
Clustering Uncertain Data Using Voronoi
Diagrams and R-Tree Index

Ben Kao, Sau Dan Lee, Foris K.F. Lee,

David Wai-lok Cheung, Senior Member, IEEE, and Wai-Shing Ho

Abstract—We study the problem of clustering uncertain objects whose locations are described by probability density functions (pdfs).

We show that the UK-means algorithm, which generalizes the k-means algorithm to handle uncertain objects, is very inefficient. The

inefficiency comes from the fact that UK-means computes expected distances (EDs) between objects and cluster representatives. For

arbitrary pdfs, expected distances are computed by numerical integrations, which are costly operations. We propose pruning

techniques that are based on Voronoi diagrams to reduce the number of expected distance calculations. These techniques are

analytically proven to be more effective than the basic bounding-box-based technique previously known in the literature. We then

introduce an R-tree index to organize the uncertain objects so as to reduce pruning overheads. We conduct experiments to evaluate

the effectiveness of our novel techniques. We show that our techniques are additive and, when used in combination, significantly

outperform previously known methods.

Index Terms—Uncertainty, clustering, object hierarchies, indexing methods.

Ç

1 INTRODUCTION

CLUSTERING is a technique that has been widely studied
and applied to many real-life applications. Many

efficient algorithms, including the well-known and widely
applied k-means algorithm, have been devised to solve the
clustering problem efficiently. Traditionally, clustering
algorithms deal with a set of objects whose positions are
accurately known. The goal is to find a way to divide objects
into clusters so that the total distance of the objects to their
assigned cluster centers is minimized.

Although simple, the problem model does not address
situations where object locations are uncertain. Data un-
certainty, however, arises naturally and often inherently in
many applications. For example, physical measurements can
never be 100 percent precise in theory (due to Heisenberg’s
Uncertainty Principle). Limitations of measuring devices thus
induce uncertainty to the measured values in practice.

As another example, consider the application of clustering
a set of mobile devices [1]. By grouping mobile devices into
clusters, a leader can be elected for each cluster, which can
then coordinate the work within its cluster. For example, a
cluster leader may collect data from its cluster’s members,
process the data, and send the data to a central server via an
access point in batch [2], [3]. In this way, local communica-
tion within a cluster only requires short-ranged signals, for
which a higher bandwidth is available. Long-ranged com-
munication between the leaders and the mobile network only

takes place in the form of batch communication. This results
in better bandwidth utilization and energy conservation.

We remark that device locations are uncertain in practice.
A mobile device may deduce and report its location by
comparing the strengths of radio signals from mobile access
points. Unfortunately, such deductions are susceptible to
noise. Furthermore, locations are reported periodically.
Between two sampling time instances, a location value is
unknown and can only be estimated by considering a last
reported value and an uncertainty model [4]. Typically, such
an uncertainty model considers factors such as the speed of
the moving devices and other geometrical constraints (such
as road network, etc.). In other applications (such as tracking
animals using wireless sensors), the whereabouts of objects
are sampled. The samples of a mobile object are collected to
construct a probability distribution that indicates the
occurrence probabilities of the object at various points in
space. In this paper, we consider the problem of clustering
uncertain objects whose locations are specified by uncer-
tainty regions over which arbitrary probability density
functions (pdfs) are defined.

Traditional clustering methods were designed to handle
point-valued data, and thus, cannot cope with data
uncertainty. One possible way to handle data uncertainty
is to first transform uncertain data into point-valued data by
selecting a representative point for each object before
applying a traditional clustering algorithm. For example,
the centroid of an object’s pdf can be used as such a
representative point. However, in [5], it is shown that
considering object pdfs gives better clustering results than
the centroid method.

In this paper, we concentrate on the problem of
clustering objects with location uncertainty. Rather than a
single point in space, an object is represented by a pdf over
the space Rm being studied. We assume that each object is
confined in a finite region so that the probability density
outside the region is zero. Each object can thus be bounded
by a finite bounding box. This assumption is realistic

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 9, SEPTEMBER 2010 1219

. The authors are with Department of Computer Science, The University of
Hong Kong, 3/F Chow Yei Ching Building, Pokfulam Road, Hong Kong.
E-mail: {kao, sdlee, kflee, dcheung, wsho}@cs.hku.hk.

Manuscript received 26 Mar. 2009; revised 30 July 2009; accepted 28 Sept.
2009; published online 3 May 2010.
Recommended for acceptance by R. Cheng, M. Chau, M. Garofalakis, and
J.X. Yu.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number
TKDESI-2009-03-0206.
Digital Object Identifier no. 10.1109/TKDE.2010.82.

1041-4347/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on August 10,2010 at 14:30:15 UTC from IEEE Xplore. Restrictions apply.

because, in practice, the probability density of an object is
high only within a very small region of concentration. The
probability density is negligible outside the region. (For
example, the uncertainty region of a mobile device can be
limited by the maximum speed of the device.)

The problem of clustering uncertain objects was first
described in [5] in which the UK-means algorithm was
proposed. UK-means is a generalization of the traditional
k-means algorithm to handle objects with uncertain locations.
The traditional k-means clustering algorithm (for point-
valued data) is an iterative procedure. Each iteration consists
of two steps. In step 1, each object oi is assigned to a cluster
whose representative (a point) is the one closest to oi among
all representatives. We call this step cluster assignment. In
step 2, the representative of each cluster is updated by the
means of all the objects that are assigned to the cluster. In
cluster assignment, the closeness between an object and a
cluster is measured by some simple distance such as
euclidean distance. The difference between UK-means and
k-means is that under UK-means, objects are represented by
pdfs instead of points. Also, UK-means computes expected
distances (EDs) between objects and cluster representatives
instead of simple euclidean distances during the cluster
assignment step. Since many EDs are computed, the major
computational cost of UK-means is the evaluation of EDs,
which involves numerical integration using a large number of
sample points for each pdf. To improve efficiency, Ngai et al.
[6] introduced some pruning techniques to avoid many ED
computations. The pruning techniques make use of bounding
boxes over objects as well as the triangle inequality to
establish lower and upper bounds of the EDs. Using these
bounds, some candidate clusters are eliminated from con-
sideration when UK-means determines the cluster assign-
ment of an object. The corresponding computation of
expected distances from the object to the pruned clusters is
thus not necessary and is avoided.

