
OLAP on Sequence Data

Eric Lo†, Ben Kao‡, Wai-Shing Ho‡, Sau Dan Lee‡, Chun Kit Chui‡, David W. Cheung‡

†Department of Computing, The Hong Kong Polytechnic University
ericlo@comp.polyu.edu.hk

‡Department of Computer Science, The University of Hong Kong
{kao, wsho, sdlee, ckchui, dcheung}@cs.hku.hk

ABSTRACT
Many kinds of real-life data exhibit logical ordering among their
data items and are thus sequential in nature. However, traditional
online analytical processing (OLAP) systems and techniques were
not designed for sequence data and they are incapable of support-
ing sequence data analysis. In this paper, we propose the concept
of Sequence OLAP, or S-OLAP for short. The biggest distinction
of S-OLAP from traditional OLAP is that a sequence can be char-
acterized not only by the attributes’ values of its constituting items,
but also by the subsequence/substring patterns it possesses. This
paper studies many aspects related to Sequence OLAP. The con-
cepts of sequence cuboid and sequence data cube are introduced.
A prototype S-OLAP system is built in order to validate the pro-
posed concepts. The prototype is able to support “pattern-based”
grouping and aggregation, which is currently not supported by any
OLAP system. The implementation details of the prototype system
as well as experimental results are presented.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query processing

General Terms
Algorithms, Design, Performance

1. INTRODUCTION
Traditional online analytical processing (OLAP) systems process

records in a fact table and summarize their key statistics with re-
spect to certain measure attributes. A user can select a set of dimen-
sion attributes and their corresponding levels of abstraction and an
OLAP system will partition the data records based on those dimen-
sion attributes and abstraction levels. Records that share the same
values in those dimension attributes (w.r.t. the selected abstraction
levels) are grouped together. Aggregate functions (such as sum,
average, count) are then applied to the measure attributes of the
records in each group. An OLAP system then reports a summary
(a.k.a. cuboid) by tabulating the aggregate values for all possible
groups. OLAP is a powerful data analysis tool because it allows
users to “navigate” or “explore” different levels of summarization
by interactively changing the set of dimension attributes and their
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abstraction levels. In other words, users can navigate from one
cuboid to another interactively in order to obtain the most interest-
ing statistics through a set of pre-defined OLAP operations (such
as roll-up, drill-down, slice, and dice).

Although powerful, existing OLAP systems only handle inde-
pendent records. Many kinds of real-life data, however, exhibit
logical ordering among their data items and are thus sequential in
nature. Examples of sequence data include stock market data, web
server access logs and RFID logs such as those generated by a com-
modity tracking system in a supply chain. Similar to conventional
data, there is a strong demand to warehouse and to analyze the
vast amount of sequence data in a user-friendly and efficient way.
Unfortunately, current OLAP systems and technologies were not
designed for sequence data and they are incapable of supporting
sequence data analysis. In this paper we study the issues of build-
ing a “Sequence OLAP” system, or an S-OLAP system for short.

[Applications] An S-OLAP system that analyzes sequence data has
many applications. One motivating application is transportation
planning. Today, many cities have implemented electronic trans-
portation payment systems using RFID technology. Examples in-
clude Hong Kong’s Octopus system, Japan’s Kansai Thru Pass sys-
tem and Washington DC’s SmarTrip system. In those cities, every
passenger carries a smart card (e.g., a card with a passive RFID
chip [5]), which can be used as a form of electronic money to pay
for various kinds of transportation (e.g., bus/subway). The elec-
tronic payment system generates huge volumes of data everyday
(e.g., Hong Kong’s Octopus system collected over 7 million trans-
actions per day in 2003 [1]). The transactions performed by a user
each day can form logical sequences in many different ways. For
example, a sequence can be formed by clustering a user’s transac-
tions over 1-day, 1-week or 1-month periods.

With the enormous amount of sequence data available, an OLAP
system that performs sequence summarizations would be of great
value. For instance, if a transport-planning manager of Washing-
ton Metropolitan Area Transit Authority (WMATA) wants to re-
arrange the subway schedule, he may pose a query asking “the
number of round-trip passengers and their distributions over all
origin-destination station pairs within 2007 Quarter 4”. Figure 1
presents an artificial WMATA dataset. We assume that a passenger
registers an event/transaction into the system every time she enters
(action = “in”) or leaves a station (action = “out”) through the turn-
stiles. Therefore, the round-trip semantics can be captured by the
pattern (X, Y, Y, X), which means that all passengers who have
first entered any station X (e.g., Pentagon), exited at any station
Y (e.g., Wheaton), and then entered station Y (Wheaton) again
and returned to station X (Pentagon) should be grouped together.1

1The formal query specification will be discussed shortly in Section
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Furthermore, for each possible combination of X and Y , the ag-
gregated number of passengers is counted and a tabulated view of
the sequence data like the one shown in Figure 2 should be returned
by the S-OLAP system.

The S-OLAP system should also allow a user to interactively
change the grouping pattern and be able to answer iterative queries
efficiently. For example, after studying the round-trip distribution
in Figure 2, the manager might observe that there is a high con-
centration of people taking round-trips from Pentagon to Whea-
ton. He might want to further investigate whether those passengers
would take one more follow-up trip and if so where they usually go.
He can view this distribution by first performing a traditional slice
OLAP operation on (Pentagon, Wheaton, Wheaton, Pentagon), fol-
lowed by changing the grouping pattern to (X, Y, Y, X, X, Z), where
the two newly appended symbols X, Z denote the third trip from
station X (Pentagon) to any station Z.

S-OLAP systems have many more applications. As another ex-
ample, a marketing manager of an e-commerce company can use
an S-OLAP system to identify some “lost-sales” page-clicking se-
quences by posing S-OLAP queries such as: “for all possible pairs
of page combinations within 2007 Quarter 4, show the number of
visitors per day, with a visiting pattern of (P, K)” on its web server
access log, where P denotes any product page and K denotes any
“killer page”2 (e.g., a logout page). Again, the manager can interac-
tively change the grouping pattern and the S-OLAP system should
be able to efficiently answer those iterative queries so as to help the
manager to drill-down into the actual reasons for the lost-sales.

[Contributions] From the above application examples, we can see
that the biggest distinction of an S-OLAP system from a tradi-
tional OLAP system is that a sequence can be characterized not
only by the attributes’ values of its constituting events, but also by
the subsequence/substring patterns it possesses. In other words, an
S-OLAP system can support “pattern-based” grouping and aggre-
gation — a very powerful concept and capability that is not sup-
ported by traditional OLAP systems.

To the best of our knowledge, the building of an S-OLAP system
for analyzing sequence data has not been addressed previously in
the research literature or in commercial products. This paper stud-
ies many aspects related to the design and implementation of an
S-OLAP system. Our contributions can be summarized as follows:

1. The concept of Sequence OLAP (or S-OLAP for short) is pre-
sented. This includes the discussion of what a “Sequence Cuboid”
(or S-cuboid for short) is, the relationships between different S-
cuboids, and the concept of “Sequence Data Cube” (or S-cube
for short).

2. Six S-OLAP-specific operations are identified. In traditional
OLAP systems, users “navigate” or “explore” different lev-
els of summarization (i.e., different cuboids) through a set of
user-friendly operations (such as roll-up, drill-down, slice, and
dice). In this paper we present six operations that are specific to
S-OLAP, namely, (1) APPEND, (2) DE-TAIL, (3) PREPEND, (4)
DE-HEAD, (5) PATTERN-ROLL-UP and (6) PATTERN-DRILL-
DOWN. The six S-OLAP operations modify the grouping pat-
terns and/or the abstraction level of the elements inside the
grouping patterns such that users can interactively view the
summarized data from different perspectives. In other words,
the six operations allow users to navigate from one S-cuboid to
another in the S-cube space with ease.

3.2 and a similar query specification is shown in Figure 3.
2This query answers a KDD-Cup 2000 data mining question [11]
in an OLAP data exploratory way.

time card-id location action amount
2007-01-01T00:01 688 Glenmont in 0

...
...

...
...

...
2007-10-01T00:01 23456 Pentagon in 0
2007-10-01T00:02 9876 Pentagon in 0

...
...

...
...

...
2007-10-01T01:59 9876 Wheaton out -2

...
...

...
...

...
2007-10-02T22:46 52 Wheaton deposit 100

...
...

...
...

...
2007-12-25T20:48 6544 Wheaton out -3.5

...
...

...
...

...

Figure 1: An event database

(X, Y, Y, X) COUNT
(Clarendon,Pentagon,Pentagon,Clarendon) 5,432
(Clarendon,Wheaton,Wheaton,Clarendon) 7,654

...
...

(Pentagon,Glenmont,Glenmont,Pentagon) 4,321
(Pentagon,Wheaton,Wheaton,Pentagon) 200,125

...
...

(Wheaton,Pentagon,Pentagon,Wheaton) 6,543

Figure 2: A sequence OLAP query result

3. The implementation details of an S-OLAP prototype system
are presented. The prototype system serves as an initial solu-
tion of the proposed Sequence OLAP concept. The architec-
ture of the prototype system and two different approaches of
computing S-cuboids are presented. While the first approach
serves as a baseline of computing an S-cuboid, the second ap-
proach makes use of the concept of inverted index to facilitate
the computation of S-cuboids and the processing of the six S-
OLAP operations.

