate threshold-based
PFIs. We examine the maintenance of exact and approxi-
mate PFIs on evolving data, in Sections 6 and 7.

2. Thus,

4 EVALUATING S-PMF

From the last section, we can see that the s-pmf s(I) of
itemset / plays an important role in determining whether
I is a PFI. However, directly computing s(I) (e.g., using
the dynamic programming approaches of [6], [35]) can

4

TABLE 3
Summary of Notations
Notation | Description
D An uncertain database of n tuples
Vv The set of items that appear in D
v An item, where v € V
t; The j-th tuple in D
W The set of all possible worlds.
wj A possible world w; € W
I An itemset, where I C V
minsup | A real value between (0, 1]
msc(D) | The minimal support count in D
s(1) The support count of I in D
minprob | A real value between (0, 1]
Pr(i) | Support prob. (prob. I has a support count of i)
Prie(I) | Frequentness probability of 1
p§ Pr(I Ctj)
u' Expected value of X in D
ul Expected value of X T for the first [tuples in D
Notations used in Sections 6 and 7
d Delta database with n tuples
DT New database with nT tuples; DY =Dud
FP Set of all PFIs in D
FP Set of k-PFIs in D
cr Set of size-k candidates for DT
FT Set of all PFIs in D
EF Set of k-PFIs for D"
DB A database, can be D, d, or DT
sPP(I) | The support count of I in DB
PriP(I) | The frequentness probability of I in DB
u'(DB) | The expected value of X’ in DB

be expensive. We now investigate an alternative way of
computing s(I). In Section 4.1 we study some statistical
properties of s(I). Section 4.2 exploits these results by
approximating s(I) in a computationally efficient manner.

41

An interesting observation about s(/) is that it is essentially
the number of successful Poisson trials [29]. To explain, we
let X[be a random variable, which is equal to one if I
is a subset of the items associated with transaction t; (i.e.,
I C t;), or zero otherwise. Notice that Pr(I C t;) can be

easily calculated in our uncertainty models:

Statistical Properties of s-pmf

o For attribute-uncertainty,

Pr(I ctj) =[] Pr(vet) 3)
vel

o For tuple-uncertainty,
(4a)
(4b)

Given a database of size n, each I is associated with
random variables X{, X1, ..., X! In both uncertainty mod-
els considered in this paper, all tuples are independent.
Therefore, these n variables are independent, and they
represent n Poisson trials. Moreover, X! = Y X | follows
a Poisson binomial distribution.

Next, we observe an important relationship between X’
and Pr'(i) (i.e., the probability that the support of I is i):

{ P?”(tj) 1fI§tJ
0 otherwise

Pri(i) = Pr(XT =) (5)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

This is simply because X is the number of times that I
exists in the database. Hence, the s-pmf of I, i.e., pr! (i) is
the pmf of X/, a Poisson binomial distribution.

Using Equation 5, we can rewrite Equation 2, which
computes the frequentness probability of I, as:

Pryg(I) = Y Pr(X'=i) (6)
i>msc(D)
= Pr(X' > msc(D)) @)

Therefore, if the cumulative distribution function (cdf) of
X7 is known, Prieq(I) can also be evaluated. Next, we
discuss an approach to approximate this cdf, in order to
compute Pryyq(I) efficiently.

4.2 Approximating s-pmf

From Equation 7, we can express Prj,(I) as:
Prireg(I) =1 — Pr(X' < msc(D) — 1) 8)

For notational convenience, let p§ be Pr(I C t;). Then, the
expected value of X' in D, denoted by p/, can be computed

by:
ph=> p ©)
j=1

Since a Poisson binomial distribution can be well approx-
imated by a Poisson distribution [8], Equation 8 can be
written as:

Prieg(I) = 1 — F(msc(D) — 1, ") (10)

where I is the cdf of the Poisson distribution with mean /ﬂ ,
ie, F(mse(D) —1,u!) =1— %M, expressed using
the incomplete gamma function I'(s,z) = [t~ te~'dt.
Empirical results (see Appendix A) show that the errors
introduced by this approximation is small in practice.

To estimate Prj.,(I), we can first compute u! by scan-
ning D once and summing up p;’s for all tuples ¢; in D.
Then, F(msc(D) — 1, 1) is evaluated, and Equation 10 is
used to approximate Prjeq(I).

We have also observed an important property of the
frequentness probability:

THEOREM 2: Preq(I), if approximated by Equation 10,
increases monotonically with yf.

Proof: The cdf of a Poisson distribution, F'(i, i), can be
written as:

. 00 4 (i+1)—1,—t
. (7 + 17 7 f t(Z e tdt
F(i /J') _ (.) 123 S
2: 7:
Since minsup is fixed and independent of 1, let us exam-
ine the partial derivative w.r.t. p.

OF (i, 1) B <fi° t(i+1)16tdt>

n il

o op

= lﬁ / tletdt
it op \J,
1.

= E(*M e ")

5

Thus, the cdf of the Poisson distribution F'(i, 1) is mono-
tonically decreasing w.r.t. 1, when i is fixed. Consequently,
1 — F(i — 1, n) increases monotonically with p. Theorem 2
follows immediately by substituting i = msc(D). 0

Intuitively, Theorem 2 states that the higher value of ./,
the higher is the chance that / is a PFL. Next, we will
illustrate how this theorem avoids the costly computations
of I, and improves the efficiency of finding threshold-based
PFls.

5 MINING THRESHOLD-BASED PFIs

Can we quickly determine whether an itemset I is a
threshold-based PFI? Answering this question is crucial,
since in typical PFI mining algorithms (e.g., [6]), candi-
date itemsets are first generated, before they are tested
on whether they are PFI’s. In Section 5.1, we develop a
simple method of testing whether I is a threshold-based
PFI, without computing its frequentness probability. We
then enhance this method in Section 5.2. We demonstrate
an adaptation of these techniques in an existing PFI-mining
algorithm, in Section 5.3.

5.1 PFIl Testing

Given the values of minsup and minprob, we can test
whether [is a threshold-based PFI, in three steps:
Step 1. Find a real number ., satisfying the equation:

minprob =1— F(msc(D) — 1, fi) (11)

The above Equation can be solved efficiently by employing
numerical methods, thanks to Theorem 2.
Step 2. Use Equation 9 to compute p!. Notice that the
database D has to be scanned once.
Step 3. If u! > yu,,, we conclude that [is a PFL. Otherwise,
I must not be a PFL

To understand why this works, first notice that the right
side of Equation 11 is the same as that of Equation 10,
an expression of frequentness probability. Essentially, Step
1 finds out the value of p,, that corresponds to the fre-
quentness probability threshold (i.e., minprob). In Steps 2
and 3, if u! > p,,, Theorem 2 allows us to deduce that
Prieq(I) > minprob. Hence, these steps together can test
whether an itemset is a PFL

In order to verify whether I is a PFI, once ., is found,
we do not have to evaluate Pr,.,(I). Instead, we compute
p! in Step 2, which can be done in O(n) time. This is a more
scalable method compared with solutions in [6], [35], which
evaluate Pry.,(I) in O(n?) time. Next, we study how this
method can be further improved.

5.2

In Step 2 of the last section, D has to be scanned once to
obtain ul , for every itemset I. This can be costly if D is
large, and if many itemsets need to be tested. For example,
in the Apriori algorithm [6], many candidate itemsets are
generated first before testing whether they are PFIs. We now
explain how the PFI testing can still be carried out without
scanning the whole database.

