
An Efficient and Scalable Algorithm for
Clustering XML Documents by Structure

Wang Lian, David W. Cheung, Member, IEEE Computer Society, Nikos Mamoulis, and Siu-Ming Yiu

Abstract—With the standardization of XML as an information exchange language over the net, a huge amount of information is

formatted in XML documents. In order to analyze this information efficiently, decomposing the XML documents and storing them in

relational tables is a popular practice. However, query processing becomes expensive since, in many cases, an excessive number of

joins is required to recover information from the fragmented data. If a collection consists of documents with different structures (for

example, they come from different DTDs), mining clusters in the documents could alleviate the fragmentation problem. We propose a

hierarchical algorithm (S-GRACE) for clustering XML documents based on structural information in the data. The notion of structure

graph (s-graph) is proposed, supporting a computationally efficient distance metric defined between documents and sets of

documents. This simple metric yields our new clustering algorithm which is efficient and effective, compared to other approaches

based on tree-edit distance. Experiments on real data show that our algorithm can discover clusters not easily identified by manual

inspection.

Index Terms—Data mining, clustering, XML, semistructured data, query processing.

�

1 INTRODUCTION

EXTENSIBLEMarkup Language (XML) has been recognized
as a standard data representation for interoperability

over the Internet. Web pages formatted in XML have started
to appear. Besides flat file storage, object-oriented data-
bases, and native XML databases, developers have been
using the more mature relational database technology to
store semistructured data, following two alternative ap-
proaches: schema mapping and structure mapping. In the first
approach, a relational schema is derived from the Docu-
ment Type Definition (DTD) of the documents [19]. The
second approach creates a set of generic tables that store the
structural information such as the elements, paths, and
attributes of the documents [20].1 Both methods decompose
the documents and insert their components to a set of
tables. This, however, brings excessive fragmentation, which
creates a serious negative impact in query evaluation: The
number of joins required to process a path expression is
almost equal to the length of the path [19].

If the collection consists of XML documents with

different structures, we observe that the fragmentation

problem can be alleviated by clustering the documents

according to their structural characteristics and storing each

cluster in a different set of tables. For example, the

documents in the DBLP database [5] can be classified to

journal articles and conference papers. In terms of the elements

(tags) and the parent-children relationships among them,

the journal articles carry very different structural informa-

tion than the conference papers.
In Fig. 1, the journal article and the conference paper

have common elements such as author and title, and some

different elements such as inproceedings and article. The

main difference is not due to the small number of distinct

elements, but due to the large number of distinct edges (i.e.,

parent-children relationships) between the elements. In fact,

all edges are different in this example. Sometimes, a

different element could introduce many edges that distin-

guish one group of documents from another. Clustering

documents according to their structural information would

improve query selectivity since queries are commonly

constructed based on path expressions. For example,

queries involving the edge “article=volume” need not access

any data from the conference papers.
XML documents have diverse types of structural

information (apart from edges) in different refinement

levels, e.g., attribute/element labels, edges, paths, twigs,

etc. When defining the distance between two documents,

choosing a simple structural component (e.g., label, edge) as

a basis would make clustering fast. On the other hand, a

metric based on too refined components could make it less

efficient and, hence, nonpractical. We have observed that

using directed edges to define a distance between two XML

documents is a good choice. More importantly, this metric

can be applied not only on documents, but also on groups

of documents. Finally, as shown in the paper, this approach

makes clustering on XML documents scalable to large

collections. Since clustering is performed on documents, no

data from a document would be stored in tables associated

to different clusters than the one where the document

belongs. However, if a query needs to refer to more than

one document, it may be necessary to join the tables from

two or more clusters. Some readers may think that this

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 1, JANUARY 2004 1

. The authors are with the Department of Computer Science and Information
Systems, University of Hong Kong, Pokfulam Road, Hong Kong.
E-mail: {wlian, dcheung, nikos, smyiu}@csis.hku.hk.

Manuscript received 1 Sept. 2002; revised 1 Apr. 2003; accepted 10 Apr. 2003.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 118551.

1. An element is a metadata (tag) describing the semantic of the
associated data. A path (or a path expression) specifies a navigation through
the structure of the XML data based on a sequence of tags.

1041-4347/04/$17.00 � 2004 IEEE Published by the IEEE Computer Society



would create additional table joins. We will show in
Section 2 that this is not the case.

Our contributions can be summarized as follows:

1. We show that, if a collection of XML documents
have different structures, proper clustering alleviates
the fragmentation problem.

2. We develop an algorithm S-GRACE which clusters
XML documents by structure. The distance metric in
S-GRACE is developed on the notion of structure
graph which is a minimal summary of edge contain-
ment in documents.

3. We carry out performance studies on synthetic and
real data. We show that S-GRACE is effective,
efficient, and scalable. In the DBLP database [5], S-
GRACE can identify clusters that cannot be spotted
easily by manual inspection. Moreover, the queries
on the partitioned schema derived from the cluster-
ing on the DBLP database exhibit large performance
speed-up compared to the unpartitioned schema.

The rest of the paper is organized as follows: Section 1.1
discusses related work. Section 2 motivates the study and
Section 3 describes the proposed S-GRACE clustering
algorithm. Section 4 describes a query manager module,
which transforms XQuery expressions [22] to queries on the
database schema defined by the clustering process. In
Section 5, we study the applicability of the proposed
methodology on synthetic and real XML document collec-
tions. A discussion on how our work can be generalized
using alternative graph summaries and clustering methods
is made in Section 6. Finally, Section 7 concludes the paper
with directions for future work.

1.1 Related Work

XMLdata can be stored in a file system [1], an object-oriented
database [10], a relational database [19], or a native XML
database system [15]. Using a file system is a straightforward
option which, however, does not support query processing.
Object-oriented database systems allow a flexible storage
system of XML files. It can also support complicated query
processing. Native XML database systems try to exploit
features of semistructured data model in storing XML files.
Nevertheless, both object-oriented and native XML database
systems are neither mature nor efficient enough for industry
adoption. On the other hand, even though relational
database technology is not well-tuned for semistructured
data, it is regarded as a practical approach because of itswide
deployment in the commercial world.

In [19], the assumption of using a relational database to
store XML files was established as a feasible approach.

Based on that, different schema design methods were

proposed. First, the notion of DTD graph was introduced, in

which elements and attributes are nodes and the parent-

children relationships become edges. Based on the graph,

three approaches were proposed to design the database

schema. Our approach proposed in this work also makes

use of the structural information. However, it is based only

on the data, without assuming the existence of DTDs. The

algorithm STORED in [7] uses data mining to generate a

relational schema from XML documents. The main con-

tribution of STORED is the specification of a declarative

language for mapping a semistructured data model to a

relational model. Our approach is to discover the clusters

among the XML documents so that each cluster can have a

more refined schema.
Clustering is a well-studied subject [12], [16]. There have

been considerable works on Web clustering. Previous work

includes text-based [23] and link-based methods [11]. Their

goal is to group Web documents of similar topics together,

whereas our goal is to group XML documents of similar

structures together. In the future, many Web pages could be

in XML. Therefore, clustering XML files is a relevant

problem in Web mining or categorical data [12]. Recently,

Nierman and Jagadish [17] proposed a method to cluster

XML documents according to structural similarity. The

algorithm measures structural similarity between docu-

ments using the “edit distance” between tree structures.

The motivation is to induce a “better” DTD for each cluster.