An important contribution of this paper is the introduc-
tion of a new set of pruning techniques for the UK-means
algorithm that are based on Voronoi diagrams [7]. These
new pruning techniques take into consideration the spatial
relationship among the cluster representatives. We prove
that Voronoi-diagram-based technique is theoretically more
effective than the basic bounding-box-based technique.
Another technique we propose in this paper is the partial
ED evaluation method, which can be shown to further save
the computation costs of UK-means. Indeed, our pruning
techniques are so effective that over 95 percent of the ED
evaluations can be eliminated [8].

With a highly effective pruning method, only few
expected distances are computed, and thus, the once
dominating ED computation cost no longer occupies the
largest fraction of the execution time. The overheads
incurred in realizing the pruning strategy (e.g., the testing
of certain pruning conditions) now become relatively
significant. To further reduce execution time, we have
developed a performance boosting technique based on
R-trees index. Instead of treating the uncertain objects as an
unorganized set of objects, as in the basic k-means algorithm
and derivatives, we index the uncertain objects using a bulk-
loaded R-tree. Each node in the R-tree represents a
rectangular region in space that encloses a group of uncertain

objects. The idea is to apply Voronoi-diagram-based pruning
techniques on an R-tree node instead of on each individual
object that belongs to the node. Effectively, we prune in
batch. Our experiment shows that using an R-tree signifi-
cantly reduces pruning overheads.

It is important to note that these two types of techniques
have different goals. The Voronoi-diagram-based techni-
ques aim at reducing the amount of ED calculations at the
expense of some “pruning cost.” The R-tree-based booster
aims at reducing this pruning cost, which becomes
dominant once the number of ED calculations have been
tremendously reduced.

Since our pruning techniques are orthogonal to the ones
proposed in [6], it is possible to integrate the various
pruning techniques to create hybrid algorithms. Our
empirical study shows that the hybrid algorithms achieve
significant performance improvement.

The rest of the paper is organized as follows: We mention
a few related works in Section 2. In Section 3, we formally
define the problem. In Section 4, we first briefly describe the
UK-means algorithm and the bounding-box-based pruning
techniques. After that, we discuss our Voronoi-diagram-
based pruning techniques, followed by our R-tree-based
boosting technique. We present experimental results in
Section 5, comparing our new techniques with existing
ones. Finally, Section 6 concludes the paper.

2 RELATED WORKS

Data uncertainty has been broadly classified into existential
uncertainty and value uncertainty. Existential uncertainty
appears when it is uncertain whether an object or a data
tuple exists. For example, a data tuple in a relational
database could be associated with a probability that
represents the confidence of its presence [9], [10]. Value
uncertainty, on the other hand, appears when a tuple is
known to exist, but its values are not known precisely. A data
item with value uncertainty is usually represented by a pdf
over a finite and bounded region of possible values [11], [12],
[13], [5]. In this paper, we study the problem of clustering
objects with value (e.g., location) uncertainty.

One well-studied topic on value uncertainty is “impre-
cise query processing.” An answer to such a query is
associated with a probabilistic guarantee on its correctness.
Some example studies on imprecise data include indexing
structures for range query processing [11], nearest neighbor
query processing [12], and imprecise location-dependent
query processing [13].

Depending on the application, the result of cluster analysis
can be used to identify the (locally) most probable values of
model parameters [14] (e.g., means of Gaussian mixtures), to
identify high-density connected regions [15] (e.g., areas with
high population density), or to minimize an objective
function (e.g., the total within-cluster squared distance to
centroids [16]). For model parameters learning, by viewing
uncertain data as samples from distributions with hidden
parameters, the standard Expectation-Maximization (EM)
framework [14] can be used to handle data uncertainty [17].

There has been growing interest in uncertain data
mining. In [5], the well-known k-means clustering algo-
rithm is extended to the UK-means algorithm for clustering

1220 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 9, SEPTEMBER 2010

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on August 10,2010 at 14:30:15 UTC from IEEE Xplore. Restrictions apply.

uncertain data. In that study, it is empirically shown that
clustering results are improved if data uncertainty is taken
into account during the clustering process. As we have
explained, data uncertainty is usually captured by pdfs,
which are generally represented by sets of sample values.
Mining uncertain data is, therefore, computationally costly
due to information explosion (sets of samples versus
singular values). To improve the performance of UK-means,
CK-means [18] introduced a novel method for computing
the EDs efficiently. However, that method only works for a
specific form of distance function. For general distance
functions, [6] takes the approach of pruning, and proposed
pruning techniques such as min-max-dist pruning. In this
paper, we follow the pruning approach and propose new
pruning techniques that are significantly more powerful
than those proposed in [6]. In [19], guaranteed approxima-
tion algorithms have been proposed for clustering uncertain
data using k-means, k-median as well as k-center.

