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ABSTRACT
In social tagging systems, resources such as images and videos are
annotated with descriptive words called tags. It has been shown that
tag-based resource searching and retrieval is much more effective
than content-based retrieval. With the advances in mobile technol-
ogy, many resources are also geo-tagged with location information.
We observe that a traditional tag (word) can carry different seman-
tics at different locations. We study how location information can
be used to help distinguish the different semantics of a resource’s
tags and thus to improve retrieval accuracy. Given a search query,
we propose a location-partitioning method that partitions all lo-
cations into regions such that the user query carries distinguish-
ing semantics in each region. Based on the identified regions, we
utilize location information in estimating the ranking scores of re-
sources for the given query. These ranking scores are learned using
the Bayesian Personalized Ranking (BPR) framework. Two algo-
rithms, namely, LTD and LPITF, which apply Tucker Decomposi-
tion and Pairwise Interaction Tensor Factorization, respectively for
modeling the ranking score tensor are proposed. Through experi-
ments on real datasets, we show that LTD and LPITF outperform
other tag-based resource retrieval methods.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval models

General Terms
Algorithms, Experimentation, Performance

Keywords
ranking, resources recommendation, location-sensitive

1. INTRODUCTION
In a social tagging system (e.g., Flickr and YouTube), resources

(e.g., photos and videos) are often annotated with descriptive words
called tags. Previous studies have shown that searching resources
based on their tags leads to very effective and accurate resource re-
trieval [2, 6]. However, in some cases, tags are ambiguous. For
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example, the word mouse could refer to an animal, a cartoon char-
acter (Mickey), or a computer peripheral device. Tag ambiguity
lowers the effectiveness of tag-based search. Over the years, re-
searchers have spent much effort in proposing techniques to deal
with the tag-ambiguity problem [3, 5].

With the advances in mobile technology and the global posi-
tioning system (GPS), resources, especially images and videos, are
geo-tagged with location information. Our observation is that re-
sources’ location information often provides useful hints in iden-
tifying the semantics of their tags. As an example, consider a set
of photos that are tagged with the tag “sand”. Depending on the
locations at which these photos were taken, the semantics of the
tag could be inferred. For example, the tag “sand” of a photo taken
in the Sahara very likely refers to the concept “desert”; for pho-
tos taken in Hawaii and Singapore, the same tag probably refers
to “beach” and the casino hotel “Marina Bay Sands”, respectively.
The semantics of a user query can likewise be inferred. For ex-
ample, a user located in the Sahara who issues the query “sand” is
probably looking for photos of the desert.

In the above example, we suggested that the semantics of a tag
or a query could be deduced by the region in which the resource
was obtained or the query issuer was located. Intuitively, a region
is a set of locations within which a tag or a query carries a unique
distinguishing meaning. An interesting question is how these re-
gions (such as The Sahara, Hawaii, and Singapore) be automati-
cally identified. We remark that different tags induce different par-
titionings of the world into regions: while there are multiple re-
gions for the tag “sand”, there are two regions for the tag “football”
(American football in North America and soccer anywhere else in
the world), and there is only one region (the whole world) for a
tag that refers to some globally known concept, such as “iPhone”.
Another interesting question is if regions with respect to tags and
queries could be identified, how could this information be lever-
aged in order to achieve good resource retrieval results.

The objective of this paper is to address the above two questions.
First, given a tag t, we identify the regions induced by t by using
machine learning techniques to train a function ft(l), which maps
a location l into a region. Second, given a query q issued by a user
located at location l, we estimate the ranking scores of resources
with respect to q. We extend the BPR framework [9] to include
region information in the score estimation. As we will see later in
Section 5, our solutions lead to very good resource retrieval results.
Here, we summarize our contributions:

• We propose an algorithm for computing the region mapping
function ft(l).

• We propose algorithms for estimating the ranking scores of
resources with respect to a query.
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• We perform an extensive experiment using real datasets to
evaluate the performance of our algorithms in terms of re-
source retrieval effectiveness.