Arguably, this approach can allow us to cluster XML

documents and then refine the database schema using the

DTD of each cluster. However, computing the edit distance

between two documents has a complexity of OðjAj � jBjÞ,
where jAj and jBj are their respective sizes [17]. Computa-

tion of the edit distances for each documents pair is

required by the clustering algorithm. The cost of this

approach is too high for practical applications. On the other

hand, we cluster graph summaries which are much smaller

than the original documents and we define a similarity

metric which is very cheap to compute. Furthermore, an

XML document can be an arbitrary graph rather than a tree

because of the explicit element references. For example,

both id/idref attribute and XLink construct can create a

cross-elements reference [6]. Our methodology can be

applied to arbitrary XML graphs, not only trees.

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 1, JANUARY 2004

Fig. 1. Structural difference between article and conference papers.



2 MOTIVATION

2.1 Background

Many query languages proposed for semistructured data

can be used on XML documents, e.g., Lorel [15], XQL, and

XQuery [22]. A semistructured query can be decomposed

into a set of path expressions using XPath [21]. The query

results are derived by joining the intermediate results of the

path expressions. To simplify our discussion, without loss

of generality, we assume the set of path expressions are

either absolute paths, (in the form of =a=b= � � � =c=d), or relative
paths, (in the form of ==a=b= � � � =c=d). Absolute paths start at

the root of the document while relative paths can start

anywhere in the tree structure. Also, we assume the path

expressions do not include wildcards (“*”), “//” (ancestor/

descendent relationship), and function operators. We call

such path expressions simple path expressions.2 The following

is an example of a semistructured query (XQuery) which

returns all the authors who have written at least one

conference paper and one journal article. The two XPath

expressions in the first two “for” statements return the

conference authors and the journal authors separately. A

join (the fourth statement) on the authors returned gives the

final results.

for $e1 in document(”all.xml”)/conference/author
for $e2 in document(”all.xml”)/journal/author

return $e1/text()

where $e1/text()=$e2/text()

2.2 Motivating Example

In order to store XML documents with relational databases,

XML documents need to be flattened and fragmented

before they are stored in tables. Hence, possibly multiple

tables must be joined in order to answer path queries. In

Fig. 2, there are six XML documents forming three

partitions (clusters) separated by the dashed lines, all of

which conform to the following DTD:

< !ELEMENT conference ðname; authorÞ� >
< !ELEMENT journal ðname; author; publisherÞ� > :

There are several methods for mapping XML documents
to relational tables. Each one has a different technique for
rewriting semistructural queries to SQL. To simplify our
discussion, we use the mapping and rewriting method in
[19].3 Fig. 3 presents Schema A for storing all the six
documents together, which is generated according to [19].4

The mapping method tries to include as many descendants
of an element as possible into a single relation. It also
creates a relation for each element because an XML
document can be rooted at any element in a DTD. The
value of self id is the linear order of the elements in a
document. An element of a document can be identified by
its doc id and self id. Fig. 4 shows Schema B, in which each
partition has its own set of tables. Schema B is, in fact, a
projection of Schema A on the partitions generated in a
simple way: For each partition, we create the same set of
tables as that in Schema A and rename them by appending
the partition id. The documents in each partition are
inserted into these tables as if the tables in Schema A were
projected into the partition. Empty tables are removed.
Suppose two queries q1 and q2 (in XQuery format) are
submitted to both Schemas A and B:

. q1: find authors and publishers for all journal papers
and

. q2: find authors who have written at least one journal
article and one conference paper.

Fig. 5 shows these four queries in SQL. Notice that the
structure of q1 is the same on both Schemas A and B . In
Schema A, we need to join the tables journal, author, and
publisher. In Schema B, we only need to join the smaller

LIAN ET AL.: AN EFFICIENT AND SCALABLE ALGORITHM FOR CLUSTERING XML DOCUMENTS BY STRUCTURE 3

Fig. 2. Documents. Fig. 3. Schema A.

2. If we modify the definition of s-graph in Section 3, we can extend path
expressions to include general relative paths.

3. Since the problem we are studying is on clustering XML documents,
the choice of mapping and rewriting method does not affect the generality
of our result. As will be seen later on, other mapping methods can also be
used for mapping and rewriting. (We have also tested the mapping method
in [20] in Section 5.)

4. Some attributes were not listed in Fig. 3 for simplicity.



tables journal3, author3, and publisher3. Thus, the cost of
running q1 in Schema B is much smaller than in Schema A.

Let us analyze the cost of q2 which joins documents in
different clusters. The journal articles are separated into
Partition2 and Partition3, while conference papers are all
in Partition1. The SQL code for q2 in Schema B consists of
two sections of SQL codes connected by a union all clause,
and each section of SQL code is exactly the same as that in
Schema A. The join between journal and author in
Schema A has been transformed into two joins in
Schema B: the join between journal2 and author2 and the
join between journal3 and author3. The joins between

1. journal2 and author1,
2. journal2 and author3,
3. journal3 and author1, and
4. journal3 and author2 are all eliminated.

This is due to two reasons: 1) we need not join journals with
authors of conference papers and 2) we need not join a
journal with authors of another journal. This join cost
reduction accelerates query processing (the improvement
depends on the implementation of the RDBMS). We call this
an improvement related to the intradocument joins because
the journal-author join is to recover an element-subelement
relationship within a document.

Note that no additional join cost is introduced due to the
clustering. For example, in Schema B, we need to join the
author tables in different partitions. However, this join
already exists in Schema A. In fact, the self-join of the
author table in Schema A is transformed into two joins in
Schema B: the join between author1 and author2 and the join
between author1 and author3. The sizes of the tables
involved have decreased and the processing does not incur
extra cost in Schema B.

Summarizing, we have illustrated how a query on
Schema A can be mapped into Schema B, on which the
query requires less join cost in its processing than on
Schema A. In the rest of this paper, given a relational

schema and a partitioning (clustering) of a set of XML

documents, we use the term partitioned schema to represent

the schemas in the partitions which are projections of the

tables in the original schema (unpartitioned schema) into the

partitions as described in Fig. 4.
Clustering documents by structural information does not

eliminate the fragmentation problem; it alleviates it by

reducing the join cost, in particular, the cost on intradocu-

ment joins. The schema design in our example follows the

technique in [19]. If we use the structure mapping

techniques in [20], the effect would be even better. The

experimental results in Section 5 show the performance

gain using different mapping techniques.

3 CLUSTERING OF XML DOCUMENTS

After establishing a motivation to cluster XML documents,

we turn our attention to the development of an effective

clustering algorithm. In this section, we define a method to

summarize XML documents such that a simple and efficient

similarity metric can be applied. Then, we show how this

metric can be used in combination with a clustering

algorithm to divide a large collection of XML documents

into groups according to their structural characteristics.

Although our definitions and methodology assume a

database of XML documents, they can be seamlessly

applied for any collection of semistructured data.

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 1, JANUARY 2004

Fig. 4. Schema B.

Fig. 5. SQL codes of q1 and q2.



3.1 Similarity between XML Documents

Because semistructured data has not been a popular data
format until the appearance of XML files, conventional
clustering techniques do not have special emphasis on this
data type. What would be a proper approach for clustering
semistructured data? Let us consider some options for
defining the similarity between XML documents. We can
treat the elements of a document as attributes and convert
the document into a transaction of binary attributes. Jaccard
Coefficient or Cosine function [18], among various other
similarity measures, can be used to measure the similarity
between documents. However, many structurally different
documents have almost the same set of elements. In Fig. 6,
doc1 and doc2 have only one different element, but they
should be in two different clusters according to the
semantics, assuming that many applications would be
interested in posting queries to journal and conference
papers separately. In other words, doc2 and doc3 should be
separated from doc1 to form a cluster.

Since XML documents can often be modeled as node-
labeled trees, another option would be to use tree distance

[24]to measure their similarity. In [17], besides node
relabeling, node insertion, and node deletion, the tree
distance method is refined to allow insertion and deletion of
subtrees, which makes it more feasible to calculate the
similarity of document trees. However, the cost of comput-
ing the tree distance between two documents is high
(quadratic to their sizes), rendering it unsuitable for a
collection of large documents.