Improving the PFI Testing Process

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

Let uf = Z§'=1 p;, where [€ (0,n]. Essentially, u/ is the
“partial value” of !, which is obtained after scanning !
tuples. Notice that p! = u!. Suppose that u,, has been
obtained from Equation 11, we first claim the following:

LEMMA 1: Let i € (0,n]. If u! > p,, then I is a
threshold-based PFI.

Proof: Notice that y/ monotonically increases with i. If
there exists a value of i such that u! > p,,,, we must have
pl = pl > pul > w,, implying that I is a PFL O

Using Lemma 1, a PFI can be verified by scanning only
a part of the database. We next show the following.

LEMMA 2: If I is a threshold-based PFI, then:

ph s > i — 0 Vi € (0, [fim]] (12)

Proof: Let D; be a set of tuples {t1,...,t}. Then,

p = 2?21 Pr(I Ct;)
l
HlI = Zj:l Pr(I C tj)

Since Pr(I C t;) € [0,1], based on the above equations,
we have:
i p = (13)
If itemset I is a PFI, then p! > jui,,. In addition, puZ_, > 0.
Therefore,

iZMI_uTIL—iZ:LLm_u'IIL—i for 0 <1< L/LmJ
,u{z—izlum_iforo<i§ I_:umj

L
This lemma leads to the following corollary.
COROLLARY 1: An itemset I cannot be a PFI if there
exists i € (0, |,]] such that:

[y < fm — (14)

We use an example to illustrate Corollary 1. Suppose that
tm = 1.1 for the database in Figure 1. Also, let I = {clothing,
video}. Using Corollary 1, we do not have to scan the whole
database. Instead, only the tuple ¢ 7, needs to be read. This
is because:

pl=0<11-1=01 (15)

Since Equation 14 is satisfied, we confirm that I is not a PFI
without scanning the whole database.

We use the above results to improve the speed of the
PFI testing process. Specifically, after a tuple has been
scanned, we check whether Lemma 1 is satisfied; if so,
we immediately conclude that [is a PFL. After scanning
n — |,] or more tuples, we examine whether I is not a
PFI, by using Corollary 1. These testing procedures continue
until the whole database is scanned, yielding p!. Then, we
execute Step 3 (Section 5.1) to test whether [is a PFIL.

5.3 Case Study: The Apriori Algorithm

The testing techniques just mentioned are not associated
with any specific threshold-based PFI mining algorithms.
Moreover, these methods support both attribute- and tuple-
uncertainty models. Hence, they can be easily adopted by
existing algorithms. We now explain how to incorporate
our techniques to enhance the Apriori [6] algorithm, an
important PFI mining algorithms.

6

Algorithm 1: Apriori-based PFI Mining

Input: Uncertain database D, minsup, minprob
Output: All PFL: F' = {F1, F>,...,Fn} // Fy is set of k-PFls
1 begin
Lm = MinExpSup(minsup, minprob, D);
Ci.GenerateSingleItemCandidates(D);
k=1,5=0;
while |Ck| # 0 do
foreach I € C}, do
L[.u =0;
while (++j) < nand |Cx| # 0 do
foreach I € C}, do
Tpu=1pu+ Pr(I Cty);
if .y > pim, then
Fi.push(l);
Lck.remove(l);
else if j > n — |jm | then
if Pruning(l, pim, j, n) == true then
LLCk.remove(I);
Cri1.GenerateCandidate(Fy);
k=k+1,j=0
19 | return F;
20 end

O W oUW N

T <
S U R WN RO

=
N

=
@

The resulting procedure (Algorithm 1) uses the “bottom-
up” framework of the Apriori: starting from & = 1, size-k
PFIs (called k-PFls) are first generated. Then, using The-
orem 1, size-(k + 1) candidate itemsets are derived from
the k-PFlIs, based on which the (k + 1)-PFIs are found. The
process goes on with larger £, until no larger candidate
itemsets can be discovered.

The main difference of Algorithm 1 compared with that
of Apriori [6] is that all steps that require frequentness
probability computation are replaced by our PFI testing
methods. In particular, Algorithm 1 first computes ., (Line
2). Then, for each candidate itemset / generated on Line 3
and Line 17, we scan D and compute its x! (Line 10). If
Lemma 1 is satisfied, then I is put to the result (Lines 11-
13). However, if Corollary 1 is satisfied, I is pruned from
the candidate itemsets (Lines 14-16). This process goes on
until no more candidates itemsets are found.

Complexity. In Algorithm 1, each candidate item needs
O(n) time to test whether it is a PFI. This is much faster
than the Apriori [6], which verifies a PFI in O(n?) time.
Moreover, since D is scanned once for all k-PFI candidates
C, at most a total of n tuples is retrieved for each Cj
(instead of |C|-n). The space complexity is O(|Cy|) for each
candidate set C, in order to maintain ;! for each candidate.

Next, we examine how to maintain PFIs in a database
that is constantly evolving.

6 EXACT INCREMENTAL MINING

We now examine how to efficiently maintain a set of PFIs
in an evolving database, where new tuples, or transactions,
are constantly appended to it. We assume that every tuple
has a timestamp attribute, which indicates the time that it
is created. This timestamp is not used for mining; it is only
used to differentiate new tuples from existing ones. Let D
be the “old” database that contains n tuples, and d be a
delta database of n’ tuples, whose timestamps are larger than
those of tuples in D. Let D" be a “new” database, which is

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

a concatenation of the tuples in D and d, and has a size of
nt = n+n'. Given the set of PFIs and their s-pmfs in D, our
goal is to discover PFIs on D", under the same minsup and
minprob values used to mine the PFIs of D. We use s?Z(I)
and Prﬁi([) to respectively denote the support count and
the frequentness probability of itemset / in some database
DB, where DB is any of {D,d, D" }.

Before we go on, we would like to remark that the
incremental mining problem described above can be treated
as a special case of streamm mining, which refers to the
maintenance of mining results for stream data. Particularly,
we can view the database d as the arrival of |d| data
units from a stream source. Moreover, we assume that the
sliding window initially contains D, which then expands to
incorporate new stream units. Mining D™ is then equivalent
to updating the mining results for the arrival of |d| stream
units. In Section 8.3, we study an adaptation of a stream
algorithm in [35] for use in incremental mining.

A simple way of obtaining PFIs from D™ is to simply
rerun a PFl-mining algorithm on it. However, this approach
is not very economical, since (1) running a PFI algorithm on
a large database is not trivial; and (2) the same algorithm
has to be frequently executed if a lot of update activities
occur. In fact, if only a few tuples in d are appended to
D, it may not be necessary to compute all PFIs on D"
from scratch. This is because the PFIs found in D* should
not be very different from those discovered in D. Based
on this intuition, we design an incremental mining algorithm
that finds PFIs in DT, without rerunning a complete PFI
algorithm. This algorithm works the best when the size of
d is very small compared with that of D; nevertheless, it
works with any size of d. We next discuss the framework
of our solution, which discovers exact PFIs in D, based on
the PFIs found in D. We extend this solution to discover
approximate PFls in Section 7. Table 3 summarizes the
symbols used in these sections.

