
Contents lists available at ScienceDirect
Information Systems

Information Systems 36 (2011) 476–497
0306-43

doi:10.1

� Cor

E-m

(B. Kao)

(M. Cha

(D.W. C
1 Pa

algorith

(Section

discussi

not bee

the curr
journal homepage: www.elsevier.com/locate/infosys
Metric and trigonometric pruning for clustering of uncertain data
in 2D geometric space
Wang Kay Ngai a, Ben Kao a,�, Reynold Cheng a, Michael Chau b, Sau Dan Lee a,
David W. Cheung a, Kevin Y. Yip c,d

a Department of Computer Science, The University of Hong Kong, Hong Kong
b School of Business, The University of Hong Kong, Hong Kong
c Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong
d Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States
a r t i c l e i n f o

Article history:

Received 16 August 2009

Received in revised form

19 August 2010

Accepted 16 September 2010
Recommended by P. Pucheral
which assigns each object to the cluster whose representative has the smallest expected
Keywords:

Clustering

Data uncertainty
79/$ - see front matter & 2010 Elsevier B.V. A

016/j.is.2010.09.005

responding author.

ail addresses: wkngai@cs.hku.hk (W.K. Ngai),

, ckcheng@cs.hku.hk (R. Cheng), mchau@bus

u), sdlee@cs.hku.hk (S.D. Lee), dcheung@cs.h

heung), kevinyip@cse.cuhk.edu.hk (K.Y. Yip).

rt of this paper appears in Ngai et al., 2006

ms PC and CS were described. The idea of trig

6), most of the empirical performance

on (Section 8), and all proofs of theorems

n previously published. The new materials am

ent paper.
a b s t r a c t

We study the problem of clustering data objects with location uncertainty. In our

model, a data object is represented by an uncertainty region over which a probability

density function (pdf) is defined. One method to cluster such uncertain objects is to

apply the UK-means algorithm [1], an extension of the traditional K-means algorithm,

distance from it. For arbitrary pdf, calculating the expected distance between an object

and a cluster representative requires expensive integration of the pdf. We study two

pruning methods: pre-computation (PC) and cluster shift (CS) that can significantly

reduce the number of integrations computed. Both pruning methods rely on good

bounding techniques. We propose and evaluate two such techniques that are based on

metric properties (Met) and trigonometry (Tri). Our experimental results show that Tri

offers a very high pruning power. In some cases, more than 99.9% of the expected

distance calculations are pruned. This results in a very efficient clustering algorithm.1

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Clustering is a technique that has been widely studied
and used in real applications. Many efficient algorithms,
including the well-known and widely applied K-means
algorithm, have been devised to solve the clustering
ll rights reserved.

kao@cs.hku.hk

iness.hku.hk

ku.hk

[2], in which the

onometric pruning

study (Section 7),

(Appendixes), have

ount to about 3
4 of
problem efficiently. Traditionally, clustering algorithms
deal with a set of objects whose positions are accurately
known, and do not address situations in which object
locations are uncertain. Data uncertainty is, however,
inherent in many real-life applications due to factors such
as the random nature of the physical data generation and
collection processes, measurement errors, and data stal-
ing. Recent works (e.g., [3–5]) have also suggested to
protect location privacy by lowering the precision of a
user’s location, which poses problems for traditional
clustering algorithms.

In this paper we study the problem of clustering spatial
objects with location uncertainty. In our model, an
object’s location is represented by a spatial probability
density function (pdf). Our objective is to study the
computational issues in adapting the traditional K-means
algorithm to clustering uncertain objects, and to devise
efficient algorithms for solving the clustering problem.

www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2010.09.005
mailto:wkngai@cs.hku.hk
mailto:kao@cs.hku.hk
mailto:kao@cs.hku.hk
mailto:ckcheng@cs.hku.hk
mailto:mchau@business.hku.hk
mailto:mchau@business.hku.hk
mailto:sdlee@cs.hku.hk
mailto:dcheung@cs.hku.hk
mailto:dcheung@cs.hku.hk
mailto:kevinyip@cse.cuhk.edu.hk
dx.doi.org/10.1016/j.is.2010.09.005


W.K. Ngai et al. / Information Systems 36 (2011) 476–497 477
As a motivating example, let us consider the problem of
clustering mobile devices. In many wireless network applica-
tions, mobile devices report their locations periodically to a
remote server [6]. Each device can make low-power short-
ranged communication to neighboring devices, or high-
power long-ranged communication with the remote server
directly. To reduce power consumption, batching protocols
have been proposed. Under these protocols, certain devices
are elected as leaders, whose job is to collect messages from
neighboring devices through short-ranged communication.
The leaders then send the collected messages in batch to the
server through long-ranged communication [7,8] (Fig. 1). By
batching messages, many long-ranged messages are replaced
by short-ranged ones. The election of local leaders can be
formulated as a clustering problem. The goal is to minimize
the distance between every device and its corresponding
local leader. This clustering problem differs from the
traditional setting in the existence of data uncertainty:
�

Fig
com

lon
The physical instruments used for determining the
device locations are accurate only up to a certain
precision.

�
 The current locations of the mobile devices can only be

estimated based on their last reported values, i.e., the
data are always stale. Other practical problems, such as
packet loss, could also increase the degree of uncertainty.

�
 Data uncertainty may also be introduced by the user to

protect his location privacy. Particularly, the idea of
location cloaking has been investigated [4,5], where the
actual location of a user is converted to a larger region,
before it is sent to the service provider.

Due to uncertainty, the whereabouts of a mobile device
can only be estimated by imposing an uncertainty model
on its last reported location [9]. A typical uncertainty
model requires knowledge about the moving speed of the
device and whether its movement is restricted (such as a
car moving in a road network) or unrestricted (such as a
tracking device mounted on an animal moving on plains).
Typically, a 2D probability density function is defined over
a bounded region to model such uncertainty.

Let us now formally define our uncertain data cluster-
ing problem. We consider a set of n objects oi (1r irn) in
server

Leader

Member

. 1. Reporting locations to cluster leaders using short-ranged

munication has a much lower power consumption than making

g-ranged communication with the server directly.
a 2D space. Each object oi is represented by a probability
density function (pdf) fi : R

2-R that specifies the prob-
ability density of each possible location of the object. The
goal is to partition the objects into k clusters, such that
each object oi is assigned to a cluster ci and that oi is close

to a cluster representative point pci
of ci. To measure

closeness, we define a distance function between an
uncertain object and a cluster representative point as
the expected distance between them:

EDðoi,pci
Þ ¼

Z
fiðxÞdðx,pci

Þ dx, ð1Þ

where d is the Euclidean distance and the integration is
taken over the uncertainty region (which is assumed to be
bounded, as we will discuss below) in which the pdf
integrates to one. Given a cluster ci, its representative pci

is
given by the mean of the centers of mass of all the objects
assigned to ci. The clustering goal is then to find ci’s (and
thus pci

’s) such that the following objective function is
minimized:

G¼
Xn

i ¼ 1

EDðoi,pci
Þ ¼

Xn

i ¼ 1

Z
fiðxÞdðx,pci

Þdx: ð2Þ

We assume that the pdfs can take any arbitrary form,
which is important when the possible locations of a
device are constrained by its dynamic environment, such
as the road structure. The only additional requirement we
impose on the pdfs is that each of them should integrate
to one within a bounded region. This is a reasonable
requirement for many applications. For example, the
current location of a mobile device is restricted by its last
reported location, its maximum speed, and the duration
between two location reports [10,11]. In location cloaking,
the actual coordinates of a user’s location were replaced
by a uniform distribution over a bounded region [4,5].

In a separate study [1], it was shown that the quality of
clustering results could be improved by explicitly con-
sidering data uncertainty. An algorithm called UK-means
(Uncertain K-means) was proposed to take data uncer-
tainty into account during the clustering process. Experi-
mental results showed that UK-means consistently
produced better clusters than the traditional K-means
algorithm. Yet for arbitrary pdfs, expected distance
calculations require costly numerical integrations. A
straightforward implementation of UK-means for arbi-
trary pdfs would require a lot of such expected distance
calculations, which are computationally impractical.

In this paper we study two pruning algorithms, namely
pre-computation (PC) and cluster-shift (CS), which can
significantly reduce the number of expected distance
calculations of UK-means. The effectiveness of both
algorithms relies on good bounds of expected distances.
We propose and evaluate two bounding techniques that
are based on metric properties (Met) and trigonometry
(Tri). Met bounds are derived using the triangle inequal-
ity, and Tri bounds are obtained by a number of
trigonometric rules. Our experimental results show that
while the simple Met bounds are already powerful in
pruning expected distance calculations, the more ad-
vanced Tri bounds provide further pruning power. In
some of our experiments, more than 99.9% of the expected



W.K. Ngai et al. / Information Systems 36 (2011) 476–497478
distance calculations are pruned. This results in a very
efficient clustering algorithm.

The rest of this paper is organized as follows. Section 2
describes some related work on uncertain data mining in
general and uncertain data clustering in particular. Section 3
describes the UK-means algorithm. We explain the perfor-
mance bottleneck in UK-means and introduce a generic
pruning framework for reducing the number of expected
distance calculations. Based on this framework, we propose
and analyze a number of pruning algorithms. In Section 4
we first describe a simple pruning algorithm that uses the
idea of minimum bounding rectangles (MBRs). In Section 5,
we introduce two pruning algorithms PC and CS. We will
show that the effectiveness of these pruning algorithms
relies heavily on the tightness of the lower and upper
bounds of the expected distances. A major portion of this
paper is thus dedicated to the study of such bounding
techniques. Section 5 discusses the Met bounds, which are
derived from the triangle inequality. Section 6 discusses the
Tri bounds, which are derived from trigonometric rules. In
Section 7 we evaluate the effectiveness of the various
methods by extensive experiments. Section 8 discusses
some observations and potential future developments, and
Section 9 concludes the paper. Finally, the appendixes
contain detailed mathematical proofs of our theorems.

Before we end this section, we remark that although
we focus on 2D spaces (such as those related to
geographical and location-based applications), our prun-
ing algorithms and bounding techniques are theoretically
applicable to high-dimensional spaces as well. In parti-
cular, all the mathematical proofs of our theorems can be
extended to high-dimensional spaces. The computational
overheads incurred in the pruning methods, however, are
higher in higher dimensional spaces.
2 Refer to Section 5 and Figures 8–10 of [19].
2. Related work

There has been significant research interest in un-
certain data management in recent years. Data uncer-
tainty has been broadly classified into existential
uncertainty and value uncertainty. Existential uncertainty
appears when it is uncertain whether an object or a data
tuple exists. For example, a data tuple in a relational
database could be associated with a probability that
represents the confidence of its presence [12,13]. Value
uncertainty, on the other hand, appears when a tuple is
known to exist, but its values are not known precisely. A
data item with value uncertainty is usually represented by
a pdf over a finite and bounded region of possible values
[1,10,11,14–16]. In this paper we study the problem of
clustering objects with value uncertainty.

There has been growing interest in uncertain data
mining. In [1], the well-known K-means clustering
algorithm is extended to the UK-means algorithm for
clustering uncertain data. In that study, it is empirically
shown that clustering results are improved if data
uncertainty is taken into account during the clustering
process. One caveat of the approach is the costly
computation of numeric integration. To improve the
performance of UK-means, pruning techniques have been
proposed. Examples include min–max-dist pruning [2],
CK-means [17], and Voronoi-diagram-based methods
[18]. Our methods are similar to those of min–max-dist
pruning [2] in that they all attempt to estimate bounds of
expected distances (see Eq. (1)), which are then used to
prune unnecessary integrations. The difference is that we
apply trigonometric rules in bound estimations. As we
will show later, our methods result in much tighter
bounds and hence much more effective pruning algo-
rithms. A recent publication has reported advancements
on the topic of MBR-based pruning [19]. Our problem
setting represents a special case of their general model. In
this degenerate case, though, their proposed new techni-
que reduces back to min–max-dist pruning, and hence
cannot be applied to our problem to improve the pruning
effectiveness.2

Voronoi-diagram-based (VD-based) clustering algo-
rithms [18] represent a very different approach. Under
VD-based algorithms, a Voronoi diagram of the cluster
representatives is first constructed. The algorithms then
check whether an uncertain object o’s MBR lies entirely
within a Voronoi cell c. If so, the cluster representative
that corresponds to cell c must be the closest one to object
o. Hence o is assigned to that cluster without computing
any expected distances. We will briefly compare and
contrast the VD-based approach and our bounding
approach in Section 8.2.