Nierman and Jagadish [17] suggest assigning different
costs to the tree editing operators. Practically, there is no
simple way to do this assignment such that the resulting
clustering would perform well. For example, in Fig. 7, if
subtree deletion costs less than subtree renaming, then
distðdoc1; doc2Þ < distðdoc1; doc3Þ. In the opposite case, we
would have distðdoc1; doc2Þ > distðdoc1; doc3Þ. The situation
may be even worse, if we cannot find a proper cost

assignment for all the documents; there may exist different
assignments for different subtrees.

Besides that, in some cases, it may not be possible to
distinguish documents that are structurally different using
the edit distance. In Fig. 8, the tree distance between doc1
and doc2 will be the same as that between doc2 and doc3,
because only one relabeling operation is required in both
cases to transform the “source” tree into the “destination”
tree. If we cluster doc1 and doc2 together, the DTD covering
them would be < !ELEMENTAðB;C;E; F Þ� > which has
only four edges. On the other hand, the DTD covering doc2
and doc3 would be < !ELEMENTAðB;C;EÞ� > and
< !ELEMENTDðB;C;EÞ� > , which has a total of six
edges. Notice that the documents in the latter case should
be better clustered separately because A andD probably are
two different object types such as journal and conference
paper in the DBLP database. This simple example shows
that the tree distance based method may not be able to
distinguish structural differences in some cases. In the
following, we propose a new notion to measure the
similarity between XML documents.

Definition 1. Given a set of XML documents C, the structure
graph (or s-graph) of C, sgðCÞ ¼ ðN;EÞ, is a directed graph
such that N is the set of all the elements and attributes in the
documents in C and ða; bÞ 2 E if and only if a is a parent
element of element b or b is an attribute of element a in some
document in C.

Notice that the structure graph defined here is different
from the DTD graph in [19]. The structure graphs are
derived from XML documents, not from their DTD. For
example, the s-graph sgðdoc1; doc2Þ of two documents doc1
and doc2 is the set of nodes and edges appearing in either
document, as illustrated in Fig. 9. In the same manner, a
path expression q can be viewed as a graph ðN;EÞ, where N
is the set of elements or attributes in q and E is the set of

LIAN ET AL.: AN EFFICIENT AND SCALABLE ALGORITHM FOR CLUSTERING XML DOCUMENTS BY STRUCTURE 5

Fig. 6. Differences in elements.

Fig. 7. Tree distances between documents.

Fig. 8. Tree distances between documents.

Fig. 9. An example s-graph.



element-subelement or element-attribute relationships in q.
Given a path expression q which has an answer in an XML
document X, the directed graph representing q is a
subgraph in the s-graph of X. For simplicity, we will
denote the graph of a path expression q also by q.

Theorem 1. Given a set of XML documents C, if a path
expression q has answer in some document in C, then q is a
subgraph of sgðCÞ. Also, sgðCÞ is the minimal graph that has
this property.

The minimality property of sgðCÞ is derived from the
observation that any proper subgraph of sgðCÞ will not
contain all path expressions that can be answered by any
document in C. Thus, the s-graph of C is a “compact”
representation of the documents in C with respect to the
path expressions. Note that the construction of sgðCÞ can be
done efficiently by a single scan of the documents in C,
provided that each document fits into memory.

Corollary 1. Given two sets of XML documents C1 and C2, if a
path expression q has an answer in a document of C1 and a
document of C2, then q is a subgraph of both sgðC1Þ and
sgðC2Þ.

It follows from Corollary 1 that, if the structure graphs of
two sets of documents have few overlapping edges, then
there are very few path expressions that can be answered by
both of them. Hence, it is reasonable to store them in
separate sets of tables. The following distance metric is
derived from this observation.

Definition 2. For two XML documents C1 and C2, the distance
between them is defined by

distðC1; C2Þ ¼ 1� jsgðC1Þ \ sgðC2Þj
maxfjsgðC1Þj; jsgðC2Þjg

;

where jsgðCiÞj is the number of edges in sgðCiÞ; i ¼ 1; 2 and
sgðC1Þ \ sgðC2Þ is the set of common edges of sgðC1Þ and
sgðC2Þ.

It is straightforward to show that distðC1; C2Þ is a metric
[3]. If the number of common element-subelement relation-
ships between C1 and C2 is large, the distance between the
s-graphs will be small, and vice versa. In Fig. 10, we have
the s-graphs of three documents. Using the metric in
Definition 2, we would have distðfdoc2g; fdoc3gÞ ¼ 0:25 and
distðfdoc1g; fdoc2gÞ ¼ distðfdoc1g; fdoc3gÞ ¼ 1. A clustering
algorithm would merge doc2 and doc3, and leave doc1
outside. This shows that the metric is effective in separating
documents that are structurally different. It is important to

point out here that using s-graphs allows the application of
the same metric on documents as well as sets of documents,
a property that simplifies the clustering process.

The metric has another nice characteristic. It prevents an
s-graph which is a subgraph of another s-graph from being
“swallowed,” if they should form two clusters. In Fig. 11, we
have three s-graphs such that distðfg2g; fg3gÞ ¼ 0:25 and
distðfg1g; fg2gÞ ¼ distðfg1g; fg3gÞ ¼ 0:6. A clustering algo-
rithm with this metric can separate the documents asso-
ciated with g2 and g3 from those with g1, even though both g2
and g3 are subgraphs of g1. Following the same reason,
outliers with large s-graphs would be prevented from
wrongfully swallowed nonoutliers whose s-graphs are
subgraphs of the outliers’ s-graphs.

3.2 A Framework for Clustering XML Documents

Our purpose is to cluster XML files based on their structure.
We achieve this by summarizing their structure in s-graphs
and using the metric in Definition 2 to compute the clusters.
Our approach is implemented in two steps:

. Step 1. Extract and encode structural information:
This step scans the documents, computes their
s-graphs, and encodes them in a data structure.

. Step 2. Perform clustering on the structural informa-
tion: This step applies a suitable clustering algorithm
on the encoded information to generate the clusters.

Initially, the s-graphs of all the documents are computed
and stored in a structure called SG. An s-graph can be
represented by a bit string which encodes the edges in the
graph. Each entry in SG has two information fields: 1) a bit
string representing the edges of an s-graph and 2) a set
containing the ids of all the documents whose s-graphs are
represented by this bit string. Obviously, s-graphs with no
documents corresponding to them are not contained in SG.
Fig. 12 shows an example with three documents. Since
many documents may have the same s-graph, the size of SG
is much smaller than the total number of documents. In
general, SG should be small enough to fit into the memory.
In the extreme case, a general approach such as sampling
can be used. Once SG is computed, clustering is performed
on the bit strings. Therefore, we transform the problem of
clustering XML documents into clustering a smaller set of
bit strings, which is fast and scalable.

In our framework, we have separated the encoding and
extraction of the structural information from the clustering
part. Many appropriate algorithms could be used to cluster
the s-graphs. However, it is not natural to treat the s-graph
information as numerical data because it is encoded as
binary attributes with only two domain values. Therefore,
an appropriate clustering algorithm on categorical data

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 1, JANUARY 2004

Fig. 10. S-graph-based similarity.

Fig. 11. Subcluster inside a cluster.



would be a better choice. In the following, we will explain

how we have applied a representative categorical clustering

algorithm (ROCK [12]) on the s-graphs. In Section 6, we also

discuss our experience in using a density-based clustering

algorithm to cluster the s-graphs for comparision purpose

(DBSCAN [9]).

