
Maintenance of Partial-Sum-Based Histograms

Kin-Fai Kan, David W. Cheung, Ben Kao
Department of Computer Science and Information Systems

University of Hong Kong
Hong Kong

fkfkan, dcheung, kaog@csis.hku.hk

Abstract

This paper introduces an efficient method for the main-
tenance of wavelet-based histograms built on partial sums.
Wavelet-based histograms can be constructed from either
raw data distributions or partial sums. The two construc-
tion methods have their own merits. Previous works have
only focused on the maintenance of raw-data-based his-
tograms. However, it is highly inefficient to apply directly
their techniques to partial-sum-based histograms because a
single data update would trigger changes of multiple partial
sums, which in turn, would trigger large amounts of com-
putation on the changes of the wavelet decomposition.

We present a novel technique to compute the effects
of data updates on the wavelet decomposition of partial
sums. Moreover, we point out some special features of the
wavelet decomposition of partial sums and adapt a proba-
bilistic counting technique for the maintenance of partial-
sum-based histograms. Experimental results show that our
maintenance method is efficient and its accuracy is robust
to changing data distributions.

1. Introduction

Many DBMSs maintain histograms for selectivity esti-
mation. There are a number of proposals in the literature
on the construction of histograms including partition-based
methods [9, 8] and transform-based methods [6, 5]. When
the data of underlying relations are changed, the histograms
will no longer reflect the current data distributions and sig-
nificant estimation error could occur. In order to main-
tain the accuracy of selectivity estimation, it is important
to bring histograms as up-to-date as possible. Several incre-
mental methods have been proposed to maintain partition-
based histograms [3, 1] and transform-based histograms
[5, 7].

Wavelet-based histograms are first proposed by Matias
et al. [6]. They possess several advantages. First, they re-

quire little storage cost and CPU cost at query optimiza-
tion. Second, they offer more accurate selectivity estimation
than traditional partition-based histograms. Third, unlike
partition-based histograms, they can be extended naturally
to multi-dimensional data. While wavelet-based histograms
have several nice features, their maintenance is much more
difficult than partition-based histograms because of the non-
trivial mathematical transformation. In [6], two methods are
suggested for the construction of wavelet-based histograms.
One method is to perform wavelet decomposition on the
raw data distribution while the other method is to perform
wavelet decomposition on the extended cumulative data dis-
tribution (partial sums). The accuracy of the two methods
varies with data distribution, query type, and the choice of
an error measure [7]. One method performs better in some
cases while the other method excels in others. Thus, both
methods have their own merits.

Recently, Matias et al. [7] propose an efficient method
for the dynamic maintenance of wavelet-based histograms.
However, they only focus on the maintenance of histograms
built on raw data distributions and do not deal with issues re-
lated to processing partial sums. In this paper, based on the
method in [7], we develop a maintenance method for his-
tograms built on partial sums. We present two techniques
to figure out the effects of data updates on the wavelet de-
composition of partial sums. The first technique is a direct
extension of the results in [7]. The second technique is a
novel one and it takes advantage of some nice features of
the wavelet decomposition of partial sums. Moreover, we
point out some special features of the wavelet decompo-
sition of partial sums and adapt the probabilistic counting
method in [7] for partial-sum-based histograms. Our tech-
niques help complete the solution to the maintenance prob-
lem of wavelet-based histograms and make them a more at-
tractive choice for future database optimizations.

The remaining of the paper is organized as follows. Sec-
tion 2 introduces the basics of wavelet decomposition. Sec-
tion 3 overviews the maintenance method proposed in [7].
Section 4 describes our techniques to maintain partial-sum-

based histograms incrementally. The experimental results
are presented in Section 5. We conclude our study in Sec-
tion 6.

2. Wavelet Decomposition

Wavelet decomposition is a mathematical tool for hierar-
chical decomposition of functions. As in [6, 7], we choose
Haar wavelets as the wavelet functions. To illustrate how
wavelets work, we start with a simple example. A detail
treatment of wavelets can be found in [10].

Suppose we have a raw data distribution (frequency dis-
tribution) F of an attribute X of N = 8 values. We assume
that the attribute X has domain f0; 1; : : : ; 7g.