4. Comprehensive experiments have been conducted on the pro-
totype system on both real and synthetic sequence data and the
experimental results are presented. The experiments on real
data demonstrate how our proposed S-OLAP system answers
some real life queries by performing sequence data analysis on
real life sequence data. The experiments on synthetic data eval-
uate the performance of the S-OLAP prototype system under
different settings.

5. Being the first to address the problem of Sequence OLAP, we
have discovered a lot of interesting research issues throughout
the project. As the last contribution of this paper, we present
the research issues we have found. Overall, we believe that this
paper serves as an interesting starting point towards more so-
phisticated and more general solutions for OLAP on sequence
data.

[Roadmap] The rest of the paper is organized as follows. Sec-
tion 2 gives an overview of work that is related to Sequence OLAP.
Section 3 describes the concept of Sequence OLAP. Section 4 de-
scribes the technical details of the prototype S-OLAP system. Sec-
tion 5 reports experimental and performance results. We discuss
some research issues of Sequence OLAP in Section 6 and conclude
our study in Section 7.

2. RELATED WORK
Sequence Databases. Database systems used to be no formal sup-
port of sequence data until PREDATOR [19, 20]. PREDATOR
extended the ADT approach of object-relational systems by treat-
ing the sequence type as an enhanced ADT (EADT). PREDATOR
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treats sequence data type as first class citizen and its query lan-
guage SEQUIN includes a set of sequence operators for querying
and manipulating sequences.

Since applications often involve both relational data and sequence
data, the DEVise system [16] was proposed to model sequences as
sorted relations. By storing sequence data using normal relations,
it is much easier to query a combination of relational tables and
data sequences. This approach enables more integrated optimiza-
tion and evaluation. SRQL is an extension of SQL. It is used in the
DEVise system for supporting queries on mixtures of sequences
and relations. However, DEVise did not address the issues of ware-
housing and efficient analysis of sequence data. Moreover, SRQL
itself is not expressive enough to express queries with complicated
patterns such as recurring patterns. In view of this, [18] extended
SRQL and proposed SQL-TS. With SQL-TS, one can express so-
phisticated sequential pattern queries. However, [18] did not ad-
dress the issues of sequence data analysis as well.
OLAP. [8] first described the data-cube operator. Since then, a
large number of papers have been written on the subject. Many
of them focus on efficient algorithms for data cube construction.
A few examples include: iceberg cube [4], bottom-up cube com-
putation [2], and top-down cube computation [17]. None of these
studies, however, address sequence data.
OLAP on unconventional data. In [7], the authors addressed how
to store and analyze massive RFID-enabled workflow data, which
is a very special type of sequence data. Their proposal made heavy
use of a special property of workflow data that individual items in
a supply chain tend to move together in bulky mode. Based on
that property, [6] introduced the concept of RFID-Cubiods, which
is a way to store RFID workflow data in relational databases that
supports efficient data compression and specialized workflow data
analysis. Stream data is another kind of sequence data. In [3], the
authors studied how to build data cubes for time-series stream data.
Nonetheless, none of these work address the problem of pattern-
based grouping and analysis. Recently, Wiwatwattana et al. [22]
discuss how to perform OLAP operations on XML data. Due to
certain special properties of XML data (e.g., an XML element may
have missing or repeated sub-elements), the authors point out that
XML data is non-summarizable [12]. That is, a coarser aggre-
gate cannot be computed solely from the corresponding finer ag-
gregates. In [22], they approach the problem by proposing several
aggregation relaxation models such that cube data becomes sum-
marizable under such restricted models.

3. SEQUENCE OLAP
In this section we first give an introduction to sequence data in

Section 3.1. Then, we explain the concept of sequence cuboid in
Section 3.2, which is the key concept in sequence OLAP. After-
wards, we explain the six proposed S-OLAP operations in Sec-
tion 3.3. We describe the relationships between different sequence
cuboids and the concept of a sequence data cube in Section 3.4.
How these concepts could be implemented is discussed in Section
4. In the rest of this paper, we use the transportation planning ap-
plication discussed in Section 1 as our running example.

3.1 Preliminary
The raw data of an S-OLAP system is a set of events that are

deposited in an event database. An event e is modeled as an indi-
vidual record/tuple in a way similar to those stored in a fact table in
a traditional OLAP system. Figure 1 presents an event database for
our running example. In Figure 1, an event is in the form of (time,
card-id, location, action, amount). We assume that each passen-
ger has only one smart card. Therefore, the first event in Figure

1 shows that a passenger with card-id 688 has entered Glenmont
station (action=“in”) at time 00:01 on January 1st, 2007. Since the
data is collected and consolidated from each station, we assume
that events in the event database are ordered by the location and
time attributes.

Similar to traditional OLAP systems, an event in an S-OLAP
system consists of a number of dimensions and measures and each
dimension may be associated with a concept hierarchy. In Figure
1, the attributes time, card-id, location and action are dimensions
and the attribute amount is a measure. In our running example,
we assume that the location attribute is associated with a concept
hierarchy of two abstraction levels station → district, the card-
id attribute is associated with a concept hierarchy individual →
fare-group (e.g., student/regular/senior), and the time attribute is
associated with a concept hierarchy time → day → week.

If there is a logical ordering among a set of events, the events can
form a sequence. In our running example, a logical ordering could
be based on the time attribute. Therefore, the traveling history of
passenger 688 can be denoted by the sequence which consists of all
the events with card-id 688, ordered by the time attribute.

3.2 Sequence Cuboid
In traditional OLAP, a cuboid is formed by partitioning records

based on a set of dimension attributes, each under a specific ab-
straction level. In sequence OLAP, an S-cuboid is a logical view
of sequence data at a particular degree of summarization in which
sequences can be characterized not only by the attributes’ values,
but also by the subsequence/substring patterns they possess.

Figure 3 shows a cuboid specification Q1 which is used as our
running example. Q1 is similar to the first example S-OLAP query
we presented in the Introduction. Q1 asks for the number of round-
trip passengers and their distributions over all origin-destination
station pairs for each day and for each fare-group, within Quar-
ter 4 of 2007. Figure 4 shows the conceptual view of the building
process of an S-cuboid for Q1 and the details are explained below.

The specification of an S-cuboid is inspired by SQL-TS [18]
and consists of six parts:3 (1) WHERE clause (2) CLUSTER BY
clause, (3) SEQUENCE BY clause, (4) SEQUENCE GROUP BY
clause, (5) CUBOID BY clause and (6) Aggregation Functions.4

1. [Selection] A WHERE clause is adopted from SQL in order to
select only events of interest. Lines 3 and 4 in Figure 3 specify
that only events within 2007 Q4 are selected (see Figure 4 Step
1).

2. [Clustering] A CLUSTER BY clause is borrowed from [18] in
order to specify events that are elements of a sequence to be
clustered together. Each attribute in the CLUSTER BY clause
is associated with an abstraction level in a concept hierarchy.
Lines 5 and 6 in Figure 3 specify that events should be clus-
tered together according to the attributes card-id and time, at
the abstraction levels of individual and day, respectively. In
other words, events that shared the same card-id value and hap-
pened in the same day should form a cluster. However, events
in the same cluster are not necessarily ordered at this stage (see
Figure 4 Step 2).

3. [Sequence Formation] A SEQUENCE BY clause is borrowed
from [18] in order to form a sequence from a cluster of events.
Events in each cluster form exactly one sequence. For example,

3The grammar of the proposed language is included in [14].
4Although the clauses CLUSTER BY and SEQUENCE BY also
exist in TS-SQL, they have different semantics in S-cuboid specifi-
cation.
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1. SELECT COUNT(*)
2. FROM Event
3. WHERE time >= 2007-10-01T00:00 AND
4. time < 2007-12-31T24:00
5. CLUSTER BY card-id AT individual,
6. time AT day
7. SEQUENCE BY time ASCENDING
8. SEQUENCE GROUP BY card-id AT fare-group,
9. time AT day
10. CUBOID BY SUBSTRING (X, Y , Y , X) WITH
11. X AS location AT station,
12. Y AS location AT station
13. LEFT-MAXIMALITY (x1, y1, y2, x2) WITH
14. x1.action = “in” AND
15. y1.action = “out” AND
16. y2.action = “in” AND
17. x2.action = “out”

Figure 3: S-cuboid specification Q1

Line 7 in Figure 3 specifies that the clustered events should
form sequences according to their occurrence time (see Figure
4 Step 3).

4. [Sequence Grouping] A SEQUENCE GROUP BY clause is
introduced such that sequences whose events share the same
dimensions’ values are further grouped together to form a se-
quence group. The attributes in the SEQUENCE GROUP BY
clause form the set of global dimensions and each of them is
associated with an abstraction level in the concept hierarchy.
For instance, Lines 8 and 9 in Figure 3 specify that individual
user sequences within the same fare-group and whose events
occurred in the same day should form a sequence group (see
Figure 4 Step 4). If the SEQUENCE GROUP BY clause is not
specified, all sequences form a single sequence group.