3.3 The S-GRACE Algorithm

S-GRACE is a hierarchical clustering algorithm on XML

documents, which applies ROCK [12] on the s-graphs

extracted from the documents. As pointed out in [12], pure

distance-based clustering algorithm may not be effective on

categorical or binary data. ROCK tries to handle the case

that, even though some data points may not be close

enough in distance but they share a large number of

common neighbors, it would be beneficial to consider them

belonging to the same cluster. This observation would help

to cluster s-graphs which a share large number of common

neighbors.5 The pseudocode of S-GRACE is shown in

Fig. 13. The input D is a set of XML documents. In the

beginning, as discussed in Section 3.2, the s-graphs of the

documents are computed and stored in the array SG. The

procedure pre clustering (line 1) creates SG from D using

hashing. Two s-graphs in SG are neighbors if their distance

is smaller than an input threshold �. Compute distance

(line 2) computes the distance between all pairs of s-graphs

in SG and stores them in the array DIST .
ROCK exploits the link property in selecting the best

pair of clusters to be merged in the hierarchical merging

process. Given two s-graphs x and y in SG, linkðx; yÞ is

the number of common neighbors of x and y, where an s-

graph z is a neighbor of x, if distðx; zÞ � �, (� is a given

distance threshold). In S-GRACE, the number of neighbors

of an s-graph is weighted by the number of documents it

represents. For a pair of clusters Ci, Cj, link½Ci; Cj� is the

number of cross links between elements in Ci and Cj, (i.e.,

link½Ci; Cj� ¼
P

pq2Ci;pr2Cj
linkðpq; prÞ) . A l s o , a

goodness measure gðCi; CjÞ between a pair of clusters Ci,

Cj is defined by

gðCi; CjÞ ¼
link½Ci; Cj�

ðni þ niÞ1þ2fð�Þ � n
1þ2fð�Þ
i � n

1þ2fð�Þ
j

;

LIAN ET AL.: AN EFFICIENT AND SCALABLE ALGORITHM FOR CLUSTERING XML DOCUMENTS BY STRUCTURE 7

5. We need to point out that the novelty here is the extraction of proper
information in the form of s-graphs as a base for clustering. ROCK is by no
means the only available method for clustering s-graphs, but it is the more
preferrable one as shown by our experimental result.

Fig. 12. An example of s-graph encoding.

Fig. 13. S-GRACE.



where ni and nj are the number of documents in Ci and Cj ,
respectively, and fð�Þ is an index on the estimation of
number of neighbors for Ci and Cj [12]. In fact, the
denominator is the expected number of cross links between
the two clusters. Compute link (line 3) computes the link
value between all pairs of s-graphs in SG and stores them in
the array LINK. Remove outlier then removes the clusters
that have no neighbors. Initially, each entry in SG is a
separate cluster. For each cluster i, we build a local heap q½i�
and maintain the heap during the execution of the
algorithm. q½i� contains all clusters j such that link½i; j� is
nonzero. The clusters in q½i� are sorted in decreasing order
by the goodness measures with respect to i. In addition, the
algorithm maintains a global heap Q that contains all the
clusters. The clusters i in Q are sorted in the decreasing
order by their best goodness measures, gði;maxðq½i�ÞÞ,
where maxðq½i�Þ is the element in q½i� which has the
maximum goodness measure.

The while loop (lines 8-21) iterates until only �� k
clusters remain in the global heap Q, where � is a small
integer controlling the merging process. During each
iteration, the algorithm merges the pair of clusters that
have the highest goodness measure in Q and updates the
heaps and LINK. The s-graph of a cluster obtained by
merging two clusters contains the nodes and edges of the
two source clusters (refers to Definition 1). Outside the loop,
remove outlier removes some more outliers from the
remaining clusters which are small groups loosely con-
nected to other nonoutlier groups. Second cluster (line 23)
further combines clusters until k clusters remain. It also
merges a pair of clusters at a time. The purpose is to allow
different control strategies to choose the pair of clusters to
be merged in the last stage of S-GRACE.

In S-GRACE-1 (i.e., version 1 of the algorithm), we use
the baseline strategy: The loop in second cluster is the same
as the while loop in lines 8-21. In S-GRACE-2, among the
pairs of clusters with the top t normalized link values, we
select and merge the pair that leads to a cluster with the
minimum number of documents. This effectively will
distribute the documents evenly among the clusters. In S-
GRACE-3, among the pairs of clusters having the top t
normalized link values, we select and merge the pair that
has the minimum number of edges in the s-graph in the
resulting cluster. This strategy makes the s-graph of the
clusters as small as possible, and, consequently, reduces the
number of clusters (partitions) that a path query would
have to visit.

3.4 Complexity

Let N be the number of different elements and attributes in
D. Since there are N2 distinct edges, in the worst case, the
size of the bit array representing a s-graph is bounded by
N2 bits. However, in typical cases, the number of distinct
edges is much smaller than N2. In all real data sets, we have
checked this number and it is a small multiple of N , which
means that the time required to scan jDj documents and
compute their bit-strings is OðjDj�NÞ, where � is a small
constant. For example, for DBLP and NITF [13], � is
between three and four. In Section 5, Table 3 shows that the
time to construct SG is usually less than 6 percent of the
time of scanning all the documents.

Computing the distances between all pairs of initial
s-graphs requires Oðm2Þ time, where m is the number of
distinct s-graphs in SG. Building the table LINK generally
requires Oðm3Þ. However, it can be reduced to Oðm2:37Þ [4].
Furthermore, we can expect that, on average, the number of
neighbors � for each s-graph will be small compared to m.
Under this condition, an algorithm was designed in [12]
that can further reduce the time complexity to Oðm2�Þ.

Since updating local heaps for each merging requires
Oðm logmÞ time, the while loop of the algorithm requires
Oðm2 logmÞ time. The last step (second cluster) is similar to
the while loop, hence it also requires Oðm2 logmÞ time.
Thus, the overall time complexity of S-GRACE is OðjDjN2 þ
m2:37Þ in the worst case and OðjDj�N þm2�Þ on the
average.

SG stores the bit strings of s-graphs and document ids,
so it requires OðmN2 þ jDjÞ space. Both DIST and LINK
require Oðm2Þ space. The number of local heaps is OðmÞ
and each local heap contains OðmÞ entries (the size of each
entry is OðN2Þ). Thus, all local heaps consume Oðm2N2Þ
space. The global heap stores OðmÞ clusters and jDj
document ids, so it requires OðmN2 þ jDjÞ space. Thus,
the overall space complexity of S-GRACE is Oðm2N2 þ jDjÞ
in the worst case and Oðm2�N þ jDjÞ on the average.

4 QUERY REWRITING

Most methods for storing XML data in relational tables
provide some query rewriting mechanism to transform a
semistructured query like XQuery to SQL. Following our
discussion in Section 2.2, we can assume a relational schema
(Schema A: Fig. 3) for storing the XML documents before
the documents are partitioned. After partitioning, there is a
new schema (Schema B: Fig. 4), which is the projection of
Schema A on each partition. If a query has results in the
documents within a partition, its processing on the tables of
that partition is a straightforward query rewriting as
illustrated by the example on query q1 in Table 1.

If the query needs to integrate the results from multiple
partitions, some issues in rewriting would need to be dealt
with. Given a path expression of a query, we need to first
identify all the partitions that contain it, i.e, those that may
have answers. For this task, we have designed a Query
Manager.