Apart from studies in partition-based uncertain data
clustering, other directions in uncertain data mining include
density-based clustering (e.g., FDBSCAN [20]), frequent
itemset mining [21] and density-based classification [22].
For density-based clustering, two well-known algorithms,
namely, DBSCAN [23] and OPTICS [24] have been extended
to handle uncertain data. The corresponding algorithms are
called FDBSCAN [20] and FOPTICS [25], respectively. In
DBSCAN, the concepts of core objects and reachability are
defined. Clusters are then formed based on these concepts.
In FDBSCAN, the concepts are re-defined to handle uncertain
data. For example, under FDBSCAN, an object o is a core
object if the probability that there is a ‘‘good number’’ of
other objects that are close to o exceeds a certain probability
threshold. Also, whether an object y is ‘‘reachable’’ from
another object x depends on both the probability of y being
close to x and the probability that x is a core object. FOPTICS
takes a similar approach of using probabilities to modify the
OPTICS algorithm to cluster uncertain data.

Subspace clustering [26] is a special kind of density-
based clustering where clusters are hidden in (unknown)
low-dimensional subspaces. The study in [27] extends the
subspace clustering method in [28] to handle uncertain
data using expected distances.

Other formulations of the clustering problem have also
been studied. In [29,30], data uncertainty is represented
by value intervals. Different distance measures, such as
city-block distance and Minkowski distance, are extended
to handle interval data. In [22], each uncertain object is
modeled by a kernel function that estimates its errors. The
average of the kernel function values of all the objects at



W.K. Ngai et al. / Information Systems 36 (2011) 476–497 479
any given point gives the data density at that point. An
algorithm was proposed for using such data densities to
solve the classification problem of uncertain data.

Clustering of uncertain data is also related to fuzzy
clustering, which has long been studied in fuzzy logic
[31]. In fuzzy clustering, a cluster is represented by a
fuzzy subset of objects. Each object has a ‘‘degree of
belongingness’’ with respect to each cluster. The fuzzy c-
means algorithm is one of the most widely used fuzzy
clustering methods [32,33]. Different fuzzy clustering
methods have been applied on normal or fuzzy data to
produce fuzzy clusters [34,35]. A major difference be-
tween the clustering problem studied in this paper and
fuzzy clustering is that we focus on hard clustering, for
which each object belongs to exactly one cluster. Our
formulation targets for applications such as mobile device
clustering, in which each device should report its location
to exactly one cluster leader.
3. The basic UK-means algorithm and min–max-dist
pruning

The problem of clustering uncertain data was first
addressed in [1] where the UK-means algorithm was
proposed. An objective of the paper was to study whether
cluster quality could be improved by considering data
uncertainty. The efficiency of UK-means was a secondary
issue. In [2], it is shown that UK-means can be very
inefficient. Min–max-dist pruning was proposed to sig-
nificantly reduce clustering time. In this section, we
review the basic UK-means algorithm and the min–max-
dist pruning approach.

As the name suggests, UK-means is similar to the
iterative K-means algorithm, which was designed for
clustering conventional point data [36]. To form k clusters,
UK-means starts by randomly selecting k points as initial
cluster representatives. Each object oi is then assigned to
the cluster whose representative pj has the smallest
expected distance from oi (ED(oi,pj)) among all clusters.
After the assignment, cluster representatives are recom-
puted as the mean of the centers of mass of the assigned
objects. The two steps form an iteration, which is repeated
until the convergence of an objective score. Fig. 2 shows
the pseudocode of UK-means.
Fig. 2. The UK-means algorithm.
The most time-consuming step of UK-means is line 7,
where an expected distance ðEDðoi,pjÞ ¼

R
fiðxÞdðx,pjÞdxÞ is

calculated for each pair of object oi and cluster represen-
tative pj. Since cluster representatives shift from one
iteration to another, the expected distances have to be
recalculated in each iteration. With arbitrary pdf fi, the
integration has to be computed numerically by sampling
values of f(x) at different points x within the bounded
uncertainty region of oi, and computing the distance
d(x,pj). To get an accurate estimate of the integrals, a
large number of sample points x are required, making
expected distance calculation an expensive operation.
Suppose the algorithm runs for t iterations before conver-
gence, a brute force implementation of the UK-means
algorithm requires nkt expected distance calculations,
which make the algorithm impractical when the total
number of objects n is large. The integration in line 9
computes the centers of mass of objects. These centers
need to be computed only once for the whole clustering
process since they remain unchanged. The cost is thus
relatively insignificant.

Is it possible to reduce the number of expected
distance calculations without altering the clustering
results? An idea is to use inexpensive distance calcula-
tions between some exact points with no uncertainty to
setup lower and upper bounds of the expected distance
between each object and each cluster representative, so
that some representatives can be identified as not the
closest one to an object without computing the exact
expected distance between them.

Given two cluster representatives pj and pr, if a lower
bound of ED(oi,pj) is larger than an upper bound of
ED(oi,pr), then pj is guaranteed not the closest cluster
representative of oi. In other words, the expensive
expected distance calculation of ED(oi,pj) can be pruned.

More specifically, for each object oi and each cluster
representative pj, we use a method (to be described in the
coming sections) to derive a lower bound MinDistij and an
upper bound MaxDistij of ED(oi,pj). Among all the upper
bounds of oi with respect to different cluster representa-
tives, the smallest one is called the min–max distance
MinMaxDisti ¼minjMaxDistij. Let pr be a cluster represen-
tative with the smallest upper bound (i.e., MaxDistir=Min-

MaxDisti). Any cluster representative pj with MinDistij

larger than MinMaxDisti cannot be the one closest to oi,
since

EDðoi,pjÞZMinDistij4MinMaxDisti ¼MaxDistir ZEDðoi,prÞ,

ð3Þ

Thus, the expected distances between oi and all pj’s such
that MinDistij4MinMaxDisti are pruned.

If there are two or more cluster representatives that
cannot be pruned, their exact expected distances from
object oi are computed in order to determine which one is
the closest. We call the whole procedure the min–max-
dist pruning method. The effectiveness of the pruning
method depends on the tightness of the bounds MinDistij

and MaxDistij as well as the overhead incurred by the
computation of them. In the coming sections, we will
discuss ways to obtain such bounds.



W.K. Ngai et al. / Information Systems 36 (2011) 476–497480
4. MBR-based bounds on expected distances

A simple method to obtain lower and upper bounds of
the expected distance ED(oi,pj) is to make use of a
minimum bounding rectangle (MBR). For each object oi,
we define an MBR that covers the whole bounded
uncertainty region of it. For each cluster representative
pj, we compute the minimum and maximum distances
between pj and the MBR of oi (Fig. 3(a)). These distances
can be easily computed by simple geometry. It is obvious
that such minimum and maximum distances are also
lower and upper bounds of ED(oi, pj) and thus can be used
as MinDistij and MaxDistij, respectively. For instance, if the
minimum distance is dij , then

EDðoi,pjÞ ¼

Z
fiðxÞdðx,pjÞdxZ

Z
fiðxÞdij dx¼ dij

Z
fiðxÞdx¼ dij :

For example, in Fig. 3(a), we have MinDisti1=1,
MinDisti2=5, MinDisti3=7, MaxDisti1=6, MaxDisti2=11 and
MaxDisti3=14. Since p1 gives the smallest maximum
distance, we have the min–max distance MinMaxDisti=
MaxDisti1=6. Then, as MinDisti3=7, which is larger than
MinMaxDisti=6, p3 cannot be the cluster representative
closest to oi and thus the expected distance ED(oi,p3)
needs not be computed.

The method is effective in saving expected distance
calculations of cluster representatives that are much
farther away from the closest one. However, it suffers
when the MBR gives poor distance bounds. This occurs
when the uncertainty region of an object is large relative
to the difference in expected distances from the different
cluster representatives. For example, in Fig. 3(b), the
maximum distance of p1 is increased to 8 due to a larger
uncertainty region. The min–max distance MinMaxDisti,
now being 8, is no longer smaller than MinDisti3. Therefore
p3 cannot be pruned and ED(oi, p3) needs to be computed.

In the coming sections, we will discuss ways to tighten
the bounds MinDist and MaxDist in order to achieve more
effective pruning.
5. Metric bounds on expected distances

In this section we describe two bounding methods
based on the triangle inequality, which takes two forms:
p1

oi
p2

p3

1

6
5

11

7
14

p1

oi
p2

p3

1

8

5

13

6

14

Fig. 3. Minimum and maximum distances for the min–max-dist pruning

method. (a) An object with a relatively small uncertainty region. (b) An

object with a relatively large uncertainty region.
For any three points x, y and z, we have

dðx,yÞrdðx,zÞþdðz,yÞ

and

dðx,yÞZ jdðy,zÞ�dðx,zÞj:

We now introduce two pruning methods that make use of
the bounds derived from the triangle inequality.

5.1. The pre-computation (PC) method

Our first approach is to pre-compute some expected
distances and utilize the triangle inequality to obtain
better bounds. A similar idea applied to hierarchical
clustering on data without uncertainty was proposed in
[37]. Suppose that before the clustering process starts, we
pick, for each object oi, a fixed anchor point y in the object
space and pre-compute the expected distance ED(oi,y). By
using the triangle inequality, we can derive the following
upper bound on the expected distance between object oi

and a cluster representative pj in terms of y:

EDðoi,pjÞ ¼

Z
fiðxÞdðx,pjÞdxr

Z
fiðxÞ½dðx,yÞþdðy,pjÞ�dx

¼ EDðoi,yÞþdðy,pjÞ: ð4Þ

Since ED(oi,y) is pre-computed, the upper bound can be
computed by an inexpensive distance calculation of
d(y,pj). One can then compare the bound obtained from
Inequality (4) with the bound obtained from the MBR
method and use the smaller (i.e., tighter) one of the two as
MaxDistij. This will guarantee a pruning effectiveness not
worse than that of the MBR method.

Similarly, a lower bound on ED(oi, pj) can be derived:

EDðoi,pjÞ ¼

Z
fiðxÞdðx,pjÞdxZ

Z
fiðxÞjdðy,pjÞ�dðx,yÞj dx

Z

Z
fiðxÞ½dðy,pjÞ�dðx,yÞ�dx

����
����¼ jdðy,pjÞ�EDðoi,yÞj:

ð5Þ

Again, this lower bound can be compared with the one
obtained from the MBR method and the larger one is used
as MinDistij. We call the pruning procedure based on the
bounds given by Inequalities (4) and (5) the pre-
computation method, or PC for short.

An interesting issue concerning the PC method is the
choice of the anchor point y. Obviously, if y equals pj, then
the bounds are tight since d(y, pj) would be zero. In general,
choosing an anchor point y that is close to a cluster
representative pj would result in good lower and upper
bounds of ED(oi, pj). Unfortunately, since there are k cluster
representatives (pj) scattered about in the space, it is not
possible to pick an anchor point that is close to all pj’s.

To tackle the problem, let us examine the upper bound
ED(oi, y)+d(y, pj) again. Since pj is unknown in advance, a
best-effort approach is to pick an anchor point y that
minimizes the first term, ED(oi, y). Doing so would also
make the inequality dðy,pjÞ4EDðoi,yÞ more likely to be
true, which means minimizing ED(oi, y) would not only
attempt to tighten the upper bound, but also simulta-
neously attempt to make a tighter lower bound. It is thus
important to know where can we find y that minimizes
ED(oi, y). The exact location is in general hard to obtain,



W.K. Ngai et al. / Information Systems 36 (2011) 476–497 481
but fortunately the following result helps reduce the
possible candidates.

Lemma 5.1. The anchor point y that minimizes ED(oi,y)
must lie inside the MBR of oi.

Proof. Suppose that a point y is outside the MBR of oi and
y* is the point on the boundary of the MBR that is closest
to y. There are two possible cases, either the line yy* is
perpendicular to an edge of the MBR (Fig. 4(a)), or y* is at
a corner of the MBR (Fig. 4(b)). In both cases, consider any
point x inside the uncertainty region of oi, and let z be the
point on the extension of yy* such that xz is perpendicular
to yz. If x lies on the line yy* (i.e., x=z), then dðx,yÞ4
dðx,y�Þ; otherwise, dðx,yÞ ¼ dðx,zÞ=cos+yxz4 dðx,zÞ=cos+
y�xz¼ dðx,y�Þ. Therefore in all cases, EDðoi,yÞ ¼

R
fiðxÞ

dðx,yÞdx4
R

fiðxÞdðx,y�Þdx¼ EDðoi,y
�Þ, which proves the

lemma. &

The lemma suggests that we only need to pick anchor
points for an object oi from its MBR. In general, having
more points raises the chance of getting tighter bounds,
but also increases the pre-computation overhead. As we
will show later in Section 7 using our experimental
results, the pruning methods that use PC are very effective
even with only a single anchor point. We will therefore
stay with the one-point scheme with the anchor point at
the center of the MBR, unless otherwise stated.