5. [Pattern Grouping] A CUBOID BY clause is introduced in or-
der to specify the logical view of the sequence data that the user
wants to see. The CUBOID BY clause consists of three sub-
parts: (a) Pattern Template, (b) Cell Restriction and (c) Match-
ing Predicate. Step 5 in Figure 4 illustrates pattern grouping
and the details are explained below.
(a) Pattern Template. A pattern template consists of a se-
quence of symbols, each associated with a domain of values.
The domain of values is specified as the domain of an attribute
at certain abstraction level. The set of distinct symbols in a
pattern template form the set of pattern dimensions. The set
of pattern dimensions together with the set of global dimen-
sions define the partitioning of an S-cuboid (i.e., the cells of an
S-cuboid).
The pattern template defines the format of the substring/
subsequence patterns to be matched against the data sequences.
By SUBSTRING(X,Y, Y, X) or SUBSEQUENCE(X,Y, Y, X),
we mean a substring/subsequence pattern template (X, Y, Y, X)
is specified. Lines 10 to 12 in Figure 3 show an example sub-
string pattern template with two pattern dimensions X and Y ,
each represents a location value at the station abstraction level.
Each cell is associated with a pattern. A pattern can be instan-
tiated from a pattern template by a set of values that are associ-
ated with the symbols. If two symbols in a pattern template are
the same, then they should be instantiated with the same value.
For example, the pattern (Pentagon,Wheaton,Wheaton,Pentagon)
is an instantiation of pattern template (X, Y, Y, X) but the pat-
tern (Pentagon,Wheaton,Glenmont,Pentagon) is not.
If a data sequence matches the pattern of a particular cell, and if
it further satisfies the cell restriction and the matching predicate
((b) and (c) below), then it is assigned to that cell. Note that

time card-id location action amount . . .

← event 1 →
← event 2 →
← event 3 →

...

Event Database

card-idtime location action

← event 1 →
← event 3 →
← event 8 →

...
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Y=Wheaton)

Match Results
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Wheaton,Pentagon)

Aggregate Values

21
90

47
96

89

1. Event Selection

2. Clustering

3. Sequence

Formation

4. Sequence

Grouping

5. Pattern Grouping

6. Aggregation

Figure 4: The conceptual view of building an S-cuboid for Query Q1

since a data sequence may match multiple patterns, it may be
assigned to more than one cuboid cell.

(b) Cell Restriction. The cell restriction defines how to deal
with the situations when a data sequence contains multiple oc-
currences of a cell’s pattern and what content of the data se-
quence should be assigned to the cell (for the purpose of ag-
gregation, to be done later). One type of cell restriction is
left-maximality-matched-go [18]. For example, when a cell
with a substring pattern (a,a) is matched against a data se-
quence 〈aabaa〉, the left-maximality-matched-go cell restric-
tion states that only the first matched substring/subsequence
(i.e., the first “aa” in 〈aabaa〉) is assigned to the cell. This cell
restriction is specified by the keyword LEFT-MAXIMALITY.
In general, depending on the applications, more cell restrictions
can be defined. For example, one can define a left-maximality-
data-go cell restriction where the whole data sequence 〈aabaa〉,
not only the matched content 〈aa〉, is assigned to the cell. As
another example, we can also define an all-matched-go cell re-
striction where all substrings/subsequences that match the pat-
tern are assigned to the cell (i.e., the two aa’s in 〈aabaa〉 are
assigned to the cell).

(c) Matching Predicate. A matching predicate is further in-
troduced for selecting data sequences of interests. In order to
specify a predicate, a sequence of event placeholders are in-
troduced after the cell restriction. Line 13 in Figure 3 shows
an example. The four event placeholders x1, y1, y2 and x2
in Line 13 represent the matched events (not only the location
values) and the predicate in Line 14 specifies that the action
attribute value of the first matching event x1 must equal “in”.

6. [Aggregation] Finally, an aggregation function should be spec-
ified in the SELECT clause in order to define the aggregate
function to be applied to the sequences in each S-cuboid cell.
In S-OLAP, the COUNT aggregation function counts the num-
ber of matched substrings/subsequences that are assigned to a
cell (see Figure 4 Step 6).

Figure 4 illustrates the steps of building an S-cuboid for our ex-
ample query Q1. After all steps, a 4D S-cuboid (the shaded area
in Figure 4) with two global dimensions (time:day, card-id:fare-
group) and two pattern dimensions (X,Y ) is built.
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Note that the current S-cuboid specification can be further ex-
tended if necessary. For example, other aggregation functions, such
as SUM, can be incorporated as long as its semantics is clearly
defined. As an example, consider two data sequences s1:〈e1, e2〉
and s2:〈e3, e4〉 that are assigned to a cell. We can define SUM
as the sum of the measures of all the events occured in s1 and s2
(i.e., SUM =

∑4
i=1 ei.amount). Alternatively, if desire, we can

sum over the first occurring event in each sequence (i.e., SUM =
e1.amount +e3.amount). Furthermore, the current S-cuboid speci-
fication only supports substring or subsequence pattern templates.
It can be extended so that pattern templates of regular expressions
can be supported.

3.3 Sequence OLAP Operations
OLAP is a powerful analytical and decision-supporting tool be-

cause it provides a set of operations (e.g., roll-up, drill-down) for
a user to interactively modify the cuboid specification (i.e., chang-
ing the set of dimension attributes and/or their abstraction levels)
and thus enables a user to navigate from one cuboid to another to
explore the big cube space with ease.

Since an S-cuboid is defined by a set of global dimensions and
pattern dimensions, any changes to these elements transform an S-
cuboid to another. In our S-OLAP design, we adopt the same set
of OLAP operations, namely, roll-up, drill-down, slice, and dice
for the manipulations of the global dimensions. For example, the
transport-planning manager might modify the S-OLAP query Q1

so that passengers are grouped based on individual. To achieve this,
we perform a drill-down operation on the global dimension card-id,
going from the abstraction level fare-group to a lower abstraction
level individual.

For pattern manipulation, we propose six S-OLAP operations,
namely, APPEND, PREPEND, DE-TAIL, DE-HEAD, PATTERN-ROLL-
UP (P-ROLL-UP) and PATTERN-DRILL-DOWN (P-DRILL-DOWN).
The first four operations add/remove a pattern symbol to/from a
pattern template, while the last two operations modify the abstrac-
tion level of pattern dimensions. In particular, the APPEND op-
eration appends a pattern symbol to the end of the pattern tem-
plate. For example, after learning about the round-trip distribu-
tion resulted from Q1, the manager might observe that there is a
particularly high concentration of people traveling round-trip from
Pentagon to Wheaton. He might want to further investigate whether
those passengers would take one more trip and if so where they usu-
ally go. Two APPEND operations plus a modification of the match-
ing predicate give the cuboid specification Q2 in Figure 5 (only
the CUBOID BY clause is shown for brevity). Q2 transforms the
original 4D S-cuboid to a 5D S-cuboid (with global dimensions
(time:day, card-id:fare-group) and pattern dimensions (X,Y ,Z),
where Z is a new pattern dimension). The other three operations
that modify pattern length can be similarly defined: PREPEND —
add a symbol to the front of the pattern template; DE-TAIL — re-
move the last symbol from the pattern template; DE-HEAD — re-
move the first symbol from the pattern template.

A P-ROLL-UP operation moves the abstraction level of a pattern
dimension one level up the concept hierarchy, while a P-DRILL-
DOWN operation moves a pattern dimension one level down. As an
example, after viewing the trip distribution resulted from the above
query Q2, the transportation manager might find that there are too
many station pairs, which makes the distribution reported by the S-
cuboid too fragmented. He may want to roll up the location pattern
dimension Z from the station level to the district level. For that,
the P-ROLL-UP changes Line 13 in Figure 5 to: “Z AS location AT
district”.

10. CUBOID BY SUBSTRING (X, Y , Y , X, X, Z) WITH
11. X AS location AT station,
12. Y AS location AT station,
13. Z AS location AT station
14. LEFT-MAXIMALITY(x1, y1, y2, x2, x3, z1) WITH
15. x1.action = “in” AND x1.location = “Pentagon” AND
16. y1.action = “out” AND y1.location= “Wheaton” AND
17. y2.action = “in” AND y2.location = “Wheaton” AND
18. x2.action = “out” AND x2.location = “Pentagon” AND
19. x3.action = “in” AND x3.location = “Pentagon” AND
20. z1.action = “out”

Figure 5: S-cuboid specification Q2

3.4 Sequence Data Cube
In traditional OLAP, given a set of dimensions and a set of con-

cept hierarchies associated with the dimensions, we can define a
cuboid for each of the possible subsets of the given dimensions and
abstraction levels. This results in a lattice of cuboids, each showing
the data at a different level of summarization. The lattice of cuboids
is then referred to as a data cube. Likewise in S-OLAP, given a set
of global and pattern dimensions and a set of concept hierarchies
that is associated with the dimensions, we can also define an S-
cuboid for each of the possible subsets of the given dimensions and
abstraction levels. The set of S-cuboids also form a lattice and we
call this lattice a Sequence Data Cube (S-cube). Similar to the
concept of traditional data cubes, an S-cuboid at a coarser gran-
ularity is at a higher level in the lattice, which means it contains
fewer global and/or pattern dimensions, or the dimensions are at a
higher level of abstraction.5

There are two key differences between a traditional data cube and
an S-cube. First, there is a finite number of cuboids in a data cube
while the number of S-cuboids in an S-cube is infinite. In theory,
users may introduce any number of pattern dimensions into the pat-
tern template by S-OLAP operations like APPEND and PREPEND.
For example, a pattern template (X, Y, Z, A, B, C, . . . ) is possi-
ble in which all pattern dimensions refer to the same dimension
attribute, say, location. Consequently, an S-cube in theory includes
an infinite number of S-cuboids although users seldom pose S-
OLAP queries with long pattern template in practice.