Apart from studies in partition-based uncertain data
clustering, other directions in uncertain data mining include
density-based clustering (e.g., FDBSCAN [15]), frequent item
set mining [20], and density-based classification [21]. For
density-based clustering, two well-known algorithms,
namely, DBSCAN and OPTICS, have been extended to
handle uncertain data. The corresponding algorithms are
called FDBSCAN [15] and FOPTICS [22], respectively. In
DBSCAN, the concepts of core objects and reachability are
defined. Clusters are then formed based on these concepts. In
FDBSCAN, the concepts are redefined to handle uncertain
data. For example, under FDBSCAN, an object o is a core
object if the probability that there is a “good number” of other
objects that are close to o exceeds a certain probability
threshold. Also, whether an object y is “reachable” from
another object x depends on both the probability of y being
close to x and the probability that x is a core object. FOPTICS
takes a similar approach of using probabilities to modify the
OPTICS algorithm to cluster uncertain data.

Clustering of uncertain data is also related to fuzzy
clustering, which has long been studied in fuzzy logic [23].
In fuzzy clustering, a cluster is represented by a fuzzy
subset of objects. Each object has a “degree of belonging-
ness” with respect to each cluster. The fuzzy c-means
algorithm is one of the most widely used fuzzy clustering
methods [24], [25]. Different fuzzy clustering methods have
been applied on normal or fuzzy data to produce fuzzy
clusters [26], [27]. A major difference between the clustering
problem studied in this paper and fuzzy clustering is that
we focus on hard clustering, for which each object belongs
to exactly one cluster. Our formulation targets for applica-
tions such as mobile device clustering in which each device
should report its location to exactly one cluster leader.

Voronoi diagram is a well-known geometric structure in
computational geometry. It has also been applied to cluster-
ing. For example, Voronoi trees [7] have been proposed to
answer Reverse Nearest Neighbor (RNN) queries [28]. Given
a set of data points and a query point q, the RNN problem [29]
is to find all the data points whose nearest neighbor is q. The
TPL algorithms proposed in [30] use more advanced pruning
techniques to solve this problem efficiently.

An R-tree [31] is a self-balancing tree structure that
resembles a B+-tree, except that it is devised for indexing
multidimensional data points to facilitate proximity-based
searching, such as k-nearest neighbor (kNN) queries. R-trees

are well studied and widely used in real applications. They
are also available in many RDBMS products such as SQLite,
MySQL, and Oracle. An R-tree conceptually groups the
underlying points hierarchically and records the minimum
bounding rectangle (MBR) of each group to facilitate
answering of spatial queries. While most existing works on
R-tree concentrate on optimizing the tree for answering
spatial queries, we use R-trees in this paper in a quite
innovative way: We exploit the hierarchical grouping of the
objects organized by an R-tree to help us check pruning
criteria in batch, thereby avoiding redundant checking.

3 DEFINITIONS

Consider a set of objects O ¼ fo1; . . . ; ong in an m-dimen-
sional space Rm with a distance function d : Rm �Rm ! R

giving the distance dðx; yÞ � 0 between any points x; y 2 Rm.
Associated with each object is a pdf fi : Rm ! R, which gives
the probability density of oi at each point x 2 Rm. By the
definition of pdf, we have (for all i ¼ 1; . . . ; n)

fiðxÞ � 0 8x 2 Rm;Z
x2Rm

fiðxÞ dx ¼ 1:

Further, we assume that the probability density of oi is
confined in a finite region Ai so that fiðxÞ ¼ 0 for all
x 2 Rm nAi.

We define the expected distance between an object oi and
any point y 2 Rm:

EDðoi; yÞ ¼
Z
x2Ai

dðx; yÞfiðxÞ dx: ð1Þ

Now, given an integer constant k, the problem of clustering
uncertain data is to find a set of cluster representative
points C ¼ fc1; . . . ; ckg and a mapping h : f1; . . . ; ng !
f1; . . . ; kg so that the sum of squared expected distance

Xn
i¼1

�
ED
�
oi; chðiÞ

��2

is minimized.
To facilitate our discussion on bounding-box-based

algorithms, we use MBRi to denote the minimum bounding
rectangle of object oi. MBRi is the smallest box, with faces
perpendicular to the principal axes of Rm, that encloses Ai.
Note that (1) still holds if we replace “x 2 Ai” with
“x 2 MBRi.” This fact can be exploited for optimization
when computing ED.

4 ALGORITHMS

We first give a short description of the UK-means algorithm
[5] and existing pruning techniques [6] that improve UK-
means. Then, we present our new pruning techniques that
are based on Voronoi diagrams, and finally, we introduce
our performance booster based on R-trees.

4.1 UK-Means

UK-means (see Algorithm 1) [5] is an adaptation of the well-
known k-means algorithm to handle data objects with
uncertain locations.

KAO ET AL.: CLUSTERING UNCERTAIN DATA USING VORONOI DIAGRAMS AND R-TREE INDEX 1221

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on August 10,2010 at 14:30:15 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1. UK-means
1: Choose k arbitrary points as cj (j ¼ 1; . . . ; k)

2: repeat

3: for all oi 2 O do /*assign objects to clusters*/

4: for all cj 2 C do

5: Compute EDðoi; cjÞ
6: hðiÞ arg minj:cj2CfEDðoi; cjÞg
7: for all j ¼ 1; . . . ; k do/*readjust cluster

representatives*/
8: cj centroid of foi 2 O j hðiÞ ¼ jg
9: until C and h become stable

Initially, k arbitrary points c1; . . . ; ck are chosen as the
cluster representatives. Then, UK-means repeats the follow-
ing steps until the result converges. First, for each object oi,
EDðoi; cjÞ is computed for all cj 2 C. Object oi is then assigned
to cluster cj� that minimizes ED, i.e., hðiÞ j�. Next, each
cluster representative cj is recomputed as the centroid of all
ois that are assigned to cluster j. The two steps are repeated
until the solution C ¼ fc1; . . . ; ckg and hð�Þ converge.

The UK-means algorithm is inefficient. This is because
UK-means computes ED for every object-cluster pair in every
iteration. So, given n objects and k clusters, UK-means
computes nk EDs in each iteration. The computation of an ED
involves numerically integrating a function that involves an
object’s pdf. In practice, a pdf is represented by a probability
distribution matrix, with each element of the matrix
representing a sample point in an MBR. To accurately
represent a pdf, a large number of sample points are needed.
The computation cost of an integration is thus high.