F = [4; 8; 2; 0; 3; 3; 6; 8] .

The Haar wavelet decomposition of F can be computed
as follows. We first average the data values pairwise to get
a lower-resolution representation of the data with values

[7; 3; 1; 6] .

The average of the eighth and seventh values (8 and 6) is 7
and that of the sixth and fifth values (3 and 3) is 3, and so on.
Some information is lost in this averaging process. To re-
cover the values of the original data vector, we need to store
the detail coefficients that capture the missing information.
In Haar wavelets, detail coefficients are the pairwise differ-
ences of the original data values (divided by 2). For the
eighth and seventh values (8 and 6), the detail coefficient
is (8� 6) =2 = 1 . For the sixth and fifth values (3 and
3), the detail coefficient is (3� 3) =2 = 0 and so on. It is
easy to see that the original values can be recovered from
the averages and the detail coefficients.

By repeating the above process recursively on the lower
resolution array containing the averages, we get the full de-
composition. Table 1 shows the results.

Resolution Averages Detail Coefficients

8 [8, 6, 3, 3, 0, 2, 8, 4]
4 [7, 3, 1, 6] [1, 0, -1, 2]
2 [5, 3.5] [2, -2.5]
1 [4.25] [0.75]

Table 1. The wavelet decomposition

We define the wavelet decomposition (also known as
wavelet transform) of a data vector F to be the single co-
efficient representing the overall average of the data values
in F together with the detail coefficients in increasing order
of resolution. The individual entries are called the wavelet

coefficients. Thus, the wavelet decomposition of F is given
by bF = [4:25; 0:75; 2; �2:5; 1; 0; �1; 2] .

No information is lost in wavelet decomposition. Given
the decomposition, we can reconstruct the original data vec-
tor by recursively adding and subtracting the detail coeffi-
cients from the next-lower resolution ones. For compres-
sion purposes, the detail coefficients are often normalized;
the coefficients at the lower resolutions are weighted more
heavily than the coefficients at the higher resolutions. Af-
ter normalization, a large number of wavelet coefficients
would become very small in magnitude. We can discard the
smaller coefficients without introducing large errors in the
reconstructed data vector. Thus, we can use the most signifi-
cant coefficients to approximate the original data vector. For
convenience in discussion, we give the formulae for the un-
normalized wavelet coefficients in this paper, although in
practice, the coefficients are normalized in an online man-
ner.

The wavelet decomposition procedure can be repre-
sented by the error tree [6]. The value of the root is the
overall average of the data values. The values of the in-
ternal nodes (excluding the root) are the detail coefficients
of the wavelet decomposition. The values of the leaves are
the original data values. The internal nodes and the leaves
are labeled separately. The internal nodes are labeled in
the breadth-first traversal order while the leaves are labeled
from right to left. The construction of the error tree mirrors
the wavelet decomposition procedure and shows clearly the
relationship between the wavelet coefficients and the origi-
nal data values. First, the original data values are assigned
to the leaves from right to left. Then the wavelet coefficients
are computed and assigned to the internal nodes. Hence,
the value of an internal node is the difference between the
sum of the values of the leaves in its left subtree and that
in its right subtree (divided by the number of its descendant
leaves). Figure 1 is the error tree for the above example.

4.25

0.75

2

1 0 −1

8 6 3 3 0 2 8 4
F(7) F(6) F(5) F(4) F(3) F(2) F(1) F(0)

F(0)

F(1)

^

^

F(2) F(3)

F(4) F(6) F(7)

^

^ ^ ^

^

^F(5)

−2.5

2

Figure 1. The error tree

We use path (i) to denote the set of internal nodes along
the path from leaf i to the root. We use left (j) and

right (j) to denote the left child and right child of inter-
nal node j. We use leaves (j) to denote the set of leaves
in the subtree rooted at internal node j. We use L�leaf (j)
(R�leaf (j)) to denote the index of the left most leaf (right
most leaf) in the subtree rooted at internal node j. For any
internal node j, its height in the tree is given by

height (j) =

�
log2N � blog2 jc for 1 � j < N ;
log2N for j = 0;

(1)
where N is the length of the original data vector.