Second, in general, data in an S-cuboid is non-summarizable.
That is, an S-cuboid at a higher level of abstraction (i.e., coarser
aggregates) cannot be computed solely from a set of S-cuboids that
are at a lower level of abstraction (i.e., finer aggregates) without
accessing the base data. According to [12], summarizability only
holds when the data is disjoint and complete during data partition-
ing. However, an S-cuboid may put a data sequence into multi-
ple cells which violates the disjointness requirement. Consider a
dataset with only one data sequence s3 〈Pentagon,Wheaton,Pentagon,
Wheaton,Glenmont〉. If the pattern template is SUBSTRING(X,Y, Z),
then s3 contributes a count of one to all three cells [Pentagon,Wheaton,
Pentagon:c1], [Wheaton,Pentagon,Wheaton:c2], and [Pentagon, Whea-
ton,Glenmont: c3] because s3 matches all three substrings (c1,c2

and c3 denote the counts of the cells). If we perform a DE-TAIL op-
eration, i.e., the pattern template is changed to SUBSTRING(X,Y ),
then the cell [Pentagon, Wheaton: c4] should have a count of one
(as s3 matches the pattern only once under the left-maximality-
matched-go cell restriction). However, if we compute c4 by ag-
gregation, we get c4 = c1 + c3 = 2, an incorrect answer. This
observation, which serves as a counter-example, demonstrates that
in general, data in an S-cuboid is non-summarizable.

As we will show in the next section, the properties of having
an infinite number of S-cuboids and non-summarizability make the
5Formally, we have defined a partial order for the S-cuboids in the
lattice but the details are omitted here due to space limitation.
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implementation of an S-OLAP system very challenging. The main
reason is that many existing OLAP optimization techniques (e.g.,
full cube materialization) are no longer applicable nor useful in im-
plementing an S-OLAP system. We describe the details and our
solutions in the next section.

4. IMPLEMENTATION
In the last section we presented the concept of S-OLAP and now

we present the technical details of its implementation.

4.1 S-OLAP System
In order to implement an S-OLAP system, the first technical

question we have to solve is: “(a) how to efficiently compute an
S-cuboid?” In traditional OLAP, many researchers have proposed
the use of various auxiliary data structures (e.g., bitmap index [15]
and join index [21]) to speed up the cuboid construction process.
We have to answer the same question for our S-OLAP prototype
system.

The second technical challenge is: “(b) how to support the pro-
posed S-OLAP operations such that a sequence of S-OLAP queries
can be efficiently evaluated?” In traditional OLAP, cube mate-
rialization [9] is a popular approach in which some cuboids are
computed in advance such that they can be used to answer vari-
ous OLAP queries efficiently. The approach of full materialization
refers to the precomputation of all cuboids (i.e., the full cube) and
the approach of partial materialization refers to the precomputation
of a subset of cuboids (i.e., the subcube). Since summarizability
generally holds in traditional data cube, partial materialization is
useful because (i) if a query result (a cuboid) has already been ma-
terialized, the answers can be returned right away, and (ii) even if a
query result has not been materialized, a coarser aggregate can still
be computed from the corresponding finer aggregates by exploiting
appropriate materialized cuboids without accessing the base data.
Consequently, iterative queries can be answered efficiently.

In S-OLAP, full materialization is not practical because the num-
ber of pattern dimensions is unbounded. Meanwhile, the non-sum-
marizability of S-cubes invalidates the power of partial materializa-
tion because an S-cuboid cannot be computed from other S-cuboids
via simple aggregations. As a result, instead of precomputating S-
cuboids, our approach is to precompute some other auxiliary data
structures so that queries can be computed online using the pre-built
data structures.

Figure 6 shows the architecture of our prototype S-OLAP sys-
tem. Events are stored as tuples in relational databases or as events
in native sequence databases. Similar to traditional OLAP systems,
a user can pose their S-OLAP queries through a User Interface.
The User Interface provides certain user-friendly components to
help a user specify an S-cuboid (e.g., offering some drag-and-drop
facilities). Furthermore, a user can perform the six S-OLAP opera-
tions through the interface. Given an S-cuboid query, the S-OLAP
Engine searches a Cuboid Repository to see if such an S-cuboid
has been previously computed and stored. If not, the S-OLAP en-
gine either computes the S-cuboid from scratch or computes the
S-cuboid with the help of certain Auxiliary Data Structures. The
computed S-cuboid is then added to the Cuboid Repository. (If
storage space is limited, the Cuboid Repository could be imple-
mented as a cache with an appropriate replacement policy such as
LRU (least-recently-used).)

During the computation of an S-cuboid, the S-OLAP System
starts with the first four steps of S-cuboid formation as illustrated
in Section 3.2, i.e., (1) Selection, (2) Clustering, (3) Sequence For-
mation and (4) Sequence Grouping. These four steps can be off-
loaded to an existing sequence database query engine and the con-

S-OLAP System

User Interface

S-OLAP Engine

Sequence Query Engine

event
database

sequence
cache

auxiliary
data

structures

cuboid
repository

queries results

Figure 6: Architecture of S-OLAP System

structed sequence groups can be cached in a Sequence Cache for
efficiency. After the first four steps, the sequence groups are stored
in a q-dimensional array (where q is the number of global dimen-
sions). Once the sequence groups are formed (or loaded from the
sequence cache), the S-OLAP Engine starts the S-cuboid construc-
tion. We have investigated two simple approaches for this S-cuboid
construction step. The first one is a counter-based method and the
second one uses inverted indices as the auxiliary data structure.
In the following discussion, we assume that the left-maximality-
matched-go cell restriction is used.

4.2 S-cuboid Construction
We present approaches to address the two technical challenges

that we raised previously i.e., (a) efficient S-cuboid computation
and (b) efficient processing of S-OLAP operations.

The first approach is a counter-based method (CB), in which
each cell in an S-cuboid is associated with a counter. To determine
the counters’ values, the set of sequences in each sequence group
is scanned. For each sequence s, we determine the cells whose as-
sociated patterns are contained in s. We increment each of such
counters by 1. The CB approach addresses challenge (a). For chal-
lenge (b), CB takes the result of applying each S-OLAP operation
as a specification of a new S-cuboid and computes the S-cuboid
from scratch.

The second approach is based on inverted indices (II), in which a
set of inverted indices are created by pre-processing the data offline.
During query processing, the relevant inverted indices are joined
online so as to address challenge (a). The by-products of answering
a query is the creation of new inverted indices. As we will discussed
shortly, such indices can assist the processing of a follow-up query.
The inverted list approach thus potentially addresses challenge (b)
as well.

Before we delve into the details, we remark that the two ap-
proaches we present here are only two “first-attempt” solutions to
the Sequence OLAP problem and we believe that there are a lot of
potentials for further optimization. For example, we can study the
problem of computing iceberg [4] S-cuboids, or online aggregation
[10] of S-cuboids, etc. All these ideas are interesting research top-
ics and we discuss these issues in more detail in Section 6.

4.2.1 Counter-Based Approach
In the counter-based method, we maintain a counter for each

cell in an S-cuboid. All relevant counters are looked-up and in-
cremented when the data sequences are scanned. If the number of
counters is small enough to fit in memory, it is an efficient single-
pass algorithm.

For each sequence group that is obtained from the first four S-
cuboid formation steps, we invoke the procedure COUNTERBASED
in Figure 7 with all sequences in the group and the CUBOID BY
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Algorithm COUNTERBASED
Input: (a) A set of sequences S from a sequence group; (b) A pattern

template T =SUBSTRING(Y1, . . . , Ym) with m pattern symbols
and n pattern dimensions P1, . . . , Pn (n ≤ m); (c) a cell restric-
tion σ; and (d) a matching predicate ρ.

Output: An array C of n dimensions
1. Let dom(Pi) be the domain of pattern dimension Pi at the speci-

fied abstraction level
2. /** Initialize the counters **/
3. for each pattern (v1, . . . , vn), where vi ∈ dom(Pi)
4. Set entry C[v1, v2, . . . , vn] = 0
5. /** Do the grouping and counting **/
6. for each sequence s in S
7. for each unique substring t of s in the form of 〈y1, . . . , ym〉,

where each yi ∈ dom(Pi), t matches an instantiation of T and
t satisfies ρ and σ

8. C[y1, . . . , ym]++
9. return C

Figure 7: Procedure COUNTERBASED

sid card-id event-sequence (only the station values are shown for brevity)
s1 688 〈Glenmont,Pentagon,Pentagon,Wheaton,Wheaton,Pentagon〉
s2 23456 〈Pentagon,Wheaton,Wheaton,Pentagon〉
s3 1012 〈Clarendon,Pentagon〉
s4 77 〈Wheaton,Clarendon,Deanwood,Wheaton〉
N.B. Events at odd positions have action “in”
whereas events at even positions have action “out”

Figure 8: An example sequence group in Query Q1 (day=“2007-12-
25”, fare-group=“regular”)

specification as input. The procedure performs the pattern group-
ing step and the aggregation step and returns an n-dimensional
array (where n is the number of pattern dimensions). An entry
C[v1, . . . , vn] in the n-dimensional array C stores the number of
sequences that match the substring pattern (v1, . . . , vn). The proce-
dure repeats for each sequence group and finally a (q+n)-dimensional
S-cubiod is obtained.

