
Protecting Privacy in Incremental Maintenance
for Distributed Association Rule Mining

W. K. Wong1 and David W. Cheung1 and Edward Hung2 and Huan Liu3

1 Department of Computer Science, The University of Hong Kong, Pokfulam Road,
Hong Kong

{wkwong2, dcheung}@cs.hku.hk
2 Department of Computing, The Hong Kong Polytechnic University, Hung Hom,

Kowloon
csehung@comp.polyu.edu.hk

3 Department of Computer Science and Engineering, Arizona State University
Tempe, Arizona, USA
huan.liu@asu.edu

Abstract. Distributed association rule mining algorithms are used to
discover important knowledge from databases. Privacy concerns can pre-
vent parties from sharing the data. New algorithms are required to solve
traditional mining problems without disclosing (original or derived) in-
formation of their own data to other parties. Research results have been
developed on (i) incrementally maintaining the discovered association
rules, and (ii) computing the distributed association rules while preserv-
ing privacy. However, no study has been conducted on the problem of
the maintenance of the discovered rules with privacy protection when
new sites join the old sites. We propose an algorithm SIMDAR for this
problem. Some techniques we developed can even further reduce the cost
in a normal association rule mining algorithm with privacy protection.
Experimental results showed that SIMDAR can significantly reduce the
workload at the old sites by up to 80%.

1 Introduction

Protecting privacy is an important element in many database applications. Many
countries set up privacy laws to clearly protect privacy, e.g. Australia, United
States, United Kingdom. For example, medical records and personal information
of patients in a hospital should not be disclosed. Direct public access to private
information stored in databases is not allowed. Some traditional algorithms may
hence be rendered infeasible in practice.

In a distributed association rule mining process, branches of the same com-
panies or even different companies cooperate together to find out the global
association rules. Apart from the privacy concerns about individual records,
each party may not be willing to share its own data or even let other parties
know any derived information. Most traditional algorithms cannot work without
disclosing sensitive information like the counts of itemsets in a particular party.

There are new approaches to handle the privacy-preserving data mining prob-
lems. One approach is to modify the database randomly so that other parties
can fully access the modified data. However, data mining algorithms can then
produce only approximate results using the modified data. Another approach is
to develop new algorithm applying cryptographic techniques so that accurate
results can be obtained without direct access to the source data. This kind of
approach is more expensive but security can be usually proved (with limited
information disclosure). [10] gives a solution to the problem of association rule
mining with privacy protection.

When new parties join, the old association rules may become out-dated and
need updates. The naive method of recomputing the association rules from
scratch is expensive. In fact, we can reduce the cost by using the old results
to incrementally update the rules. The maintenance problem of association rules
in a centralized database is studied in [5, 4]. They greatly reduce the number of
candidate sets required to scan the database and hence reduce the total process
time. Our idea is to apply a similar property used in [5, 4] securely, and aim to
reduce the candidate set size and so the running time.

There is a tradeoff between privacy and efficiency in privacy-preserving prob-
lems. The solutions may be even impractical when complete privacy protection
is required. In real world applications, controlled and limited information dis-
closure is usually acceptable. By lowering the restriction on privacy protection,
we can achieve a much better performance. We have developed an efficient al-
gorithm with acceptable privacy protection to maintain the association rules.
Besides, some techniques we developed can reduce the cost in the recomputa-
tion algorithm in [10].

2 Related Work

The problem of association rule mining is to find interesting patterns among
large set of data items [1]. The main focus of the problem is on mining large
itemsets. An iterative approach is usually used. The k-th iteration finds all the
large itemsets with size k. In [6], the problem is extended into a distributed
environment. Different sites hold different individual databases. The problem is
to find the global association rules. [6] points out that a globally large itemset
must be locally large in some of the sites and gives an efficient algorithm to solve
the problem.

[5] and [4] studied the maintenance problem of association rules and large
itemsets when one needs to update the database. Old large itemsets can be
used to save some effort in the new computation. [4] focuses on the maintenance
when there are new transactions. [5] is a more general solution which also con-
siders deletions of transactions. The computational cost in these maintenance
algorithms is greatly reduced compared to a recomputation.