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 1, JANUARY 2004

TABLE 1
Input Parameters for Data Generation



4.1 Query Manager

The task of the Query Manager (QM) is to determine the

partitions that contain a given path expression. The QM

maintains a root s-graph sgr, and a set of bit arrays, one for

each partition’s s-graph. The root s-graph is the s-graph of

the entire document set and is equal to the union of all the

partitions’ s-graphs. Each edge in sgr is labeled by a

predefined traversal order from 1 to n, where n is the

number of edges in sgr. For every partition, the size of the

bit array for its s-graph is also n and the bits are also

indexed by the traversal order in sgr. In addition, all nodes

in sgr can be accessed from a hash-table.
Any path expression beginning with =A (absolute path)

or ==A (relative path) which does not contain a “�” or “//”

can be transformed into a bit array of size n. The bitwise

AND is applied to this bit array and those of the partitions.

If the bit array of the path does not change after ANDing

with a partition Pi, then Pi contains the path expression.

Fig. 14 illustrates the functionality of the Query Manager.

Observe that only the first partition (summarized by s-

graph sg1) contains results for the input query because it is

the only graph that does not alter the query s-graph after

the AND operation.
Now let us consider path expressions which begin with

=A or ==A and contain “�” or “//” followed by a

descendant label B. We can evaluate them by first locating

the node representing A in the root s-graph (using the hash

table) and traversing sgr starting from node A. While

traversing the graph, relative path “//” and the wild card

“�” are binded until B is reached. All the paths from A to B

in sgr can be identified to derive the query results. Notice

that since the size of the sgr is usually small, this process is

not expensive. In addition, this method can avoid generat-

ing path queries with intermediate labels which do not

appear in the document collection between A and B.

Consider the root s-graph in Fig. 15. The path expression

A==B would generate two path queries A=B and A=D=C=B
because we can traverse from A to B via the two paths.

4.2 Integrating Results from Different Partitions

With the help of QM, we can identify all partitions
containing a path expression. If a semistructured query
contains only a path expression, the rewriting is straightfor-
ward: union the results from all the partitions containing
the path. If the query contains several related path
expressions, some joins are inevitable. In Schema A, a
query relating multiple path expressions will be rewritten
into joins among tables in the schema. In Schema B, joins
may be performed across partitions. As we have explained
in Section 2, the tables in Schema B are projections of those
in Schema A on the partitions. Therefore, each join in
Schema A will correspond to several joins in Schema B. The
SQL code of each join in Schema B is the same as that in
Schema A except the tables are the projection of the
corresponding tables on the partitions. For example, in the
query q2 in Fig. 5, ==journal=author is contained in two
partitions while ==conference=author is in one partition. In
order to join them, there should be 2� 1 ¼ 2 joins, and the
table names in each join are changed accordingly as shown
in Fig. 5.

4.3 Generalization of S-Graph

In Theorem 1, we have not considered general path
expressions that include general ancestor/descendant re-
lationship between two neighboring tags. In Section 4.1, we
also discussed how to use the current s-graph definition to
process such queries. Our approach essentially replaces a
general path expression with a set of simple path expres-
sions such that we can union the answers of the set of
simple path expressions to give the answers of the general
path expression. Also, each simple path expression is
contained in the s-graph of the whole document collection.
An alternative approach is to extend the s-graph to include
not only parent/child edges, but also ancestor/descendant
relationships that occur in documents. For example, we
could encode b==c relationships in the s-graphs as a special
ancestor/descendant edges between b and c so that general
path expressions such as =a=b==c can be answered.

We have two choices on how to apply this s-graph
generalization: either before the clustering or afterward. We
recommend following the second choice because the

LIAN ET AL.: AN EFFICIENT AND SCALABLE ALGORITHM FOR CLUSTERING XML DOCUMENTS BY STRUCTURE 9

Fig. 14. Usage of Query Manager.

Fig. 15. An example of root s-graph.



redundant information added to the s-graph in the first
choice may make the size of the s-graph unnecessarily large.
Extending the s-graph in each partition after the clustering
would be enough to answer the relative path expression
queries.

5 PERFORMANCE STUDIES

In this section, we investigate the effectiveness, efficiency,
and scalability of S-GRACE via experiments on both
synthetic and real data. We generated the synthetic data
using a real DTD. The real data are XML files from the
DBLP database [5] containing computer science bibliogra-
phy entries. Experiments are carried out in a computer with
four Intel Pentium 3 Xeon 700MHZ processors and 4G
memory running Solaris 8 Intel Edition.

5.1 Synthetic Data Generation

The XML GENERATOR in [8] is a tool, which generates
XML documents based on a given DTD. It gives us very
little control on the cluster distribution and similarity.
Another method [2] generates complex XML documents,
but also cannot control the similarity. Therefore, we had to
build our own generator, which is a three-step process:

1. Given a DTD D, we randomly generate a set of sub-
DTDs (smaller DTDs in D) in which the overlap
between every pair of sub-DTDs is smaller than a
threshold. A DTD can be represented by a graph G
in which every element is a node and every element-
subelement relationship is an edge. Assume that G1

and G2 are the graphs of sub-DTDs D1 and D2,
respectively, the overlap between D1 and D2,

overlapðD1; D2Þ ¼ðnumber of common edges in G1

and G2Þ=ðminimum number of

edges in G1 and G2Þ:

These sub-DTDs are used to generate clusters of
documents. We call these sub-DTDs cluster DTDs.

2. We also create a set of sub-DTDs for the generation
of outlier documents. We combine some pairs of
cluster DTDs to form a set of outlier DTDs.

3. We generate documents based on the sub-DTDs
generated in the first two steps.

Our synthetic data was produced using the NITF (News
Industry Text Format) DTD [13] as seed DTD. The para-
meters used in the generation process are listed in Table 1.
The first three parameters are defined to control the first and
second steps of the generation process. The last six para-
meters are used to generate documents on a specific DTD.

A cluster DTD C is defined from the input DTD D in the
following way. Starting from the root node r of the DTD
graph ofD, for each subelement s, if it is accompanied by “�”
or “?,” we randomly decide whether to include it in C or not.
If it is accompanied by “+,” then it is always included in C. If
there are choices among several subelements of r, then they
are included in C according to a random distribution. The
same procedure is repeated on the new nodes until the
number of elements and edges reach a threshold. To
generate the set of cluster DTDs, the above procedure is

repeated. A new DTD must satisfy the overlap constraint.
The process terminates when there are enough DTDs.

The procedure that generates documents from a cluster
DTD D is very similar. Starting from the root element r of
D, for each subelement, if it is accompanied by “�” or “+,”
we decide how many times it should appear according to a
distribution (such as Poisson). If it is accompanied by “?,”
the element appears or not by tossing a biased coin. If there
are choices among several subelements of r, then their
appearance in the document follows a random distribution.
The process on the newly generated elements is repeated
until some termination conditions have been reached.

5.2 Experiments on Synthetic Data

In this group of experiments, we compare the performances
of S-GRACE-1, S-GRACE-2, and S-GRACE-3 (described in
Section 3.3) on different sets of synthetic data. We have five
control parameters in our data generation:

1. total number of documents,
2. number of clusters,
3. number of outliers,
4. overlapping between clusters, and
5. sizes of the clusters.

Due to space limitations, we present only the effects of the
first three parameters in Tables 2, 4, and 5, respectively.

The first column of each table shows the parameter
varied in the experiment. The second column indicates
which version of S-GRACE is used, i.e., if the value is i,
1 � i � 3, then S-GRACE-i is used. The third to sixth
columns are four indicators which measure the goodness of
the clusters discovered by S-GRACE. CS is a measure on
the closeness between the clusters found by S-GRACE and

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 1, JANUARY 2004

TABLE 2
Clustering Accuracy as a Function of Database Size

TABLE 3
Processing Cost of S-GRACE-2



the clusters in the data. For each found cluster C, we
measure the similarity between it and the cluster DTD in
the data generation which has the highest similarity to C.
(We use the term similarity between two clusters, C1 and C2,
to denote the quantity 1� distðC1; C2Þ as defined in
Definition 2.) The value of CS is the average similarity of
the found clusters with the corresponding DTDs. IS is the
average similarity over all pairs of clusters found by S-
GRACE. SD is the standard deviation of the number of
documents in the clusters found by S-GRACE. Finally, R is
the ratio of outlier documents found by S-GRACE. A good
clustering technique would result in a large CS (close to 1)
and a small IS and SD (close to 0). The value of R should be
close to the outlier ratio in the data generation.