6.1

The design of our uncertain Fast UPdate algorithm (or
uFUP), is inspired by FUP [11]. That algorithm maintains
frequent itemset results in an evolving database, whose
attribute values are exact. The uFUP algorithm extracts
frequent itemsets in an “Apriori” fashion: it utilizes a
bottom-up approach, where (k + 1)-PFlIs are generated
from k-PFIs. Moreover, it supports both attribute and tuple
uncertainty models. As shown in Figure 5, uFUP undergoes
three phases in the k-th iteration, starting from k = 1.

Algorithm uFUP

1) Candidate Generation. In the first iteration, size-1
itemsets that can be 1-PFIs are obtained, using the PFIs
discovered from D, as well as the delta database d. In
subsequent iterations, this phase produces size-(k+1)
candidate itemsets, based on the k-PFIs found in the
previous iteration. If no candidates are found, uFUP
halts.

2) Candidate Pruning. With the aid of d and the PFIs
found from D, this phase filters the candidate itemsets
that must not be a PFL.

3) PFI Testing. For itemsets that cannot be pruned, they
are tested to see whether they are the true PFls. This

7

involves the use of database D, as well as the s-pmfs
of PFIs on D.

Notice that in Phases 1 and 2, only d and the PFIs of D
are needed. Since these pieces of information are relatively
small in size (compared with D or DV), they are usually
not very expensive to evaluate. Phase 3 involves deriving
the s-pmfs of itemsets, with the use of D', and is thus
more expensive than other phases. If Phase 2 successfully
removes a lot of candidates from consideration, the cost of
executing Phase 3 can be reduced. This solution framework
can also be used to extract approximate PFIs, which will be
revisited in Section 7.

The above discussion is formalized in Algorithm 2, which
uses the databases D and d, as well as the set of exact PFIs
FP collected from D (e.g., using the method of [6]). The
output of uFUP is a set F'* of PFIs for D, where F* =
{F Fyf,...,F}l}, and F}f is the set of k-PFls for DF. Let
C; be a set of size-k candidates found from D*. Initially,
k = 1. Line 3 generates C;" (Phase 1). In the k-th iteration
(Lines 5-11), we first remove candidate itemsets that cannot
be k-PFIs, from C; (Line 5; Phase 2). If C}' is not empty,
we perform testing on these candidates, in order to find out
the true k-PFIs (i.e., F,j), in Line 7 (Phase 3). Line 10 then
generates size (k+1)-candidate itemsets by using the k-PFIs.
The whole process is repeated until no more candidates are
found. Line 12 returns the set of PFls of different sizes.

We next discuss the details of Phase 1, in Section 6.2.
Then, Sections 6.3 and 6.4 present Phases 2 and 3 respec-
tively. We discuss other issues of uFUP in Section 6.5.

k - PFls

Output all PFls
N

Size-k
Candidates

Candidate
Generation

Candidate
Pruning

Candidates|
>0?

PFI Testing

T Astlteration
1st Iteration -
‘ Old
ol Data[?ase
PFls

Fig. 5. Solution Framework for uFUP and uFUPapp.-

Algorithm 2: uFUP

Input: D, d, FP, minsup, minprob
Output: Exact PFls of D*: F* = {F}F F)f ..
set of k-PFIs

LERY /) FY s

1 begin

Ft =

C; .GenerateSingleton(d, F{);
k =1, while |C,j| #0 do
C,j.Prune(d, FP minsup);

if |C,7] # 0 then

‘ F,j — C,j.Test(D,d, FP, minsup, minprob);
else

| break;

Cf, | .GenerateCandidate(F}));
k=k+1;

12 | return FY = {FF FF L R L
13 end

O 0N S Ul RN

=
(=]

o=y
joy

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

6.2 Phase 1: Candidate Generation

We consider two cases of generating size-k candidate item-
sets in this phase: (1) £ =1 and (2) k£ > 1.

Case 1: k = 1. We invoke GenerateSingleton, in Line
3 of Algorithm 2. This subroutine simply returns the union
of all single items in d and the 1-PFIs of D (i.e., FP), as the
set of size-1 candidate itemsets (C;").

To understand why GenerateSingleton covers all
possible size-1 candidates, first notice that if an itemset is a
1-PFl in D, it should naturally be considered as a candidate
itemset in DT. We then claim that it suffices to include all
single items of d to C}", using the following lemma.

LEMMA 3: Suppose itemset I is not a PFI of D. If I does
not exist in any tuple of d, I is not a PFI of D*.

Proof: Since I is not a PFI in D, we have:

Prﬁeq(I) = Pr [sD(I) > msc(D)] < minprob (16)

If I does not exist in d, its s-pmf will not be changed in D™.
Thus,

Pr |:SD+ (I)> msc(D)} =Pr [sD(I) > msc(D)] 17)

Moreover, since msc(D') > msc(D), we obtain:
Pr [sD+ (1) > msc(D"')} < Pr {s[ﬁ (I) > msc(D)} (18)

Using Inequalities 16, 18 and Equation 17, we can deduce
that Pr{)* (I) < minprob. Thus, I cannot be a PFLin D*. []

Using Lemma 3, if a singleton I is not a 1-PFI in D, and
does not appear in d, then I must not be a 1-PFI in D*.
Thus, by including F” and all singletons in d as members
of C{", we will not miss any true size-1 candidate for D+.

Case 2: k > 1. We use the typical Apriori-gen
method [4] to generate size-k candidates from (k — 1)-PFIs.
Particularly, subroutine GenerateCandidate (Line 10 in
Algorithm 2) performs the following: for any two (k — 1)-
PFIs, I and I’, if there is only one item that differentiates
I from I, a candidate itemset I U I’ is produced. Using
Lemma 1 (Anti-Monotonicity), we can easily show that
GenerateCandidate produces all size-k candidates.

Next, we examine how some of the candidates generated
in this phase can be pruned.

6.3 Phase 2: Candidate Pruning

The goal of this phase is to remove infrequent itemsets from
a set of size-k candidates. In Line 5 of Algorithm 2, Prune
is used to remove itemsets from C;. To understand how

Prune works, we first present the following.
LEMMA 4: Any itemset I in DV satisfies:

Pr[sD+(I) <msc(D+)] > Pr[sD(I) <msc(D)] X Pr[sd(l) Smsc(d)]
(19)

This lemma, which relates the s-pmf of I in DT to those
in D and d, is used to prove Lemma 5 below. The detailed
proof of Lemma 4 can be found in Appendix B.

Let the number of tuples that contain I in d be ent?(I).
We use the following lemma for candidate pruning.

LEMMA 5: For any itemset I ¢ FP, if cnt?(I) < msc(d),
then I ¢ FT.

8

Proof: Since I is not a PFI in D, we have:

Pr[sP(I) < mse(D)] > 1 — minprob (20)
If ent?(I) < msc(d), then
Pr[s*(I) < msc(d)] =1 (21)

Using Lemma 4, as well as Equations 20 and 21, we have:

Pr |:SD+ (I)> msc(D+)}

1—Pr [slﬁ (I) < msc(DJr)}

< 1-Pr[sP(I) < mse(D)] x Pr[s*(I) < msc(d)]
< 1 —(1— minprob) = minprob
Thus, I is not a PFI in D™. |

Given an itemset I € C;/, Prune first checks if I is a
frequent itemset in D (i.e., I € FP). If this is false, and if
ent?(I) does not exceed msc(d), then I cannot be a PFI in
DT (Lemma 5), and I can be pruned. Notice that Prune
does not test I on D, which can be expensive. Instead, it
only computes cnt?(I), which can be obtained by scanning
d once. If n/, the size of d, is small, then getting ent?(I)
incurs a low cost. In this phase, pruning an itemset not in
FP costs O(n') times.