To solve the problem of association rule mining with privacy protection,
some researchers take the data perturbutation approaches [2]. On the other
hand, [10] and [11] both proposed secure association rule mining algorithms with

2

cryptographic techniques. [10] studied the problem with horizontal partitioned
databases, i.e., the databases have the same schema. [11] focuses on vertically
partitioned databases. The parties share the same set of records with the same
primary key but they have different schema. [11] can only handle the two-party
case. The multiparty case is solved in [12] using secure set intersections.

We now study the problem of maintenance of association rule mining in hor-
izontally partitioned databases using cryptographic technique. Note that none
of the above work handles the maintenance problem in distributed environment
with privacy protection. Although [10] can be also used in our problem by to-
tal recomputation but it wastes the effort that we have put in before. A more
efficient algorithm which protects privacy as well is required.

3 Problem definition

Let I be the set of items. Each transaction K is a subset of items, i.e., K ⊆ I.
A transaction K contains an itemset X if and only if X ⊆ K. Given a support
threshold s%, an itemset X is said to be large in the database DB if and only if at
least |DB|×s% transactions contain X, where |DB| is the number of transactions
in DB. Given a confidence threshold c%, we find association rules in the form
of X ⇒ Y where X, X

⋃
Y are large itemsets and c% of the transactions that

contain X also contain Y .
Suppose there are n sites, S1, S2, ..., Sn. Each site Si has a private transaction

database DBi , where i = 1 to n, all having the same schema. Each site holds
a number of transactions, which is DBi, for i = 1 to n. We have found the
large itemsets (and the association rules) in

⋃n
k=1 DBk. There are r new sites,

Sn+1, Sn+2, ..., Sn+r to join the n existing sites. Each of the new sites owns a
private database DBi, for i = n + 1 to n + r. The goal is to find the new set of
association rules more efficiently than simple recomputation.

Definition 1. Let X.counti be the support count of X in Si. An itemset X is
said to be globally large if

∑n+r
k=1 X.countk ≥

∑n+r
k=1 |DBk| × s%. X is said to be

group large in new sites if
∑n+r

k=n+1 X.countk ≥
∑n+r

k=n+1 |DBk| × s%. X is said
to be group large in old sites if

∑n
k=1 X.countk ≥

∑n
k=1 |DBk| × s%.

Privacy preserving in necessary in our data mining process. Assume all the
parties are semi-honest, i.e. each party follows the protocol with the exception
that it keeps a record of all its intermediate messages during the execution of
the protocol. The formal definition of private multiparty computation in the
semi-honest model can be found in [8]. A computation is secure if at the end
of the computation, no party (site) knows anything except its own input and
the results. Some limited information disclosure in allowed practice as tradeoff
between privacy and efficiency.

The input of our problem is the private databases in the sites and the old
results (e.g., old large itemsets) in the old sites. Note that the old results are
only known to each old site but not the new sites. The support and confidence
thresholds are known to all sites. The result of our solution is the new set of large

3

itemsets and association rules. We should not disclose any other information to
any other parties in the mining process apart from these inputs and results (and
the limited information disclosure).

4 Secure Protocol Utilities

There are several developed secure protocols which help us solve some of our
sub-problems. More details of these protocols can be found in [7, 13, 9].

Secure Sum. Suppose there are n sites, {S1, S2, ..., Sn}, where n ≥ 3. Each
site Si holds a value vi. Our goal is to securely find out the sum of these values
s =

∑n
i=1 vi, which has a known upper limit m, i.e., s ≤ m. Assume S1 is

designated as the master site. First, S1 generates a random number R which is in
the range [1,m]. S1 adds its value v1 with R and sends the value (v1+R) mod m
to S2. Then, for the remaining sites Sj , j = 2 to n, Sj receives a value from Sj−1,
which is equal to R +

∑j−1
i=1 vi. Sj then adds its own value vj to it and sends

the new value (R +
∑j

i=1 vi) mod m to Sj+1. When the process finally goes to
Sn, Sn will send the final sum R+

∑n
i=1 vi to S1. S1 then subtracts the received

value by R and gets the actual sum of all the values.
Secure Union. Each site Si holds a set of items Ii ∈ I. The goal is to find the

union of the set of items
⋃n

i=1 Ii for n sites without revealing the private items to
any parties except the owners of the items. A commutative encryption is applied
in the solution, i.e., for any permutation of order p, q, EKp1

(...EKpn
(X)...) =

EKq1
(...EKqn

(X)...). First, each site encrypts its own items. Next, the site sends
the encrypted items to another site. When a site receives an encrypted item, it
would then encrypt the item as well and send it to another site which has not
encrypted the item yet. The process keeps going until all the sites have encrypted
all items. Due to the property of commutative encryption, if the encrypted value
is the same, it means the same item, so we can remove the duplicated items.
The encrypted items will then be decrypted by the sites one by one, and we get
the result we want.