Note that the COUNTERBASED procedure in Figure 7 is for sub-
string pattern matching only. Subsequence pattern can be easily
supported by modifying Line 7 in Figure 7.

Although this counter-based method is simple, its performance
may degrade when the number of counters far exceeds the amount
of available memory because counters are paged in for each se-
quence in the scan. Furthermore, this algorithm does not facilitate
the processing of iterative S-OLAP queries as it computes an S-
cuboid from scratch every time we apply an S-OLAP operation to
transform an S-cuboid.

4.2.2 Inverted Index Approach
The inverted index approach follows a semi-online computation

strategy. It involves two basic algorithms: one for computing in-
verted indices and one for constructing S-cuboids based on the in-
verted indices. The basic idea is similar to the idea of shell fragment
cubes in [13], in which we partition the pattern dimensions into
a set of low dimensional pattern fragments, and each fragment is
represented by an inverted index. Using the precomputed inverted
indices, we can dynamically assemble and compute S-cuboid cells
of the required S-cuboid online.

The inverted index approach shares the same first four steps of
S-cuboid formation as in the counter-based approach. Therefore,
after the first four steps, a number of sequence groups are formed.
To illustrate the inverted index approach, we consider substring pat-
terns6 and the sequence group shown in Figure 8. We assume each
sequence is identified by a unique sid attribute.
6The inverted index approach is also applicable to subsequence pat-

Algorithm BUILDINDEX
Input: (a) A set of sequences S from a sequence group; (b) A pattern

template T =SUBSTRING(Y1, . . . , Ym) with m pattern symbols
and n pattern dimensions P1, . . . , Pn (n ≤ m);

Output: An array Lm, which is an m-dimensional array and each array
entry contains a list of sequence sids.

1. Let dom(Pi) be the domain of pattern dimension Pi at the speci-
fied abstraction level

2. /* Scan the sequence group S */
3. for each sequence s in S
4. for each unique substring t of s in the form of 〈y1, . . . , ym〉,

where each yj ∈ dom(Pj) and t matches an instantiation of T
5. add sid of s into Lm[y1, . . . , ym]
6. return LT

m

Figure 9: Procedure BUILDINDEX

L1[Clarendon] = {s3, s4}
L1[Deanwood] = {s4}
L1[Glenmont] = {s1}
L1[Pentagon] = {s1, s2, s3}
L1[Wheaton] = {s1, s2, s4}

L1

l1: L2[Clarendon,Deanwood] = {s4}
l2: L2[Clarendon,Pentagon] = {s3}
l3: L2[Deanwood,Wheaton] = {s4}
l4: L2[Glenmont,Pentagon] = {s1}
l5: L2[Pentagon,Pentagon] = {s1}
l6: L2[Pentagon,Wheaton] = {s1, s2}
l7: L2[Wheaton,Clarendon] = {s4}
l8: L2[Wheaton,Pentagon] = {s1, s2}
l9: L2[Wheaton,Wheaton] = {s1, s2}

L2

Figure 10: Inverted indices of a sequence group

To precompute inverted indices, we have developed a construc-
tion algorithm, BUILDINDEX. It creates a size-m inverted index
Lm, where m is a user-specified parameter. Lm is a set of inverted
lists. An inverted list, denoted by Lm[v1, . . . , vm], is associated
with a length-m substring pattern6 (v1, . . . , vm). Each element
in the pattern is chosen from the domain of a pattern dimension
at a particular abstraction level. The list stores the sids of all se-
quences that match the substring patterns associated with it. For
example, considering the location pattern dimension at the station
abstraction level, two inverted indices L1 and L2 constructed for
our data sequence group are shown in Figure 10 (empty lists, such
as L2[Clarendon,Clarendon], are not shown). For notational con-
venience, given a pattern template T , we use LT

m to denote a subset
of Lm such that an inverted list Lm[v1, . . . , vm] is in LT

m if the pat-
tern (v1, . . . , vm) is an instantiation of the template T (e.g., con-
sidering the lists in Figure 10, we have L

(X,X)
2 = {l5, l9}

7). Also
L

(X,Y )
2 includes all the lists in L2 if there are no restrictions on X

and Y . The algorithm, BUILDINDEX, is summarized in Figure 9.
Given a set of precomputed inverted indices, computing an S-

cuboid becomes fairly simple. Consider a query Q3 that inquires
the statistics of single-trip passengers. The cuboid specification of
Q3 is shown in Figure 11 (only the CUBOID BY clause is shown).
Q3, which specifies a pattern template (X, Y ), can be answered by
L

(X,Y )
2 (which is the same as L2 since X, Y are unrestricted). For

each instantiation (v1, v2) of (X, Y ), the count of the S-cuboid
cell of pattern (v1, v2) can be computed by simply retrieving the
inverted list L2[v1, v2], and counting the number of sequences in
the list that satisfy the cell restriction and predicate (i.e., Lines 13-
15 in Figure 11). Figure 12 shows the non-zero entries of the 2D
S-cuboid computed.

S-cuboids of higher dimension can also be computed by joining
inverted indices. For example, consider query Q1, which specifies

tern but we omit the details here due to limited space.
7Technically speaking, L2[Clarendon,Clarendon] is also in
L

(X,X)
2 . Since the list L2[Clarendon,Clarendon] is empty, we omit

it in our discussion.
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10. CUBOID BY SUBSTRING (X, Y ) WITH
11. X AS location AT station,
12. Y AS location AT station
13. LEFT-MAXIMALITY (x1, y1) WITH
14. x1.action = “in” AND
15. y1.action = “out”

Figure 11: Query specification Q3

(station,station) count
(Clarendon,Pentagon) 1
(Deanwood,Wheaton) 1
(Glenmont,Pentagon) 1
(Pentagon,Wheaton) 2
(Wheaton,Clarendon) 1
(Wheaton,Pentagon) 2

Figure 12: A 2D S-cuboid for query Q3

a pattern template (X, Y, Y, X). We answer Q1 in two steps, as-
suming that L2 is materialized. We first compute L

(X,Y,Y )
3 (i.e., the

set of inverted lists for any length-3 patterns that are instantiations
of (X, Y, Y )). This can be done by joining L

(X,Y )
2 with L

(Y,Y )
2 .

The semantics of R = L
(X,Y )
2 1 L

(Y,Y )
2 is that a list l ∈ R

iff l = L2[v1, v2] ∩ L2[v3, v3] such that L2[v1, v2] ∈ L
(X,Y )
2 ,

L2[v3, v3] ∈ L
(Y,Y )
2 and v2 = v3. Using our running example,

L
(X,Y )
2 = L2 and L

(Y,Y )
2 = {l5, l9}. The list intersections per-

formed by the join is illustrated in Figure 13. Sequences in the
lists in R are then checked by scanning the database to eliminate
invalid entries. For example, refer to Figure 13, list l12 is obtained
by l5 ∩ l5 = {s1}. Since s1 does not contain the substring pattern
(Pentagon,Pentagon,Pentagon), s1 is removed from the list. The
resulting index gives L

(X,Y,Y )
3 . The index L

(X,Y,Y,X)
4 can be ob-

tained by joining L
(X,Y,Y )
3 with L

(Y,X)
2 in a similar fashion. Fig-

ure 14 shows the only non-empty list resulted. Finally, the count of
an S-cuboid cell can be computed by retrieving the corresponding
list in L

(X,Y,Y,X)
4 , verifying the sequences against cell restrictions

and predicates, and counting the valid ones. In our example, only
one cell [Pentagon,Wheaton,Wheaton,Pentagon] has a count of 1,
all others are 0.