To improve the performance of UK-means, we need to
reduce the time spent on ED calculations, because it
dominates the execution time of the algorithm. One way
to achieve this is to avoid ED computations whenever
possible. To incorporate pruning into UK-means, we re-
place lines 4-6 in Algorithm 1 with the following:

1: Qi C /*candidate clusters*/

2: Apply a pruning algorithm
3: if jQij ¼ 1 then /*only one candidate remans*/

4: hðiÞ j where cj 2 Qi

5: else

6: for all cj 2 Qi /*remaning candidates*/

7: Compute EDðoi; cjÞ
8: hðiÞ arg minj:cj2Qi

fEDðoi; cjÞg
For a given object oi, the set Qi stores the set of candidate
cluster representatives that are potentially the closest to oi.
Initially,Qi ¼ C, the set of all cluster representatives. In line 2,
a pruning algorithm is applied to prune candidate represen-
tatives from Qi that are guaranteed to be not the closest to
object oi. If all but one candidate cluster remains in Qi,
object oi is assigned to that cluster. Otherwise, we compute
the expected distances between oi and each remaining cluster
in Qi. Object oi is then assigned to the cluster that gives the
smallest expected distance. We describe a few pruning
algorithms in the following sections. A good pruning
algorithm should desirably reduce the set Qi to a very small
cardinality so that the number of ED calculations that need to
be performed in line 7 is as few as possible.

4.2 MinMax Pruning

Several pruning techniques that are based on bounds on ED
have been proposed in [6]. In the MinMax approach, for an

object oi and a cluster representative cj, certain points in
MBRi are geometrically determined. The distances from
those points to cj are computed to establish bounds on ED.
Formally, we define

MinDðoi; cjÞ ¼ min
x2MBRi

dðx; cjÞ;

MaxDðoi; cjÞ ¼ max
x2MBRi

dðx; cjÞ;

MinMaxDðoiÞ ¼ min
cj2C
fMaxDðoi; cjÞg:

It should be obvious that MinDðoi; cjÞ � EDðoi; cjÞ �
MaxDðoi; cjÞ. Then, if MinDðoi; cpÞ > MaxDðoi; cqÞ for some
cluster representatives cp and cq, we can deduce that
EDðoi; cpÞ > EDðoi; cqÞ without computing the exact values
of the EDs. So, object oi will not be assigned to cluster p
(since there is another cluster q that gives a smaller expected
distance from object oi). We can thus prune away cluster p
without bothering to compute EDðoi; cpÞ. As an optimiza-
tion, we can prune away cluster p if MinDðoi; cpÞ >
MinMaxDðoiÞ. This gives rise to the MinMax-BB (bounding
box) pruning algorithm (Algorithm 2).

Algorithm 2. MinMax-BB Pruning

1: for all cj 2 C do /*for a fixed object oi*/

2: Compute MinDðoi; cjÞ and MaxDðoi; cjÞ.
3: Compute MinMaxDðoiÞ.
4: for all cj 2 C do

5: if MinDðoi; cjÞ > MinMaxDðoiÞ then

6: Remove cj from Qi

Depending on data distribution, the pruning condition
MinDðoi; cjÞ > MinMaxDðoiÞ potentially removes many
clusters from consideration in line 6. This avoids many
ED computations at the expense of computing MinD and
MaxD. We remark that computing MinD and MaxD
requires us to consider only a few points on the perimeter
of an object’s MBR, instead of all points in its pdf. Thus,
computing MinD and MaxD is much simpler than comput-
ing ED and it does not involve evaluating an integral. They
can be computed much faster than ED.

Another pruning technique proposed in [6] makes use of
the inequalities:

EDðoi; cjÞ � EDðoi; yÞ þ dðy; cjÞ; ð2Þ
EDðoi; cjÞ � jEDðoi; yÞ � dðy; cjÞj; ð3Þ

for any point y 2 Rm. (Equation (2) is indeed the triangle
inequality.) These inequalities give bounds on EDðoi; cjÞ
based on EDðoi; yÞ. If we can compute the latter efficiently,
then we can find the bounds efficiently. One possibility is to
choose (for each object) certain fixed points as y and
precompute EDðoi; yÞ. Then, evaluating the bounds using
the inequalities involves only an addition, a subtraction,
and an evaluation of distance dðy; cjÞ, which are relatively
cheap. Note that y is fixed for each object, while cj, a cluster
representative, changes across different iterations in UK-
means. So, for an object oi, by computing one expected
distance EDðoi; yÞ, we are able to obtain bounds for many
EDs that involve oi and any cluster representative cj.

Another pruning method proposed in [6] is called
“cluster-shift” (CS). Consider a cluster j whose representa-
tives in two consecutive iterations are c0j and cj in that order.

1222 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 9, SEPTEMBER 2010

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on August 10,2010 at 14:30:15 UTC from IEEE Xplore. Restrictions apply.

If EDðoi; c0jÞ has been calculated, then we can use c0j as y in
(2) and (3) to bound EDðoi; cjÞ. An appealing aspect of CS is
that in the later iterations, as the solution converges, dðc0j; cjÞ
is generally very small, making the bounds very tight. It is
shown in [6] that the cluster-shift method is very effective in
pruning. Also, it does not require any predetermined fixed
points y, and hence, no precomputation of EDðoi; yÞ is
needed. In the following discussions, we consider the
cluster-shift method instead of the fixed-point method.

Now, the MinMax-BB algorithm can be augmented with
the cluster-shift technique to tighten the bounds on EDs.
This leads to more effective pruning at little additional cost.