2. RELATED WORK
LSI is a popular semantic analysis technique that has proven to

be very successful in IR. It attempts to overcome the word ambigu-
ity problem by extracting concepts from words in an unstructured
text collection, which is realized by performing Singular Value De-
composition (SVD) on a term-document matrix and by measuring
the tag-pair similarities so derived. With the extracted concepts,
one can rank resources w.r.t. a given query by measuring the sim-
ilarities between resources and the query on the concept level. Bi
et al. [3] observes that user information can improve resource re-
trieval results. They extend LSI to the CubeLSI method by apply-
ing three-dimensional Tucker Decomposition (TD) on a third-order
tensor whose dimensions are resources, users, and tags.

Besides resource retrieval, tag recommendation is also a popular
topic in the study of social tagging systems. Factorization models
are a popular method. Rendle et al. [10] model the likelihood score
that a user u would tag a resource r with a tag t as a 3D tensor,
which is approximated using TD. By using AUC (area under the
ROC-curve) as the ranking criteria, [10] optimizes the model pa-
rameters of TD to obtain optimal values of the entries in the tensor.
[9] extends the work of [10] by applying the Bayesian Personal-
ized Ranking (BPR) framework in model parameter optimization.
In [11], the Pairwise Interaction Tensor Factorization (PITF) model
is proposed, which is shown to be more efficient than the TD model
used in [10]. These techniques for tag recommendation can also be
employed for solving the resources retrieval problem.

Some studies [8, 4] utilize location information in resource re-
trieval. Lu, Lu, and Cong [8] present a hybrid index tree called
IUR-tree, which combines location proximity with textual similar-
ity. They further design a branch-and-bound search algorithm to
retrieve resources that are the closest and the most relevant to a
query. Our method is significantly different from theirs. In par-
ticular, we propose a query-driven location partitioning algorithm
to transform the location dimension to a region dimension, which
significantly improves searching performance.

3. PROBLEM STATEMENT
Our approach to integrating location information in solving the

tag-based resource retrieval problem consists of two components:
(1) A location-partitioning scheme that derives a region-mapping
function ft(l) for each tag t, and (2) a score function that ranks
resources in terms of their relevancy to a given query q. In this
section we formally define these two problems.

We consider four attributes of a social tagging system: a set of
users (taggers) U , a set of tags T , a set of resources R, and a set
of locations L1. We assume that each location l ∈ L is represented
by a longitude-latitude pair (xl, yl). Resources in the systems are
tagged by users. We assume that the tagging information is repre-
sented by a set S ⊆ U × T × R × L of tagging records. Each
tagging record is a quadruple (u, t, r, l) ∈ S, which indicates that
a user u assigns a tag t to a resource r. l is the geo-tag location
of resource r. Although l is dependent on r, to simplify our dis-
cussion, we explicitly include l in a tagging record. A user query
q = (uq, tq, lq) is a triplet which indicates that a user uq, who is
located at location lq, issues a query with the tag tq. For simplicity,
1L includes all possible locations in the world, not only the loca-
tions that are associated with the resources in the social tagging
system.

we assume that each query consists of only one tag. Our technique
can be easily extended to handle multi-tag queries, for example, by
considering all the tags in a multi-tag query as a single complex tag.

Given a tag t, the problem of location partitioning is to partition
L into a set of kt regions Ht = {H1, . . . , Hkt} such that tag t
refers to the same concept within each region Hi and dissimilar
concepts in different regions. This partitioning can be represented
by a region mapping function (RMF) ft : L → [1 . . . kt], which
maps a location l ∈ L to the region Hft(l) ∈ Ht. We say that tag t
induces the region setHt.

Given a query q, we first obtain the RMF ftq . LetHq be the set
of regions induced by tq. Note that while the query tag tq (such as
“sand”) can assume different meanings at different locations of the
world, it refers to a unique concept within each region Hi ∈ Hq .
For notational convenience, we use Hq to denote Hftq (lq), which
is the region that encompasses the location (lq) of the query.

The resource ranking problem is to derive a score function ŷ(u, t, H, r):
U × T ×Hq ×R→ R, which gives a relevancy score of resource
r with respect to a user query issued by user u, who is located in
the region H , with the query tag t. As we will see later, we solve
this problem by representing the score function ŷ by a 4D tensor
Ŷ , called the score tensor, such that ŷ(u, t, H, r) is represented by
the entry ŷu,t,H,r of the score tensor. Finally, the top-N resources
with the highest relevancy scores are returned as the answer set of
query q.