3. Maintenance of Raw-Data-Based His-
tograms

For the maintenance of wavelet-based histograms, Ma-
tias et al. [7] propose an efficient method based upon prob-
abilistic counting. Their focus is on raw-data-based his-
tograms, but some of their ideas are also useful for main-
taining partial-sum-based histograms. In this section, we
briefly discuss the main ideas of their maintenance method.

In [7], it is noted that the error tree has some nice prop-
erties that we can make use of to compute the effects of
data updates on the wavelet decomposition of the raw data
distribution.

Lemma 1 [7] For any leaf i in the error tree, we consider
the effect of its value change

�(i) = Ft1 (i)� Ft0 (i) (2)

from time t0 to time t1. For each j where internal node j 2
path (i), we have

bFt1 (j) =

(bFt0(j) +
�(i)

2height(j)
if i 2 leaves (left (j)) ;bFt0(j) �

�(i)
2height(j)

if i 2 leaves (right (j)) :

(3)

Lemma 1 can be extended to the multi-dimensional case.
For details, please refer to [7]. Based on Lemma 1, Matias
et al. [7] proposes using a probabilistic counting technique
to maintain raw-data-based histograms incrementally.

First, wavelet decomposition is performed on the raw
data distribution. Only the m+m0 most significant wavelet
coefficients (in absolute value) would be stored, where
m+m0 � N . The topm coefficients would be stored in the
histogramH for selectivity estimation. The otherm 0 coeffi-
cients would be stored in the auxiliary histogramH 0 on disk
for future maintenance. It is assumed that an activity log L
is used to log all insert, delete, and modify activities; the
maximal size of L is Max�Log�Size. Any wavelet co-
efficient bF (j) can be characterized into one of three types:
(a) bF (j) 2 H , (b) bF (j) 2 H 0 and (c) bF (j) =2 H

S
H 0.

When a new entry is added to L, all type (a) coefficients
affected by the entry are updated according to Equation 3.
When the number of entries in L reachesMax�Log�Size,
we process the entries in L. For each entry in L, all type (b)
coefficients affected by it are updated according to Equa-
tion 3. If an entry in L affects a type (c) coefficient bF (j),
a probabilistic counting technique [2] is used: A coin with
probability p (j) of heads is flipped. If it is a head, the mag-
nitude of bF (j) is set to v (a value to be explained soon)
and bF (j) will replace the smallest coefficient (in absolute
value) in H 0. After processing all the entries in L, H and
H 0 are adjusted. Whenever the magnitude of the largest co-
efficient in H 0 exceeds a threshold valueH 0

�Thresh, it will
replace the smallest coefficient in H . After adjusting H and
H 0, online update of H and logging will be restarted.

The values of the four parameters required by the above
method are set as follows. The value of Max�Log�Size
depends on how often we would like to detect significant
coefficients that do not appear significant initially (we call
them surprising coefficients). Denote the magnitude of
the minimum coefficient in H by min (H). The value of
H 0
�Thresh depends on how aggressive we are in adjust-

ing H over time. Since there is no advantage to replace
a coefficient with another of a close magnitude, it is set
to c1 � min (H) in [7], where c1 is a constant (typically
in the range [1:0; 3:0]). The parameter v is the estimated
magnitude of surprising coefficients and, in [7], it is set to
c2�min (H), where c2 is a constant (typically in the range
[0:2; 0:8]). The value of p (j) should be set such that its
inverse equals to the number of insertions (deletions) at the
attribute value of the log entry that are required to bring the
magnitude of bF (j) from zero to v. Thus, in [7], according
to Equation 3,

p (j) =
1

v � 2height(j)
. (4)

4. Maintenance of Partial-Sum-Based His-
tograms

In this section, we describe our method to maintain
partial-sum-based histograms. First we focus on how to
compute the effects of data updates on the wavelet decom-
position of partial sums. Then we discuss how to adapt
the probability counting technique for the maintenance of
partial-sum-based histograms.

4.1. The Naive Update Technique

One simple way to compute the effects of data updates
on the wavelet decomposition of partial sums is to use the
results of [7]. First, we figure out how a data update af-
fects the partial sums. Then we computes how the changes

of partial sums affects the wavelet decomposition of partial
sums using Lemma 1. We call this simple technique the
naive update technique.