4.3 Pruning with Voronoi Diagram

MinMax-based pruning techniques improve the perfor-
mance of UK-means significantly by making use of
efficiently evaluable bounds on ED to avoid many ED
computations. However, these techniques do not consider
the geometric structure of Rm or the spatial relationships
among the cluster representatives. One important innova-
tion of this paper is the introduction of Voronoi diagrams
[7] as a method to exploit the spatial relationships among
the cluster representatives to achieve a very effective
pruning. We will show in this section that the Voronoi-
diagram-based pruning techniques are theoretically strictly
stronger than MinMax-BB.

We start with a definition of Voronoi diagram and a brief
discussion of its properties. Given a set of points
C ¼ fc1; . . . ; ckg, the Voronoi diagram divides the space
Rm into k cells V ðcjÞ with the following property:

dðx; cpÞ < dðx; cqÞ 8x 2 V ðcpÞ; cq 6¼ cp: ð4Þ

The boundary of a cell V ðcpÞ and its adjacent cell V ðcqÞ
consists of points on the perpendicular bisector, denoted by
cpjcq between the points cp and cq. The bisector is the
hyperplane that is perpendicular to the line segment joining
cp and cq that passes through the midpoint of the line
segment. This hyperplane divides the space Rm into two
halves. We denote the half containing cp (but excluding the
hyperplane itself) as Hp=q. Thus, Hp=q, Hq=p, and cpjcq form a
partition of the space Rm. Further, we have the following
properties: 8 distinct cp; cq 2 C,

dðx; cpÞ < dðx; cqÞ 8x 2 Hp=q;

dðx; cpÞ ¼ dðx; cqÞ 8x 2 cpjcq:
ð5Þ

Here is how we use Voronoi diagram for pruning in UK-
means: In each iteration, we first construct the Voronoi
diagram from the k cluster representative points, C ¼
fc1; . . . ; ckg. The Voronoi diagram leads to two pruning
methods: The first one is Voronoi cell pruning. For each
object oi, we check if MBRi lies completely inside any
Voronoi cell V ðcjÞ. If so, then object oi is assigned to cluster cj.
This is because it follows from (1) and (4) that

EDðoi; cjÞ < EDðoi; cqÞ 8cq 2 C n fcjg:

Note that in this case, no ED is computed. All clusters
except cj are pruned. An example is illustrated in Fig. 1a in
which V ðcjÞ is adjacent to V ðc1Þ, V ðc2Þ, and V ðc3Þ. Since
MBRi lies completely in V ðcjÞ, all points belonging to oi lie
closer to cj than any other cq. It follows that EDðoi; cjÞ is
strictly smaller than EDðoi; cqÞ for all cq 6¼ cj. The Voronoi
cell pruning method, denoted as VD, can be summarized by
the pseudocode in Algorithm 3.

Algorithm 3. Voronoi cell Pruning (VD)

1: Compute the Voronoi diagram for C ¼ fc1; . . . ; ckg.
2: for all cj 2 C do

3: if MBRi � V ðcjÞ then

4: Qk fcjg /*The one and only one candidate*/

The other pruning method is bisector pruning. Bisectors
are the side products of Voronoi diagram construction, and
thus, they are available at little extra cost. Given an object oi,
we consider every pair of distinct cluster representatives cp,
cq from C. We check if MBRi lies completely in Hp=q. If it
does, then by (5), we can deduce that EDðoi; cpÞ < EDðoi; cqÞ,
and cq is pruned from Qi. The expected distance EDðoi; cqÞ
is not computed. The bisector-pruning method (abbreviated
as Bi) is summarized in Algorithm 4.

Algorithm 4. Bisector Pruning (Bi)
1: Extract all Hp=q from Voronoi diagram for C

2: for all distinct cp; cq 2 C do

3: if MBRi � Hp=q then

4: remove cq from Qi

In the following theorem, we show that bisector pruning
is strictly stronger than MinMax-BB in terms of pruning
effectiveness.

Theorem 1. For any object oi 2 O and cluster j (j ¼ 1; . . . ; k), if
bisector pruning does not prune away candidate cluster j, then
neither does MinMax-BB.

KAO ET AL.: CLUSTERING UNCERTAIN DATA USING VORONOI DIAGRAMS AND R-TREE INDEX 1223

Fig. 1. Voronoi cell pruning and bisector pruning. (a) Voronoi cell pruning. (b) Illustration of the proof of Theorem 1. (c) A counterexample.

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on August 10,2010 at 14:30:15 UTC from IEEE Xplore. Restrictions apply.

Proof. Let cr be the cluster representative that gives the
smallest MaxD with object oi, i.e., MaxDðoi; crÞ ¼
MinMaxDðoiÞ. We consider two cases:

Case 1: r ¼ j. Then,

MinDðoi; cjÞ � MaxDðoi; cjÞ by definition
¼ MaxDðoi; crÞ since r ¼ j
¼ MinMaxDðoiÞ by definition of cr:

Since MinMax-BB prunes cluster j only when MinDðoi;
cjÞ > MinMaxDðoiÞ, we conclude that MinMax-BB does
not prune away cluster j in this case. The theorem thus
holds in this case.

Case 2: r 6¼ j. The bisector cjjcr is well defined and the
space Rm can be partitioned into fHr=j; cjjcr;Hj=rg. We
consider 2 subcases:

Case 2a: MBRi lies completely in Hr=j. In this case,
cluster j will be pruned by line 4 in Algorithm 4. So, the
theorem holds for this case because the antecedent is
not satisfied.