5.2. The cluster shift (CS) method

In the last section, we mentioned the difficulty of
choosing an anchor point y that minimizes the second
term of the upper bound ED(oi,y)+d(y,pj) (Inequality (4)),
as the location of pj is unknown in advance. Yet, if by some
means there exists a point y such that (1) the expected
distance ED(oi, y) has already been computed and (2) y is
close to pj, then y can be used to set up good distance
bounds. Such a point indeed exists naturally during the
clustering process based on the following observation.

Consider two consecutive iterations h and h+1 in the
clustering process where the representative of cluster j

shifted from point pju to point pj. Since cluster representa-
tives usually shift by small distances especially in the later
iterations of the clustering process, dðpju,pjÞ should be
Fig. 4. A point that minimizes its expected distance to an object oi must

lie within the MBR of oi.
small. If EDðoi,pjuÞ was computed in iteration h because
pruning has failed to eliminate the computation, then
point pju satisfies the two conditions mentioned above and
can be used as a good anchor point for bounding ED(oi,pj).
Again, the upper and lower bounds are derived from the
triangle inequality:

EDðoi,pjÞrEDðoi,pjuÞþdðpj,pjuÞ, ð6Þ

EDðoi,pjÞZ jEDðoi,pjuÞ�dðpj,pjuÞj: ð7Þ

As in the case of the PC method, the bounds can be
computed using inexpensive distance calculations. We
call the resulting pruning method the cluster shift
method, or CS for short. A similar idea was used in [38]
for speeding up the K-means algorithm when applied to
conventional data.

Note that even if the expected distance EDðoi,pjuÞ was
not computed in iteration h, we can still apply the idea of
the CS method by considering the most recent representa-
tive pj* of cluster j whose expected distance ED(oi,pj*) from
oi has been computed. An interesting property of the CS
method is that if EDðoi,pjuÞ is not available, it means that
EDðoi,pjuÞ was pruned by the bounds using pj*. In that case,
since pju and pj are close, if the bounds led to the pruning
of pju, it is very likely that ED(oi,pj) can be pruned by the
bounds using pj* as well. On the other hand, if EDðoi,pjuÞ is
available, we can use it to bound ED(oi,pj). So, either way,
chances are that the expected distance ED(oi,pj) can be
pruned.

There are two main differences between the CS method
and the PC method. First, the CS method does not involve
any pre-computation of expected distances. It simply uses
a previously computed result. There is thus no extra pre-
computation overhead. Second, while the anchor point y

picked for the PC method is close to the object oi, the
anchor point (e.g., pju) used by the CS method is close to the
cluster representative pj. A downside of the CS method is
its dependency on the dynamic clustering process, such as
whether EDðoi,pjuÞ has been previously computed and thus
pu can be used as an anchor point, which is largely
unpredictable. Another issue of the CS method is that if
the cluster representatives experience large shifts (e.g.,
during the first few iterations of the clustering process), the
derived bounds could be loose. In that case, the algorithm
will automatically fall back to those bounds obtained by
the basic MBR method (Section 4).

6. Trigonometric bounds on expected distances

The triangle inequality used in the previous section is
simple in bounding the expected distances, yet the
bounds are not very tight. This is because the method
only considers the distances between the anchor point y,
the cluster representative pj and the points x in the MBR of
the uncertain object oi, but not the angles between them.
If we make use of these angles, we will be able to find
tighter bounds. For instance, let us take a look at
Inequality (4). The upper bound of ED(oi,pj) is given by
the sum of ED(oi,y) and d(y,pj). If the vectors ~xy and ~ypj are
far from parallel for most of the points x in the MBR of oi,
then ED(oi, pj) can be much smaller than ED(oi,y)+d(y,pj).



Fig. 5. Notations for Section 6.

Table 1
Summary of trigonometric bounds.

Name Applicable wheny Upper bound

COS p,y=2MBR EDðoi,yÞcosaþJ ~ypJcosb

SEC-A Byp \MBR¼ | (a: acute) secaðEDðoi,yÞ�J ~ypJcosgÞ
SEC-A MBRDByp (a: obtuse) secaðEDðoi,yÞ�J ~ypJcosgÞ

SEC-B MBR and y lie on the same

side of Ppy (b: acute)
secbðJ ~ypJ�EDðoi ,yÞcosgÞ

SEC- B MBR and y lie on different

sides of Ppy (b: obtuse)
secbðJ ~ypJ�EDðoi ,yÞcosgÞ

CSC-A Lpy \MBR¼ | J ~ypJsingcsca

CSC-B Lpy \MBR¼ | EDðoi,yÞsingcscb

3 In this article, an angle is defined as obtuse if it is in ðp=2,p�.

W.K. Ngai et al. / Information Systems 36 (2011) 476–497482
That is, the upper bound can be very loose. This problem is
illustrated in Fig. 5, where pj is denoted as p in order to
simplify the notation. Clearly, for each point x in object oi,
the distance d(x,p) can be more accurately computed in
terms of the angles a, b and g.

In this section we describe in detail how new bounds
of ED(oi,pj) can be obtained by using trigonometry. We
will show later (see Section 6.5) that the farther away the
anchor point y is from the MBR, the tighter the bounds
will be (as long as we do not lose much numerical
precision). The reason why a far-away anchor is picked is
to limit the variation of the three angles (see Fig. 5). We
may thus consider the trigonometric bounds being
complementary to the PC bounds discussed in Section 5,
which prefer anchor points inside the MBR.

The new bounds based on trigonometry can be used in
place of those based on the triangle inequality under both
the PC method and the CS method. For the PC method, for
each object, we pick an additional anchor point y that is
far away from the object, and pre-compute the expected
distance ED(oi, y). For the CS method, we use the cluster
representative of a previous iteration whose expected
distance from oi has been computed as the anchor point.
As discussed before, the different bounds can be used
together by comparing their tightness and picking the
best one. We will study the resulting pruning power and
computational overhead empirically in Section 7.

We will first identify a few identities concerning the
side lengths and angles of a triangle in Section 6.1. Then,
we use these identities to derive bounds of ED(oi,pj) in
Sections 6.2–6.4. We have discovered that except in some
degenerate cases, given a fixed anchor point, the trigono-
metric bounds are strictly better than those derived from
the triangle inequality. This result is formally presented in
Section 6.5. Note that the trigonometric bounds require
the computation of bounds on certain trigonometric
functions on the three angles. In Appendix A, we first
describe algorithms for bounding the angles. Then in
Appendix B, we show that the bounds on the trigono-
metric functions can be found easily using the bounds on
the angles.

Before we go into the details, let us formally introduce
some notations. First, we consider the triangle formed by
the three points x, p, y. The corresponding angles in the
triangle are a,b,g, respectively, where all three angles are
within ½0,p�. Fig. 5 illustrates such a triangle for the case
where b is obtuse.3 We treat y (the anchor point) and p

(any cluster representative pj) as fixed points, and x as a
variable point that is confined within the MBR of an
uncertain object oi. Note that the three angles all vary
with x. We assume that x, p, y are all distinct points, so
that J ~xpJ, J~xyJ and J ~ypJ are all non-zero.

We use vector notations for our formulas and proofs.
We denote the vector that points from a to b as ~ab. If two
vectors ~ab and ~cd are perpendicular, we write ~ab ? ~cd;
otherwise, we write ~ab ~cd. For convenience, the distance
between two points a and b is written as J ~abJ¼ dða,bÞ. The
maximum (resp. minimum) value of a quantity q is
denoted as q (resp. q). So, a denotes the minimum
attainable value of angle a as x varies within the MBR of oi,
and cosa denotes the maximum attainable value of cosa,
which happens to be equal to cosa because cosine is a
decreasing function in the range ½0,p�.

As a preview, we derive five types of bounds, called
cosine bounds (COS), secant-A bounds (SEC-A), secant-B

bounds (SEC-B), cosecant-A bounds (CSC-A) and cosecant-B

bounds (CSC-B). These bounds are derived from different
trigonometry identities and they are applicable under
different conditions. Table 1 shows a summary of the
bounds. Note that only upper bounds are shown in the
table. The corresponding lower bounds can be obtained by
swapping all quantities q with q in the formulae. First-
time readers might want to skip the details of the bound
derivations (Sections 6.2–6.4) and proceed to Section 6.5,
where some theorems concerning the various bounds are
presented.
6.1. Selected trigonometric identities

The basic idea of bounding ED(oi,pj) is to look for
identities that represent J ~xpJ in terms of J ~xyJ, J ~ypJ, and
trigonometric functions of a, b and g. After taking
integration, it is equivalent to representing ED(oi,pj) in
terms of ED(oi,y), J ~ypJ, and trigonometric functions of a, b
and g. Since ED(oi,y) is pre-computed and J ~ypJ can be
computed easily using an inexpensive distance



W.K. Ngai et al. / Information Systems 36 (2011) 476–497 483
calculation, by bounding the values of the trigonometric
functions, we obtain bounds of ED(oi,pj).

We have identified five such identities that can be
computed efficiently:
1.
 COS identity:

J ~xpJ¼ J ~xyJcosaþJ ~ypJcosb: ð8Þ

SEC identities:
2.

(a) When ~xy ~xp,

J ~xpJ¼ secaðJ ~xyJ�J ~ypJcosgÞ: ð9Þ

(b) When ~yp ~xp,

J ~xpJ¼ secbðJ ~ypJ�J ~xyJcosgÞ: ð10Þ
identities: when x,p,y are not collinear,
3.
 CSC

J ~xpJ¼ J ~ypJsingcsca, ð11Þ

J ~xpJ¼ J ~xyJsingcscb: ð12Þ
4 In this article, an angle is acute if it is in ½0,p=2Þ.
Proof. The identities can be readily verified for the
triangle shown in Fig. 5. Here we give general proofs for
all possible values of a, b and g.

For (8),

~xp ¼ ~xyþ ~yp,

~xp � ~xp ¼ ~xp � ð ~xyþ ~ypÞ,

J ~xpJ2
¼ ~xp � ~xyþ ~xp � ~yp ¼ J ~xpJJ ~xyJcosaþJ ~xpJJ ~ypJcosb,

J ~xpJ¼ J ~xyJcosaþJ ~ypJcosb:

Geometrically, referring to Fig. 5, Eq. (8) states that J ~xpJ is

equal to J ~xyuþ ~yupJ, where yu is the point on line xp so that
~yyu ? ~xp.

For (9),

~xp ¼ ~xyþ ~yp,

~xy � ~xp ¼ ~xy � ð ~xy� ~pyÞ,

J ~xyJJ ~xpJcosa¼ J ~xyJ2
�J~xyJJ ~pyJcosg,

J ~xpJ¼ secaðJ ~xyJ�J ~ypJcosgÞ:

Geometrically, the equality states that J ~xpJ is equal to

J ~xpuJseca, where pu is the point on xy so that ~ppu ? ~xy.

Eq. (10) can be derived in a similar fashion.

Eqs. (11) and (12) can be derived from the sine rule,

which states that

J ~ypJ

sina ¼
J~xyJ

sinb
¼

J ~xpJ

sing :

Rearranging terms leads to (11) and (12) immediately.

The geometrical interpretations of (11) and (12) are that

J ~xpJ¼ J ~ppuJcsca and J ~xpJ¼ J ~xxuJcscb, where xu is the point

that lies on line yp (projected if necessary) so that
~xux ? ~yp. &
6.2. COS bounds

We derive COS upper and lower bounds based on
Identity (8). The bounds are so named because they
depend on the cosine values of a and b:

J ~xpJ¼ J ~xyJcosaþJ ~ypJcosbrJ ~xyJcosaþJ ~ypJcosb:

Multiplying both sides by fi(x) and performing integration,
we getZ

fiðxÞJ ~xpJdxr
Z

fiðxÞðJ ~xyJcosaþJ ~ypJcosbÞdx,

EDðoi,pÞrcosa
Z

fiðxÞJ ~xyJdxþcosbJ ~ypJ

Z
fiðxÞdx

¼ EDðoi,yÞcosaþJ ~ypJcosb: ð13Þ

Similarly, we can find a lower bound:

EDðoi,pÞZEDðoi,yÞcosaþJ ~ypJcosb: ð14Þ

6.3. SEC bounds

The SEC bounds consist of two sets of bounds. The SEC-A
bounds involve the value of seca and are based on Identity
(9). The SEC-B bounds involve the value of secb and are
based on Identity (10).
6.3.1. SEC-A bounds

The SEC-A bound is only applicable when there is no
point x 2MBR such that a¼ p=2. This guarantees that
seca is always well defined and hence Identity (9) is
applicable.