Secure Comparison. Suppose there are two parties, Alice and Bob. Each of
them holds a number, a and b respectively. The problem is to find out the larger
number without revealing the numbers to each other. Assuming the number is
bounded by n, Yao [13] suggested a generic protocol which takes a linear time
complexity O(n) to solve the problem. There is a more efficient protocol for
solving this problem [9]. The protocol takes O((lg n)2) time and can securely
find the answer without a trusted third party using one-out-of-two oblivious
transfer.The details of this protocol can be found in [9].

5 Incremental Maintenance of Association Rule Mining
with Privacy Protection

We propose our solution SIMDAR (Secure Incremental Maintenance of Distributed
Association Rules) to perform an incremental update to the found association

4

rules while protecting privacy. The group large itemsets (in old results) in the
old sites, denoted L, is known to all old sites but not the new sites. Let Lk be the
set with all itemsets in L with size k. No individual site knows the exact counts
of these large itemsets (we will discuss it more in Sec 5.2). We take the Apri-
ori algorithm as the framework and construct our algorithm using an iterative
approach. The outline of SIMDAR is shown as follow:

1. Generating the candidate sets
2. Gathering information of candidates in the new data
3. Pruning itemsets and finding large itemset
4. Repeating steps 1-3 until no more large candidates can be found
5. Checking association rules

5.1 Candidate set generation

The aim of candidate set generation is to get a minimized list of itemsets Ck

which may be large globally in the k-th iteration.
For the first iteration k = 1, we do not have enough information to conclude

if an itemset must be small. So we simply include all the itemsets, Ck = I where
I is the entire set of items. If k > 1, a globally large itemset must be locally large
in some new sites or it is group large in the old sites [5]. The Apriori property
says that if some of the subsets with size k − 1 of an itemset X are small, X
cannot be large (proved in [1]). So, we first generate local candidates in the new
sites, Ci

k = Apriori gen(L′
k−1

⋂
LLi

k−1) at Si where L′
k−1 is the new globally

large itemsets with size k − 1 and LLi
k−1 is locally large itemset at site Si for

the (k − 1)-th iteration. One of the old sites prepares the group large itemsets
from the old large results, Cold

k = Apriori gen(L′
k−1)

⋂
Lk. Then we perform a

Secure Union to find the candidate sets Ck =
⋃n

k=1 Ci
k

⋃
Cold

k .

5.2 Information collection and storage

We can determine if an itemset is large without knowing the counts of itemsets
by combining Secure Comparison and Secure Sum [10]. Suppose there are n
sites, S1 to Sn, involved in the Secure Sum process of finding count of X. S1 is
the master site holding the generated random protecting key RX . The last site
Sn gets the sum with random key added,

∑
X.counti + RX , in the last step.

Then, if we want to check if
∑

X.counti ≥ c for some c, we can perform a Secure
Comparison between

∑
X.counti + RX and RX + c at S1 and Sn respectively.

Hence we can know if X is large while
∑

X.counti is protected. Instead of
summing the support counts, excess count of each item is summed in [10].

Definition 2. Let |DBi| be the number of total transactions in DBi. The excess
count of an itemset X at site Si corresponding to a support threshold s%, denoted
as X.excessi, equals X.counti − s% ∗ |DBi|.

Each site, instead of giving X.counti, supplies X.excessi as the input to
Secure Sum. We can check for large itemsets by checking

∑
X.excessi ≥ 0 using

5

Secure Comparisons. However, since we have not calculated the exact value,
problems arise if we want to reuse this value. We need to store the information
in a secure and efficient way.

A simple approach in [10] is that each site stores its local counts of globally
large itemsets on its own and we can perform a Secure Sum whenever we need
the (excess) count of an itemset. It takes both more time and space compared
to normal storage without concerning privacy. Actually, we can store the counts
securely in a more efficient way. In our case, the excess counts are all generated by
Secure Sum. The master site S1 keeps the value of random number key R and the
last site Sn stores the protected count X.excess+R. These information are some
intermediate messages which the sites may store it on its own. Thus, storing the
protected excesses and the keys does not introduce any further privacy problem.
This requires less space and less access time. Sections 5.3 and 5.4 will discuss
how we can use such protected values in the future securely.