The main drawback of the naive update technique is that
its computational cost depends on the number of partial
sums that are affected by a data update. In the worst case,
all partial sums would be affected by a data update and we
need to compute how the changes of all partial sums affect
the wavelet decomposition of partial sums.

4.2. The Fast Update Technique

The naive update technique does not perform well when
the domain size of the attribute is large. Can we find some
interesting properties so that the effects of data updates on
the wavelet decomposition of partial sums can be computed
more efficiently? As illustrated below, the wavelet decom-
position of partial sums has some nice properties that we
can make use of to compute its exact changes efficiently.
We call this technique the fast update technique.

We make a key observation: even if a change of F (i)

affects the partial sums that would, in turn, affect bS (j), it
does not necessarily affect bS (j) eventually, because the ef-
fects of different partial sums could be cancelled out.

As mentioned in Section 2, the value of an internal node
in the error tree represents the difference between the sum of
the values of the leaves in its left subtree and that in its right
subtree (divided by the number of its descendant leaves).
Expressing a detail coefficient of partial sums in terms of
the partial sums, we have

bS (j) =
1

2d
� f[S (r + d� 1) + S (r + d� 2) + � � �

+S (r)]� [S (r � 1) + S (r � 2) + � � �

+S (r � d)]g (5)

where 2d is the number of descendant leaves of internal
node j in the error tree and leaf r corresponds to the right-
most leaf in the left subtree of internal node j. Substituting
the partial sums by the raw frequencies, we have

bS (j) =
1

2d
� [F (r + d� 1) + 2 � F (r + d� 2) + � � �

+d � F (r) + (d� 1) � F (r � 1) + � � �

+F (r � d+ 1)] (6)

We can observe that the indices of the terms in Equa-
tions 5 and 6 coincide (excluding the last term in Equa-
tion 5). This observation implies that a change of F (i)

affects wavelet coefficient bS (j) only if leaf i is one de-
scendant leaf of internal node j in the error tree. In other
words, a change of F (i) can only affect those wavelet coef-
ficients of partial sums corresponding to the internal nodes

in path (i) in the error tree. Thus, the number of wavelet
coefficients of partial sums that are affected by a single data
update is at most the logarithm of the domain size of the at-
tribute (i.e., the height of the error tree) plus one but not the
domain size of the attribute. Based on the above observa-
tion, we can easily figure out which wavelet coefficients of
partial sums are affected a data update using the error tree.

The remaining problem is to compute the changes of
those wavelet coefficients affected by the data update.
Equation 6 shows that the raw frequencies are multiplied
by some constants. As the constants are not all the same,
changing different raw frequencies by the same amount may
affect wavelet coefficient bS (j) differently. From Equa-
tion 6, we observe that the constants follow an interesting
pattern (starting with 1 from the left-most raw frequency
F (r + d� 1); increasing by one at a time until F (r); then
decreasing by one at a time; ending with 1 for the right-
most raw frequency F (r � d+ 1)). Hence, we can derive
the changes of the wavelet coefficients affected by data up-
dates easily.

Now we look at how the overall average bS (0) would be
affected by data updates. The overall average bS (0) is given
by

bS (0) =
S (N � 1) + S (N � 2) + � � �+ S (0)

N
: (7)

Substituting the partial sums by the raw frequencies, we
have

bS (0) =
F (N � 1) + 2 � F (N � 1) + � � �+N � F (0)

N
(8)

It is obvious that changing any raw frequency would affect
the overall average bS (0) and the effects can be figured out
without any difficulty.

Lemma 2 For any attribute value i, we consider the ef-
fects of its frequency change �(i) from time t0 to time t1.
For each wavelet coefficient bS (j), where internal node j 2
path (i) in the error tree, we have

bSt1 (j) = bSt0 (j) + weight (j; i) ��(i)

2height(j)
; (9)

where

weight (j; i) =

�
d� r for 1 � j < N ;
N � i for j = 0:

(10)

d = 2height(j)�1 (11)

r =

����L�leaf (j) +R�leaf (j) + 1

2
� i

���� (12)

and N is the domain size of the attribute.