T N (q, N) := arg
N

max
r∈R

ŷuq,tq,Hq,r. (1)

4. ALGORITHMS
In this section we describe the algorithms for solving the location

partitioning problem and the resource ranking problem. For the
former, we show how to train an RMF ftq for the query tag tq. For
the latter, we show how to extend the BPR framework to include
region information in estimating the 4D score tensor Ŷ .

4.1 Location Partitioning
Our objective is to derive ftq based on the tagging record set S.

Our approach is based on two intuitive assumptions: (1) Users in
close proximity are likely to have the same understanding of a tag.
(2) If tq’s associations (e.g., co-occurrences) with other tags in re-
sources at a certain location l1 is similar to those at another location
l2, then l1 and l2 should belong to the same region. Procedurally,
we first retrieve all the tagging records that involve tq into a set Sq,
i.e., Sq = {(u, tq, r, l) ∈ S}. Next, we create a set of training
instances X in the following way. Given any tag t and a resource r
that is tagged by tq, we define the distance of t from tq w.r.t. r by

dq(t, r) =
c(t, r)− c(tq, r)

max
i
{|c(t, r)− c(ti, r)|}

, (2)

where c(t, r) is the number of times resource r is tagged by t. Es-
sentially, dq(t, r) measures the difference in the tagging frequen-
cies of tags tq and t for the resource r, scaled to the range [-1,1].
Next, for each tuple (u, tq, r, l) ∈ Sq, we generate an instance
x = (dq(t1, r), . . . , dq(t|T |, r), l) and put it in X.

Based on these instances (observations), we create partitions of
X to maximize a posteriori (MAP) estimate of parameters as fol-
lows. Suppose the instances in X are observations of the mixture
of k multivariate normal distributions of |T | + 2 dimensions, let
z = (z1, z2, . . . , z|X|) be the latent variables that determine which
distributions the observations come from. We have:

X|(zj = i) ∼ Nd(μi, Σi), 1 ≤ i ≤ k. (3)
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LetU = [μi], Σ = [Σi], and P (zj = i) = ϕi such that
Pk

i=1 ϕi =

1. Let ϕ = [ϕi] ∈ R
k×1
+ . The model parameters to be estimated is

denoted by Θ = (ϕ,U , Σ). The likelihood function is:

L(Θ;X, z) = P (X, z|Θ) =

|X|Y

j=1

kX

i=1

I(zj = i)ϕifP (xj ; μi, Σi), (4)

where I is the indicator function and fP is the probability density
function of a multivariate normal. We apply expectation-maximization
(EM) algorithm to find MAP estimates of Θ with the following
equations to update ϕ,U ,Σ:

ϕ(t+1) = argmax
ϕ

Q(Θ|Θ(t)) = arg max
ϕ

(

|X|X

j=1

kX

i=1

P
(t)
ji log ϕt

i), (5)

μ
(t+1)
i =

P|X|
j=1 P

(t)
ji xj

P|X|
j=1 P

(t)
ji

, (6)

Σ
(t+1)
i =

P|X|
j=1 P

(t)
ji (xj − μ

(t+1)
i )(xj − μ

(t+1)
i )�

P|X|
j=1 P

(t)
ji

, (7)

where Pji is the conditional probability of xj belonging to the i-th
distribution, given by:

P
(t)
ji = P (zj = i|xj ; Θ

(t)) =
ϕ

(t)
i fP (xj ; μ

(t)
i , Σ

(t)
i )

Pk
i=1 ϕ

(t)
i fP (xj ; μ

(t)
i , Σ

(t)
i )

. (8)

Let Lq = {l|(u, tq , r, l) ∈ Sq}. After the EM algorithm is done,
for each location l̃ ∈ Lq , the RMF value ftq (l̃) is determined by

ftq (l̃) = arg max
i

ϕifP (x; μi, Σi). (9)

For other locations l ∈ L − Lq , we first determine the location
l̃∗ ∈ Lq that gives the smallest Euclidean distance D(l, l̃∗) from l

(i.e., l̃∗ = arg min
l̃∈Lq

D(l, l̃)). The region of l̃∗ is taken as the region

of l, i.e., ftq (l) = ftq (l̃∗).
So far, we have assumed that the number of regions, k, is known.