5.3 Pruning mechanism and checking large itemsets

A globally large itemset must be locally large in some new sites or group large
in the old sites. After we have got the candidate set Ck, each new site scans
database to get the counts of candidates. We can first prune away itemsets
which are locally small in all new sites and not large in the old sites. One site
from old sites and all the new sites take part in a Secure Union process. The
inputs to the Secure Union process are the locally large itemsets of the new sites
and the originally large itemset Lk. After the Secure Union process, we have a
possibly smaller candidate itemsets, C ′

k.
The handling of the old large itemsets and the new potential large itemsets

is different. This eventually requires us to partition the candidate sets into two
groups of itemsets. Define P ′

k = C ′
k

⋂
Lk and Q′

k = C ′
k − P ′

k. For P ′
k, we just

add the excess counts in the new sites to the stored excess counts. For Q′
k, we

first sum the excess in the new sites. If an itemset is group large in new sites, we
scan the databases in old sites. However, as new sites do not know Lk, new sites
cannot distinguish the groups P ′

k and Q′
k and we should not reveal this piece of

information to the new sites. Our idea is to make the new sites have the same
view in our algorithm for all itemsets. We perform a merged process consisting
of four phases to find large itemsets and prune unnecessary candidates.

Phase 1: Pick up participants All the new sites will join and we will pick
two old sites to join. For itemset X ∈ P ′

k, the two old sites are the sites holding
the protected excess count and the protecting key. They can supply stored excess
count of X. If X ∈ Q′

k, the two old sites are just randomly picked among all the
old sites. These two sites are picked just to make the process looks like the same
to the new sites.

Phase 2: Collect information We perform a Secure Sum with all the
selected participants in phase 1. One of the participants from old sites is assigned
as the master site. The other participant from old sites cannot be the second
site or the last site of Secure Sum. So, we will have a new site holding the
protected sum and an old site holding the protecting key. The new sites use

6

their X.excessi as the inputs to Secure Sum. If X ∈ P ′
k, the two old sites use

their stored protected excess count and the protecting key as the inputs. For
X ∈ Q′

k, the two old sites do not have the count for X in the old sites, and will
add 0 to the sum which does not affect the sum. Let SumX be the sum from
the Secure Sum. The last site gets SumX + RX where RX is the protecting key
hold in the master site. Note that, SumX means global excess count if X ∈ P ′

k,
or excess count in new sites otherwise.

Phase 3: Pruning We check whether SumX ≥ 0 by a Secure Comparison.
All itemsets that cannot pass this condition are pruned. If X ∈ P ′

k, we are
checking whether X is globally large. If X ∈ Q′

k, we are checking if X is group
large in new sites.

Phase 4: Final check The itemsets which passed the pruning with the
corresponding protected summed values are passed to old sites apart from the
two old sites participated in previous phases. The remaining part will be done
by the old sites. Let C ′′

k contain the candidate sets after the second pruning. For
each itemset X ∈ C ′′

k , if X ∈ P ′
k, X is large already. If X ∈ Q′

k, the itemset is
broadcasted among the old sites requesting a scan for its count. Another Secure
Sum is used to get the total excess count. Suppose S1 is the master site holding
the key RX of last Secure Sum. An old site Sk receives the protected excess of
X, SumX + RX from the new sites. Secure Sum continues, starts from Sk until
the last site Sl. Sk also adds another random number R′

X to prevent the two old
sites that have joined the previous Secure Sum process from discovering a partial
excess of a group of sites. Sk sends R′

k to Sl so that Sl can find the protected
actual excess count

∑
X.excessi + RX . Finally, we can then check whether X

is a globally large itemset by comparing the protected excess and the protecting
key at Sl and S1.

Lemma 1. SIMDAR privately computes the large itemsets L′
k from a list of

candidate itemsets Ck and revealing at most:

1. the old sites know some globally small candidates which are locally small in
all new sites and group small in old sites.

2. the old sites know some globally small candidates which are group small in
the new sites.

3. the old sites know some globally small candidates which are group large in
new sites but group small in old sites.

4. the new sites know some globally small candidates which are locally small in
all new sites and group small in old sites.

5. the new sites know some globally small candidates which are group large in
new sites but group small in old sites.