6.4 Phase 3: PFIl Testing

Given a set of candidate itemsets in C} not pruned in Phase
2, the objective of this phase is to verify whether these
candidates are really k-PFIs. In particular, the subroutine
Test (Line 7, Algorithm 2) is invoked to compute the s-
pmfs of these itemsets on D*. Once this is obtained, we
can easily verify whether these candidates are true k-PFls,
as discussed in the previous sections.

Although the approach of [6] can be used to compute the
s-pmf of an itemset I, this can be expensive, especially if
the size of DT is large. However, if we know that [is a
PFI in D, as well as its s-pmf in D, it is possible to derive
the s-pmf of I in D" without computing it from scratch.
The main idea is to modify the approach of [6], as outlined
below: for every tuple ¢; scanned from d, we evaluate the
probability Pr(I C t;), and then use this to update the s-
pmf of I through the use of the dynamic programming
method in [6]. This process goes on, until all tuples in d
are examined. Hence, the s-pmf of any itemset I € FP can
be obtained by scanning d once. This method is effective,
since if [is a PFI of D, it is highly likely that I will also be
a PFI of D". Although the time complexity of this phase is
still upper-bounded by the algorithm in [6] (i.e., O(n*?)),
its performance is practically improved, since the s-pmfs of
some candidates can be obtained faster.

6.5 Discussions

The uFUP algorithm supports both tuple and attribute
uncertainty models. First, the solutions presented in Phases
1 and 2 are not designed for any specific uncertainty model.
Second, Phase 3 computes the s-pmf of an itemset / by
using the probability value Pr(I C t;). As explained before,

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

Algorithm 3: uFUPapp

Input: D, d, FP, minsup, minprob
Output: Approximate PFls in D: F* = {F}t, F}f, .. F}}
1 begin
Ft =1
C; .GenerateSingleton(d, F°);
k=1;
tm (DT = MinExpSup(minsup, minprob, DT);
tm (D) = MinExpSup(minsup, minprob, D);
fm = i (DT) = p (D);
while |C}F| # 0 do
C;.Prune(d, FkD, Lm);
if |C;f| # 0 then
| Fif + Ct.test(D, d, FP, pm(D));
else
| break;
Cy . .GenerateCandidate(F}");
k=k+1;
16 | return F* = {FF FF . FD L
17 end

O 0 NS Ul R W N

e e e
B W N R o

-
o

this quantity can be obtained through Equation 3 (for at-
tribute uncertainty) and Equation 4 (for tuple uncertainty).
Hence, uFUP can be used in both models.

Our experiments reveal that for mining exact PFls on
evolving data, uFUP outperforms the algorithm mentioned
in [6]. However, testing an itemset in uFUP still requires
O(n+2) time. Moreover, Phase 3 needs the s-pmf informa-
tion of all PFIs found in D. Since storing a s-pmf needs a
cost of O(n), the space cost consumed by Phase 3 can be
enormous if there are many PFIs in D. We next examine
how these problems can be alleviated.

7 APPROXIMATE INCREMENTAL MINING

As discussed before, our model-based algorithm enables
PFIs to be accurately and quickly discovered. We now
investigate how to extend it to retrieve PFlIs from evolving
data. We call this extension the approximate uncertain Fast
UPdate algorithm (or uFUPzpp in short).

The uFUPapp algorithm adopts the framework of urup,
as illustrated in Figure 5. Algorithm 3 describes the details.
In Line 3, the candidates in C; are generated (Phase 1).
In Lines 5-7, the parameter values used for pruning are
computed. (We will explain this later.) In the k-th iteration
(Lines 8-15), some candidates in the set C;r are pruned
(Phase 2; Line 9), while the remaining ones are tested (Phase
3; Line 11). In Line 14, size-(k +1) candidates are generated
by using the k-PFIs found. When no more candidates are
left (Line 8), the algorithm outputs F*, which contains PFIs
of different sizes (Line 16).

Phase 1 of uFUPapp is the same as that of uFUP;
particularly, the details of GenerateSingleton and
GenerateCandidate can be found in Section 6.2. In the
rest of this section, we focus on Phase 2 (candidate pruning)
and Phase 3 (PFI testing). Sections 7.1 and 7.2 present the
details of these phases. We address other issues of uFUPapp
in Section 7.3.

9

7.1 Phase 2: Candidate Pruning

To facilitate our discussions, let u/(DB) be the expected
value of random variable X! in DB, where DB is any of the
database D, d, or DF. Also, let ju,,, (DB) be a real value that
satisfies Equation 11 in DB. We first present the following
theorem.

THEOREM 3: Consider an itemset I that is not a PFI
in D. Then I is a PFl in DT only if u/(d) > pu,,, where
fim = Hm (D) = pim (D).

Proof: Since I is not a PFI, we have:

p! (D) < pin(D), ie., pn(D) — p' (D) > 0.

From Equation 9, we have:

'n,+ n /",+
p'(DY) = "ph=> "pi+ Y pi=p'(D)+p'(d) (22)
j=1 j=1

j=(nt1)
So, if I is a PFI in D, then:
p (D) > (DY)
p'(D)+p'(d) = py + p(D)
,ul(d) — B = Hm(D) — ﬂI(D) >0
Therefore, u'(d) > u,,.

L1
This theorem is used by Phase 2. In Algorithm 3, lines 5-
7 compute the value of p.,. (The subroutine MinExpSup
evaluates Equation 11). Then, in Line 9, subroutine Prune
uses Theorem 3 to remove candidates that are not PFIs in
D, and whose ! (d) values do not exceed p,,,. Since Prune
needs to scan d once to obtain p!(d), the cost of pruning an
itemset is O(n/).

7.2 Phase 3: PFI Testing

The objective of this phase is to verify whether an itemset
in C’,j is a true k-PFL In particular, subroutine Test (Line
11, Algorithm 3) is invoked to perform this task: for each
itemset I, it first computes pf (D). If this value is not less
than p,,,(D*), I is judged to be a PFI of DT. The rationale
behind this process can be found in Section 5.1.

A simple way of computing p/ (D) is to scan the tuples
in D' once. This can be costly, if many candidates need
to be tested. Similar to the Phase 3 of uFUP, it is possible
to improve the performance of this process, by using the
PFI information of D. Suppose we know the u/(D) value
of an itemset I, which is a PFI of D. We first evaluate
p!(d), by scanning d once. The value of u/ (D) can be then
obtained by adding these two values together (based on
Equation 22). If d is small, scanning tuples in d is fast, and
so computing p/(DT) can be more efficient. In uFUPapyp,
we save the p/(D) values of all the PFIs discovered in D,
so that they can later be used to derive PFIs for D™.

7.3 Discussions

Since the model-based approach supports both tuple and
attribute uncertainty (Section 4), the uFUPapp algorithm,
which adopts the model-based approach, can also be used
in both data models. We also remark that uFUPapp is
generally faster than uFUP, since less time is needed to test

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

approximate PFIs than exact PFIs. Moreover, in Phase 3,
while uFUP has to store the complete s-pmf for every PFI
found from D, uFUPapp only stores a single value, ut(D),
for every PFI I. Hence, uFUPapp needs less space than
uFUP. Our experiments, described next, show that uFUPapp
is highly efficient and accurate.