Case 2b: MBRi overlaps with Hj=r [ðcjjcrÞ. Now,
consider a point x in MBRi \ ðHj=r [ðcjjcrÞÞ, as illu-
strated in Fig. 1b. We have

MinDðoi; cjÞ � dðx; cjÞ since x 2 MBRi

� dðx; crÞ since x 2 Hj=r [ðcjjcrÞ
� MaxDðoi; crÞ by definition of MaxD
¼ MinMaxDðoiÞ by definition of cr:

Again, the pruning criterion of MinMax-BB is not
satisfied and MinMax-BB cannot prune away cluster j.
The theorem thus holds.

Hence, we conclude that if bisector pruning does not
prune away cluster j, neither does MinMax-BB. tu

The converse of the theorem, however, does not hold.
That is, there are cases in which MinMax-BB fails to prune a
cluster while bisector pruning can. Fig. 1c shows such an
example in R2 with two clusters. Suppose c1 ¼ ð�2; 0Þ and
c2 ¼ ð2; 0Þ. Then, c1jc2 is the line x ¼ 0, i.e., the y-axis. Now,
consider an object o1 with MBR1 bounded by the lines
x ¼ 1, x ¼ 3, y ¼ �1, y ¼ 3. Since MBR1 lies completely in
H2=1, bisector pruning can prune away cluster 1. How about
MinMax-BB? Note that MinDðo1; c1Þ ¼ 3; MaxDðo1; c1Þ ¼ffiffiffiffiffi

34
p

; and MaxDðo1; c2Þ ¼
ffiffiffiffiffi
10
p

. So, we have MinMaxDðo1Þ¼ffiffiffiffiffi
10
p

> MinDðo1; c1Þ, and hence, the pruning condition of
MinMax-BB is not satisfied. So, MinMax-BB cannot prune
away cluster 1.

We have thus shown that bisector pruning is strictly
stronger than MinMax-BB in terms of pruning effectiveness.
Note that in implementation, bisectors are a side product of
Voronoi diagram computation. It is, therefore, advantageous
to perform both Voronoi cell pruning and bisector pruning
together. As the Voronoi diagram and bisectors depend only
on the cluster representatives cj (j ¼ 1; . . . ; k), we can move
the computation of the Voronoi diagram to the outermost
loop in the UK-means algorithm as a further optimization.
We call the resulting algorithm VDBi (employing both VD
and Bi techniques).

4.4 Partial ED Computation

Given two cluster representatives cp and cq and an object oi,
bisector pruning prunes cluster q if MBRi � Hp=q. If no

bisector that involves cluster q can be found to prune cluster q,
the expected distance EDðoi; qÞ would have to be computed.
Interestingly, it is not necessary that we compute the
complete integral of EDðoi; qÞ. Our next pruning technique
attempts to prune a cluster by computing ED partially.

Again, consider two clusters p and q and an object oi. If
MBRi intersects the bisector cpjcq, neither Voronoi cell nor
bisector pruning is applicable. In this case, we partition
MBRi into two parts X and Y (X [Y ¼ MBRi and X \ Y ¼
;) such that X � V ðcpÞ, as shown in Fig. 2. The expected
distance EDðoi; cpÞ can then be decomposed as a sum of two
“smaller” integrals:

EDðoi; cpÞ ¼
Z
x2MBRi

dðx; cpÞfiðxÞ dx

¼
Z
x2X

dðx; cpÞfiðxÞ dxþ
Z
x2Y

dðx; cpÞfiðxÞ dx

¼def
EDXðoi; cpÞ þ EDY ðoi; cpÞ:

Similarly, we have EDðoi; cqÞ ¼ EDXðoi; cqÞ þ EDY ðoi; cqÞ.
Now, since X � V ðcpÞ, by (4), we know that EDXðoi;

cpÞ < EDXðoi; cqÞ. We compute the integrals EDY ðoi; cpÞ and
EDY ðoi; cqÞ and if EDY ðoi; cpÞ < EDY ðoi; cqÞ, we can con-
clude that EDðoi; cpÞ < EDðoi; cqÞ. Cluster q can thus be
pruned without computing EDXðoi; cqÞ. Otherwise, if q
cannot be pruned, we have to compute EDðoi; cqÞ later,
but we need not do so from scratch. We only need to
compute EDXðoi; cqÞ, and then, add it to the already
computed value of EDY ðoi; cqÞ to get EDðoi; cqÞ. Therefore,
the effort spent on computing EDY ðoi; cqÞ can be reused for
computing complete ED later if necessary. Thus, the partial
computation of EDðoi; cqÞ involves little overhead. We
incorporate the above idea of partial ED computation into
VDBi to improve the pruning power of the algorithm. We
call the resulting algorithm VDBiP.

4.5 Indexing the Uncertain Objects

The above pruning techniques all aim at reducing the
number of ED calculations, which dominates the execution
time of UK-means. As we will see later (Section 5), our
pruning techniques are so effective that in many cases, more
than 95 percent of the ED calculations are pruned. The cost
of other computations, such as the pruning overhead, now
becomes relatively significant. In order to further reduce the
execution time, we have devised further techniques to
reduce the pruning costs.

1224 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 9, SEPTEMBER 2010

Fig. 2. Partial ED computation.

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on August 10,2010 at 14:30:15 UTC from IEEE Xplore. Restrictions apply.

Observing that Voronoi-diagram-based pruning techni-
ques (namely, VD and Bi) takes advantage of the spatial
distribution of the cluster representatives, it is natural to ask
whether we can also make use of the spatial distribution of
the uncertain objects. Can we organize the objects so that
nearby objects are grouped together and processed in batch
to avoid repeating similar computations, such as similar
pruning condition testing? If we first divide the uncertain
objects into groups, we can obtain an MBR for each group
(the minimum rectangle enclosing all objects in the group).
With these MBRs, we can apply MinMax-BB, VD, and Bi
pruning onto the groups. This allows cluster candidate
pruning at the group level. In the ideal case where a single
cluster is assigned to a whole group, all the member objects
of that group get assigned the cluster at once, saving the
computations needed to assign clusters to each member
individually. This saving is potentially significant. Further-
more, we can group the groups into supergroups, forming a
hierarchy. Our pruning techniques can then be applied to
different levels in the hierarchy in a top-down manner. To
get good pruning effectiveness, the grouping should be
done in a way that minimizes the volumes of the MBRs. A
natural choice is to group objects using an R-tree structure.