Proof. According to definition of secure computation in [8], a computation is
secure if the view of each party during the execution of the protocol can be
effectively simulated given the results, the listed leaked information (which is
acceptable), and the input of that party. So, we only need to show the existence
of such a simulator for each party in our proof. Secure protocols in Section 4 are
not discussed here. They are assumed to be secure in our proof.

7

Before the pruning, the sites find C ′
k by a Secure Union. The old sites can

find C ′
k by using a set difference on Ck and the set of itemsets in point 1. The

new sites can find C ′
k by using a set difference on Ck and the set of itemsets in

point 4. We will prove the security of pruning phase by phase.
Phase 1. The only communication in this phase is to tell all the sites which

two old sites will join the later operations. Each old site, for an itemset X ∈
Lk, knows that the process will pick the sites which hold the protected excess
information of X. Otherwise, the old site can simulate as we pick any two old
sites randomly. This random picking simulation can also be applied in the view
of each new site.

Phase 2. This phase consists of a Secure Sum only.
Phase 3. C ′′

k is generated by pruning some itemsets in C ′
k. The old sites can

generate C ′′
k by using a set difference on C ′

k and the set of itemsets in point 2.
One of the old sites also receives the summed information from the new sites.
Suppose the arithmetic in Secure Sum is mod m. The site randomly chooses a
real number in [0,m). As the summed value is protected by a random number
and these two numbers also fall in the range [0,m) (after mod m), the view of
the party and the output of the simulator are computationally indistinguishable.
The probability of seeing a specific value in both is equal.

The new sites can construct a simulated C ′′
k , denoted C ′′

k−sim. the simulator
first add all itemsets in L′

k into C ′′
k−sim. Next, it adds the itemsets in point 5 to

C ′′
k−sim. This gives us a simulated C ′′

k for the new sites. Note that, the simulator
in the new sites ends here.

Phase 4. After the new sites gives C ′′
k to the old sites and the corresponding

protected sums, the old sites can divide C ′′
k into two groups. For an itemset

X ∈ Lk, X is automatically add to the large itemsets.
For an itemset X 6∈ Lk, a Secure Sum is performed followed by a Secure

Comparison. We can create a simulator for these two protocols in a similar way
as proofs in these two protocols. For X ∈ L′

k, the simulation gives a positive
result in Secure Comparison. For X in itemsets in point 3, the result in Secure
Comparison in the simulation is negative. Note that the two old sites in phase
1 also join the Secure Sum. However, as Sk will add another random number to
the sum, each party in Secure Sum gets a value which has two or more variables
in [0,m). So, the simulator (which randomly picks a number in [0,m)) gives an
indistinguishable view of a party. ut

5.4 Checking association rules

First, we sum up the database size in each site by a Secure Sum process. All
the new sites join in this Secure Sum. As we may have already stored the to-
tal database size in the old sites, the two old sites storing the protected total
database size can be representatives and give the protected total database size
and the protected key as input to Secure Sum. The total database size is used
to find out the confidence of an association rule from excess counts of itemsets.
Let T =

∑n+r
i=1 |DBi|. Let RT be the generated random key in the Secure Sum

process to protect the total database size. At the final stage, a site Su holds the

8

value of T + RT and another site Sv holds RT . Su and Sv will not store the
protected excess count and the protecting key of an itemset.

When we check an association rule X ⇒ Y , we need to check whether
Z.count
X.count ≥ c% where Z is X

⋃
Y . However, what we have got for X and Z

are X.count− s% ∗ T + RX , RX , Z.count− s% ∗ T + RZ , and RZ . These values
are available in two to four sites. Besides, we also get T + RT and RT from Su

and Sv. We may rephrase Z.count
X.count ≥ c% as follows:

Z.count

X.count
≥ c% ⇐⇒ Z.count− c% ∗X.count ≥ 0

⇐⇒ (Z.excess + RZ)− c% ∗ (X.excess + RX)−RZ + (c% ∗RX)
+s%(1− c%) ∗ (T + RT) + (c%− 1) ∗ s% ∗RT ≥ 0

The six terms in the final inequality can be derived from the stored values
we have. Thus, we can perform a Secure Sum process to add all these six terms
together and check if the sum is greater than zero.