From Lemma 2, we obtain the following:

Theorem 1 For any data update, we can compute the value
change of each affected wavelet coefficient of partial sums
in constant time using a closed-form formula.

4.3. The Maintenance Method

The maintenance method of raw-data-based histograms
can be divided into two parts. Part 1 updates the wavelet
coefficients in the present histogram H and the auxiliary
histogram H 0 using Lemma 1. Part 2 detects surprising co-
efficients that are currently not in the histograms but be-
come significant after data updates by probabilistic count-
ing. The probabilistic counting technique requires only one
scan over the log and has no storage overhead. It is shown
to be very effective in detecting surprising coefficients [7].
For the maintenance of partial-sum-based histograms, apart
from the histogram for selectivity estimation, we also keep
an auxiliary histogram on disk so that we have reasonable
amount of extra information on the possible candidates that
may get into the histogram. To update the wavelet coeffi-
cients in the histograms, we can use the fast update tech-
nique presented above. Below we discuss how to adapt the
probabilistic counting technique to detect surprising coeffi-
cients for partial-sum-based histograms.

For the raw-data-based case, a wavelet coefficient may
be positive, negative or zero. A significant coefficient may
be a large positive number or a negative number with a large
magnitude. Thus, we can change an insignificant coefficient
to a significant one by either incrementing or decrementing
its value. The maintenance method of raw-data-based his-
tograms will treat an insignificant coefficient as surprising
if the coefficient is estimated to have been incremented or
decremented by a certain amount. Both insert and delete
operations can increment and decrement the values of co-
efficients and hence are handled similarly. For the partial-
sum-based case, the situation is quite different. From Equa-
tions 6 and 8, we can see that a wavelet coefficient of partial
sums is a weighted sum of raw frequencies of attribute val-
ues and must be non-negative. Hence, a significant wavelet
coefficient of partial sums must be a large positive number
and we cannot make a coefficient surprising by decrement-
ing its value. We will treat an insignificant coefficient as
surprising if the coefficient is estimated to have been incre-
mented by a certain amount. Furthermore, from Equation 9,
we know that any insert operation can only increment some
coefficients whereas any delete operation can only decre-
ment some coefficients. As a result, we handle insert op-
erations and delete operations differently. When the size
of the log L reaches Max�Log�Size, we start to process
the log entries sequentially. If a log entry is a delete oper-
ation, we just update the affected coefficients in H 0. If a
log entry is an insert operation, in addition to updating the

affected coefficients in H 0, a probabilistic count technique
is used to decide if any affected coefficients outside the cur-
rent histogram and auxiliary histogram should be placed in
the auxiliary histogram H 0.

Before performing probabilistic counting, we need to de-
termine the probability of flipping a head. As mentioned in
the probabilistic counting method, we should set the proba-
bility to a value such that the reciprocal of that value equals
to the number of insert (or delete) operations at the attribute
value of the current log entry needed to bring the affected
coefficient from zero to a certain threshold v. According to
Equation 9, we can derive the probability of flipping a head

p (j) =
weight (j; i)

v � 2height(j)
. (13)

With the above ideas, we can maintain wavelet-based
histograms built on partial sums incrementally. Since
our method only performs probabilistic counting for in-
sert operations, we call it the semi-probabilistic-counting
method (semi-PC). Note that we can extend the fast up-
date technique and hence the semi-PC method to the multi-
dimensional case. For details, please refer to [4].

5. Performance Studies

In this section, we report on performance studies on the
efficiency of the two update techniques and the accuracy of
the semi-PC method. All experiments were conducted on a
computer with four Intel Pentium III Xeon 700MHz CPUs
with 4096M main memory running Solaris. All programs
were coded in C++.

5.1. Data Distributions

The data used in the experiments are similar to those of
[7]. We model the data using an extensive set of Zipf dis-
tributions [11]. The Zipf distribution was chosen because it
is an well-accepted model on the skewness of real-life data.
Without loss of generality, we use an attribute with the in-
teger value domain. The z value in the Zipf distribution
for the frequency distribution was varied from 0 to 2. The
larger the z value, the more skew the frequency distribution
is (z = 0 corresponds to the uniform distribution and z = 2
is already very skew). The frequencies are assigned to the
attribute values according to three different types of corre-
lations: positive (the bigger the attribute value, the higher
the frequency), negative (the bigger the attribute value, the
lower the frequency) and random. We refer a Zipf distribu-
tion with the parameter z and correlationX as zipf (z; X).