The query processing algorithm QUERYINDICES is summarized
in Figure 15. For all S-OLAP queries, we can invoke QUERYINDICES
to compute an S-cuboid from scratch. During query evaluation, if
QUERYINDICES requires an inverted index that is not available,
then QUERYINDICES would build the proper inverted index at run-
time. This on-demand building process would increase the ini-
tial query time. However, the subsequent iterative queries, which
are obtained by successive applications of S-OLAP operations and
highly correlated to the previous queries, would be benefited from
the newly computed inverted indices. We now discuss how the six
S-OLAP operations could make use of existing inverted indices to
obtain better performance. Recall that, for a sequence of iterative
queries, Qa, Qb, Qc, if a query has been evaluated before and its
result is cached, the evaluation can be skipped and the cached re-
sult can be returned right away. For example, if we perform an
APPEND on Qa to obtain Qb, followed by a DE-TAIL to obtain Qc,
then Qc is the same as Qa and the cached result can be returned.
1. [APPEND] We explain the implementation of the APPEND op-
eration by the following iterative queries Qa, Qb, Qc. We use Q3

(shown in Figure 11) as Qa. The second query Qb is obtained by
APPENDing a symbol Y to Qa and therefore its pattern template
is (X, Y, Y ).8 The final query Qc is obtained by APPENDing one
8For brevity, we only focus on the changes of the pattern tem-
plate and do not discuss the changes of other constructs such as

list-intersection sid-intersection {sid}
l10: L

(X,Y,Y )
3 [Clarendon,Pentagon,Pentagon] l2 ∩ l5 {s3} ∩ {s1} {}

l11: L
(X,Y,Y )
3 [Glenmont,Pentagon,Pentagon] l4 ∩ l5 {s1} ∩ {s1} {s1}

l12: L
(X,Y,Y )
3 [Pentagon,Pentagon,Pentagon] l5 ∩ l5 {s1} ∩ {s1} {s1}

l13: L
(X,Y,Y )
3 [Wheaton,Pentagon,Pentagon] l8 ∩ l5 {s1, s2} ∩ {s1} {s1}

l14: L
(X,Y,Y )
3 [Deanwood,Wheaton,Wheaton] l3 ∩ l9 {s4} ∩ {s1, s2} {}

l15: L
(X,Y,Y )
3 [Pentagon,Wheaton,Wheaton] l6 ∩ l9 {s1, s2} ∩ {s1, s2} {s1, s2}

Figure 13: L
(X,Y,Y )
3

list-intersection sid-intersection {sid}
l16: L

(X,Y,Y,X)
4 [Pentagon,Wheaton,Wheaton,Pentagon] l15 ∩ l8 {s1, s2} ∩ {s1, s2} {s1, s2}

Figure 14: L
(X,Y,Y,X)
4

more symbol X to Qb. The first query Qa can be directly evaluated
by QUERYINDICES. That is, the inverted index L

(X,Y )
2 in Figure

10 is scanned and the number of sequences that satisfy the cell re-
striction and matching predicate in each list is counted. The result
of Qa is shown in Figure 12.

The implementation of an APPEND operation is very similar to
QUERYINDICES. In our example, the first APPEND operation (i.e.,
the evaluation of Qb) is implemented by first performing L

(X,Y )
2 1

L
(Y,Y )
2 to obtain L

(X,Y,Y )
3 and then counting the number of se-

quences in L
(X,Y,Y )
3 (Figure 13) that satisfy the cell restriction and

the matching predicate. Similarly, the last APPEND operation (i.e.,
the evaluation of Qc) is implemented by first joining L

(X,Y,Y )
3 with

L
(Y,X)
2 to obtain L

(X,Y,Y,X)
4 , and then counting the number of se-

quences in L
(X,Y,Y,X)
4 (Figure 14) that satisfy the cell restriction

and the matching predicate. Note that the last APPEND operation
does not build the inverted index L

(X,Y,Y,X)
4 from scratch.

2. [PREPEND] The PREPEND operation is very similar to the AP-
PEND operation. Continue with the above iterative queries exam-
ple. Assume that we further PREPEND a symbol Z to Qc to obtain a
new query Qd and the resulting pattern template is (Z, X, Y, Y, X).
Similar to the APPEND operation, this PREPEND operation is im-
plemented by joining L

(Z,X)
2 with L

(X,Y,Y,X)
4 to obtain L

(Z,X,Y,Y,X)
5 .

Note that with L
(X,Y,Y,X)
4 computed, the domain (i.e., the set of all

possible instantiations) of X is known. Therefore, L
(Z,X)
2 does not

contain all lists in L2, as X is restricted.
3. [DE-HEAD and DE-TAIL] The DE-HEAD and the DE-TAIL op-
erations rely more on the caching feature of the S-OLAP system.
Continue with the above iterative queries example. If we apply
a DE-HEAD operation after the evaluation of Qd, we essentially
restore the query back to Qc. Therefore, the system can return
the cached S-cuboid of Qc as the answer. However, another DE-
HEAD operation results in a new query Qe with pattern template
(Y, Y, X). Since we have not built the inverted index L

(Y,Y,X)
3

during the process (see the table on the next page), Qe is evaluated
from scratch, by invoking QUERYINDICES directly.

Query Pattern Template
Qa (=Q3) (X, Y )
Qb (X, Y, Y )
Qc (X, Y, Y, X)
Qd (Z, X, Y, Y, X)
Qe (Y, Y, X)

The DE-TAIL operation is similar to the DE-HEAD operation. If
there are proper inverted indices available or the query has been

the matching predicate here.
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Algorithm QUERYINDICES
Input: (a) A set of sequences S from a sequence group; (b) A pattern

template T =SUBSTRING(Y1, . . . , Ym) with m pattern symbols
and n pattern dimensions P1, . . . , Pn (n ≤ m); (c) a cell restric-
tion σ; and (d) a matching predicate ρ.

Output: An array C of n dimensions
1. Let dom(Pi) be the domain of pattern dimension Pi at the speci-

fied abstraction level
2. /** Initialize the counters **/
3. for each pattern (v1, . . . , vn), where vi ∈ dom(Pi)
4. Set entry C[v1, v2, . . . , vn] = 0

5. /** Look-up inverted index L
(Y1,...,Ym)
m and join the inverted in-

dices if necessary **/
6. while L

(Y1,...,Ym)
m is not available

7. /** Join the indices according to the pattern template and inter-
sect the sequence lists **/

8. L
(Y1,...,Yi+1)
i+1 = L

(Y1,...,Yi)
i 1 L

(Yi,Yi+1)
2 (where

L
(Y1,...,Yi)
i is the largest available inverted index)

9. Scan the database to eliminate invalid entries and cache
L

(Y1,...,Yi+1)
i+1

10. for each entry L
(Y1,...,Ym)
m [v1, . . . , vm] in L

(Y1,...,Ym)
m

11. C[v1, . . . , vn] equals to the number of sequences in
L

(Y1,...,Ym)
m [v1, . . . , vm] that satisfy σ and ρ.

12. return C

Figure 15: Procedure QUERYINDICES

evaluated before, the DE-TAIL operation could be processed by re-
trieving a cached result. Otherwise, we invoke QUERYINDICES.
4. [P-ROLL-UP] The P-ROLL-UP operation can be efficiently im-
plemented if there are proper inverted indices available. Assume
we apply a P-ROLL-UP operation on Qa such that the pattern di-
mension Y on the location attribute of the new query QA is rolled-
up from the station abstraction level to the district abstraction level.
This P-ROLL-UP operation can be efficiently implemented by tak-
ing the unions of the lists in L

(X,Y )
2 whose second elements in their

patterns share the same district value. We denote the resulting in-
verted index L

(X,Y)
2 . (Here, we use different fonts to indicate dif-

ferent abstraction levels, e.g., X for the station abstraction level
and X for the district abstraction level.) For example, assume that
district D10 includes two stations Pentagon and Clarendon, then the
lists L

(X,Y )
2 [Wheaton,Clarendon] and L

(X,Y )
2 [Wheaton,Pentagon]

(see l7 and l8 in Figure 10) are unioned to obtain L
(X,Y)
2 [Wheaton,D10].

The result of applying a P-ROLL-UP can then be obtained by count-
ing the number sequences in L

(X,Y)
2 that satisfy the cell restriction

and matching predicate. For instance, the cell [Wheaton,D10] in
the resulting S-cuboid has a count of three.

In the above example, symbols in the pattern template (X, Y )
are unrestricted. We remark that if symbols are restricted then a
P-ROLL-UP may not be processed by simply merging lists. To un-
derstand why it is so, let us consider a sequence s6: 〈Pentagon,
Wheaton, Wheaton, Clarendon〉. Clearly, s6 does not occur in any
list of L

(X,Y,Y,X)
4 . However, district D10 includes both Pentagon

and Clarendon and so s6 should be in M = L
(X,Y,Y,X)
4 [D10, Whea-

ton, Wheaton, D10]. Hence, if we compute M by merging lists in
L

(X,Y,Y,X)
4 , s6 will be missed incorrectly. This example shows that

if the pattern template consists of restricted symbols, P-ROLL-UP
cannot be implemented by merging inverted lists at a lower ab-
straction level. In this case, we compute the result by invoking
QUERYINDICES.
5. [P-DRILL-DOWN] Consider applying P-DRILL-DOWN on QA

(i.e., the pattern dimension Y of Q3 has been rolled-up). If the in-
verted index L

(X,Y )
2 for Qa is available, the cached result can be re-

turned. Otherwise, P-DRILL-DOWN is processed either by invoking
QUERYINDICES or by constructing the inverted index L

(X,Y )
2 from

L
(X,Y)
2 . For the latter case, each list L2[v1,v2] in L

(X,Y)
2 is refined

into a number of lists L2[v1, v2] where v2 is a lower-level concept
of v2. Data sequences are examined to determine the refinement.
For example, L

(X,Y)
2 [Wheaton,D10] = {s1, s2, s4}. It is refined to

L2[Wheaton,Pentagon] = {s1, s2} and L2[Wheaton,Clarendon] =
{s4}.