5.2.1 Varying the Number of Documents

In this experiment, we test the scalability of our algorithms
to the database size (N), which varies from 10K to 200K
documents. The data are generated using the following

parameters: CL ¼ 5, OL ¼ 0:3, OR ¼ 0:02, and all cluster
DTDs generate the same number of documents with
D ¼ 2K; 4K; 8K; 20K; 40K. We input k ¼ 4; 5; 6; 7; 8 to our
algorithm and only show the result of k ¼ 5 in Table 2
because k ¼ 5 gives the best values of CS, IS, SD, and R.All
four indicators reveal that S-GRACE-2 and S-GRACE-3 are
more effective than S-GRACE-1. S-GRACE-2 has a slight
edge on S-GRACE-3. The CS values are very high which
shows that both S-GRACE-2 and S-GRACE-3 are very
accurate in discovering clusters.

Table 3 shows the processing cost of S-GRACE-2 as a
parameter of database size. The preprocessing cost is the
time to read the documents and turn them into a hash
table of bit arrays. The creation time of SG involves the
scanning of the hash table to create SG. The document
size in this experiment ranged from 0.5Kb to 20Kb with an
average of 2.5Kb.

5.2.2 Varying the Number of Clusters

In this experiment, we test the robustness of S-GRACE to the
number of clusters. The number of clusters varies from six to
10. The data are generated with the following parameters:
CL ¼ 6; 7; 8; 9; 10, OL ¼ 0:4, OR ¼ 0:02, and D ¼ 5K. k takes
values from f4; 5; 6; 7; 8; 9; 10g for each data set. Table 4
shows the results when k is equal to CL. In this case, we get
the best values of CS, IS, SD, and R. Again, S-GRACE-2
performs slightly better than S-GRACE-3. The baseline
algorithm S-GRACE-1, as expected, has the worst accuracy.

5.2.3 Varying the Ratio of Outliers

In this experiment, we validate the performance of
S-GRACE varying the ratio of outliers. The data are
generated using the following parameters: CL ¼ 5,
OL ¼ 0:3, OR ¼ 0:01; 0:05; 0:10; 0:15; 0:20, and D ¼ 5K.
Again, k takes values from f4; 5; 6; 7; 8; 9; 10g and only
the result of k ¼ 5 is shown in Table 5. It is clear that the
ratio of outliers, R, discovered by S-GRACE is very close
to the ratio of outliers, OR, used in the data generation.
This shows that S-GRACE is quite effective in the
discovery of the outliers.

Besides the above experiments, we also tested the
robustness of the algorithms to changes in the overlap
between cluster DTDs and the size of the clusters. Again
S-GRACE-2 usually gives us the best result in terms of
accuracy. S-GRACE-3 performs well in a few cases, while
the S-GRACE-1 is always worse than the other two.

5.3 S-GRACE-2 on Real Data and Query
Enhancement

In the previous section, we saw that S-GRACE-2 performs
better than the other two variants in most cases. Hence, we
adopt it as the standard implementation of S-GRACE and
test the performance enhancement it introduces in query
processing. The data set we use is the XML DBLP records
database [5], which contains about 200,000 XML documents
composed of 36 elements. Most of the documents are
described by either inproceedings or article.6 Others are
postgraduate students’ theses, white papers, etc. All

LIAN ET AL.: AN EFFICIENT AND SCALABLE ALGORITHM FOR CLUSTERING XML DOCUMENTS BY STRUCTURE 11

TABLE 5
Clustering Accuracy Varying the Outlier Ratio

6. Inproceedings and article are two elements in the DTD of DBLP
representing conference papers and journal articles, respectively.

TABLE 4
Clustering Accuracy Varying the Number of Clusters



documents contain elements such as author, title, and year.
Overlap among documents’ elements is a common scenario.

Our goal is to test whether a partitioned schema from S-
GRACE brings in better query performance than the
unpartitioned schema. We defined five types of queries
based on the structure of existing documents. The first three
are written in XPath, and the last two in XQuery. The five
query classes are:

. Q1: =A1=A2= � � � =Ak; all possible absolute XPaths in
the documents.

. Q2: =A1=A2= � � � =Ak½textðÞ ¼ 00 value00�; the same as
Q1 except that one additional requirement is added
to make sure the text value of the last element is
equal to “value,” which is a string randomly selected
from the real data.

. Q3: =A1=A2= � � � =Ak½containsð:;00 substring00Þ�; same
as Q1 except that the additional requirement is to
make sure that a randomly picked “substring” is
contained in the text value of the last element.

. Q4: find the titles of articles published in the VLDB
Journal in 1999.

. Q5: find the names of authors which have at least
one journal article and one conference paper.

Because path expressions are the basic unit in composing
XML queries, we used the first three queries to test the
performance of processing path expressions. Compara-
tively, the resulting set of Q1 is very large, while that of
Q2 is small and the size of the return of Q3 is somewhere in
between. Hence, they can test our approach on queries with
different selectivity. Q4 and Q5 are defined to test the joins
among path expressions. Joins in Q4 occur only inside
clusters while joins in Q5 are applied across clusters.

The RDBMS we used is the Oracle 8i Enterprise Edition
release 8.1.5. All the above five queries are translated to SQL
and executed on the RDBMS. S-GRACE is used to generate
the clusters that define the partitioned database schema.
Based on the experimental results, the parameters of
S-GRACE (see Fig. 13) are set to: � ¼ 0:2, � ¼ 100=k, and
k ¼ 4; 5; 6; 8. The clustering result depends on k, the number
of expected clusters. For each value of k, we compared the
overlap between the clusters found. The higher the overlap,
the more the path expressions are that have answers in
multiple clusters. In order to filter as many as documents
while processing path expressions, we need a k that results

in a low overlap. The average overlap is the lowest when
k ¼ 4. We used the four clusters found in this case to
partition the documents in order to evaluate the query
performance.

During the clustering, the parsing and construction of the
array SG took 1,361 seconds for a total of 200,000 documents,
the number of distinct s-graphs in SG is 233. Therefore,
clustering is very fast and takes less than two seconds (we
have excluded the element-attribute relationships in the
s-graphs).

We use the schema mapping technique in [19] to create a
schema for storing the documents. Tables in the schema are
then projected into the partitions from the clustering to
create the partitioned schema. Performance of the queries
are compared between the original unpartitioned schema
and the partitioned schema. We then use the structure
mapping technique in [20] to create a schema and repeat the
performance comparison.

The four clusters returned from S-GRACE-2 have the
following properties: The first cluster contains about
80,000articledocumentsandits s-graphcontains14elements:
dblp, article, author, title, pages, year, journal, volume,
number, month, url, ee, cdrom, and cite. The second cluster
contains about 73,000 inproceedings documents and its
s-graph contains eight elements: dblp, inproceedings, author,
title, booktitle, pages, year, url. The third cluster contains
about 39,000 inproceedings documents and its s-graph
contains 16 elements; besides the eight tags that appear in
the second cluster, it contains another eight tags: ee, cdrom,
cite, crossref, sup, sub, i, andnumber. The fourth cluster is the
outlier set, which has about 7,000 documents and its s-graph
contains 36 elements. We should mention that the s-graph of
the second cluster is entirely contained in the third
cluster—not only all the nodes, but also all the edges. It
would be difficult to spot these two clusters by manual
inspection. This clearly demonstrates the effectiveness of
S-GRACE in XML document collections like DBLP.