5.2. Efficiency of The Two Update Techniques

We experimentally study the efficiency of the naive up-
date technique and the fast update technique. The data we

used are one-dimensional. In the experiment, the spreads
of the attribute value set follow the cusp�min distribution
(decreasing spreads for the first half of the elements fol-
lowed by increasing spreads) with Zipf parameter z = 1:0
and the number of distinct values of the attribute in the
database (the value set size) is 512. The base dataset con-
tains 100K tuples from the zipf (1:0; negative) distribu-
tion. The update sequence contains 100K insertions from
the zipf (1:5; positive) distribution. Note that most of in-
sertions are inserted at large attribute values and do not af-
fect many partial sums. Hence, that gives a big advantage
to the naive update technique. To evaluate the efficiency of
the two update techniques, we first compute a partial-sum-
based histogram from the base dataset and the histogram
contains 20 coefficients. Then we read the update sequence
and update the histogram accordingly. Without loss of gen-
erality, we do not maintain any auxiliary histogram and do
not perform probabilistic counting in this experiment. We
measure the time required to process the update sequence
by the update techniques. Table 2 shows the results when
the numbers of possible values of the attribute (the domain
sizes) are 4096 and 8192. The fast update technique out-
performs the naive update technique by a wide margin in
both cases. Also, as the domain size is increased from 4096
to 8192, the run-time of the fast update technique remains
about 5.5 seconds while that of the naive update technique
almost doubles.

Domain Size Fast Naive

4096 5.47 3175.55
8192 5.48 5986.41

Table 2. Run-time of the two techniques (in
seconds)

5.3. Methods of Comparisons

We implement the following three methods for the main-
tenance of partial-sum-based histograms and compare their
accuracy.

1. Ideal Method. This method corresponds to re-
computing the histograms from scratch upon updates
to the database.

2. Semi Probabilistic Counting Method (Semi-PC). This
is the method described in Section 4.

3. Static Method. In the beginning, the histogram is com-
puted from the base dataset. From then on, the values
of the coefficients of the histogram would be updated

accordingly but the choice of coefficients of the his-
togram would remain unchanged.

5.4. Parameter Settings

The parameters of the semi-PC method are set as fol-
lows. Parameters c1 and c2 depend on how aggressively we
want to shake up the present histogram and auxiliary his-
togram. Small c1 and c2 result in aggressive shake-up of
the histograms while large c1 and c2 result in a conservative
policy. In our experiments, we find that the maintenance
method performs well and is stable for a variety of update
distributions as long as we choose c1 and c2 from reasonable
ranges. The appropriate ranges for c1 and c2 are 1.0–2.0 and
0.4–0.8, respectively. We use default values c1 = 1:5 and
c2 = 0:5 in our experiments. Another important parame-
ter of the maintenance method is the size of the auxiliary
histogram m0. Obviously, a large m0 would give better ac-
curacy but slower performance. However, our experiments
show that it is not necessary to keep a big set of coefficients
in the auxiliary histogram to achieve reasonable accuracy.
We set the default value of m0 to the size of the histogram
m in our experiments. Lastly, we choose Max�Log�Size
between 1% and 5% of the base data size.

5.5. Error Measure

The ideal method always chooses the set of the most sig-
nificant coefficients to form the histogram. With proper
normalization, the Haar basis is orthogonal. For any or-
thogonal wavelet basis, choosing the largest (in absolute
value) wavelet coefficients is provably optimal in minimiz-
ing the 2-norm of the absolute error when considering the
reconstruction of the original signal values [10]. Since we
are now dealing with the wavelet decomposition of partial
sums, the ideal method minimizes the 2-norm of the abso-
lute error for partial sums:

kek2 =

s
1

N

X
1�i�N

(Si � S0i)
2, (14)

where N is the number of all partial sums and Si (S0i) is
the actual (estimated) value of a partial sum. Thus, a useful
measure to evaluate the accuracy of a maintenance method
is the 2-norm average absolute error for all partial sums us-
ing the maintained histogram after a sequence of updates.
This measure clearly tells how close a histogram maintained
using a particular method is to the one maintained using the
ideal method.