Tuple deletion. We now discuss briefly how tuple dele-
tion can be handled in evolving databases. Suppose that
a set of tuples 6 C D is removed from D, resulting in
database D~. Inspired by [12], we notice that an analogy
to Theorem 3 can be deduced, with a similar proof:

THEOREM 4: Consider an itemset [that is not a PFI
in D. Then, I is a PFI in D~ only if u/(6) < u, where
1ty = ttm (D) = pm (D 7).

This can be used to handle tuple deletions efficiently, in a
way analogous to the application of Theorem 3 in algorithm
UFUPapp.

8 RESULTS

We now present the experimental results on two datasets.
The first one, called accidents, comes from the Frequent
Itemset Mining (FIMI) Dataset Repository!. This dataset is
obtained from the National Institute of Statistics (NIS) for
the region of Flanders (Belgium), for the period of 1991-
2000. The data are obtained from the ‘Belgian Analysis
Form for Traffic Accidents’, which are filled out by a police
officer for each traffic accident occurring on a public road
in Belgium. The dataset contains 340,184 accident records,
with a total of 572 attribute values. On average, each record
has 45 attributes. We use the first 10k tuples as our default
dataset. The default value of minsup is 20%. To test the
incremental mining algorithms, we use the first 10k tuples
as the old database D, and the subsequent tuples as the
delta database d. The default size of d is 5% of D.

The second dataset, called T10/4D100k, is produced by
the IBM data generator?. The dataset has a size n of 100k
transactions. On average, each transaction has 10 items,
and a frequent itemset has four items. Since this dataset is
relatively sparse, we set minsup to 1%. For the experiments
on incremental mining algorithms, we use the first 90k
tuples as D, and the remaining 10k tuples as d.

For both datasets, we consider both attribute and tuple
uncertainty models. For attribute uncertainty, the existential
probability of each attribute is drawn from a Gaussian
distribution with mean 0.5 and standard deviation 0.125.
This same distribution is also used to characterize the ex-
istential probability of each tuple, for the tuple uncertainty
model. The default value of minprob is 0.4. In the results
presented, minsup is shown as a percentage of the dataset
size n. Notice that when the values of minsup or minprob
are large, no PFlIs can be returned; we do not show the
results for these values. Our experiments were carried out
on the Windows XP operating system, on a machine with a
2.66 GHz Intel Core 2 Duo processor and 2GB memory. The
programs were written in C and compiled with Microsoft
Visual Studio 2008.

1. http://fimi.cs.helsinki.fi/
2. http:/ /www.almaden.ibm.com/cs/disciplines/iis/

10

We first present the results on the real dataset. Section 8.1
describes the results for mining threshold-based PFIs for
attribute-uncertain data. In Section 8.2, we present the
results for incremental mining algorithms. We summarize
the results for tuple-uncertain data and synthetic data, in
Section 8.3.

8.1

We now compare the performance of three PFI mining
algorithms mentioned in this paper: (1) DP, the Apriori al-
gorithm used in [6]; (2) MB, the modified Apriori algorithm
that employs the PFI testing method (Section 5.1); and (3)
MBP, the algorithm that uses the improved version of the
PFI testing method (Section 5.2).

(i) Accuracy. Since MB approximates s-pmf by a Poisson
distribution, we first examine its accuracy with respect to
DP, which yields PFIs based on exact frequentness proba-
bilities. Here, we use the standard recall and precision mea-
sures [7], which quantify the number of negatives and false
positives. Specifically, let Fpp be the set of PFIs generated
by DP, and Fyp be the set of PFls produced by MB. The
recall and the precision of MB, relative to DP, are defined as
follows:

Results on Threshold-based PFI Mining

|[Fbp N Fuyg|
= ——— 23
reca Forl (23)
Fpp N F;
precision = |DrEV[B|MB| (24)

In these formulas, both recall and precision have values
between 0 and 1. Also, a higher value reflects a better
accuracy.

Table 4 shows the recall and the precision of MB, for a
wide range of minsup, n and minprob values. As we can
see, the precision and recall values are always higher than
98%. Hence, the PFls returned by MB are highly similar to
those returned by DP. Since MBP returns the same PFls as
MB, it is also highly accurate.

TABLE 4
Recall and Precision of MB

minsup 0.1 0.2 0.3 0.4 0.5
Recall 1 1 1 1 1
Precision | 0.997 1 1 1 1
(a) Recall & Precision vs. minsup
minprob 0.1 0.3 0.5 0.7 0.9
Recall 1 1 1 1 1

Precision | 0.986 1 0.985 1 1
(b) Recall & Precision vs. minprob
n 1k 4k 10k 50k | 100k
Recall 1 1 1 1 1
Precision | 0.987 | 0.988 1 1 1

(c) Recall & Precision vs. n

Std. Dev. | 0.125 | 0.25 \/1/12 0.5 1.0
Recall 1 1 1 1 1
Precision | 0.986 | 0.986 1 1 1

(d) Recall & Precision vs. Standard Deviation

(ii) MB vs. DP. Next, we compare the performance (in
log scale) of MB and DP, in Figure 6(a). Observe that MBis
about two orders of magnitude faster than DP, over a wide
range of minsup. This is because MB does not compute exact

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

a
=]
=3

11

1.E+03 1.E+03
— E =
2 2 400 T
S 1.E402 o S 1E+02 77707001 0 cr0 0 0 -
o o -o-DP o
o 5 300 $ --DP
= 1.E+01 P —+—MB —~ 1.E+01
@ @ [—+— MB
£ 9 200 g
= £ =
< 1.E+00 E] € 1.E+00
S = 100 S
13 [

1.E-01 - - - [! ? i 1B +———

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 01 02 03 04 05 06 07 08 09
minsup minsup minprob

(a) Runtime vs. minsup

Fig. 6. Efficiency of MB vs. DP

frequentness probabilities as DP does; instead, MB only com-
putes the p! values, which can be obtained faster. We also
notice that the running times of both algorithms decrease
with a higher minsup. This is explained by Figure 6(b),
which shows that the number of PFls generated by the
two algorithms, | PFI|, decreases as minsup increases. Thus,
the time required to compute the frequentness probabilities
of these itemsets decreases. We can also see that |PFI| is
almost the same for the two algorithms, reflecting that the
results returned by MB closely resemble those of DP.

Figure 6(c) examines the performance of MB and DP (in
log scale) over different minprob values. Their execution
times drop by about 6% when minprob changes from 0.1
to 0.9. We see that MB is faster than DP. For instance, at
minprob = 0.5, MB needs 0.3 seconds, while DP requires
118 seconds, delivering an almost 400-fold performance
improvement.

(iii) MB vs. MBP. We then examine the benefit of using
the improved PFI testing method (MBP) over the basic
one (MB). Figure 7(a) shows that MBP runs faster than MB
over different minsup values. For instance, when minsup =
0.5, MBP addresses an improvement of 25%. Moreover, as
minsup increases, the performance gap increases. This can
be explained by Figure 7(b), which presents the fraction of
the database scanned by the two algorithms. When minsup
increases, MBP examines a smaller fraction of the database.
For instance, at minsup = 0.5, MBP scans about 80% of
the database. This reduces the I/O cost and the effort for
interpreting the retrieved tuples. Thus, MBP performs better
than MB.