Figs. 16 and 17 show the query performance speed-up
when the original schema is compared with the partitioned
schema. Each distinct path expression conforming to Q1,
Q2, and Q3 in the documents is submitted as a query to the
original schema and the partitioned schema. The speed-up
ratios for each query type are averaged and the results are
plotted in Fig. 16. The average improvement on path
expressions is quite large. We should mention here that the

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 1, JANUARY 2004

Fig. 16. Speed up ratios for Q1, Q2, and Q3. Fig. 17. Speed up ratios for Q4 and Q5.



speed-up ratio of the distinct path expressions in Q1 in fact
ranges from 1.4 to 44 because some paths may need to join
more tables than the others. The improvement for Q4 and
Q5 in Fig. 17 is smaller. Comparing the queries in Q4 and
Q5 with Q1, observe that the path expressions in Q4 and Q5
involve less joins than those of Q1, on the average. This
reduces the improvement ratio. In fact, we observe that the
speed-up of the individual XPaths in Q4 and Q5 are, in
general, less than two.

Table 6 summarizes the average query response times for
Q1 to Q5 in milliseconds. In the first column, methods “UP-
Sa” and “P-Sa” denote the unpartitioned original schema
and the partitioned schema, respectively, with schema
mapping [19]. “UP-St” and “P-St” are corresponding cases
for structure mapping [20].

Observe that in both Figs. 16 and 17, the speed-up of
structure-mapping method is always larger than that of the
schema-mapping method. This is because, in the structure
mapping, only four tables are used to keep the content of a
document. Except the Path table, the sizes of the other three
tables are very large. For example, the number of tuples in
the text, element, and attribute tables are 1,918,589,
2,244,838, and 273,841, respectively. The join among them
in the original schema is very expensive. In the partitioned
schema, the tables become much smaller. Hence, the speed
up is obvious and larger.

Our experiments on the synthetic data show that
S-GRACE is effective in identifying clusters and scalable.
The results on the DBLP data reveal several additional
advantages of the clustering algorithm. First, it is fast,
requiring only one scan of the documents. The time for
clustering on the array SG is Oðm2 logmÞ and m is small, in
general. Second, after applying S-GRACE to partition the
database schema, the query processing cost drops drama-
tically since many unnecessary joins between irrelevant
parts of the original tables are avoided. Finally, a qualitative
benefit of the clustering method is revealed; it can discover
subclusters, which are not easy to spot manually.

5.4 Comparison with Tree-Distance-Based
Algorithm

Besides studying the performance of S-GRACE, we also
compared it with the clustering algorithm ESSX proposed in
[17]. ESSX hierarchically merges clusters of documents
using the tree-edit distance. At each step of the algorithm,
the pair of clusters with the smallest average distance
between the documents in them is merged. The edit
distance between two trees is defined by the minimum
cost required to transform one tree to the other. This cost is
computed by summing up the cost of the primitive
operations (i.e., node insertion, node deletion, node renam-
ing, subtree insertion, and subtree deletion) involved in the

transformation. However, since the cost of computing tree
distance on XML documents is very high, we could only
run ESSX on a random sample of 40 documents from the
DBLP database.7

In the 40 documents, there is a natural partitioning:
10 documents belong to proceedings, 10 to phdthesis, 10 to
journals, six to books, and four to incollections. By setting
the number of clusters k to five, S-GRACE-2 discovered five
clusters that exactly match the original partitioning. Note
that the same k value was given to ESSX as well. When
running ESSX, the cost of node relabeling, insertion, and
deletion were all set to 1, whereas the cost of subtree
insertion and deletion, ranged from 0 to 10. Interestingly,
the clustering results were the same for all the values in this
range. However, the clusters generated were very different
from the original partitioning. One of the five clusters
contains 30 documents from proceedings, phdthesis, books,
and incollections. The remaining 10 journal documents are
distributed into four clusters A, B, C, and D with jAj ¼
jBj ¼ jCj ¼ 1 and jDj ¼ 7. We found that all the documents
in D do not contain the tag cite, while documents in A, B,
and C contain many instances of cite. In ESSX, according to
[17], a subtree can be inserted into the source tree to
transform it to the target tree only if it has already appeared
in the source tree. Therefore, it is not possible to use subtree
editing operation to convert a document inD to a document
in A, B, or C. Only node insertion or deletion can be used to
convert source tree to target tree in this case. This explains
why the different cost parameters of the subtree editing
operation has no effect in the clustering. Since node
insertion has a positive cost associated with it, the
difference on the number of cite tags between two
documents would affect the edit distance between them.
Thus, journal documents form four clusters because some of
them have many more cites than the others.

The time to run ESSX to cluster the 40 documents is
530 seconds, while S-GRACE-2 runs in less than two
seconds, including the I/O cost. This demonstrates that
S-GRACE is not only more effective but also more efficient
than ESSX in performing clustering.

6 DISCUSSION

6.1 Schema Design for XML Documents

In this paper, we have not advocated any new schema design
method for storing XML documents. Neither do we claim
that S-GRACE can always discover some nicely structured
clusters to improve a schema. The clustering quality depends
heavily on whether the collection of documents has some
inherently good structure like that of the DBLP database.
However, given a large collection of documents, it would be
beneficial to run an algorithm like S-GRACE to identify
potential clusters. These clusters could be useful not only for
database schema redefinition, as we demonstrated here, but

LIAN ET AL.: AN EFFICIENT AND SCALABLE ALGORITHM FOR CLUSTERING XML DOCUMENTS BY STRUCTURE 13

TABLE 6
Query Response Time

7. Forty documents are already larger than the data set used in [17],
which contains only 20 documents. We did try an experiment with
1,000 documents, however, ESSX was impractical for this case. The average
time to compute the tree distance between two documents is about 0.6
seconds; computing the distances between all pairs of the 1,000 documents
would require about four days.



also for other applications like data analysis and DTD
extraction from large collections of XML data.

Notice that the number of clusters k generated by
S-GRACE can be controlled. If the method is intended to
be used for partitioning the schema of an XML database, k
should not be too large for practical reasons. Moreover, the
tables in the partitioned schema could be further optimized
for query purposes.

6.2 Other Clustering Algorithms

As have been pointed out, the framework in S-GRACE
does not preclude the use of other clustering algorithms.
To validate the applicability of this framework on other
clustering algorithms, we implemented the density-based
clustering algorithm DBSCAN [9] and tested it on the
s-graphs.

We ran DBSCAN on the s-graphs extracted from the
documents in DBLP with different settings of para-
meters and discovered clusters similar to those reported
in Section 5.3. In particular, besides the clusters on
inproceedings and articles, DBSCAN also dug out three
rather small clusters (containing about 500 documents
each), which hid inside the “outlier” cluster in the
experiment performed with S-GRACE. Due to the three
smaller clusters, both the outliers ratio and the average
similarity are reduced when DBSCAN is used. The
result of this experiment shows that our methodology is
generic and can be used with different clustering
algorithms. Most importantly, the fact that nearly the
same clusters are discovered shows that the s-graph is a
robust “feature” for clustering semistructured data.

7 CONCLUSION

We have proposed a framework for clustering XML data.
We have shown that clustering based on the notion of
edit distance between the tree representations of XML
data is too costly to be practical. Hence, an effective
summarization, which can distinguish documents among
different clusters would be highly desirable. Based on this
direction, we developed the notion of s-graph to
represent XML data and suggested a distance metric to
perform clustering on XML data. We have shown that the
s-graph of an XML document can be encoded by a cheap
bit string and clustering can then be efficiently applied on
the set of bit strings for the whole document collection.
With the structural information encoded, clustering of
XML data becomes efficient and scalable using the
proposed S-GRACE algorithm. As an application of the
proposed framework, we have shown that clustering a
large collection of XML documents by structure can
alleviate the fragmentation problem of storing them into
relational tables.