We can determine the value of k by gradually increasing its value
from 1 until the likelihood value (Equation 4) stops increasing. Al-
gorithm 1 summarizes the location partitioning algorithm LP.

Algorithm 1 LP
INPUT tq, Sq, L, Lq.
OUTPUT The RMF ftq .
1: Generate the set of observations X;
2: k = 0;
3: repeat
4: k = k + 1;
5: Initialize Θ = (ϕ,U ,Σ);
6: repeat
7: Update Pji, ϕ, U , Σ according to Equations 5 - 8;
8: until convergence
9: until L(Θ;X,z) does not increase

10: ∀l̃ ∈ Lq, ftq (l̃) = arg max
i

ϕifP (x;μi, Σi);

11: ∀l ∈ L− Lq , l̃∗ = arg min
l̃∈Lq

D(l, l̃); ftq (l) = ftq (l̃∗);

12: RETURN ftq

4.2 Estimating the Score Tensor
Our next task is to estimate the score tensor Ŷ . We generate the

values of the elements in Ŷ by assuming a certain model. Let Θ
represents the model’s parameters. We determine Θ by first con-
structing a set of observations Y and then use these observations
to find the optimal Θ following the Bayesian Personalized Ranking
(BPR) framework. In the following, we first give the details of how
the training set Y is constructed and how BPR is applied. Then, we
show how Ŷ is determined using the Tucker Decomposition (TD)
and PITF as two possible models of Ŷ .

First, for each record (u, t, l, r) ∈ S, we replace the location
l of the record by the region H ∈ Hq to which l belongs. Let
SH = {(u, t, H, r)|((u, t, l, r) ∈ S) ∧ (H = Hftq (l))}. Suppose
a user u tags a resource r1, which is located in region H , with
the tag t, then (u, t, H, r1) ∈ SH . Since u makes such a tagging,
resource r is relevant to the tag t from the perspective of u. On
the other hand, if the same user does not tag another resource r2

with t, then r2 is not relevant to t according to u. In other words,
ŷu,t,H,r1 should be large and ŷu,t,H,r2 should be small. Define
Δŷ(u, t, H, r1, r2) = ŷu,t,H,r1 − ŷu,t,H,r2 . We construct the set
Y as

Y = {(u, t, H, r1, r2)|((u, t, H, r1) ∈ SH) ∧ ((u, t, H, r2) /∈ SH)}.
(10)

Given a model and its parameters Θ, we follow [9] in estimating
Θ. Specifically, based on Bayes’ theorem,

p(Ŷ |Y) ∝ p(Y|Ŷ )p(Ŷ ). (11)

For each observation w = (u, t, H, r1, r2) ∈ Y, the probability
p(w|Ŷ ) is estimated by,

p((u, t, H, r1, r2)|Ŷ ) = σ(Δŷ(u, t, H, r1, r2)), (12)

where σ is the logistic function σ(x) = 1

1+e(−x) . We assume
that model parameters are drawn from a normal distribution Θ ∼
N (0, σ2

ΘI). Let λΘ be the regularization constant of σΘ and α be
the learning rate of BPR. Algorithm 2 shows the model optimiza-
tion procedure BPR-OPT for training model parameters Θ.

Algorithm 2 Model Optimization Using Bayesian Theorem and
MAP (BPR-OPT)
INPUT Y, λΘ, α
OUTPUT the predictive model parameters Θ.
1: Initialize Θ;
2: repeat
3: Draw (u, t,H, r1, r2) from Y;
4: Θ← Θ+

α((1 − σ(Δŷ(u, t, H, r1, r2)))
∂

∂Θ
Δŷ(u, t, H, r1, r2) −

λΘΘ);
5: until convergence
6: RETURN Θ

Factorization models are very popular models in recommenda-
tion systems and resource searching systems. We use TD and PITF
as two models for predicting the score tensor Ŷ . We show how
these models’ parameters can be learned using BPR-OPT.