0.8 -
1 X CETTIIT i
s o\ _ X >4 S -
c) 8 S
g 06 5o
(%] B °
) o
©» 05 £ 06
s =" - MB
£ 03+ @
c a
X~

3 8,. ~MBP

0.1 . . . 0 w ‘ i

01 02 03 0.4 05 0.4 0.2 03 0.4 05

minsup minsup

(a) Runtime vs. minsup (b) DB Scanned(%) vs. minsup
Fig. 7. Efficiency of MBP vs. MB

(iv) Scalability. Figure 8(a) examines the scalability of the
three algorithms. Both MB and MBP scale well with n. The
performance gap between MB/MBP and DP also increases
with n. At n = 20k, MB and DP need 0.62 seconds and
657.7 seconds respectively; at n = 100k, MB finished in 3.1
seconds while DP spends 10 hours. Hence, the scalability of
our approaches is better than that of DP.

(b) |PFI| vs. minsup

(c) Runtime vs. minprob

1.E+04

1.E+06
< 1.E+05
S 1.E+04
8 1.E+03
o 1:E+02]
E 1.E+01
T 1.E+00
1.
@ 1.E-01
1.E-02 4 ! !
0 50 100

1.E+03

1.E+02

1.E+01

1.E+00

Runtime (second)

1.E-01 +=
G0 G1

G2 G3 G4 G5 Un
Prob. Distributions

150 200 250 300
n (k)

(a) Scalability (b) Prob. Distributions
Fig. 8. Other Results for Threshold-Based PFls

TABLE 5
Existential Probability (Experiment (v))

Distribution | Mean | Standard Deviation
Go 0.8 0.125
G1(default) 0.5 0.125

Go 0.5 0.25

Gs 0.5 V/1/12 ~ 0.289
Gy 0.5 0.5

Gs 0.5 1.0

Un 0.5 /1/12 ~ 0.289

(v) Existential probability. We also examine the effect of
using different distributions to characterize an attribute’s
probability, in Figure 8(b). We use Un to denote a uniform
distribution, and G; (1 = 0,...,5) to represent a Gaussian
distribution. The details of these distributions are shown in
Table 5. We observe that MB and MBP perform consistently
better than DP over different distributions. All algorithms
run comparatively slower on Gy. This is because G has
high mean (0.8) and low standard deviation (0.125), which
generates high existential probability values. As a result,
many candidates and PFls are generated. Also note that G
and Un, which have the same mean and standard deviation,
yield similar performance. Table 4(d) gives the accuracy for
G, ..., G5, which are Gaussian distributions with mean 0.5
and various standard deviations. We see that MB shows little
variation in accuracy, which remains high (> 98%), over the
various distributions. We also found that the precision and
recall of MB and MBP over these distributions are the same,
and are close to 1. Hence, the PFIs retrieved by our methods
closely resemble those returned by DP.

8.2 Results on Incremental PFl Mining

We now examine the performance of our incremental
mining algorithms on attribute-uncertain data. For these
algorithms, we assume that the PFIs for the old database
D have already been obtained by some PFI mining algo-
rithm, which can be used to discover the PFIs for the new

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

database D*. We compare them with the non-incremental
counterparts, DP and MB. These algorithms are run directly
on DT to obtain PFIs.

(vi) uFUP vs. DP. We first compare the performance of
uFUP and DP. Notice that both methods produce exact
threshold-based PFIs on D*. Figure 9(a) illustrates the
result over different minsup values. We observe that uFUP is
faster than DP. For example, at minsup = 0.2, the improve-
ment is 37.5%. This is because uFUP does not generate PFIs
from scratch; instead, it uses the PFIs of D to derive the
new PFIs in D*. Since most of the PFIs for D and D™ are
similar, only a few candidates need to be tested. Figure 9(b)
shows the performance of these algorithms over different
sizes of the delta database (d), from 1% to 10% of the size
of D. Their running times increase with d, since more effort
needs to be spent on retrieving candidates from d. As we
can see, uFUP is consistently better than DP; for instance,
when n’ is 5% of n, the improvement is 33%.

300
T 250
Q -
Q2000 iiigi.i0meOrae0m0 T 0T

1 2 150 |

B Q M

] § 100

] 5 -o-DP

1 © 50 -~ uFUP

0 T T T 0 T T T T
0.1 0.2 0.3 0.4 0.5 0.01 0.03 0.05 0.07 0.09
minsup n'/n

(a) Runtime vs. minsup
Fig. 9. Efficiency of urup vs. DP

(b) Runtime vs. n'/n

(vii) uFUPapp vs. MB. We next compare uFUPgpp and
MB, which both yield approximate PFIs. Figure 10(a) shows
that uFUPpp is faster than MB over different minsup values.
For instance, at minsup = 0.2, uFUPapp finished in only
0.078 seconds, giving an almost 5-fold improvement over
that of MB, which completes in 0.378 seconds. As we can
see in Figure 10(b), uFUPapp outperforms MB over different
sizes of d. Figure 10(c) examines the algorithms under a
wide range of minprob values. Again, uFUPapp runs faster
than MB. Figure 10(d) examines the effect of using different
probability distributions on the attribute uncertainty model.
The details are of these distributions are listed in Table 5. We
can see that uFUPapp performs better than MB over different
types of distributions. The consistently high performance
gain demonstrated by uFUPapp can be explained by: 1)
the pruning method used by uFUPzpp removes many
candidate itemsets, so that only a few of them need to be
tested; and 2) the old PFI results of D are effectively used,
so that the time for scanning D is significantly reduced.

(viii) uFUPapp vs. uFUP. Figure 11 compares uFUPapp
and uFUP over different values of minsup and n'/n. We
can see that uFUPapp performs better than uFUP, by two
to three orders of magnitude. This shows that our way
of adapting MB to devise an incremental mining algorithm
(UFUPapp) is highly effective.

(ix) Accuracy. Table 6 compares the recall and the pre-
cision of uFUPapp relative to that of uFUP. Here, we use
Equations 23 and 24; in particular, DP and MB are substituted
by uFUP and uFUPapp respectively. We can see that the
recall and the precision values are always higher than 98%.

12
0.9 5 0.5
~ 0.8 —_
2oz -+—MB Bos | Ny
806 -x-uFUP_app 3
Q 0.3
805 o
© 0.4 o -+ MB
Eos £ -x- uFUP_app
502 S o1
o4 ekl [I R TR SRR SRRVl cante
0 E——— rroeoroe ESEEELELE 0 ‘ ‘ ‘ ‘
0.1 0.2 03 0.4 05 001 003 005 007 009
minsup n'/n
(a) Runtime vs. minsup (b) Runtime vs. n'/n
05 1.E+01
5 2 MB
2 0.4 £
—_
§ 9 1.E+00 OuFUP_app
03 -
o - UFUP o
£ 02 “X-u _app
£ £ 1E01
S 0.1 S
[v4 .---><-~--><.A..A><_44__><__,.A><_,___X“”_X___ x
0 - - - - - - - 1.E-02
01 02 03 04 05 06 07 08 09 G0 GI G2 G3 G4 G5 Un

Prob. Distributions

minprob

(c) Runtime vs. minprob (d) Prob. Distributions
Fig. 10. Efficiency of uFUPapp Vs. MB

1.E+03

1.E+03

T 1E+02 T 1E+02

4] o

o o

9 1.E+01 9 1.E+01 -

° ——uFUP ° —~ uFUP

E 1.E+00 -x- uFUP_app E 1.E+00 1 -x- uFUP_app

€ € -

2 1Eo B VEOT] e g e

1.E-02 + T T T 1.E-02 - - - -
0.1 0.2 0.3 0.4 0.5 0.01 0.03 0.05 0.07 0.09
minsup n'/n

(a) Runtime vs. minsup (b) Runtime vs. n’/n
Fig. 11. Efficiency of uFUPapp vS. uFUP

We have also compared the accuracies for different existen-
tial probability distributions given in Table 5 and found
that the standard deviation of Gaussian distribution has
little effect on the accuracy. Hence, uFUPapp can accurately
maintain PFIs for evolving data.