Our experiments on synthetic data show that S-GRACE is
effective and efficient, whereas the performance studies on
the real DBLP data set show that S-GRACE can discover
clusters that couldnotbeeasily spottedbymanual inspection.
Moreover, the query performance on DBLP data, after using
the clustering results to partition the database schema, is
significantly improved. Although, in our test cases the DTDs
of the data sets cover tree-structured documents only,

S-GRACE can be applied as well for document collections
of arbitrary (graph) structure. Thus, the distance metric on s-
graph representations is alsomore generic than othermetrics
based on tree edit distance.

REFERENCES

[1] S. Abiteboul, S. Cluet, and T. Milo, “Querying and Updating the
File,” Proc. 19th Int’l Conf. Very Large Data Bases, pp. 73-84, 1993.

[2] A. Aboulnaga, J.F. Naughton, and C. Zhang, “Generating
Synthetic Complex-Structured XML Document,” Proc. Fifth Int’l
Workshop Web and Databases, 2001.

[3] H. Bunke and K. Shearer, “A Graph Distance Metric Based on the
Maximal Common Subgraph,” Pattern Recognition Letters, vol. 19,
no. 3, pp. 255-259, 1998.

[4] D. Coppersmith and S. Winograd, “Matrix Multiplication via
Arithmetic Progressions,” Proc. 19th Ann. ACM Symp. Theory of
Computing, 1987.

[5] DBLP XML records, http://www.acm.org/sigmod/dblp/db/
index.html, Feb. 2001.

[6] S. DeRose, E. Maler, and D. Orchard, “XML Linking Language
(XLink), Version 1.0” W3C Recommendation, http://www.w3.
org/TR/xlink/, June 2001.

[7] A. Deutsch, M. Fernandez, and D. Suciu, “Storing Semistructured
Data with STORED,” Proc. ACM SIGMOD Int’l Conf. Management
of Data, pp. 431-442, 1999.

[8] A.L. Diaz and D. Lovell XML Generator, http://www.alpha
works.ibm.com/tech/xmlgenerator, 1999.

[9] M. Ester, H. Kriegel, J. Sander, and X. Xu, “A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases
with Noise,” Proc. Second Int’l Conf. Knowledge Discovery and Data
Mining, pp. 226-231, 1996.

[10] Excelon, http://www.odi.com/excelon, 2001.
[11] D Guillaume and F Murtagh, “Clustering of XML Documents,”

Computer Physics Comm., vol. 127, pp. 215-227, 2000.
[12] S. Guha, R. Rastogi, and K. Shim, “ROCK: A Robust Clustering

Algorithm For Categorical Attributes,” Proc. 15th Int’l Conf. Data
Eng., pp. 512-521, 1999.

[13] International Press Telecommunications Council, News Industry
Text Format(NITF), http://www.nift.org, 2000.

[14] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes, “Exploiting
Local Similarity for Indexing Paths in Graph-Structured Data,”
Proc. 18th Int’l Conf. Data Eng., 2002.

[15] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom,
“Lore: A Database Management System for Semistructured Data,”
SIGMOD Record, vol. 26, no. 3, pp. 54-66, Sept. 1997.

[16] R.T. Ng and J. Han, “Efficient and Effective Clustering Methods
for Spatial Data Mining,” Proc. 20th Int’l Conf. Very Large Data
Bases, pp. 144-155, Sept. 1994.

[17] A. Nierman and H.V. Jagadish, “Evaluating Structural Similarity
in XML Documents,” Proc. Fifth Int’l Workshop Web and Databases,
June 2002.

[18] G. Salton and M.J. McGill, Introduction to Modern Information
Retrieval. McGraw-Hill, 1983.

[19] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, and
J. Naughton, “Relational Databases for Querying XML Docu-
ments: Limitations and Opportunities,” Proc. 25th Int’l Conf. Very
Large Data Bases, pp. 302-314, 1999.

[20] T. Shimura, M. Yoshikawa, and S. Uemura, “Storage and Retrieval
of XML Documents Using Object-Relational Databases,” Proc. 10th
Int’l Conf. Database and Expert Systems Applications, pp. 206-217,
1999.

[21] World Wide Web Consortium, “XML Path Language (XPath)
Version 1.0,”http://www.w3.org/TR/xpath, Nov. 1999.

[22] World Wide Web Consortium, “XQuery: A Query Language for
XML,” W3C Working Draft, http://www.w3.org/TR/xquery,
Feb. 2001.

[23] O. Zamir, O. Etzioni, O. Madani, and R.M. Karp, “Fast and
Intuitive Clustering of Web Documents,” Proc. Second Int’l Conf.
Knowledge Discovery and Data Mining, pp. 287-290, 1997.

[24] K. Zhang and D. Shasha, “Simple Fast Algorithms for the Editing
Distance between Trees and Related Problems,” SIAM J. Comput-
ing, vol. 18, no. 6, pp. 1245-1262, 1989.

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 1, JANUARY 2004



Wang Lian received the BEng degree in
computer science from Wuhan University, Wu-
han, China in 1996 and the MPhil degree in
computer science from The University of Hong
Kong in 2000. He is currently a PhD candidate at
the final stage in the Department of Computer
Science and Information Systems at The Uni-
versity of Hong Kong. His research interests
include semistructured data management and
query processing, data mining, data warehous-

ing, information dissemination, and Web semantic.

David Wai-lok Cheung received the BSc
degree in mathematics from the Chinese Uni-
versity of Hong Kong and the MSc and PhD
degrees in computer science from Simon Fraser
University, Canada, in 1985 and 1989, respec-
tively. From 1989 to 1993, he was a member of
the scientific staff at Bell Northern Research,
Canada. Since 1994, he has been a faculty
member in the Department of Computer Science
and Information Systems at The University of

Hong Kong. He is also the director of the Center for E-Commerce
Infrastructure Development. His research interests include data mining,
data warehouse, XML technology for e-commerce, and bioinformatics.
Dr. Cheung is the program committee chairman of the Fifth Pacific-Asia
Conference on Knowledge Discovery and Data Mining (PAKDD 2001).
He is the program chairman of the Hong Kong International Computer
Conference 2003. Dr. Cheung is a member of the ACM and the IEEE
Computer Society.

Nikos Mamoulis received the diploma in com-
puter engineering and informatics in 1995 from
the University of Patras, Greece, and the PhD
degree in computer science in 2000 from the
Hong Kong University of Science and Technol-
ogy. Since September 2001, he has been an
assistant professor in the Department of Com-
puter Science, University of Hong Kong. In the
past, he has worked as a research and devel-
opment engineer at the Computer Technology

Institute, Patras, Greece, and as a postdoctoral researcher at the
Centrum voor Wiskunde en Informatica (CWI), the Netherlands. His
research interests include spatial, spatio-temporal, multimedia, object-
oriented and semistructured databases, and constraint satisfaction
problems.

Siu-Ming Yiu received the BSc degree in
computer science from the Chinese University
of Hong Kong, the MS degree in computer and
information science from Temple University, and
the PhD degree in computer science from the
University of Hong Kong. He is currently a
teaching consultant in the Department of Com-
puter Science and Information Systems at the
University of Hong Kong. His research interests
include data mining and computational biology.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

LIAN ET AL.: AN EFFICIENT AND SCALABLE ALGORITHM FOR CLUSTERING XML DOCUMENTS BY STRUCTURE 15