[Tucker Decomposition (TD)] TD factorizes a high-order cube
Ŷ into a core tensor Ĉ ∈ R

pu×pt×ph×pr and four factor matrices
Û ∈ R

|U|×pu , T̂ ∈ R
|T |×pt , Ĥ ∈ R

|Hq|×ph and R̂ ∈ R
|R|×pr ,

where pu, pt, ph, and pr are parameters which control the sizes of
Ĉ’s dimensions. Each entry in Ŷ can be formulated as:

ŷTD
u,t,H,r =

X
ũ

X
t̃

X
H̃

X
r̃

ĉũ,t̃,H̃,r̃ûu,ũ t̂t,t̃ĤH,H̃ r̂r,r̃. (13)
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The model parameters Θ include all the entries of Ĉ, Û , T̂ , Ĥ,
and R̂. For learning the model parameters using BPR-OPT, the
gradients ∂

∂θ
ŷu,t,H,r used in Algorithm 2 are:

∂ŷTD
u,t,H,r

∂ĉũ,t̃,H̃,r̃

= ûu,ũ t̂t,t̃ĤH,H̃ r̂r,r̃

∂ŷTD
u,t,H,r

∂ûu,ũ
=
X

t̃

X
H̃

X
r̃

ĉũ,t̃,H̃,r̃ t̂t,t̃ĤH,H̃ r̂r,r̃

∂ŷTD
u,t,H,r

∂t̂t,t̃

=
X

ũ

X
H̃

X
r̃

ĉũ,t̃,H̃,r̃ûu,ũĤH,H̃ r̂r,r̃

∂ŷTD
u,t,H,r

∂ĤH,H̃

=
X

ũ

X
t̃

X
r̃

ĉũ,t̃,H̃,r̃ûu,ũt̂t,t̃r̂r,r̃

∂ŷTD
u,t,H,r

∂r̂r,r̃
=
X

ũ

X
t̃

X
H̃

ĉũ,t̃,H̃,r̃ûu,ũt̂t,t̃ĤH,H̃.

(14)

We call our solution of estimating Ŷ using TD, LTD. The com-
plexity of LTD is O(pu · pt · ph · pr).

[Pairwise Interaction Tensor Factorization] (PITF) The time
complexity of TD is high. To improve efficiency, PITF is proposed
in [11], which only considers two-way interactions between r and
other dimensions. We extend PITF to a 4D version to include the
region dimension H . We factorize Ŷ into four factor matrices Û ∈
R

|U|×p, T̂ ∈ R
|T |×p, Ĥ ∈ R

|Hq|×p and R̂ ∈ R
|R|×p, where p is

a parameter that controls the size of the matrices. Each entry in Ŷ
can be formulated as:

ŷPITF
u,t,H,r =

X
p

ûu,p · r̂U
r,p +

X
p

t̂t,p · r̂T
r,p +

X
p

ĤH,p · r̂H
r,p (15)

BPR-OPT can then be applied in a way similar to that of TD, with
the following gradients:

∂ŷPITF
u,t,H,r

∂ûu,p
= r̂U

r,p,
∂ŷPITF

u,t,H,r

∂t̂t,p

= r̂T
r,p,

∂ŷPITF
u,t,H,r

∂ĤH,p

= r̂H
r,p,

∂ŷPITF
u,t,H,r

∂r̂U
r,p

= ûu,p,
∂ŷPITF

u,t,H,r

∂r̂T
r,p

= t̂t,p,
∂ŷPITF

u,t,H,r

∂r̂H
r,p

= ĤH,p.

(16)

We call the resulting solution LPITF, whose complexity is
O(p).

5. EXPERIMENTS
In this section we compare the effectiveness of our algorithms in

ranking resources for answering search queries.

5.1 Datasets
We conducted experiments on data collected from two social tag-

ging systems: Flickr and Picasa. They are photo sharing systems
that allow users to annotate photos with tags. Since the raw data
is very noisy and sparse, we performed some cleaning and pre-
processing. First, we removed system-generated tags such as "up-
loaded:by=instagram". Also, to eliminate outliers, any user, tag, or
resource that has appeared in less than 10 records of S are removed.
Table 1 shows some statistics of the two datasets after cleaning.

5.2 Metrics
Let Q be a set of queries. For each query q ∈ Q, a ranking

algorithm returns a ranked list of N resources. We evaluate the ef-
fectiveness of a ranking algorithm by three metrics, namely, Mean
Reciprocal Rank (MRR), Precision (P@N ), and Normalized Dis-
counted Cumulative Gain (NGCG@N ).