5.6. Accuracy for Maintaining Histograms

We experimentally study the accuracy of the three meth-
ods for a wide range of base data and update sequences. We

consider three classes of data updates, namely pure inser-
tion, pure deletion, and mixed insertions and deletions. Be-
low we show the results using one-dimensional data. The
histogram size m is set to 20. The domain size is 4096 and
the value set size is 512.

We first compare the accuracy of the three methods for
pure insertion. Figure 2(a) shows one typical case when
the distribution of the insertion sequence is similar to that
of the base dataset. The base dataset contains 100K tu-
ples from the zipf (1:0; negative) distribution; the inser-
tion sequence comes from the zipf (1:2; negative) dis-
tribution. In this case, the set of significant coefficients
would either remain the same or have minor changes af-
ter updates. The results show that the semi-PC method
offers almost the same accuracy as the ideal method and
the static method despite of its probabilistic nature. Fig-
ure 2(b) shows one typical case when the distribution of
the insertion sequence is different from that of the base
dataset. The base dataset contains 100K tuples from the
zipf (1:0; negative) distribution; the insertion sequence
comes from the zipf (1:5; random) distribution. In this
case, the set of significant coefficients would become very
different after updates. The results show that as the number
of updates increases, the accuracy of the semi-PC method
remains close to that of the ideal method but the gap be-
tween the static method and the ideal method widens.

We also compare the three methods for pure deletion.
Intuitively, pure deletion is very challenging to the semi-
PC method because it can no longer detect surprising co-
efficients outside the histograms. The semi-PC method
would become the same as the static method except that
the semi-PC method also maintains an auxiliary histogram
from which it may be able to find candidates to replace
small coefficients in the present histogram. Fortunately,
since deletions can only decrease the values of wavelet co-
efficients, wavelet coefficients that are very small initially
are unlikely to become members of the top m coefficients
after deletions. In addition, even if some wavelet coeffi-
cients that are very small initially become members of the
top m coefficients after deletions, they are not very likely to
play a significant role because of their small values. As a re-
sult, we can achieve pretty good accuracy by keeping some
coefficients that are initially “quite large” in the auxiliary
histogram. Our experiments show that we do not need to
keep a very large auxiliary histogram to have a reasonable
accuracy. The appropriate range for m 0 is m to 2m.

We study the effects of deleting different amount of data
from the base dataset. Figure 3 depicts the accuracy of
the methods in one set of our experiments. We generate
three base datasets. Each of them consists a portion from
the zipf (1:0; negative) distribution and a portion from the
zipf (1:5; positive) distribution. The latter portion is used
for deletion and its size ranges from 30% to 70% of the base

0

2000

4000

6000

8000

100000 200000 300000 400000

2
-n

o
rm

 a
v
e
ra

g
e
 a

b
s
o
lu

te
 e

rr
o
r

No. of Updates

Ideal
Semi-PC

Static

(a) Similar distributions

0

2000

4000

6000

8000

10000

12000

100000 200000 300000 400000

2
-n

o
rm

 a
v
e
ra

g
e
 a

b
s
o
lu

te
 e

rr
o
r

No. of Updates

Ideal
Semi-PC

Static

(b) Different distributions

Figure 2. Accuracy of various methods for
pure insertion

dataset. The results show that the accuracy of the semi-PC
method is very close to that of the ideal method when 30%
and 50% is deleted from the base data. Although the semi-
PC method degrades a bit when 70% is deleted, its accuracy
is still close to that of the ideal method. On the other hand,
the accuracy of the static method is close to that of the ideal
method when 30% is deleted but the static method deterio-
rates quickly when 50% or 70% is deleted.