6 Experiments

We carried out a set of experiments to analyze (i) the efficiency of the algo-
rithm, and (ii) the overhead introduced with privacy protection. We take CPU
time as the measurement of cost and do not take idle time into account. We im-
plemented two programs for comparisons. One program, which we call it SEC,
is a simple privacy preserving mining algorithm without considering incremental
maintenance. SEC (re)computes the new set of large itemsets and association
rules securely. Efficiency of our algorithm is measured by comparing the CPU
time used by SEC and our algorithm. We present the efficiency as the reduction
ratio of SIMDAR over SEC. Another program we implemented, which we call it
MAN, is a maintenance algorithm without privacy concerns. MAN uses simple
messages for communication instead of secure protocols. Overhead of privacy
protection of our algorithm is measured as the difference between CPU time
consumed by MAN and our algorithm.

Definition 3. Let tSEC (resp. tSIM , tMAN) be the average CPU time consumed
by sites when running SEC (resp. SIMDAR , MAN).

Let EffPP denote the efficiency of maintenance algorithm with privacy pro-
tection, represented as a ratio. EffPP = tSEC−tSIM

tSEC
.

Let OHPP be the overhead of privacy protection. OHPP = tSIM − tMAN .

In the experiments, each site was simulated using a stand-alone computer
(Dell Optiplex Gx240SD Pentium 4 1.7 GHz computers running Linux). We
generated a large number of transactions using IBM synthetic data generator [3].
We supplied three parameters to the data generator: (i) number of transactions,
(ii) number of items, and (iii) the length of maximal potentially large itemsets.
We used the default values for other parameters. In order to introduce a larger
difference between the large itemsets in the old sites and that in the new sites,

9

we set the length of maximal large itemsets of databases in the old sites to be 6
and that in the new sites to be 8. We set the number of items to 1000.

We performed three sets of experiments with the following varying factors:
Database sizes. The database size varies from 200K to 1M. We have 5 old

and 5 new sites. The support threshold is set to 2%.
Support thresholds. The support threshold varies from 0.75% to 2%. We

have 5 old and 5 new sites. The database size is set to 500K.
Ratios of the number of old sites to that of the new sites. We have

in total fifteen sites. The number of old sites increases from 3 to 12 linearly
while the number of new sites decreases from 12 to 3 respectively. The support
threshold is 2%. The database size is 500K.

6.1 Database sizes

0

1000

2000

3000

0 400 800 1200
Database size (in thousands)

A
ve

ra
g

e
C

P
U

 T
im

e
(i

n
 s

ec
o

n
d

s)

New sites

0

1000

2000

3000

0 400 800 1200
Database size (in thousands)

MAN

SIMDAR

SEC

Old sites

0

1000

2000

3000

0 400 800 1200
Database size (in thousands)

A
ve

ra
g

e
C

P
U

 T
im

e
(i

n
 s

ec
o

n
d

s)

New sites

Fig. 1. Average CPU time with varying database size in each site, 5 old sites and 5
new sites, 2% support threshold

Figure 1 shows the average CPU time in the new sites and in the old sites
in this experiment. It shows that the CPU time is approximately linear to the
database size for both new and old sites. All programs have a similar CPU time
in new sites but SIMDAR and MAN have a lower CPU time in old sites. It shows
that the incremental maintenance technique can efficiently reduce the CPU time
for old parties. EffPP varies from 59.6% to 63.8% in the old sites. MAN has the
lowest CPU time in all cases because both SEC and SIMDAR have implemented
secure protocols like Secure Comparison which induce additional cost. However,
as the major workload actually goes to the scanning of databases, the additional
cost of secure protocols is relatively low. OHPP takes 2.5% to 8.8% of the CPU
time in the new sites and 2% to 13% of the CPU time in old sites.

6.2 Support threshold

Figure 2 shows the average CPU time in the new sites and in the old sites in this
experiment. MAN and SIMDAR perform better than SEC in the old sites. As the
support threshold decreases, the gap between SEC and SIMDAR increases sig-
nificantly. EffPP increases from about 63.4% (3% support threshold) to about

10

0

1000

2000

3000

0% 1% 2% 3% 4%

Support Threshold

A
ve

ra
ge

 C
P

U
 T

im
e

(in
 s

ec
on

ds
) New sites

0

1000

2000

3000

0% 1% 2% 3% 4%

Support Threshold

MAN

SIMDAR

SEC

Old sites

Fig. 2. Average CPU time with varying support threshold, 5 old sites and 5 new sites,
500K transactions in each site

75.4% (0.75% support threshold). When the number of large itemset increases,
the number of candidate sets generated is exponentially increased. However, a
large portion of candidate sets is pruned. OHPP takes 5.4% to 8.9% in the new
sites and 4.1% to 25.0% of the CPU time in the old sites.