Let Syp be the sphere with yp being a diameter (Fig. 6).
Let Byp be the closed ball containing all points inside Syp,
inclusively. Note that the chord yp subtends right angles
only at points on Syp (see Fig. 6(a)). So, if Syp intersects the
MBR we know that SEC-A is not applicable, because points
in the intersection will make a¼ p=2 and hence Identity
(9) is not applicable.

When Syp does not intersect the MBR, we consider two
cases. In the first case, the whole MBR lies outside Syp (or
equivalently, Byp \MBR¼ |). In this case, a is always
acute4 and hence secaZ1 (see Fig. 6(b)). In the second
case, the whole MBR lies inside Syp (or equivalently,
MBRDByp). In this case, a is always obtuse and hence
secar�1 (see Fig. 6(c)).

In the first case, since seca is positive and the left side
of Identity (9) is non-negative, we know that the second
factor on the right side of (9) must also be non-negative.
So, we have

J ~xpJ¼ secaðJ ~xyJ�J ~ypJcosgÞrsecaðJ ~xyJ�J ~ypJcosgÞ:

Multiplying both sides by fi(x) and performing integration,
we getZ

fiðxÞJ ~xpJdxr
Z

fiðxÞsecaðJ ~xyJ�J ~ypJcosgÞdx,



Fig. 6. Different Cases for SEC-A. (a) Not applicable. (b) a: acute.

(c) a: obtuse.

Fig. 7. Different Cases for SEC-B. (a) Not applicable. (b) b: acute.

W.K. Ngai et al. / Information Systems 36 (2011) 476–497484
EDðoi,pÞrseca
Z

fiðxÞJ ~xyJdx�J ~ypJcosg
Z

fiðxÞdx

� �
¼ secaðEDðoi,yÞ�J ~ypJcosgÞ: ð15Þ

Similarly, a lower bound can be obtained:

EDðoi,pÞZsecaðEDðoi,yÞ�J ~ypJcosgÞ: ð16Þ

In the second case, we note that seca is negative. The
derivations are similar to those of the first case, except that
the inequality sign is reversed. We thus get the bounds:

EDðoi,pÞrsecaðEDðoi,yÞ�J ~ypJcosgÞ, ð17Þ

EDðoi,pÞZsecaðEDðoi,yÞ�J ~ypJcosgÞ: ð18Þ

6.3.2. SEC-B bounds

Similar to the SEC-A bounds, the SEC-B bounds are only
applicable when there is no point x 2MBR such that
b¼ p=2. This guarantees that secb is always well defined
and hence Identity (10) is applicable.

Note that points that make b¼ p=2 lie exactly on the
hyper-plane Ppy that passes through the point p and is
perpendicular to ~py. So, if Ppy intersects the MBR, SEC-B is
not applicable because the intersecting points induce
b¼ p=2 (see Fig. 7(a)).

When Ppy does not intersect the MBR, we again
consider two cases. In the first case, the whole MBR lies
on the same side of Ppy as y. In this case b is always acute
(see Fig. 7(b)). In the second case, the whole MBR lies on
the side of Pyp opposite to y. In this case, b is always
obtuse and hence secbr�1 (see Fig. 7(c)).

In the first case, we note that secb is positive and the
left side of Identity (10) is non-negative. So, the second
factor on the right side must be non-negative. This gives

J ~xpJrsecbðJ ~ypJ�J ~xyJcosgÞ:

(c) b: obtuse.
Recall that Identity (10) is invalid when x=y, which may
happen when y 2MBR. However, when that happens,

J ~xpJ¼ J ~ypJ¼ 1 � ðJ ~ypJ�J ~xyJ � 1Þ

because ~xy ¼~0 when x=y. Since secbZ1, we know that

secbZ1. Furthermore, cosgr1 and hence cosgr1.

Therefore,

J ~xpJ¼ 1 � ðJ ~ypJ�J ~xyJ � 1ÞrsecbðJ ~ypJ�J~xyJcosgÞ

when x=y. So, whether or not x=y, we arrive at the same
upper bound. The bound thus holds for all points x 2MBR,
regardless of whether y 2MBR or not. Multiplying both
sides by fi(x) and integrating, we get

EDðoi,pÞrsecbðJ ~ypJ�EDðoi,yÞcosgÞ: ð19Þ

A lower bound can be similarly derived:

EDðoi,pÞZsecbðJ ~ypJ�EDðoi,yÞcosgÞ: ð20Þ

The case where b is always obtuse can be handled
similarly. In that case, secb is negative. The derivation is
similar to the first case except that the inequality sign is
reversed. The bounds so obtained are

EDðoi,pÞrsecbðJ ~ypJ�EDðoi,yÞcosgÞ, ð21Þ

EDðoi,pÞZsecbðJ ~ypJ�EDðoi,yÞcosgÞ: ð22Þ

6.4. CSC bounds

The CSC bounds are applicable when there is no point
x 2MBR such that x, p, y are collinear. (This is to ensure
that a and b do not attain the value of 0 or p, thus
guaranteeing that csca and cscb are well-defined.) Con-
sider the line Lpy that passes through points p and y. If Lpy

does not intersect the MBR, then p, y, and any point x in
the MBR are not collinear and Identities (11) and (12) are
applicable. Using (11), we derive the CSC-A upper bound:

J ~xpJrJ ~ypJsing csca,

Z
fiðxÞJ ~xpJdxr

Z
fiðxÞJ ~ypJsing csca dx,

EDðoi,pÞrJ ~ypJsing csca
Z

fiðxÞdx¼ J ~ypJsing csca: ð23Þ

Similarly, the CSC-A lower bound is given by

EDðoi,pÞZJ ~ypJsing csca: ð24Þ

The CSC-B bounds are obtained similarly from (12):

EDðoi,pÞrEDðoi,yÞsing cscb, ð25Þ

EDðoi,pÞZEDðoi,yÞsing cscb: ð26Þ

6.5. Combining the bounds together

Finally, the trigonometric bounds are obtained by com-
bining the various bounds described above. For a particular
pair of cluster representative and uncertain object, we
compute the upper (resp. lower) bounds using COS, SEC-A,
SEC-B, CSC-A and CSC-B, omitting those that are not



W.K. Ngai et al. / Information Systems 36 (2011) 476–497 485
applicable. The minimum (maximum) of all the applicable
upper (lower) bounds is used as the trigonometric upper
(lower) bound. In case all upper (lower) bounds are
inapplicable, we fall back to the ones obtained using the
triangle inequality instead (see Inequalities (4) and (5)).

Since the trigonometric bounds are those obtained from
the triangle inequality in case none of the bounds using
COS, SEC-A, SEC-B, CSC-A, CSC-B is applicable, the trigono-
metric bounds are thus no worse than those given by the
triangle inequality. On the other hand, when some specific
bounds are applicable, we can show that the trigonometric
bounds are strictly better than those using the triangle
inequality under certain conditions. This interesting result
is summarized by the following theorems.

Theorem 6.1. When COS is applicable (i.e., when p,y=2MBR),
the upper bound (13) given by COS is always tighter (i.e.,
smaller) than or equal to that given by the triangle inequality

(4). Equality holds if and only if the (straight) ray emerging

from y in the direction of ~py intersects the MBR.

Proof. Since the value of cosine is bounded above by 1,
we have: cosar1 and cosbr1. Therefore, EDðoi,yÞ
cosaþJ ~ypJcosbrEDðoi,yÞþJ ~ypJ. Equality holds if and
only if cosa ¼ 1 and cosb ¼ 1, or equivalently, a ¼ b ¼ 0.
For a ¼ 0, there must be a point x in the MBR such that x

lies on the ray emerging from y in the direction of ~py or
the ray emerging from p in the direction of ~yp. For b ¼ 0,
there must be a point x in the MBR so that x lies on the ray
emerging from p in the direction of ~py. For both of these to
happen, we consider the intersection of these rays and
deduce that a ¼ b ¼ 0 if and only if the ray emerging from
y in the direction of ~py intersects the MBR. &

To compare the trigonometric lower bound with the
one obtained by the triangle inequality, we first establish
the following lemmas.

Lemma 6.2. When a is always acute, the lower bound (16)
given by SEC-AZEDðoi,yÞ�J ~ypJ. Equality holds if and only if

the (straight) ray emerging from p in the direction of ~yp

intersects the MBR.

Proof. For acute values of a, secaZ1. So, secaZ1. Also
note that cosgr1. Therefore,

lower bound given by SEC� A¼ secaðEDðoi,yÞ�J ~ypJcosgÞ

Z1 � ðEDðoi,yÞ�J ~ypJ � 1Þ

¼ EDðoi,yÞ�J ~ypJ:

Equality holds if and only if seca ¼ 1 and cosg ¼ 1, or
equivalently, a ¼ g ¼ 0. For a ¼ 0, there must be a point x

in the MBR such that x lies on the ray emerging from y in

the direction of ~py or the ray emerging from p in the

direction of ~yp. For g ¼ 0, there must be a point x in

the MBR such that x lies on the ray emerging from y in the

direction of ~yp. Considering the intersection of these rays,
we have a ¼ g ¼ 0 if and only if the ray emerging from p in

the direction of ~yp intersects the MBR. &

Lemma 6.3. When b is always acute, the lower bound (20)
given by SEC-BZJ ~ypJ�EDðoi,yÞ. Equality holds if and only if

the line segment yp intersects the MBR.
The proof is similar and hence omitted. Now, we are
ready to prove the following theorem concerning the
trigonometric lower bound.

Theorem 6.4. When both SEC-A and SEC-B are applicable,
the lower bound given by either of them is tighter (i.e.,
greater) than or equal to that given by the triangle inequality

(5). Equality holds only if the (straight) ray emerging from y

in the direction of ~yp intersects the MBR.

Proof. Since SEC-A is applicable, a is either always acute
or always obtuse. Also, since SEC-B is applicable, b is
either always acute or always obtuse. We note that a and
b cannot be both obtuse because the sum of the inner
angles of a triangle cannot exceed p. We now consider the
following cases:
1.
 a is always obtuse. In this case, b must be always acute.
So, by Lemma 6.3, the lower bound given by SEC-BZ

J ~ypJ�EDðoi,yÞ. (Equality holds if and only if the line
segment yp intersects the MBR, which implies that the ray

emerging from y in the direction of ~yp intersects the

MBR.) Since a is obtuse, J ~ypJZJ~xyJ (for all x 2MBRðoiÞ)

and hence J ~ypJZEDðoi,yÞ. Therefore, the lower bound

given by triangle inequality (5) is J ~ypJ�EDðoi,yÞ. Thus, the
lower bound given by SEC-B Z the lower bound given by
the triangle inequality.
2.
 a is always acute.
(a) b is always obtuse. Since b is obtuse, we know that

J ~xyJZJ ~ypJ (for all x 2MBRðoiÞ). Hence, EDðoi,yÞZ

J ~ypJ. So, the triangle inequality (5) gives EDðoi,yÞ�

J ~ypJ as the lower bound. But since a is always
acute, we know from Lemma 6.2 that the lower

bound given by SEC-AZEDðoi,yÞ�J ~ypJ¼ the lower
bound given by the triangle inequality. (Equality
holds if and only if the (straight) ray emerging

from p in the direction of ~yp intersects the MBR,
which implies that the ray emerging from y in the

direction of ~yp intersects the MBR.)
(b) b is always acute. In this case, we do not know which

of J ~ypJ and ED(oi,y) is larger. However, we know that
the lower bound given by the triangle inequality is

equal to either J ~ypJ�EDðoi,yÞ or EDðoi,yÞ�J ~ypJ

(whichever is greater). Now, using Lemma 6.2, we
know that the lower bound given by SEC-A is no less

than EDðoi,yÞ�J ~ypJ. In addition, using Lemma 6.3,
we know that the lower bound given by SEC-B is no

less than J ~ypjJ�EDðoi,yÞ. So, either one of the lower

bounds given by SEC-A or SEC-B is no less than the
bound given by the triangle inequality. (Equality
holds ) the line segment yp intersects the MBR or
the (straight) ray emerging from p in the direction of
~yp intersects the MBR) the ray emerging from y in

the direction of ~yp intersects the MBR.) &
To summarize, given the above theorems, we know
that when COS is applicable, the trigonometric upper
bound is no worse than the upper bound given by the
triangle inequality. In addition, when CSC is applicable,
the upper bound given by COS is strictly better than that



W.K. Ngai et al. / Information Systems 36 (2011) 476–497486
of the triangle inequality. This is because the applicability
of CSC guarantees that the equality condition mentioned
in Theorem 6.1 does not hold. On the other hand, when
SEC-A and SEC-B are both applicable, the trigonometric
lower bound is no worse than the lower bound given by
the triangle inequality. The former is strictly better than
the latter when all SEC-A, SEC-B and CSC are applicable.
Therefore, trigonometric bounds are favorable when the
various bounds are applicable. When all of COS, SEC-A,
SEC-B, CSC are applicable, the trigonometric bounds are
strictly tighter than the metric bounds, thanks to
Theorems 6.1 and 6.4. (This is because equality in these
theorems holds only if CSC is inapplicable.) To maximize
the likelihood that these bounds are applicable, we choose
(when possible) an anchor point that is outside the MBR.