The counter-based approach (CB) constructs an S-cuboid by scan-
ning data sequences to determine which cells each sequence is rel-
evant to. All sequences are thus examined in answering a S-OLAP
query. On the other hand, the inverted list approach (II) constructs
inverted lists and accesses data sequences that are contained in cer-
tain lists. In terms of performance, II has the advantage of fewer
data sequence accesses if queries are very selective (e.g., point
queries or subcube queries), where appropriate lists have already
been constructed. This can be seen from our example iterative
queries. On the other hand, the construction of inverted indices
can be costly. This affects the performance of II, particularly in the
start-up cost of iterative queries.

The inverted index approach is not a Swiss army knife for imple-
menting all S-OLAP operations. For example, it cannot efficiently
support P-ROLL-UP if the pattern template contains restricted sym-
bols. In these cases, CB could be a competitive option. In fact,
this is a sophisticated S-OLAP query optimization problem where
many factors such as storage space, memory availability, and exe-
cution speed are parts of the formula. Another interesting question
concerns “which” inverted indices should be materialized offline.
A related problem is thus about how to determine the lists to be
built given a set of frequently asked queries. All these problems are
related to the design of an S-OLAP query optimizer and we regard
this as one of our most important future work.

5. EXPERIMENTAL EVALUATION
This section shows the results of the experiments we conducted

on our prototype S-OLAP system. The prototype was implemented
using C++ and all the experiments were conducted on an Intel
Pentium-4 2.6GHz PC with 2GB of RAM. The system ran Linux
with the 2.6.10 kernel and gcc 3.3.3.

We have performed experiments on both real data and synthetic
data. The experiments on real data (Section 5.1) show a use case of
performing click stream data analysis using our S-OLAP system.
The experiments on synthetic data (Section 5.2) study the perfor-
mance of our S-OLAP prototype system and evaluate the counter-
based and the inverted index approaches.

5.1 Experiments on Real Data
The real sequence data is a clickstream and purchase dataset

from Gazelle.com, a legwear and legcare web retailer, who closed
their online store on 2000-08-18. It was prepared by [11] for KDD
Cup 2000. The original data file size is 238.9MB. Each tuple in
the data file is a visitor click event (sorted by user sessions) and
there is a total of 164,364 click events. The details of an event are
captured by 215 attributes. Three example attributes are session-id,
request-time and page which identify a user session, its first access
time, and the accessed page.9

To demonstrate the usability of an S-OLAP system and to val-
idate our S-OLAP design, we use our S-OLAP prototype system
to answer a KDD Cup 2000 data mining query in an OLAP data
exploratory way. The selected query is KDD Cup 2000 Query 1,
which looks for page-click patterns of visitors. Since the data was
9The attribute names are renamed here for better exposition.
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not designed for OLAP analysis, we have performed the following
pre-processing steps: (1) We manually inspected the data and fil-
tered out click sequences that were generated from web crawlers
(i.e., user sessions with thousands of clicks). After this step, an
event database with 148,924 click events was obtained. (2) We
manually associated a concept hierarchy raw-page→ page-category
to the page attribute such that a page can be categorized by two ab-
straction levels. page-category is a higher abstraction level and
there are 44 categories. Example categories include “Assortment”,
“Legwear”, “Legcare”, “Main Pages”, etc.

To answer the KDD Cup query, we started with a general S-
OLAP query Qa to look for information about any two-step page
accesses at the page-category abstraction level:

1. SELECT COUNT(*) FROM Event
2. CLUSTER BY session-id
3. SEQUENCE BY request-time ASCENDING
4. CUBOID BY SUBSTRING(X,Y ) WITH
5. X AS page AT page-category,
6. Y AS page AT page-category
7. LEFT-MAXIMALITY(x1,y1)

There were 50,524 sequences constructed and they were in a sin-
gle sequence group. Query Qa returned a 44×44 2D S-cuboid.
From the result, we found out that the cell (Assortment,Legcare)
had a count of 150, meaning that there were 150 sessions first
visited an Assortment-related page followed by a Legcare-related
page. Interestingly, we found that the cell (Assortment,Legwear)
had a much larger count of 2,201 sequences (the highest count in
the S-cuboid), meaning that there were many sessions first visited
an Assortment-related page followed by a Legware-related page.
Consequently, we performed a slice operation on that cell (i.e.,
Assortment → Legwear) and performed a P-DRILL-DOWN oper-
ation to see what Legwear products the visitors actually wanted to
browse. This results in a new query Qb (the cuboid specification is
omitted due to lack of space).

Query Qb returned a 1×279 2D S-cuboid. The cell with the
highest count was (Assortment,product-id-null) which had a count
of 181, meaning that many sessions visited a product page where
the product has no product-id after clicking an Assortment-related
page. Another remarkable cell was (Assortment,product-id-34893)
which had a count of 172 (the second highest count), meaning
that there were many sessions first visited an Assortment-related
page followed by a DKNY Skin collection legwear page (product-
id=34893). After viewing the result of Qb, we performed an AP-
PEND operation to see if those sessions who visited an Assortment-
related page followed by a Legware-related page would visit one
more Legware-related page to perform so-called “comparison shop-
ping”. That APPEND operation resulted in a new query Qc.

Query Qc returned a 1×279×279 3D S-cuboid. A remarkable
cell was (Assortment,product-id-34885,product-id-34897) which had
a count of 14, meaning that there were 14 sessions visited an Assortment-
related page, then a DKNY Skin collection legwear page (product-
id=34885), and then a DKNY Tanga collection legware page (product-
id=34897). At that point, we stopped our S-OLAP exploration be-
cause we have collected enough information to answer Query 1 in
KDD Cup 2000 indirectly. Altogether, the three queries had in-
serted 0.3MB of cuboids in the cuboid repository.

In the following we report the performances of iterative queries
Qa, Qb, and Qc using both the counter-based approach (CB) and
the inverted index approach (II). We repeated each query many
times in order that the 90% confidence intervals of the reported
numbers are within ±5%. Note that in this experiment we did not
precompute any inverted index in advance. Table 1 shows the re-
sult.

Table 1 shows that for the first query Qa, CB had a better perfor-
mance than II. This is not surprising because we did not precom-

Counter-Based (CB) Inverted Index (II)
Query Runtime Number of Runtime Number of Size of II

(ms) sequences scanned (ms) sequences scanned (MB)
Qa 24.3 50,524 46.24 50,524 0.897
Qb 21.5 50,524 6.26 2,201 0.104
Qc 23.0 50,524 5.92 842 0∑

68.8 151,572 58.42 53,567 1.001

Table 1: Real Data Experiment

pute any inverted index in advance so that the query processing
time of Qa included the time for building 0.897MB inverted in-
dices. However, for Qb and Qc, II outperformed CB because II
did not need to scan all sequences with the help of the inverted in-
dices. Table 1 also shows the advantage of using inverted indices to
perform S-OLAP operations. From Qa to Qb, we had performed a
slice and a P-DRILL-DOWN operation. After the slice operation, the
number of sequences related to Qb was reduced. As a result, the II
implementation of the P-DRILL-DOWN operation outperformed the
CB implementation because Qb became more selective. From Qb

to Qc, we had performed an APPEND operation. Table 1 shows that
the II implementation of the APPEND operation also outperformed
the CB implementation because II reused the inverted indices to
scan fewer sequences than CB.

5.2 Experiments on Synthetic Data
Synthetic sequence databases are synthesized in the following

manner. The generator takes 4 parameters: L, I , θ, and D. The
generated sequence database has D sequences. Each sequence s in
a dataset is generated independently. Its length l, with mean L, is
first determined by a random variable following a Poisson distri-
bution. Then, we repeatedly add events to the sequence until the
target length l is reached. The first event symbol is randomly se-
lected according to a pre-determined distribution following Zipf’s
law with parameter I and θ (I is the number of possible symbols
and θ is the skew factor). Subsequent events are generated one after
the other using a Markov chain of degree 1. The conditional proba-
bilities are pre-determined and are skewed according to Zipf’s law.
All the generated sequences form a single sequence group and that
is served as the input data to the algorithms.

QuerySet A – (a) Varying D. The objective of this experiment
is to study the scalability of the counter-based approach and the
inverted index approach under a series of APPEND operations. In
this experiment, we executed a set of iterative queries under dif-
ferent numbers of sequences. The query set, namely QA, consists
of five S-OLAP queries QA1, QA2, QA3, QA4 and QA5. A query
is obtained from a previous one by doing a slice followed by an
APPEND. The initial query QA1 has a substring pattern template
(X, Y ) and it looks for size-two patterns in the sequence dataset
and counts their occurrences. The second query QA2 is obtained
from QA1 by performing a slice operation on the cell with the high-
est count and APPENDing a new pattern symbol Z to the pattern
template of QA1. Therefore, QA2 has a substring pattern tem-
plate (X, Y, Z) and it looks for size-three patterns (with the first
two symbols fixed) in the sequence dataset and counts their occur-
rences. Query QA3, QA4 and QA5 are obtained in a similar way
and they are queries that look for size-four, size-five and size-six
patterns in the sequence dataset, respectively.