TABLE 6
Recall and Precision of uFUPzpp

minsup 0.1 0.2 0.3 0.4 0.5
Recall 1 1 1 1 1
Precision | 0.998 1 1 1 1
(a) Recall & Precision vs. minsup
minprob 0.1 0.3 0.5 0.7 0.9
Recall 1 1 1 0.970 1
Precision | 0.986 1 1 1 1
(b) Recall & Precision vs. minprob
n 1k 5k 10k 50k 100k
Recall 1 1 1 1 1
Precision 1 1 1 1 0.985
(c) Recall & Precision vs. n
n'/n 0.01 | 0.03 | 0.05 | 0.07 0.09
Recall 1 1 1 1 1
Precision 1 1 1 1 1
(d) Recall & Precision vs. n’

8.3 Other Experiments

We have also performed experiments on the tuple un-
certainty model and the synthetic dataset. Since they are
similar to the results presented above, we only describe
the most representative ones. For the accuracy aspect, the

1.E+04

1.E+02

1.E+01

Runtime (second)

1.E+00

1.E-01 +

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

1E+03 4.

0.2

0.3

0.4

0.5

Runtime (second)

1E+04 v o

1.E+03

1.E+02

1.E+01

1.E+00 -+

-o-DP

——uFUP
—+MB
as uFUP_a}pp}

e e e X e X

VSRV

1.E+01

- STREAM

1.E-02 SRS

X UFUP _app

0.01

0.03 0.05

n'/n

0.07

0.09

0.01 0.03 0.05

n'/n

0.07 0.09

1.E+04

13

1E+01 o

) T

5 S 1.E+03

Q 1.E+00 M 8 -+ STREAM+DP

f:’ 2 1Es02 | —~-uFUP
~-uFUP £ -x-uFUP_a

£ 1501 u £ -app

s s

[[

1.E+00

B CEE O SR L SR SRR S SR

0.01

0.05 0.07 0.09

n'/n

0.03

minsup

(a) Runtime vs. minsup (b) Runtime vs. n'/n

Fig. 12. Tuple Uncertainty

recall and precision values of approximate results on these
datasets are still higher than 98%. Thus, our model-based
approaches can return accurate results.

Tuple uncertainty. We compare the performance of DP,
TODIS, MB, and MBP in Figure 12(a). Here, TODIS is pro-
posed in [30], for retrieving exact threshold-based PFls from
tuple-uncertain data. We can see that both MB and MBP
perform much better than DP and TODIS, under different
mansup values. When minsup = 0.3, MB needs 1.6 seconds,
but DP and TODIS complete in 581 and 81 seconds respec-
tively. Figure 12(b) compares the algorithms under different
sizes of d. Similar to the results for attribute uncertainty,
uFUP (uFUPapp) performs better than DP (respectively MB).
Moreover, uFUPapp outperforms uFUP by more than three
orders of magnitude. Hence, our algorithms also work well
for tuple-uncertain databases.

In [35], an algorithm for finding heavy hitters from prob-
abilistic data streams was proposed. We develop a variant
of that algorithm, which we call STREAM, as another exact
incremental mining algorithm for finding 1-PFIs. The details
of STREAM can be found in Appendix C. Figure 12(c)
studies the performance of incremental mining algorithms
for finding 1-PFls. STREAM performs better than uFUP,
because STREAM maintains the s-pmfs for all candidate 1-
PFIs, which can be updated easily upon the arrival of new
transactions. On the other hand, uFUP only keeps the s-
pmfs of 1-PFIs of D. For new candidate PFIs that appear
in D' but not D, uFUP has to compute their s-pmfs by
scanning D", which can be costly. Observe that UFUPapp
is much faster than STREAWM, since it does not compute the
exact s-pmf information. We further found that the 1-PFIs
returned by uFUPapp are the same as those generated by
STREAM. We remark that while STREAM only returns 1-PFIs,
both uFUP and uFUPapp can generate PFls of any size.

Therefore, we have designed STREAM+DP, which first
finds 1-PFls with STREAM and then feeds the 1-PFIs to DP
to find all other PFIs. Figure 12(d) shows that STREAM+DP
is not as efficient as uFUP nor uFUPgpp. The reason is that
finding 1-PFIs constitutes only a small portion of time in
finding all PFIs. Although STREAM performs well in finding
1-PFIs, having to find the remaining PFIs with DP makes
STREAM+DP inefficient.

Synthetic Dataset. Finally, we test our algorithms on a
synthetic dataset. Figure 13(a) compares the performance
of MB, MBP, and DP, for the attribute uncertainty model.
We found that MB and MBP outperform DP. Figure 13(b)
compares the performance of DP, MB, uFUP, and uFUPapp
for tuple uncertainty. We can see that the incremental min-

(c) Mining 1-PFIs vs. STREAM (d) Comparison with STREAM+DP

ing algorithms perform better than their non-incremental
counterparts. We also observe that uFUPapp runs faster
than uFUP, by more than one order of magnitude. Hence,
our model-based incremental mining algorithm also works
well for this dataset.

1.E+03 1.E+03

_ _ O e 0 n OO OO
e B 1.6+02
S S
8 1.E402] .
3 k3 1.E+01 H————
Q Q
1.E+00 |
E 1 Es01 £ e LN b}
5 S 1E01] —~-uFUP
x x —+M
v
1.£+00 - ‘ ‘ 1.E-02 ‘ ‘ uFUP_a
0.01 0.02 0.03 0.04 001 003 005
minsup n'/n

(a) Runtime vs. minsup

Fig. 13. Synthetic Data

(b) Runtime vs. n'/n

9 CONCLUSIONS

In this paper, we propose a model-based approach to extract
threshold-based PFIs from large uncertain databases. Its
main idea is to approximate the s-pmf of a PFI by some
common probability model, so that a PFI can be verified
quickly. We also study two incremental mining algorithms
for retrieving PFIs from evolving databases. Our experi-
mental results show that these algorithms are highly effi-
cient and accurate. They support both attribute- and tuple-
uncertain data. We will examine how to use the model-
based approach to develop other mining algorithms (e.g.,
clustering and classification) on uncertain data. It is also
interesting to study efficient mining algorithms for handling
tuple updates and deletion. Another interesting work is to
investigate PFI mining algorithms for probability models
that capture correlation among attributes and tuples.

REFERENCES

[1] Adriano Veloso and Wagner Meira Jr. and Marcio de Carvalho and
Bruno Possas and Srinivasan Parthasarathy and Mohammed Javeed
Zaki. Mining Frequent Itemsets in Evolving Databases. In SDM, 2002.