Before we end this section, we remark that the CSC-A
bounds are in fact not useful, and they were listed just for
the sake of completeness. We summarize this finding by
the following theorem.

Theorem 6.5. The CSC-A bounds are no tighter than the

bounds determined using the MBR method (see Section 4).

Proof. We show the proof for the upper bound only. The
proof for the lower bound is similar and hence omitted for
brevity.

Consider the point z 2 the MBR that maximizes J~zpJ.

The upper bound on ED(oi,p) given by the MBR method

is dðz,pÞ ¼ J~zpJ. Let az, bz and gz be the values of the angles

a, b and g when x=z, respectively. Then, by Identity (11),

we have

J~zpJ¼ J ~ypJsingzcscazrJ ~ypJsingcsca:

Thus, the upper bound given by the MBR method is tighter

than or equal to that given by CSC-A. &

In our implementation of the trigonometric method,
we do not compute the CSC-A bounds.

6.6. Summary of trigonometric bounds

The trigonometric bounds are obtained by combining
the bounds on ED(oi,pj) determined using trigonometry.
As we have discussed, the trigonometric bounds are not
always applicable. Their applicability depends on the
relative positions of the MBR, the anchor point, and the
cluster representative. The applicability conditions are
summarized in Table 1. (The table shows only the upper
bounds; lower bounds are obtained by swapping all
quantities q with q in the formulae.) We only compute
those bounds that are applicable, and take the tightest
upper and lower bounds as the trigonometric bounds. In
case none of the bounds are applicable, we fall back to
those obtained by the triangle inequality.

In order to make the trigonometric bounds applicable,
we need to pick an anchor point y that is outside the MBR,
otherwise, Theorems 6.1 and 6.4 do not apply. Also, if y is far
from the MBR, the ranges of the angles’ values will be small.
This leads to tighter bounds. Consequently, it is preferable to
choose y that is far away from the MBR, as long as enough
precision is maintained for numerical accuracy.
7. Experiments

In this section we report our empirical study on the
effectiveness of the various pruning methods.
7.1. Data

We use synthetic datasets and a geographic dataset in
our experiments. The synthetic datasets, with controllable
parameters, help us study the effectiveness of the pruning
methods over a wide spectrum of situations. On the other
hand, the geographic dataset allows us to study the
practicality of the pruning methods under a real setting.

Synthetic datasets: We generate two types of synthetic
datasets, one with objects exhibiting intrinsic cluster
patterns, one without. For each type, a number of datasets
are generated based on different parameter values.

Each dataset is generated by the following procedure.
The object domain is a rectangular 2D region with
dimension [0,100]� [0,100]. n objects are generated. Each
object is associated with an MBR with random side
lengths no longer than d units. For datasets without
cluster patterns, the objects’ MBRs are randomly posi-
tioned in the object domain. For datasets with cluster
patterns, k points in the domain are randomly chosen as
the real cluster centers, with a constraint that these points
are at least 100=2

ffiffiffi
k
p

units apart from one another. This
distance constraint ensures that the cluster centers are
not too close and at the same time allows enough space
for the random placements of the centers. Each object is
then randomly assigned to one of the k clusters. The
position of an object is randomly fixed at a point that is no
farther than 100=2

ffiffiffi
k
p

units from its assigned cluster
center. This procedure generates some natural cluster
patterns [2].

For each object, we partition its MBR into
ffiffi
s
p
�

ffiffi
s
p

rectangular grid cells. Each cell’s center is used as a
sample point, thus each object has s sample points. The
probability mass of each cell is first sampled from a
uniform distribution independently of other cells, and
then normalized by the sum. In our implementation of the
UK-means algorithm, expected distances are calculated by
summing over discrete sample points of the MBRs. It is
therefore sufficient to represent an uncertain object by
the probability masses taken at the sample points.

Geographic dataset: Following previous studies [20,39],
we modify a real dataset to mimic location uncertainty of
mobile objects. The dataset contains 53,145 2D points
that are geographic locations in Long Beach of California
in the United States of America, originally extracted from
the US census web site, http://www.census.gov/geo/
www/tiger/. We normalize the locations to the
[0,100]� [0,100] domain, and generate a d�d MBR
centering at each location. A pdf is then generated for
each MBR in the same way as with the synthetic datasets.

Table 2 summarizes the parameters used in the data
generation process. We study the effect of each parameter
by varying its value while keeping the other parameters at
their default values. For those experiments that measure
the number of expected distance calculation (NED,

http://www.census.gov/geo/www/tiger/
http://www.census.gov/geo/www/tiger/


Table 2
Experimental parameters and their default values.

Parameter Description Default value

n Number of objects 20,000

k Number of clusters 49

d (Maximum) side length of MBR 5

s Number of sample points 102,400 (1024 for

the study of NED)

W.K. Ngai et al. / Information Systems 36 (2011) 476–497 487
discussed below), we use a relatively small number of
sample points (s=1024) comparing with other studies on
uncertain data management (e.g., [40]), in order to control
the amount of time taken to complete the experiments. In
a real setting where a larger number of sample points is
used, the effectiveness of a pruning method would be
even more important since the calculation of each
expected distance would take longer.

7.2. Setup

We compare the performance of UK-means with
various combinations of pruning methods:
�
 Brute-force: the basic UK-means algorithm without
expected distance pruning.

�
 MBR: UK-means with min–max-dist pruning using

MBRs (Section 4).

�
 Met:{PC/CS/PC+CS}: UK-means with min–max-dist

pruning using MBRs and the PC, CS, or both methods
with expected distance bounds given by the triangle
inequality (Section 5).

�

Table 3
Performance of the pruning methods on the synthetic dataset without

cluster patterns using default experimental parameter values.

Method NED Clustering time

in seconds

Pdf I/O count

Brute-force 49. 4360,000 (100 h) 1,500,000

MBR 0.6393 66,918 557,534

Met:PC 0.6389 73,675 569,570

Tri:PC 0.2213 20,426 210,982

Met:PC+CS 0.0711 7414 71,692

Met:CS 0.0598 6136 59,411

Tri:PC+CS 0.0315 4089 32,804

Tri:CS 0.0299 3521 29,124
Tri:{PC/CS/PC+CS}: UK-means with min–max-dist
pruning using MBRs and the PC, CS, or both methods
with expected distance bounds determined by trigo-
nometric rules (Section 6).

The primary performance metric is the average
number of expected distance calculations per object per
iteration, denoted as NED. It reflects the main performance
bottleneck of the UK-means algorithm. Given k clusters,
the brute-force implementation of UK-means computes
all k expected distances between an object and the k

cluster representatives in each iteration of the clustering
process. Therefore, NED=k under Brute-force, which serves
as a baseline for comparing the performance of the
pruning methods. The goal of the experiments is to study
how many expected distance calculations can be saved by
the various pruning methods. Whenever the PC method is
involved, NED also includes the number of pre-computed
expected distances between objects and their anchor
points, and thus in theory could be larger than k if the
pruning were completely ineffective.

In some experiments we also use the actual execution
time as a secondary performance metric to evaluate the
computational overheads of the calculation of the various
bounds.

For each clustering process, the initial cluster repre-
sentatives are picked uniformly from the 2D space. For
each set of parameter values, 20 synthetic datasets are
randomly generated, and the average results are reported.

For Met:PC, the one-point scheme described in Section 5.1
is used. For Tri:PC, an anchor point located at co-ordinates
(100,000,100,000) is used.

Our programs are written in Java 1.5. The experiments
were conducted on Windows machines with an Intel
3.2 GHz Pentium 4 processor and 1 GB of memory.
7.3. Results

7.3.1. Default parameter values

In the first set of experiments, we investigate the
performance of the various pruning methods using the
default parameter values. The results for the dataset
without cluster patterns are shown in Table 3. The rows
are sorted in descending order of NED. Note that the Brute-
force method did not terminate after 100 h of execution.

From the NED column of the table, we clearly see that the
pruning methods are very effective. For example, NED for
Brute-force, MBR, and Tri:CS are 49, 0.6393, and 0.0299,
respectively. This shows that the MBR method prunes
1�0.6393/49=98.7% of the expected distances computed
by Brute-force. Impressively, Tri:CS prunes yet another
1�0.0299/0.6393=95.3% of those computed by the MBR
method. Notice that NED is less than one under any pruning
method. This implies that the bounding techniques are so
effective that in most cases, considering the bounds alone is
sufficient to determine the closest cluster representative of an
object without resorting to computing expected distances.

Moreover, methods using the trigonometric bounds
(prefixed by Tri:) are about 2–3 times more effective than
those using the triangle inequality only (prefixed by
Met:). This performance gain justifies the use of the
seemingly more complex trigonometric bounds.

Comparing the PC methods and the CS method, we see
that in general CS performs better than PC. One reason is
that the anchor points used by CS (cluster representatives
of previous iterations) are close to the current cluster
representatives. This results in very tight bounds. One
surprising observation is that combining PC and CS gives a
poorer performance than using CS alone. This is due to the
large overhead incurred in pre-computing expected dis-
tances for the PC method, which could not be compensated
for by the savings brought by the method. On the contrary,
no pre-computations are done in CS, since anchor points



W.K. Ngai et al. / Information Systems 36 (2011) 476–497488
are previous cluster representatives whose expected dis-
tances to objects have been computed previously.

The last two columns in Table 3 show the actual
execution time and the number of pdf read from disk,
respectively. Both measures correlate fairly well with NED.
It is thus reasonable to use NED as the primary perfor-
mance metric.

Tables 4 and 5 show the results of the experiments
performed on the synthetic dataset with cluster patterns
and the ones performed on the geographic dataset,
respectively. We observe similar relative performances
among the pruning methods as compared to the case
when the synthetic dataset without cluster patterns is
used. The relative effectiveness of the pruning methods is
thus not greatly affected by the data properties. For
Table 4
Performance of the pruning methods on the synthetic dataset with

cluster patterns using default experimental parameter values.

Method NED

Brute-force 49

MBR 0.6027

Met:PC 0.6034

Tri:PC 0.2140

Met:PC+CS 0.0878

Met:CS 0.0761

Tri:PC+CS 0.0354

Tri:CS 0.0351

Table 5
Performance of the pruning methods on the geographic dataset using

default experimental parameter values (n fixed at original dataset size,

53,145).

Method NED

Brute-force 49

MBR 1.4425

Met:PC 1.4222

Tri:PC 0.5963

Met:PC+CS 0.1254

Met:CS 0.1176

Tri:PC+CS 0.0583

Tri:CS 0.0673

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10000 20000 30000 40000 50000
n

N
E

D

MBR

Met:PC

Tri:PC

Met:PC+CS

Met:CS

Tri:PC+CS

Tri:CS

N
ED

Fig. 8. Performance of the various pruning methods on the sy
brevity and clarity, in the following experiments that
involve synthetic data, we only report the results for the
datasets without intrinsic cluster patterns.

The absolute pruning power appears to be stronger
with the synthetic dataset. We believe this is due to the
fact that objects are freely distributed in the whole 2D
space in the synthetic dataset, but they are subject to
geographic and architectural constraints in the geographic
dataset. As a result, the clusters in the synthetic dataset
are more spread out, which increases the ability to prune
the cluster representatives that are not closest.

7.3.2. Scalability with respect to the number of objects

Next we compare the performance of the various
methods as the number of objects n increases. Fig. 8 shows
the results as n increases from 1000 to 50,000. Fig. 8(a)
shows the performance curves of all methods. Fig. 8(b)
shows a magnified version of Fig. 8(a) focusing on the best
four curves. In the figures, the color of a curve indicates the
method used in choosing anchor points (i.e., PC/CS), while
the marker shape indicates the bounding strategy.

From Fig. 8, we see that the relative rankings of the
various methods remain largely the same over the range of
n. Our previous observations, such as CS being more
effective than PC and trigonometric bounds being better
than those obtained from the triangle inequality remain
true with different dataset sizes. Another observation is
that the curves for CS-based methods (Met:PC+CS, Met:CS,
Tri:PC+CS, Tri:CS) drop as n increases. This is because with
more objects, the clustering process takes more iterations
to terminate. It is thus more likely that an anchor point
(which is a cluster representative in a previous iteration
such that its expected distance from an object has been
computed) can be found for effective pruning. The large
overhead in pre-computations once again makes PC-based
methods not as efficient as the CS-based method, and the
overhead can be so large that Met:PC performs even worse
than pure MBR-based pruning when n is small.