Dataset |U | |T | |R| |S|
Flickr 8,199 28,049 26,522 323,527
Picasa 509 1,545 1,041 18,135

Table 1: Data Statistics

The reciprocal rank of a ranked list is the multiplicative inverse
of the rank of the first relevant resource in the list. The MRR score
of an algorithm A is the average reciprocal rank obtained by the
ranked lists given by A w.r.t. the query set Q. Formally,

MRR =
1

|Q|

|Q|X
i=1

1

rank i
, (17)

where rank i is the rank of the first relevant resource in the ranked
list for the i-th query. The Precision of a ranked list is the fraction
of the resources in the list that are relevant to the corresponding
query. The Precision score of an algorithm is the average precision
of its ranked lists, which is given by:

P@N =
1

|Q|
X
q∈Q

PN
i=1 rel(q, i)

N
, (18)

where rel(q, i) is an indicator function whose value is 1 if the ith-
ranked resource in the list for query q is relevant and 0 otherwise.
Finally, the NDCG score [7] is computed as follows:

NDCG@N =
1

|Q|
X
q∈Q

 
Zq

NX
i=1

(2rel(q,i) − 1)

log(i + 1)

!
,

where Zq is a normalization factor (see [7] for details).
We invited 10 judges to participate in the experiments. We ran-

domly selected 100 tagging records in S to generate the query
set Q. For each selected record (u, t, r, l), we created a query
q = (u, t, l). We then applied the various ranking algorithms to
return their ranked lists for each query. Each judge was given 10
queries and was asked to judge whether each returned resource was
relevant to the corresponding query. The judge was not told which
algorithm’s ranked list did a resource appear. The results were then
used to compute the scores for the various metrics.

5.3 Algorithms and Settings
Besides LTD and LPITF, we evaluate four other algorithms for

ranking resources. They are LSI [3], CubeLSI [3], TD [9] and PITF
[11]. Due to space limitations, readers are referred to the references
for details. In the experiments, the BPR-OPT parameters are α =
0.05 and λθ = 5 · 20−5. For LP’s initialization step (Algorithm 1,
Line 5), we first perform k-means to cluster the instances in X into
k clusters2. This result is used to initialize U and Σ. Also, we set
ϕi = |cluster(i)|

|X| , where cluster(i) is the i-th cluster of the k-means
result. The model parameters of TD, PITF, LTD, and LPITF are all
initialized with N (0, 0.01). Also, we set p = pu = pt = ph = pr =
64.

5.4 Results
Figures 1-3 show the scores NDCG@N , P@N , and MRR, re-

spectively, of the algorithms when they are applied to the two datasets.
From the figures, we see that LSI, which considers only the di-
mensions tag and resource performs worst. The three algorithms
CubeLSI, TD, and PITF, which consider the user dimension as
2The l dimension of x is represented by a longitude dimension
and a latitude dimension, both of them are normalized to the [-1,1]
range.
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Figure 2: P@N

well perform better than LSI. These three algorithms give com-
parable performances among themselves. By considering the loca-
tion dimension and extending the 3D tensor to 4D, LTD and LPITF
clearly outperform the other four algorithms. The performance of
LTD and LPITF is very similar, despite the fact that LPITF uses a
simpler factorization model. Given that LPITF is much more ef-
ficient than LTD, LPITF is the algorithm of choice for solving the
resource ranking problem.

5.5 Parameter Sensitivity
The parameters p, pu, pt, ph, and pr control the sizes of the core

tensor and the factorization matrices of TD and PITF. These values
affect the accuracy of our approximation of the score tensor Ŷ . We
have conducted an experiment varying the values of these parame-
ters. We observe that in general, setting them to 64 is enough for
Ŷ to converge. Therefore, in our performance experiment, we set
those parameters to 64.

6. CONCLUSION

(a) Flickr (b) Picasa

Figure 3: MRR

In this paper we studied the impact of location information on re-
source recommendation. We addressed two problems, namely, the
location partitioning problem and the resource ranking problem.
We proposed the LP algorithm which computes a region mapping
function to solve the location partitioning problem. We also pro-
posed the LTD algorithm and the LPITF algorithm for estimating
the score tensor for ranking resources. Through an experimental
study on real datasets, we showed that our location-sensitive algo-
rithms outperform other competitors.
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