[2] C. Aggarwal, Y. Li,]. Wang, and J. Wang. Frequent pattern mining
with uncertain data. In KDD, 2009.

[3] C. Aggarwal and P. Yu. A survey of uncertain data algorithms and
applications. TKDE, 21(5), 2009.

[4] R. Agrawal, T. Imielifiski, and A. Swami. Mining association rules
between sets of items in large databases. In SIGMOD, 1993.

[5] O. Benjelloun, A. D. Sarma, A. Halevy, and J. Widom. ULDBs:
databases with uncertainty and lineage. In VLDB, 2006.

[6] T. Bernecker, H. Kriegel, M. Renz, E. Verhein, and A. Zuefle. Prob-
abilistic frequent itemset mining in uncertain databases. In KDD,
20009.

[7] C.]J. van Rijsbergen. Information Retrieval. Butterworth, 1979.

(8]
(9]

[10]

[11]

(12]
(13]
[14]
(15]
(16]
(17]
(18]
(19]

[20]

[21]

[22]

(23]
[24]
[25]
[26]
[27]

[28]

[29]
[30]
(31]
[32]

(33]

[34]

[35]

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

L. L. Cam. An approximation theorem for the Poisson binomial
distribution. In Pacific Journal of Mathematics, volume 10, 1960.

H. Cheng, P. Yu, and J. Han. Approximate frequent itemset mining in
the presence of random noise. Soft Computing for Knowledge Discovery
and Data Mining, pages 363-389, 2008.

R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluating probabilistic
queries over imprecise data. In SIGMOD, 2003.

D. Cheung, J. Han, V. Ng, and C. Wong. Maintenance of Discovered
Association Rules in Large Databases: An Incremental Updating
Technique. In ICDE, 1996.

D. Cheung, S. D. Lee, and B. Kao. A General Incremental Technique
for Maintaining Discovered Association Rules. In DASFAA, 1997.
W. Cheung and O. R. Zaiane. Incremental mining of frequent patterns
without candidate generation or support constraint. In IDEAS, 2003.
C. K. Chui, B. Kao, and E. Hung. Mining frequent itemsets from
uncertain data. In PAKDD, 2007.

G. Cormode and M. Garofalakis. Sketching probabilistic data streams.
In SIGMOD, 2007.

N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic
databases. In VLDB, 2004.

A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong.
Model-driven data acquisition in sensor networks. In VLDB, 2004.
J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. In SIGMOD, 2000.

J. Huang et al. MayBMS: A Probabilistic Database Management
System. In SIGMOD, 2009.

R. Jampani, L. Perez, M. Wu, E. Xu, C. Jermaine, and P. Haas. MCDB:
A Monte Carlo Approach to Managing Uncertain Data. In SIGMOD,
2008.

Jiangtao Ren and Sau Dan Lee and Xianlu Chen and Ben Kao and
Reynold Cheng and David W. Cheung. Naive Bayes Classification of
Uncertain Data. In ICDM, 2009.

N. Khoussainova, M. Balazinska, and D. Suciu. Towards correcting
input data errors probabilistically using integrity constraints. In
MobiDE, 2006.

H. Kriegel and M. Pfeifle. Density-based clustering of uncertain data.
In KDD, 2005.

C. Kuok, A. Fu, and M. Wong. Mining fuzzy association rules in
databases. SIGMOD Record, 27(1):41-46, 1998.

C. K.-S. Leung, Q. I. Khan, and T. Hoque. Cantree: A tree structure
for efficient incremental mining of frequent patterns. In ICDM, 2005.
A. Ly, Y. Ke, J. Cheng, and W. Ng. Mining vague association rules.
In DASFAA, 2007.

M. Mutsuzaki et al. Trio-one: Layering uncertainty and lineage on a
conventional dbms. In CIDR, 2007.

P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Querying the
uncertain position of moving objects. In Temporal Databases: Research
and Practice. Springer Verlag, 1998.

C. Stein. Approximate Computation of Expectations. Institute of
Mathematical Statistics Lecture Notes - Monograph Series, 7, 1986.

L. Sun, R. Cheng, D. W. Cheung, and]. Cheng. Mining Uncertain
Data with Probabilistic Guarantees. In SIGKDD, 2010.

T. Jayram et al. Avatar information extraction system. IEEE Data Eng.
Bulletin, 29(1), 2006.

S. Tsang, B. Kao, K. Y. Yip, W.-S. Ho, and S. D. Lee. Decision Trees
for Uncertain Data. In ICDE, 2009.

L. Wang, R. Cheng, S. D. Lee, and D. Cheung. Accelerating proba-
bilistic frequent itemset mining: A model-based approach. In CIKM,
2010.

M. Yiu, N. Mamoulis, X. Dai, Y. Tao, and M. Vaitis. Efficient
evaluation of probabilistic advanced spatial queries on existentially
uncertain data. TKDE, 21(9), 2009.

Q. Zhang, E. Li, and K. Yi. Finding frequent items in probabilistic
data. In SIGMOD, 2008.

Liang Wang received the B.Eng. degree in com-
puter science from Shanghai Jiaotong University in
2008 and the M.Phil. degree majoring in computer
science from the University of Hong Kong in 2011.
His research interest is uncertain database, data
mining and data management. Now, He is a soft-
ware engineer at Microsoft Corporation.

14

David Wai-lok Cheung received the M.Sc. and
Ph.D. degrees in computer science from Simon
Fraser University, Canada, in 1985 and 1989, re-
spectively. Since 1994, he has been a faculty mem-
ber of the Department of Computer Science in The
University of Hong Kong. His research interests in-
clude database, data mining, database security and
privacy. Dr. Cheung was the Program Committee
Chairman of PAKDD 2001, Program Co-Chair of
PAKDD 2005, Conference Chair of PAKDD 2007
and 2011, Conference Co-Chair of CIKM 2009 and
Conference Co-Chair of PAKDD 2011.

Reynold Cheng received the BEng degree in com-
puter engineering and the MPhil in computer sci-
ence and information systems from the University
of Hong Kong (HKU) in 1998 and 2000, respectively,
and the MSc and PhD degrees from the Department
of Computer Science, Purdue University, in 2003
and 2005, respectively. He is an assistant professor
in the Department of Computer Science at HKU. He
was the recipient of the 2010 Research Output Prize
in the Department of Computer Science of HKU.
From 2005 to 2008, he was an assistant professor in
the Department of Computing at Hong Kong Polytechnic University, where
he received two Performance Awards. He is a member of IEEE, ACM, ACM
SIGMOD, and UPE. He has served on the program committees and review
panels for leading database conferences and journals. He is also a guest
editor for a special issue in TKDE. His research interests include database
management, as well as querying and mining of uncertain data.

Sau Dan Lee is a Post-doctoral Fellow at the Uni-
versity of Hong Kong. He received his Ph.D. de-
gree from the University of Freiburg, Germany in
2006 and his M.Phil. and B.Sc. degrees from the
University of Hong Kong in 1998 and 1995. He is
interested in the research areas of data mining,
machine learning, uncertain data management and
information management on the WWW. He has also
designed and developed backend software systems
for e-Business and investment banking.

Xuan S. Yang received the BSci degree in computer
science from Fudan University in 2009. He is now
a Ph.D. student in HKU under the supervision of
Dr. Reynold Cheng and Prof. David Cheung. His
research interests include uncertain data manage-
ment, data cleaning and web data mining.