7.3.3. Scalability with respect to the number of clusters

Our next experiment studies the effect of the number
of clusters, k. The results are shown in Fig. 9. Note that
0

0.05

0.1

0.15

0.2

0.25

0 10000 20000 30000 40000 50000

n

Met:PC+CS

Met:CS

Tri:PC+CS

Tri:CS

nthetic dataset without cluster patterns as n increased.



W.K. Ngai et al. / Information Systems 36 (2011) 476–497 489
Brute-force computes all k expected distances for each
object during each iteration (i.e., no pruning). In order to
better express the pruning effectiveness of the algorithms,
we report NED as a percentage of k in Fig. 9. For example,
the point for MBR at k=9 shows that MBR computes about
2.6% of the expected distances computed by Brute-force,
or a pruning effectiveness of 97.4%.

From Fig. 9(a), we see that as k increases all curves go
down. This is because with more cluster representatives,
there is more opportunity for pruning and thus the
algorithms can achieve a higher pruning effectiveness.
Also, CS-based methods (lower 4-curves) are a lot more
effective than the other methods. From Fig. 9(b), we see
that generally trigonometric pruning (Tri) outperforms
triangle-inequality-based methods (Met) by a wide
margin. For example, when k=25, Tri-based methods
prune at least twice as many expected distances than
their Met-based counterparts.

7.3.4. Scalability with respect to the side length of MBRs

Next, we vary the maximum side length of MBRs, d. A
larger d gives a larger uncertainty region of an object. The
experiment thus studies how the degree of uncertainty
affects the algorithms’ performance. Fig. 10 shows NED as
d increases from 1 to 15 units.
0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60 70 80 90

k

MBR

Met:PC

Tri:PC

Met:PC+CS

Met:CS

Tri:PC+CS

Tri:CS

Fig. 9. Performance of the various pruning methods on the sy

0

0.5

1

1.5

2

2.5

0 3 6 9 12 15
d

N
ED

MBR

Met:PC

Tri:PC

Met:PC+CS

Met:CS

Tri:PC+CS

Tri:CS

Fig. 10. Performance of the various pruning methods on the s
From the figure, we see that all the curves go up with d.
This is because a larger d implies that objects have larger
uncertainty regions, so that the bounds given by the
various methods are looser, and it results in less effective
pruning. From Fig. 10(b), we observe an interesting trend
comparing the relative performance of CS methods
against PC+CS methods. We see that when d is small
(e.g., when d=1), CS methods outperform their PC+CS
counterparts by a wide margin. This is because with small
uncertainty, the bounding techniques are very effective
and thus the pre-computation overhead incurred by PC
makes PC counter-productive. However, as d increases,
bounds become looser and pruning becomes less effec-
tive. In this situation, combining the bounds obtained
from PC and CS allows for a better pruning opportunity.
This additional pruning outweighs the pre-computation
overhead. The performance of PC+CS thus catches up that
of CS. When d is large, we see that Tri:PC+CS even
outperforms Tri:CS.

7.3.5. Scalability with respect to the number of sample

points from each pdf

Finally, we study the effect of the number of sample
points s used in representing a pdf. Basically, the more
sample points used (i.e., a larger s), the more expensive it is to
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60 70 80 90

k

Met:PC+CS

Met:CS

Tri:PC+CS

Tri:CS

nthetic dataset without cluster patterns as k increased.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 3 6 9 12 15
d

N
E

D

Met:PC+CS

Met:CS

Tri:PC+CS

Tri:CS

ynthetic dataset without cluster patterns as d increased.



W.K. Ngai et al. / Information Systems 36 (2011) 476–497490
compute an expected distance (which involves an integration
over the set of sample points). The value of s thus directly
affects the execution time of the algorithms. On the other
hand, the number of expected distance calculations (NED)
depends mostly on the geometry and locations of objects’
uncertainty regions, not so much on s. We therefore report
execution times instead of NED in this experiment. We also
report the execution times of Brute-force at small s values for
comparison. Fig. 11 shows the results.

As expected, the running time increases as s increases
for all methods. The brute-force method quickly becomes
intractable when s is only moderately large. MBR and
Met:PC are again the worst pruning methods. An inter-
esting observation from Fig. 11 is that when s is very
small, the methods based on the triangle inequality
performs better than those based on trigonometric
bounds. This is because when s is very small, the cost of
computing expected distances is less dominating. Even
though trigonometric bounds (Tri) give a higher pruning
effectiveness, the overheads in computing angle bounds
become significant relative to the cost of expected
distance calculation. Hence, for small s, trigonometric
pruning (Tri) is less efficient than those based on the
triangle inequality (Met).
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 20000 40000 60000 80000 100000
s

Ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

Brute-force

MBR

Met:PC

Tri:PC

Met:PC+CS

Met:CS

Tri:PC+CS

Tri:CS

E
xe

cu
tio

n 
tim

e 
(s

ec
on

ds
)

Fig. 11. Performance of the various pruning methods on the s

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90

k

10
0 

N
ED

/k

MBR

Met:PC

Tri:PC

Met:PC+CS

Met:CS

Tri:PC+CS

Tri:CS

Fig. 12. Performance of the various pruning metho
7.3.6. Scalability results on the geographic dataset

Figs. 12–14 show the performance of the various
pruning methods when applied to the geographic dataset
as we vary k, d, and s, respectively. Except being not as
smooth, the curves show similar trends and relative
performance among the algorithms as those obtained
from the synthetic dataset experiments.

7.4. Summary

Based on these experimental results, we have observed
the following general trends.
�

10

20

30

40

50

60

70

80

ynth

10
0 

N
ED

/k

0

0

0

0

0

0

0

0

0

ds o
Tri:CS gives the best pruning effectiveness, shortest
execution time and lowest I/O costs over a wide range
of parameters.

�
 However, when the uncertainty region (d) is relatively

large (e.g., with side length greater than 5% of the side
length of the object domain), Tri:PC+CS may out-
perform Tri:CS.

�
 When the number of pdf sample points (s) is small,

Met:CS delivers better performance.

�
 The PC-based pruning involves non-negligible over-

head, which may fail to compensate for the number of
0

00

00

00

00

00

00

00

00

0 20000 40000 60000 80000 100000
s

Met:PC+CS

Met:CS

Tri:PC+CS

Tri:CS

etic dataset without cluster patterns as s increased.

0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1

0 10 20 30 40 50 60 70 80 90

k

Met:PC+CS

Met:CS

Tri:PC+CS

Tri:CS

n the geographic dataset as k increased.



0

0.5

1

1.5

2

2.5

3

3.5

4

0 3 6 9 12 15
d

N
ED

MBR

Met:PC

Tri:PC

Met:PC+CS

Met:CS

Tri:PC+CS

Tri:CS

0

0.05

0.1

0.15

0.2

0.25

0 3 6 9 12 15

d

Met:PC+CS

Met:CS

Tri:PC+CS

Tri:CS

N
ED

Fig. 13. Performance of the various pruning methods on the geographic dataset as d increased.

0

100000

200000

300000

400000

500000

600000

0 20000 40000 60000 80000 100000
s

Ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
) Brute-force

MBR

Met:PC

Tri:PC

Met:PC+CS

Met:CS

Tri:PC+CS

Tri:CS

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 20000 40000 60000 80000 100000
s

Ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
) Met:PC+CS

Met:CS

Tri:PC+CS

Tri:CS

Fig. 14. Performance of the various pruning methods on the geographic dataset as s increased.

W.K. Ngai et al. / Information Systems 36 (2011) 476–497 491
ED computations saved from the pruning, especially
when k and n are small and s is large.

8. Discussions

In this section, we briefly discuss a few issues related
to our pruning algorithms.
8.1. Interactions between different pruning methods

From the experimental results, we see that CS-based
methods perform very well. Also, adding PC to CS (i.e.,
PC+CS) is generally counter-productive. This is because of
the pre-computation overhead incurred by the PC meth-
ods, which outweighs the extra pruning power it offers.
On a closer examination, we found that if we excluded the
pre-computation cost from NED, PC+CS did perform
substantially better than CS (data not shown). Thus, PC
can offer some extra mileage in terms of improving
pruning effectiveness. It is thus interesting to find anchor
points that provide distance bounds similar to those given
by PC, but without pre-computations.

One idea is again to use previous cluster representa-
tives. Given an object oi and a cluster representative pju, we
compute the expected distance EDðoi,pjuÞ only if pju cannot
be pruned. This implies that pju is likely to be close to object
oi (so that the lower bound of EDðoi,pjuÞ does not exceed the
min–max-dist threshold). As a result, pju should serve as a
good anchor point for oi since (1) EDðoi,pjuÞ is available and
(2) pju is close to oi. We can thus consider using pju as an
anchor point for oi in place of those selected before the
clustering process starts (see Section 5.1). Notice that
under the CS method, pju will also be selected as an anchor
point. The difference is that under CS, pju will only be used
as an anchor point to bound the distance from oi to a future
representative pj of cluster j, while under PC, pj is used as a
general anchor point of oi and can be used to bound the
distance from oi to any future cluster representatives.

We can thus consider a revised PC method: instead of
using fixed anchor points, we maintain for each object oi a list
of dynamic anchor points. This list includes all those pju

whose expected distances from oi have been computed. The
list can be kept small by retaining only the closest points
located at different directions of the object (recall the
discussion on the selection of anchor points in Section 5.1).
The resulting method is expected to have a pruning power
similar to the PC method and still be complementary to the
CS method, and with the advantage of no pre-computation
overhead.



W.K. Ngai et al. / Information Systems 36 (2011) 476–497492
8.2. Comparison with Vornoi-diagram-based pruning

Given a set of cluster centers cj (j=1,y,k), the Voronoi
diagram of them is a partition of the 2D space into k

convex cells. Inside each cell Vj, every point is closer to
corresponding cj than any other cx (xaj). This nice
property has been used to facilitate k-means clustering
in the cluster assignment step [41]. In a parallel study, we
have extended this technique for use in UK-means
[18,42]. An important theoretical result is that bisector
pruning (BP) based on Voronoi diagrams has a pruning
power no less than that of min–max-dist pruning using
MBRs (see Section 4), i.e., whenever BP cannot eliminate a
cluster candidate, neither can min–max-dist pruning
using MBR. An overhead is incurred, though: the compu-
tation of the Voronoi diagram, which can be computed in
O(k log k) time for 2D.

On the other hand, cluster-shift pruning (CS, see
Section 5) may be able to prune some cluster candidates
that BP fails to prune. Here is an example. Suppose that
we have an uncertain object X with an MBR that is 2 units
wide and 1 unit tall, centered at the origin (see Fig. 15).
For simplicity, let X be uniformly distributed within its
MBR. Suppose we have only two clusters: c1 at (2,2) and c2

at (�1,�2). To which cluster should we assign X? The
Voronoi diagram for c1 and c2 divides the 2D space into
two halves, separated by the line 6x+8y�3=0, which
bisects the line segment joining c1 and c2 perpendicularly.
This is shown as the thick slanted line in the figure. Since
this line intersects the MBR of X, Voronoi-diagram-based
pruning is not applicable [18]. Can CS help in this case?
Suppose that in the previous iteration, c2 has been
updated, with the old position being c2u at (�1,�1.5),
and that c1 has remained the same. Now, using the CS
technique, we get an upper bound for ED(X, c2):
MaxDistX,2 ¼ EDðX,c2uÞþJc2�c2uJ. Since EDðX,c2uÞ ¼ 1:874
has been computed and saved in the previous iteration,
we know its value without extra cost. Therefore, we get
the upper bound MaxDistX,2=1.874+1/2=2.374. Since c1

has not changed from the last iteration, we already know
that EDðX,c1Þ ¼ 2:866. Therefore, without computing ED(X,
c2) (which is 2.299), the cluster-shift technique can
already conclude that EDðX,c2ÞrMaxDistX,2oEDðX,c1Þ

and exclude candidate c1 from consideration, which
Fig. 15. Cluster shift vs. bisector pruning.
Voronoi-diagram-based pruning cannot eliminate. A
combination of both pruning techniques turns out to be
very effective [18].

8.3. Indexing MBRs

In this paper an MBR is used to enclose the uncertainty
region of an uncertain object. The purpose of the MBR is to
help us tightly bound the expected distance of an object
and a cluster representative. The concept of MBR is also
used extensively in spatial indexing structures such as
R-tree, in which the MBRs are indexed in a recursive
hierarchical structure. We can use the concept of this
hierarchical organization to reduce the overheads of
pruning rules. More specifically, given a set of nearby
uncertain objects S, we can obtain the MBR (M) that
encloses the MBRs of all objects in S. If we consider M as
the MBR of a super object, we can apply our pruning
techniques to M. We remark that although M gives us very
loose bounds of the ED values of the objects in S, any
pruning achieved applies to all the objects in S. This
potentially reduced the pruning overheads compared
against the case in which the pruning rules are applied
repeatedly to each individual object [42].