Figure 16 shows the running time of query set QA under three
datasets with different number of sequences (I100.L20.θ0.9.Dx,
where x=100K/500K/1000K). Three size-two inverted indices
at the finest level of abstraction were precomputed for the three
datasets. The precomputations took 0.43s, 2.052s and 3.879s, re-
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Figure 16: QA.I100.L20.θ0.9.Dx

spectively. The sizes of the built indices were 7.3MB, 36.3MB and
72.2MB, respectively. The running time of QA is presented as the
cumulative running time from the first query QA1 to the last query
QA5. From the figure, we can see that (1) both CB and II scaled
linearly w.r.t. the number of sequences; and (2) II outperformed CB
in all datasets in this experiment. In Figure 16, each data point is
annotated with a bracketed number, which is the cumulative num-
ber of sequences scanned up to a certain query. We can see that CB
scanned the whole dataset every time it executed. For QA1, II did
not scan the dataset because it could be answered by the inverted
indices directly. For the successive queries QA2 to QA5, II took
less than 1 second to finish inverted index joins in all cases because
QAi+1 could exploit the inverted indices built by QAi and thus not
many data sequences were scanned.

We have conducted many more experiments. However, due to
space limitation, we do not present the details here. The following
is a summary of the experimental results.
QuerySet A – (b) Varying L. In this experiment, we executed
query set QA on a dataset of 500K sequences and we varied the av-
erage length L of the sequences (i.e., I100.Lx.θ0.9.D500K). The
following conclusions can be drawn from the results: (1) both CB
and II scaled linearly w.r.t. the average sequence length and (2) II
outperformed CB in all datasets in this experiment.
QuerySet B – (a) Varying D (b) Varying L. The objective of
this experiment is to study the performance of CB and II under the
P-ROLL-UP and P-DRILL-DOWN operations. In this experiment,
the dataset was I100.Lx.θ0.9.Dy. We hierarchically organized
the events into 3 concept levels. The 100 event symbols are di-
vided into 20 groups, with group sizes following Zipf’s law (I=20,
θ=0.9). Similarly, the 20 groups are divided into 5 super-groups,
with super-group sizes following Zipf’s law (I=5, θ=0.9).

We used another query set QB in this experiment. QB consists
of three queries QB1, QB2, and QB3. The first query QB1 has a
substring pattern templates of (X, Y, Z) (X is the middle abstrac-
tion level). The second query QB2 is obtained from QB1 by per-
forming a subcube operation to select the subcube with the same
X value where its total count is the highest among different sub-
cubes and then P-DRILL-DOWN into X, i.e., the pattern template
is (X, Y, Z) (X is the finest abstraction level). Similarly, the third
query QB3 is obtained from QB1 by performing the same subcube
operation and then P-ROLL-UP on Y, i.e., the pattern template is
(X,Y, Z) (we did not P-ROLL-UP on X because it was sliced; Y is
the highest abstraction level).

Similar to the experiments conducted in query set A (see above),
we executed QB on datasets with different D and L values. In
this experiment, an inverted index L

(X,Y,Z)
3 was precomputed in

advance. The experimental results draw the following conclusions:
(1) For P-DRILL-DOWN (i.e., QB2), CB and II had comparable per-
formance because we sliced on the subcube with the highest count
and the query was not selective. Therefore, II also needed to scan a
lot of sequences in order to compute the inverted list L(X,Y,Z). (We
found that if we sliced on cells with moderate counts then II out-
performed CB.) (2) For P-ROLL-UP (i.e., QB3), II outperformed
CB in all datasets because II computed the answer just by merging
the inverted index without scanning the dataset but CB did scan the
whole dataset.

We have also done experiments on pattern templates with re-
stricted symbols (QuerySet C with pattern template (X, Y, Y, X)),
Varying skewness factor θ, Varying domain I , and experiments
with Subsequence patterns. Although we cannot present the re-
sults here due to space constraints, they are consistent with our dis-
cussion in Section 4.2. For the paper’s missing details and the full
experimental results, interested readers are referred to [14].

6. DISCUSSION
This Sequence OLAP project is initiated by a local subway com-

pany which has deployed an RFID-based electronic payment sys-
tem. Every day, the IT department of the company processes the
RFID-logged transactions and generates a so-called “OD-matrix”
(stands for Origin-Destination Matrix). The OD-matrix is a 2D-
matrix which reports the number of passengers traveled from one
station to another within the same day (i.e., representing the single-
trip information). The OD-matrix is then sent to various depart-
ments for different purposes. For example, the engineering de-
partment may refer to the OD-matrix in order to schedule their re-
sources. Occasionally, the management of the company requests
more sophisticated reports about the passenger distributions. For
example, the management was once considering to offer round-trip
discounts to passengers. Consequently, they wanted to know the
statistics of various passenger traveling patterns, at different level
of summarizations. Our example queries Q1, Q2, and Q3 in this
paper were parts of their business queries.

However, since there are no OLAP systems that are capable of
performing sequence data analysis, the management has to request
the IT department to write customized programs whenever they
come up with some business sequence queries. Given the huge
volume of data and the administrative overhead, the turnaround
time is usually one to two weeks. This inefficient way of sequence
data analysis severely discourages data exploration and this prob-
lem motivates our project.

The current S-OLAP prototype system is now being reviewed by
the subway company. Unfortunately, due to their extremely tight
data privacy policy, we cannot report any data-related information
here until we have resolved all related legal issues. Nonetheless,
throughout this project, we have discovered a lot of interesting re-
search issues and we share our findings with the readers in the re-
maining of this section. We classify the research issues into differ-
ent areas: (1) Performance, (2) Incremental Update, and (3) Data
Integration and Privacy.

1. Performance. As discussed in Section 4, we regard our two
proposed S-cuboid construction approaches as a starting point to
more sophisticated solutions to implementing an S-OLAP system.
In fact, we realize that many S-cuboid cells are often sparsely dis-
tributed within the S-cuboid space (i.e., many S-cuboid cells are
empty with zero count). In such a case, introducing an iceberg con-
dition [4] (i.e., a minimum support threshold) to filter out cells with
low-support count would increase both S-OLAP performance and
usability as well as reduce space. How to determine the minimum
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support threshold is, however, always an interesting but difficult
question.

Another interesting direction is to introduce the online aggrega-
tion [10] feature into an S-OLAP system. The online aggregation
feature would allow an S-OLAP system to report “what it knows so
far” instead of waiting until the S-OLAP query is fully processed.
Such an approximate answer to the given query is periodically re-
freshed and refined as the computation continues. This online fea-
ture is especially useful for S-OLAP systems because of the non-
summarizable restriction of S-cube. Moreover, an approximate
query answer is often adequate for many sequence analysis queries.
For example, rather than presenting the exact number of round-trip
passengers in Figure 2, approximate numbers like 200,000 for the
Pengaton-Wheaton round-trip would be informative enough.

We can also consider improving the performance by exploiting
some other indices. For example, if the domain of a pattern dimen-
sion is small, we can encode both the base data and the inverted
indices as bitmap indices. Consequently, the intersection opera-
tion and the post-filtering step can be performed much faster using
the bitwise-AND operation rather than using the list-intersect op-
eration. Furthermore, if the domain is really small, the saving in
storage space could be very high.
2. Incremental Update. Incremental update is another interest-
ing and practical question for OLAP systems. In many applica-
tions like the subway company we are supporting, there is a huge
amount of new data being generated every day. When a day of
new transactions (events) are added to the event database, we could
create a new sequence group and precompute the corresponding in-
verted indices for that day. However, that new set of transactions
(events) may also invalidate the cached sequence groups and the
corresponding inverted indices of the same week. As a result, it is
necessary to devise methods to incrementally update the precom-
puted inverted indices.
3. Data Integration and Privacy. Smart-card systems, in addi-
tion to paying for subway rides, could be easily extended to new
application areas. For instance, in Hong Kong, the Octopus Card
can also be used to pay for other modes of public transport, to pur-
chase groceries at supermarkets and convenient stores, and even
to pay bills at restaurants [1]. Each month, all vendors who have
joined this electronic payment network upload their transactions to
a centralized server maintained by an independent company for ac-
counting purposes. Each vendor still owns its uploaded data and
the data is not accessible by the others.

However, sometimes, a few vendors may share portions of their
data to perform sequence data analysis together. For example, as-
sume that the subway company collaborates with a local bus com-
pany and offer a subway-bus-transit package with which passen-
gers who first take the subway and then transfer to a bus would get
a 20% discount off the second trip. In order to evaluate the effec-
tiveness of that cross-vendors campaign, lots of sequence OLAP
queries would be posed on the passengers traveling history. How-
ever, how to integrate the two separately-owned sequence databases
(the subway passenger traveling history and the bus passenger trav-
eling history) in order to perform such a high-level sequence data
analysis (without disclosing the base data to each other) is a chal-
lenging research topic.

7. CONCLUSIONS
This paper presented the concept of Sequence OLAP (S-OLAP).

The concepts of Sequence Cuboid and Sequence Data Cube are in-
troduced. A prototype S-OLAP system is built and it is able to
support pattern-based grouping and aggregation, which is currently
not supported by any OLAP system. The implementation details of

the prototype system as well as the experimental results of evaluat-
ing the system are presented.
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