4.5.1 R-Trees

The R-tree [31] is a tree structure that can be considered a
variant of B+-Tree. As such, it is a self-balancing tree with
all leaf nodes at the same depth from the root node. The
main difference is that R-tree is designed for indexing
multidimensional spatial data to support faster proximity-
based queries. The tree has the property that each internal
node stores also the MBR for all the objects stored under
that subtree. Data items are not stored in the internal nodes.
R-tree facilitates spatial query processing. As an example, to
locate all objects that are within a distance d from a certain
query point x, one starts from the root node and only
needs to descend (recursively) into the child nodes whose
MBRs intersect the sphere with radius d centered at x. This
brings the search to only those few leaf nodes containing the
objects being searched for.

In our implementation, we use an R-tree like the one
depicted in Fig. 3. Each tree node, containing multiple entries
is stored in a disk block. Based on the size of a disk block, the
number of entries in a node is computed. The height of the
tree is a function of the total number of objects being stored,
as well as the fan-out factors of the internal and leaf nodes.

Each leaf node corresponds to a group of uncertain objects.
Each entry in the node maps to an uncertain object. The
following information are stored in each entry:

. The MBR of the uncertain object.

. The centroid of the uncertain object.

. A pointer to the pdf data of the object.

Note that the pdf data are stored outside the tree to facilitate
memory utilization.

Each internal node of the tree corresponds to a super-
group, which is a group of groups. Each entry in an internal
node points to a child group. Each entry contains the
following information:

. The MBR of the child group.

. The number of objects under the subtree at this child.

. The centroid of the objects under the subtree at
this child.

. A pointer to the node corresponding to the child.

Note that storing the number of objects under the subtree at a
child node and the corresponding centroid location allows
efficient readjustment of cluster representatives at the end of
each iteration of UK-means (steps 7-8, Algorithm 1).

To build an R-tree from a database of uncertain objects, we
use a bulk-load algorithm based on the Sort-Tile-Recursive
algorithm [31]. It builds an R-tree from bottom up (as opposed
to repeated insertion from the top) and has the advantages of
building a more fully filled tree, with smaller MBRs for the
internal nodes, and a shorter construction time. We illustrate
this algorithm with a 2D example shown in Fig. 4. The figure
shows the MBRs of 36 uncertain objects. Suppose the fan-out
factor of leaf nodes is 4. Then, each leaf node will contain four
uncertain objects and nine leaf nodes are needed. This means
that we need to divide the 36 objects into nine groups. We first
work on the x-dimension and try to divide the 36 objects intoffiffiffi

9
p
¼ 3 vertical stripes. This is done by sorting the objects’

centers according to their x-coordinates, and then, dividing
them into three groups of 12 members each. Next, for each
stripe, we independently divide the 12 members into three
groups of four members each, after sorting by the
y-coordinates. In this way, we have divided the 36 objects
into nine groups, for each of which a leaf node is constructed.
Higher levels up the tree are built by grouping in a similar
fashion, and this is repeated until a single hypergroup is
formed. That hypergroup is the root of the R-tree.

4.5.2 Group-Based Pruning

With an R-tree in place, we already have a multilevel
grouping of the uncertain objects. In addition, the

KAO ET AL.: CLUSTERING UNCERTAIN DATA USING VORONOI DIAGRAMS AND R-TREE INDEX 1225

Fig. 3. Structure of an R-tree.

Fig. 4. Bulk-loading algorithm for R-tree.

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on August 10,2010 at 14:30:15 UTC from IEEE Xplore. Restrictions apply.

information kept at each node helps us do pruning in
batch, thereby further boosting the performance of the
pruning algorithms.

Instead of repeating the cluster assignment to each
uncertain object one after another as in UK-means, we
traverse recursively down the tree, starting from the root
node. We examine each entry of the root node. Each entry e
represents a group (or supergroup) of uncertain objects. The
MBR of e is readily available from the R-tree. Using this
MBR, we can apply our pruning techniques MinMax-BB,
VD, or Bi to prune away candidate clusters in the same way
as explained before. These techniques work here because
they are guaranteed to prune away a cluster representatives
cp if there is for sure another cluster representatives cq 6¼ cp
such that all points in the MBR are closer to cq than to cp.
Since this property holds for all points within the group’s
MBR, it also holds for all subgroups and uncertain objects
under the subtree.

In other words, the list of remaining candidates can be
passed from ancestors to descendants along any R-tree
path. This is a significant performance boost: if a cluster
representative cp is pruned at an R-tree entry e, then cp
needs not be considered for all subgroups and uncertain
objects within the whole subtree of e. This saves a lot of
repeated computations.

In case only a single cluster representative cr is left after
the pruning, then due to this inheritance of candidate lists,
all descendants of e must be assigned to cr. In this case, we
can further optimize by bulk-assigning cr to the whole
subtree. There is no need to process each uncertain object
under the subtree individually. If this kind of subtree
pruning happens at higher levels of the R-tree, a lot of
processing can be saved. For instance, suppose an entry e
has only one candidate cluster left. Suppose further that e
has 20 child nodes, each having 15 leaf-level children.
Then, e has 20� 15 ¼ 300 uncertain objects as grand-
children. In this example, by processing one entry e,
we will be able to save the time for processing 300 objects.
The higher up the tree this happens, the more tremendous
the saving can be. The cluster centroids stored in internal
nodes are useful in this scenario for readjusting the cluster
centers at the end of the iteration, eliminating the need to
access and process the centroid of every individual
uncertain object under the subtree.