8.4. Picking an anchor point for the PC method

In our discussion, the center point of an uncertain
object’s MBR is used as the anchor point under the PC
method. The advantage of this simple approach is that the
center of an MBR can be conveniently located. However, if
one has pre-computed the center of mass (CG) of each
uncertain object (which costs an extra integration per
object), then the CG can also be picked as the anchor. This
often results in better performance for the PC method. We
have conducted an experiment comparing two choices of
the anchor points: MBR center and CG. Fig. 16 shows NED

for Met:PC under the two choices of anchor points. We see
that the CG performs better than the MBR center. For
example, when d=12, using CG’s requires about 5 times
fewer EDs than using the MBR centers. We have also
evaluated the performance of the PC method under other
choices of anchor points. For example, we have tried a few
0

0.5

1

1.5

2

2.5

0 3 6 9 12 15
d

N
E

D

Met:PC
(MBR
center)

Met:PC
(CG)

Fig. 16. Performance of Met:PC under two choices of anchor points.



W.K. Ngai et al. / Information Systems 36 (2011) 476–497 493
randomized methods, such as picking a random corner of
an object’s MBR, and picking a random point within an
object’s MBR. Our results show that the CG anchor points
give better performance than all those other choices. This
is because the CG is generally closer to the samples of an
object’s pdf than other choices of the anchor point.
Therefore, the CG generally gives a better estimate of
distances via the triangle inequality.

9. Conclusion

In this article we have described the problem of efficient
clustering of uncertain data, which finds applications in
areas where the exact values of some data attributes are
not certain, but can be modeled by a probability density
function (pdf). We have described the basic UK-means
algorithm for uncertain data clustering. We have shown
that when objects’ pdfs are not confined to a parametric
family but can take any arbitrary form, the cost of expected
distance calculations is the performance bottleneck of UK-
means. We have introduced the basic min–max-dist
pruning framework and have devised a number of pruning
algorithms based on the framework. These pruning algo-
rithms include the MBR method, the pre-computation (PC)
method, and the cluster-shift (CS) method. We have
studied two bounding techniques: Met bounds are based
on the triangle inequality and Tri bounds are based on a
number of trigonometric rules. We have studied the
theoretical advantages and disadvantages of the different
trigonometric bounds, and have proved that under certain
easily attainable conditions, trigonometric bounds are
strictly better than metric bounds.

In the experiment section, we have illustrated the
importance of the pruning methods by comparing the
computation cost of UK-means with and without expected
distance pruning. We have also compared the performance
of the different pruning methods. In general, we have
found that the methods that involve trigonometric bounds
are superior to those that involve the metric bounds, which
are in turn superior to the basic MBR method. In addition,
the CS method has been found to perform better than the
PC method due to the pre-computation overhead of the
latter. Overall, the best pruning method could have a
computational cost (in terms of the number of expected
distance calculations) four orders of magnitude lower than
the brute-force implementation.
Fig. 17. a�Contours.
Acknowledgments

We would like to thank Mr. Chun-Kit Chui and
Dr. Wai-Shing Ho for helpful discussions.

Appendix A. Finding bounds on angles

To find the trigonometric bounds introduced in Section 6,
it is necessary to find bounds on several trigonometric
functions of the angles a, b and g (see Fig. 5) as the point x

varies within the MBR of the uncertain object in question.
There are many possible approaches to finding bounds on
the trigonometric functions. In this appendix, we provide
techniques to find the bounds on the angles a, b and g. Once
the bounds on these angles are found, we can find out the
bounds on the trigonometric functions using the methods
described in Appendix B. We will be reusing the notations
defined in Section 6. It is particularly helpful to revise that
section and refer to Fig. 5.

The following discussion will be based on a special
instance of this problem: 2D spaces, because it is easier to
illustrate the ideas with 2D drawings. This is also what we
have implemented in the programs used for the experiments
in Section 7. Via coordinate geometry, we have proved that
these techniques can be generalized to 3 dimensions and
higher. The ideas of a�contours, b�contours and g�contours
are analogous to the 2D case. The proofs are lengthy and
hence not included here.

A.1. Bounds on a

To determine the bounds on a, we first introduce the
concept of a�contours. Consider any point x in 2D space
distinct from y and p. The angle +pxy is a. (See Fig. 17.) If

we draw a circumcircle of npxy, we can obtain the arc pxy

�

.
From elementary geometry, we know that since yp is a
chord of this circle, it subtends the same angle a on the arc

pxy

�

. By symmetry, on the mirror image of this arc reflected
about the line yp, yp subtends the same angle a, too (e.g.,
see point xu in Fig. 17). Indeed, this arc (excluding the
points p and y) and its mirror image is the set of all points
that make the same angle a with y and p. Let us denote the
mid-point of yp as m. We draw the perpendicular bisector
of yp starting from point m and extending in one direction.
Then, this line overlaps with the diameter of the circum-
circle. Denote the intersection point of this perpendicular
bisector and the arc as a. Then, +pay is also a.

Now, examine another point a0 on the perpendicular

bisector such that J ~ma0JoJ ~maJ. Then, a0 ¼+pa0y4a.
We can again draw a circumcircle of npa0y and obtain the

arc pa0y

�

. Then, for any point x0 on this arc (or xu0 on it
mirror image reflected about yp), +px0y¼ a0 (¼+pxu0y).
This arc and its mirror image (excluding the points y and
p) is the set of all points in that makes an angle of a0 with
y and p.

Indeed, by varying the distance of a from m (while
maintaining a on the perpendicular bisector of yp and on
one side of line yp), we can draw a set of contour lines for
all a. Each contour line is an arc (excluding the end points



W.K. Ngai et al. / Information Systems 36 (2011) 476–497494
y and p) plus its mirror image (reflected about line yp) for
the same a. We will call these a�contours. Note that there
are two limiting cases:
�
 J ~maJ-0. In this case, the contour is the line segment
yp (excluding points y and p) for a¼ p.

�
 J ~maJ-1. The contour for this case is the (infinite) line

through y and p excluding all the points at and
between y and p. This is the contour for a¼ 0.

It should be obvious that the a�contours do not intersect
one another, and (including the two limiting cases) they
cover the whole space (except the two singularities y and p).
In addition, we know that a decreases as J ~maJ increases,
because J ~maJ¼ J ~myJcotða=2Þ and a 2 ½0,p�.

In 3D space, an a�contour is the surface of revolution

of arc pay

�

about the axis yp. Generalization to higher
dimensions can be similarly derived.

A.1.1. Lower bound on a
With the concept of a�contours, it is easy to find a as

follows.
We first pick an arbitrary point x 2MBR. The circum-

circle of npxy determines the arc pxy

�

. (See Fig. 18.) The

a�contour for x thus consists of the arc pxy

�

(excluding
points p and y) and its mirror image. This contour
intersects the bisector of yp at a. Note that all points in
the intersection of the contour and the MBR make the
same angle a with y and p. Now, by progressively

increasing J ~maJ, we get contours for smaller and smaller
a. Points in the intersections of these contours and the
MBR thus progressively make smaller and smaller angles
with y and p. If any point on the line yp excluding the
segment yp lies in the MBR, then, we can keep on

increasing J ~maJ indefinitely and reach the limiting case

J ~maJ-1. This corresponds to an a of zero, thus a ¼ 0.
Otherwise, y and p must be outside the MBR. But since

the MBR is bounded, as we increase J ~maJ, we will
eventually reach a maximum value J ~maJ¼ J ~ma�J so that
the contour still intersects the MBR. This can only occur
Fig. 18. a�Contour for a .
when the contour intersects the MBR at the corner points
of the MBR. At these corners, a is minimized at value a.

Note that since all we want to find is a, there is no

need to actually locate a* or compute the arc pa�y

�

. We
have shown that the minimum a can only be attained at
the corners of the MBR. So, it suffices to check the values
of a at the corners of the MBR.

Here is the procedure to find a. We first check whether
y and p are both outside the MBR. If so, we only need to
compute the values of a at all corners of the MBR, and take
the minimum among them. This gives a. However, if
either y or p is in the MBR, then, a ¼ 0. Note that this
argument applies to 3 dimensions and higher, too.

A.1.2. Upper bound on a
Similarly, a can be found by starting at an arbitrary

point in the MBR, and then progressively decreasing J ~maJ

until we reach a minimum value J ~maJ¼ J ~ma�J. There are
three possible cases, though.

Case 1: When line segment yp intersects the MBR, we

will reach the limiting case where J ~ma�J¼ 0, which
corresponds to a¼ p. So, in this case a ¼ p.

Case 2: The arc pa�y

�

touches an edge of the MBR, as
illustrated in Fig. 19(a). Let the point of contact be x*, the
point at which the maximum angle a is attained. This point
x* is not necessarily at a corner of the MBR. So, unlike the
lower bound, we cannot simply check all corners and skip
dealing with the a�contours. We need to find the point of
contact x* with an edge of the MBR. Once x* is found, the
corresponding a can be computed directly. Repeating this
for all edges of the MBR, we can determine a.

Case 3: The arc pa�y

�

intersects only corner points of
the MBR. When trying to compute the point of contact of
the contours with an edge of the MBR, solutions to the
equations may give a point that lies outside the MBR,
along the projection of the edge. This happens when the
contour for a intersects only corner points. (See
Fig. 19(b).) That corner point lies on the edge being
considered. So, in this case, instead of examining the point
of contact as given by the solution of the equations, we
should check the end points of that edge of the MBR.

Therefore, to find a, we need to consider every edge of
the MBR. For each edge (a line segment), we try to find the
a�contour that touches the straight line containing the
edge. If the point of contact lies within the edge, examine
the value of a at this contact point; otherwise, we
examine the value of a at the end points of the edge.
After all edges are considered, the maximum value of a
among the examined ones gives the value of a.

A.2. Bounds on b

Similarly, to find b and b, we use the concept of
contours. In 2D, the b�contour is a ray (a straight line
starting from a point and extends to infinity) that
originates from p and makes an angle of b with ~py. The
point p is excluded. (See Fig. 20(a).) Two such rays can be
found and they are mirror images of each other, reflected



Fig. 19. a�Contours for a. (a) Touching an edge. (b) Intersecting an corner.

Fig. 20. b�Contours. (a) General case. (b) b ¼ 0. (c) b ¼ p.

W.K. Ngai et al. / Information Systems 36 (2011) 476–497 495
about the line yp. In 3D, the b�contour is the surface of
revolution of these rays about the axis yp. Such a surface
has the shape of a cone, with the apex removed. The idea
of b�contours can be similarly extended to higher
dimensions.

Like the a�contours, we have two limiting cases:
�
 b-0. In this case, the b�contour reduces to a single
ray starting from p and extending in the direction of
~py. Again, the point p is excluded.

�
 b-p. The b�contour also reduces to a single ray in

this case, starting from p, but extending in the
direction of ~yp instead. The point p is excluded from
this contour.
Since the b�contours are simply straight rays that
radiate from the point p. The situation is much simpler.
The maximum and minimum b�contours always inter-
sect the MBR at the corners of the MBR, because the MBR
is convex and the rays are straight. The only thing to care
about is to check for the limiting cases.
A.2.1. Lower bound on b
If the ray starting from p extending in the direction of

~py intersects the MBR (see Fig. 20(b)), then the minimum
b is attained in that intersection, giving b ¼ 0.

Otherwise, we just need to find the least value of b
such that the b�contour intersects MBR. This contour
must intersect the MBR at its corners. So, we only need to
enumerate through all corner points of the MBR, calculat-
ing the value of b at those points, and take the minimum
value of them. This gives the value b.
A.2.2. Upper bound on b
If the ray starting from p extending in the direction ~yp

intersects the MBR (see Fig. 20(c)), then the maximum b is
attained in that intersection, giving b ¼ p.

Otherwise, we just need to find the greatest value of b
such that the b�contour intersects MBR. This contour
must intersect the MBR at its corners. So, we only need to
go through all corner points of the MBR, and calculate the
corresponding values of b. The maximum of them gives
the value of b.



W.K. Ngai et al. / Information Systems 36 (2011) 476–497496
A.3. Bounds on g

These can be found in a way similar to the bounds on b
as described above. We only need to exchange the roles of p

and y and those of b and g. All the arguments in Section A.2
apply.