6.3 Ratio of old sites to new sites

0

500

1000

1500

2000

2500

0.00 1.00 2.00 3.00 4.00 5.00

Ratio of new site to old sites

T
im

e
(i

n
 s

ec
o

n
d

s)

New sites
0

500

1000

1500

2000

2500

0.00 1.00 2.00 3.00 4.00 5.00

Ratio of new site to old sites

SEC

MAN

SIMDAR

Old sites

Fig. 3. Average CPU time in the old sites with varying ratio of number of old sites to
new sites, 15 sites in total, 2% support threshold, 500K transactions in each site

Figure 3 shows the average CPU time in the new sites and in the old sites
in this experiment. The average CPU time decreases when the number of old
sites increases for all three programs in all sites. It is because the total number
of large itemsets in the old sites is fewer than that in the new sites. Thus, when
the majority is the old sites with fewer large itemsets, the total number of large
itemsets and candidates decreases.

EffPP increases when the proportion of old sites increases. EffPP at the
ratio of 3 old sites to 12 new sites is 58.8%. When the ratio increases to 12
old sites to 3 new sites, EffPP significantly increases to 79.1%. It is because
we have already known the large itemsets of the old sites which become the
majority. When the number of old sites increases, it becomes more difficult for
new sites to add new changes to the old results.

11

7 Conclusions

We studied an efficient algorithm to solve the maintenance problem of adding
new sites. The developed method SIMDAR can successfully reduce the number
of candidate sets required to be scanned in the old sites. Experimental results
showed that our algorithm SIMDAR can effectively reduce the workload of the
old sites while the cost in the new sites is almost the same as in a recomputation.
The entrance cost for a new party is not reduced much but the maintenance cost
for an old party is much lower.

After working on the case of addition of new sites, we are now studying other
cases: (i) removing sites, and (ii) updates of databases in one or more old sites. It
is also challenging to consider the combination of all these cases, which is more
likely to happen in practice.

References

1. Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association
rules. In VLDB, Santiago, Chile, 1994.

2. Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data mining. In
SIGMOD, Dallas, Texas, 2000.

3. IBM Almaden Research Center. Synthetic data generation code for association
and sequential patterns.

4. David W. Cheung, Jiawei Han, Vincent T. Ng, and C.Y. Wong. Maintenance of
discovered association rules in large databases: An incremental updating technique.
In ICDE, Washington, DC, USA, 1996.

5. David W. Cheung, S.D. Lee, and Benjamin Kao. A general incremental technique
for maintaining discovered association rules. In Database Systems for advanced
Applications, Melbourne, Australia, 1997.

6. David W. Cheung, Vincent Ng, Ada W. Fu, and Yongjian Fu. Efficient mining of
association rules in distributed databases. In Special Issue in Data Mining, IEEE
Transaction on Knowledge and Data Engineering, IEEE Computer Society, V8,
N6, Dec 1996.

7. Chris Clifton, Murat Kantarcioglu, Jaideep Vaidya, Xiaodong Lin, and Michael
Zhu. Tools for privacy preserving distributed data mining. In ACM SIGKDD
Explorations Newsletter, 2002.

8. Oded Goldreich. Foundations of Cryptography, volume 2. Weizmann Institute of
Science, Israel, May 2004.

9. Ioannis Ioannidis and Ananth Grama. An efficient protocol for yao’s millionaires’
problem. In HICSS, Waikoloa Village, Hawaii, 2003.

10. Murat Kantarcioğlu and Chris Clifton. Privacy-preserving distributed mining of
association rules on horizontally partitioned data. In IEEE Trans. Knowledge Data
Eng., 16(4), July 2004.

11. Jaideep Vaidya and Chris Clifton. Privacy preserving association rule mining in
vertically partitioned data. In KDD, Edmonton, Alberta, Canada, 2002.

12. Jaideep Vaidya and Chris Clifton. Secure set intersection cardinality with applica-
tion to association rule mining. In Journal of Computer Security 13(4), IOS Press,
November 2005.

13. A. C. Yao. How to generate and exchange secrets. In Proceedings of the 27th IEEE
Symposium on Foundations of Computer Sciences., 1986.

12