We compare the methods when the update sequence
contains both insertions and deletions. Figure 4(a) shows
one typical case. In this case, we generate three datasets
containing 100K tuples. The first dataset comes from
the zipf (1; negative) distribution. The second dataset
comes from the zipf (1:5; positive) distribution. The third
dataset comes from the zipf (1:5; random) distribution.
We combine the first dataset and the second dataset to form
the base dataset. The second dataset is used as the dele-
tion sequence and the third dataset is used as the insertion
sequence. We combine the deletion sequence and the in-
sertion sequence and arrange the entries in a random order.
The results show that as the number of updates increases,

0

500

1000

1500

2000

2500

30 50 70

2
-n

o
rm

 a
v
e
ra

g
e
 a

b
s
o
lu

te
 e

rr
o
r

No. of Updates (% of Base Dataset)

Ideal
Semi-PC

Static

Figure 3. Accuracy of various methods for
pure deletion

the accuracy of the semi-PC method stays close to that of
the ideal method but the gap between the static method and
the ideal method widens. Figure 4(b) shows another typical
case. We generate the data as described above except that
all insertions are arranged to occur before deletions. The
results show that as the number of updates increases, the
accuracy of the semi-PC method stays close to that of the
ideal method but the gap between the static method and the
ideal method widens.

We have also performed experiments using two-
dimensional datasets and three-dimensional datasets, and
obtained similar results. For details, please refer to [4].

6. Conclusions

In this paper, we have proposed an efficient method
for the maintenance of wavelet-based histograms built on
partial sums. We show that a naive method of applying
previous results on the maintenance of wavelet-based his-
togram is too slow to be practical. We propose a novel
technique, the fast update technique, to compute the ef-
fects of data updates on the wavelet decomposition of par-
tial sums and present a method, the semi-PC method, to
maintain partial-sum-based histograms. Our performance
studies show that the fast update technique is efficient and
the semi-PC method performs well for a variety of data dis-
tributions and update sequences. One direction for future
work is to address the maintenance of histograms based
upon linear wavelets which offer more accurate approxima-
tion than Haar wavelets.

References

[1] D. Donjerkovic, Y. Ioannidis, and R. Ramakrishnan. Dy-
namic histograms: Capturing evolving data sets. Techni-
cal report, Department of Computer Science, University of
Wisconsin-Madison, 1999.

0

1000

2000

3000

4000

25000 50000 75000 100000 125000 150000 175000 200000

2
-n

o
rm

 a
v
e
ra

g
e
 a

b
s
o
lu

te
 e

rr
o
r

No. of Updates

Ideal
Semi-PC

Static

(a) entries in random order

0

1000

2000

3000

4000

5000

25000 50000 75000 100000 125000 150000 175000 200000

2
-n

o
rm

 a
v
e
ra

g
e
 a

b
s
o
lu

te
 e

rr
o
r

No. of Updates

Ideal
Semi-PC

Static

(b) all inserts before deletes

Figure 4. Accuracy of various methods for
mixed distribution

[2] P. Flajolet and G. N. Martin. Probabilistic counting algo-
rithms for data base applications. 31(2):182–209, Oct. 1985.

[3] P. B. Gibbons, Y. Matias, and V. Poosala. Fast incremental
maintenance of approximate histograms. In VLDB, 1997.

[4] K. F. Kan. Maintenance of partial-sum-based histograms.
Master’s thesis, University of Hong Kong, 2002.

[5] J. Lee, D. Kim, and C. Chung. Multi-dimensional selectiv-
ity estimation using compressed histograms. In SIGMOD,
1999.

[6] Y. Matias, J. S. Vitter, and M. Wang. Wavelet-based his-
tograms for selectivity estimation. In SIGMOD, 1998.

[7] Y. Matias, J. S. Vitter, and M. Wang. Dynamic maintenance
of wavelet-based histograms. In VLDB, 2000.

[8] V. Poosala and Y. Ioannidis. Selectivity estimation with-
out the attribute value independence assumption. In VLDB,
1997.

[9] V. Poosala, Y. Ioannidis, P. Haas, and E. Shekita. Improved
histograms for selectivity estimation of range predicates. In
SIGMOD, 1996.

[10] E. J. Stollnitz, T. D. Derose, and D. H. Salesin. Wavelets for
Computer Graphics. Morgan Kauffmann, 1996.

[11] G. K. Zipf. Human Behaviour and the Principle of Least
Effort. Addison-Wesley, Reading, MA, 1949.