Appendix B. Finding bounds on trigonometric functions

To compute the trigonometric bounds (Section 6), we
need to find the upper and lower bounds of the
trigonometric functions sine, cosine, secant and cosecant
for angles that vary within a certain interval. The interval
of the angles can be determined using the method
described in Appendix A. In this appendix, we assume
that we are given an interval ½y,y�D ½0,p�. Our goal is to
find the extreme values of trigonometric functions on any
variable angle y 2 ½y,y�.

For sine, we note that this continuous function is
increasing in ½0,p=2� and decreasing ½p=2,p�, with a local
maximum at p=2. So, to find its upper bound we first
determine whether p=2 2 ½y,y�. If so, then siny ¼ 1. Other-
wise, ½y,y� is either a subset of ½0,p=2� or ½p=2,p�. The sine
function is continuous without local extrema in these
intervals. So, the maximum value is attained at the end
points of the interval being considered. Thus,
siny ¼maxðsiny,sinyÞ. For the lower bound, since sine has
no local minimum in ½0,p�, we have: siny ¼minðsiny,sinyÞ.

Since cosine is a decreasing, continuous function in
½0,p�, cosy ¼ cosy and cosy ¼ cosy.

The secant function is undefined at p=2 and it is

unbounded near p=2. So, when p=2 2 ½y,y�, secy ¼ þ1
and secy ¼�1. Fortunately, the applicability conditions
of SEC bounds (Section 6.3) have eliminated this possibi-

lity. So, we only need to handle the cases ½y,y�D ½0,p=2Þ

and ½y,y�Dðp=2,p�. In either case, secy is a continuous,
increasing function in the interval being considered.

Therefore, secy ¼ secy and secy ¼ secy.
The cosecant function is undefined at 0 and p. We

exclude these points from consideration and only consider
the situation where ½y,y�Dð0,pÞ. This is because the
applicability conditions of the CSC bounds (Section 6.4)
have eliminated the possibility of y¼ 0 or p. The cosecant
function is continuous and decreasing within ð0,p=2� and
increasing within ½p=2,pÞ, with a local minimum at p=2. So,
if p=2 2 ½y,y�, then cscy ¼ 1. Otherwise, cscy must attain its
minimum value at an end point of the interval being
considered. Hence, cscy ¼minðcscy,cscyÞ. Since cscy has
no local maximum, we have: cscy ¼maxðcscy,cscyÞ.

The following formulae summarize the results of the
above discussions.

siny ¼
1 if p=2 2 ½y,y�,

maxðsiny,sinyÞ otherwise,

(

siny ¼minðsiny,sinyÞ,

cosy ¼ cosy,

cosy ¼ cosy,
secy ¼
þ1 if p=2 2 ½y,y�,

secy otherwise,

(

secy ¼
�1 if p=2 2 ½y,y�,
secy otherwise,

(

cscy ¼maxðcscy,cscyÞ,

cscy ¼
1 if p=2 2 ½y,y�,

minðcscy,cscyÞ otherwise:

(

Note that the formulae for cscy and cscy are valid only if
½y,y�Dð0,pÞ.

References

[1] M. Chau, R. Cheng, B. Kao, J. Ng, Uncertain data mining: an example
in clustering location data, in: Pacific-Asia Conference on Knowl-
edge Discovery and Data Mining, 2006.

[2] W.K. Ngai, B. Kao, C.K. Chui, R. Cheng, M. Chau, K.Y. Yip, Efficient
clustering of uncertain data, in: Proceedings of the Sixth Interna-
tional Conference on Data Mining, 2006, pp. 436–445.

[3] J. Chen, R. Cheng, Efficient evaluation of imprecise location-
dependent queries, in: Proceedings of the ICDE, 2007.

[4] R. Cheng, Y. Zhang, E. Bertino, S. Prabhakar, Preserving user location
privacy in mobile data management infrastructures, in: Proceed-
ings of the Sixth Workshop on Privacy Enhancing Technologies,
2006.

[5] M.F. Mokbel, C.-Y. Chow, W.G. Aref, The new casper: query
processing for location services without compromising privacy,
in: VLDB, 2006.

[6] P. Misra, P. Enge, Global Positioning System: Signals, Measurements
and Performance, second ed., Ganga-Jumuna Press, 2006.

[7] W.R. Heinzelman, A. Chandrakasan, H. Balakrishnan, Energy-
efficient communication protocol for wireless microsensor net-
works, in: Proceedings of IEEE International Conference on System
Sciences, 2000.

[8] S. Bandyopadhyay, E.J. Coyle, An energy efficient hierarchical
clustering algorithm for wireless sensor networks, in: Proceedings
of IEEE INFOCOM, 2003.

[9] O. Wolfson, H. Yin, Accuracy and resource consumption in tracking
and location prediction, in: Advances in Spatial and Temporal
Databases, 8th International Symposium, SSTD 2003, Lecture Notes
in Computer Science, vol. 2750, Springer, Santorini Island, Greece,
2003, pp. 325–343.

[10] D. Pfoser, C.S. Jensen, Capturing the uncertainty of moving-object
representations, in: Proceedings of the Sixth International Sympo-
sium on Advances in Spatial Databases, 1999, pp. 111–132.

[11] O. Wolfson, A.P. Sistla, S. Chamberlain, Y. Yesha, Updating and
querying databases that track mobile units, Distributed and Parallel
Databases 7 (3) (1999) 258–287.

[12] N. Dalvi, D. Suciu, Efficient query evaluation on probabilistic
databases, in: Proceedings of the 30th International Conference
on Very Large Data Bases, 2004, pp. 864–875.

[13] D. Barbara, H. Garcia-Molina, D. Porter, The management of
probabilistic data, IEEE Transactions on Knowledge and Data
Engineering 4 (5) (1992) 487–502.

[14] R. Cheng, D.V. Kalashnikov, S. Prabhakar, Evaluating probabilistic
queries over imprecise data, in: Proceedings of the 2003 ACM
SIGMOD International Conference on Management of Data, 2003.

[15] R. Cheng, D.V. Kalashnikov, S. Prabhakar, Querying imprecise data
in moving object environments, IEEE Transactions on Knowledge
and Data Engineering 16 (9) (2004) 1112–1127.

[16] J. Chen, R. Cheng, Efficient evaluation of imprecise location-
dependent queries, in: ICDE, IEEE, Istanbul, Turkey, 2007, pp.
586–595.

[17] S.D. Lee, B. Kao, R. Cheng, Reducing UK-means to K-means, in: The
First Workshop on Data Mining of Uncertain Data (DUNE), in
conjunction with the 7th IEEE International Conference on Data
Mining (ICDM), Omaha, NE, USA, 2007.

[18] B. Kao, S.D. Lee, D.W. Cheung, W.-S. Ho, K.F. Chan, Clustering
uncertain data using Voronoi diagrams, in: Proceedings of the



W.K. Ngai et al. / Information Systems 36 (2011) 476–497 497
Eighth IEEE International Conference on Data Mining (ICDM 2008),
2008, pp. 333–342.

[19] T. Emrich, H.-P. Kriegel, P. Kröger, M. Renz, A. Züfle, Boosting spatial
pruning: on optimal pruning of MBRs, in: Proceedings of the 2010
ACM SIGMOD International Conference on Management of Data,
2010, pp. 39–50.

[20] H.-P. Kriegel, M. Pfeifle, Density-based clustering of uncertain data,
in: Proceedings of the 11th ACM SIGKDD International Conference
on Knowledge Discovery in Data Mining, 2005.

[21] C.K. Chui, B. Kao, E. Hung, Mining frequent itemsets from uncertain
data, Advances in Knowledge Discovery and Data Mining, 11th Pacific-
Asia Conference, (PAKDD) Proceedings, Lecture Notes in Computer
Science, vol. 4426, Springer, Nanjing, China, 2007, pp. 47–58.

[22] C.C. Aggarwal, On density based transforms for uncertain data
mining, in: Proceedings of the IEEE International Conference on
Data Engineering, 2007.

[23] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based algorithm
for discovering clusters in large spatial databases with noise, in:
Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining, 1996.

[24] M. Ankerst, M.M. Breunig, H.-P. Kriegel, J. Sander, OPTICS: ordering
points to identify the clustering structure, in: Proceedings of the
1999 ACM SIGMOD International Conference on Management of
Data, 1999.

[25] H.-P. Kriegel, M. Pfeifle, Hierarchical density-based clustering of
uncertain data, in: Proceedings of the Fifth IEEE International
Conference on Data Mining, 2005.

[26] R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan, Automatic
subspace clustering of high dimensional data for data mining
applications, in: Proceedings of the 1998 ACM SIGMOD Interna-
tional Conference on Management of Data, 1998.

[27] Z. Yu, H.-S. Wong, Mining uncertain data in low-dimensional
subspace, in: Proceedings of the IEEE International Conference on
Pattern Recognition, 2006.

[28] A. Gionis, A. Hinneburg, S. Papadimitriou, P. Tsaparas, Dimension
induced clustering, in: Proceedings of International Conference on
Knowledge Discovery and Data Mining, 2005.

[29] M. Ichino, H. Yaguchi, Generalized Minkowski metrics for mixed
feature-type data analysis, IEEE Transactions on Systems, Man and
Cybernetics 24 (4) (1994) 698–708.
[30] R.M.C.R. de Souza, F.de A.T. de Carvalho, Clustering of interval data
based on city-block distances, Pattern Recognition Letters 25
(2004) 353–365.

[31] E.H. Ruspini, A new approach to clustering, Information Control 15
(1) (1969) 22–32.

[32] J.C. Dunn, A fuzzy relative of the ISODATA process and its use in
detecting compact well-separated clusters, Journal of Cybernetics 3
(1973) 32–57.

[33] J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function
Algorithms, Plenum Press, New York, 1981.

[34] M. Sato, Y. Sato, L.C. Jain, Fuzzy Clustering Models and Applications,
Physica-Verlag, Heidelberg, 1997.

[35] M. Tabakov, A fuzzy clustering technique for medical image
segmentation, in: International Symposium on Evolving Fuzzy
Systems, 2006.

[36] J.B. MacQueen, Some methods for classification and analysis of
multivariate observations, in: Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability, 1967.

[37] M. Nanni, Speeding-up hierarchical agglomerative clustering in
presence of expensive metrics, in: Pacific-Asia Conference on
Knowledge Discovery and Data Mining, , 2005, pp. 378–387.

[38] C. Elkan, Using the triangle inequality to accelerate k-means, in:
Proceedings of the 20th International Conference on Machine
Learning, 2003.

[39] H.-P. Kriegel, P. Kunath, M. Pfeifle, M. Renz, Probabilistic similarity
join on uncertain data, in: Proceedings of the 11th International
Conference on Database Systems for Advanced Applications
(DASFAA), 2006, pp. 295–309.

[40] Y. Tao, R. Cheng, X. Xiao, W.K. Ngai, B. Kao, S. Prabhakar, Indexing
multi-dimensional uncertain data with arbitrary probability den-
sity functions, in: Proceedings of the 31st International Conference
on Very Large Data Bases, 2005.

[41] T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman,
A.Y. Wu, An efficient k-means clustering algorithm: analysis and
implementation, IEEE Transactions on Pattern Analysis and Machine
Intelligence 24 (7) (2002) 881–892.

[42] B. Kao, S.D. Lee, F.K.F. Lee, D.W. Cheung, W.-S. Ho, Clustering
uncertain data using Voronoi diagrams and R-tree index, IEEE
Transactions on Knowledge and Data Engineering 22 (9) (2010)
1219–1233.


	Metric and trigonometric pruning for clustering of uncertain data in 2D geometric space
	Introduction
	Related work
	The basic UK-means algorithm and min-max-dist pruning
	MBR-based bounds on expected distances
	Metric bounds on expected distances
	The pre-computation (PC) method
	The cluster shift (CS) method

	Trigonometric bounds on expected distances
	Selected trigonometric identities
	COS bounds
	SEC bounds
	SEC-A bounds
	SEC-B bounds

	CSC bounds
	Combining the bounds together
	Summary of trigonometric bounds

	Experiments
	Data
	Setup
	Results
	Default parameter values
	Scalability with respect to the number of objects
	Scalability with respect to the number of clusters
	Scalability with respect to the side length of MBRs
	Scalability with respect to the number of sample points from each pdf
	Scalability results on the geographic dataset

	Summary

	Discussions
	Interactions between different pruning methods
	Comparison with Vornoi-diagram-based pruning
	Indexing MBRs
	Picking an anchor point for the PC method

	Conclusion
	Acknowledgments
	Finding bounds on angles
	Bounds on alpha
	Lower bound on alpha
	Upper bound on alpha

	Bounds on beta
	Lower bound on beta
	Upper bound on beta

	Bounds on gamma

	Finding bounds on trigonometric functions
	References