To sum up, using an R-tree, we can replace steps 3-6 of
Algorithm 1 with a call ProcessInternalNode(r, C), where r
is the R-tree’s root node and C is the set of all clusters. The
recursive procedure ProcessInternalNode is shown in
Algorithm 5.

Algorithm 5. ProcessInternalNode

Input: n an R-tree internal node

Q a set of candidate clusters

1: for all child entry e of n do

2: Apply a pruning technique to Q using e’s MBR

3: if jQj ¼ 1 then /*only one candidate remains*/

4: for all uncertain object oi under subtrees rooted at
n do

5: hðiÞ j where cj 2 Q
6: else

7: m e’s R-tree node

8: if m is leaf node then

9: Call ProcessLeafNode(m, Q)

10: else

11: Call ProcessInternalNode(m, Q) /*recursively*/

The handling of leaf nodes is quite similar, and hence,
not repeated. Procedure ProcessLeafNode differs from
ProcessInternalNode in which the recursive part (steps 7-
11) is replaced by ED-calculations (for the remaining
candidates in Q) and assigning the closest cluster to the
uncertain object.

It should be pointed out that construction of this R-tree is
very efficient. In addition, it only needs to be done once
because every iteration shares the same R-tree. So, the cost
of the R-tree construction averaged over all iterations is
very negligible. When handling databases where an R-tree
on objects is already in place, this cost is effectively zero.

4.6 Hybrid Algorithms

We have discussed a number of pruning methods: MinMax-
BB, CS, Voronoi cell (VD), bisector (Bi), and Partial-ED (P).
We remark that some of these pruning methods can be
employed in combination. For example, candidate cluster
representatives can first be pruned by Voronoi-diagram
method, then by Bisector pruning, and finally, by Partial-ED
pruning. Moreover, some of the pruning methods work
well with an R-tree index to achieve group processing. For
example, if MinMax-BB is applied to an internal node N
such that it reduces the set of candidate cluster representa-
tives Q to a smaller set Q0, the reduced set Q0 can be passed
along to the child nodes of N where MinMax-BB is
reapplied. The pruning achieved by MinMax-BB at different
levels along a path of the R-tree is thus accumulative.

We have selected a few combinations of the techniques
for performance evaluation. Table 1 shows five such
combinations. In the table, the first column gives the
algorithm names and each row indicates the techniques
used under the selected algorithm.

Here are some justifications of our choices:

. We do not combine MinMax-BB with Voronoi-
diagram-based methods. This is because we have
shown that Bisector pruning is strictly stronger than
MinMax-BB pruning (see Theorem 1).

. We do not consider VD pruning when an R-tree
index is used. Under VD pruning, a Voronoi
diagram is constructed on the set of all cluster
representatives C. Let us call this diagram the“global
Voronoi diagram.” Assume that we use an R-tree
index. Now, consider applying a pruning combina-
tion (e.g., VDBi) at an internal node (say N) where

1226 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 9, SEPTEMBER 2010

TABLE 1
Hybrid Algorithms Used in Experiments

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on August 10,2010 at 14:30:15 UTC from IEEE Xplore. Restrictions apply.

the set of candidate cluster representatives has been
reduced from C to a smaller set Q0 as a result of
applying pruning to N’s ancestor nodes. We have
two options:

- Apply VD using the (previously constructed)
global Voronoi diagram (then followed by apply-
ing Bi); or

- construct a new Voronoi diagram based on the
reduced set of representatives Q0 and use that
for VD pruning.

Our experiments show that none of the two options
results in good performance. For first option, since
the same global Voronoi diagram is used for VD
pruning, it does not take advantage of the reduction
in the candidate set (from C to Q0) achieved by
pruning performed at the ancestor nodes of N . For
second option, the construction of a different
Voronoi diagram for each R-tree node is too costly
and is thus counter-productive.

. We do not combine Partial-ED pruning with R-tree
boosting. This is simply because the Partial-ED
method cannot be applied to an R-tree node. Recall
that Partial-ED is applied when the MBR of an
uncertain object intersects a bisector and in such
case, a partial integration of the object is computed.
Since an R-tree node represents not a single object
but a group of objects, no such partial integrations
can be computed. Thus, Partial-ED is not applicable.

. We omit CS in some of our performance graphs.
In our experiments, we have executed two
versions of each of the five algorithms listed in
Table 1: one with CS pruning and another with-
out. There are thus altogether 10 algorithms. We
will present the results of our baseline experi-
ments on synthetic and semisynthetic data sets
under all 10 algorithms in Sections 5.2 and 5.3. For
the rest of the experiments, however, we omit the
CS versions of the algorithms for two reasons.
First, the CS method has been previously studied
and we did not find much new insight to it in our
study. Second, with five algorithms instead of 10,
our presentation, in particular the performance
graphs, is more readable.

5 EXPERIMENTS

We have performed a series of experiments to compare the
performance of our new techniques with existing ones [6].
We compare the algorithms VDBi, VDBiP, RBi, and
RMinMax-BB to the old MinMax-BB algorithm. We have

also studied alternative versions of the five algorithms in
which CS pruning is added. All the algorithms are
implemented in OpenJDK 1.6 on AMD64 platform running
Linux kernel 2.6.24. Experiments are carried out on a PC
with Intel Core2 Duo 2.83 GHz CPU and 4 GB of main
memory. For computation of Voronoi diagrams, we employ
the popular qhull program1 [32].

5.1 Data Sets

We have used two types of data sets in the experiments.
The first type is synthetic data generated in the same way
as [6]. For each data set, a set of nMBRs is generated in
the m-dimensional space ½0; 100	m. Each MBR’s side length
is generated randomly, but bounded above by d. The MBR
is then divided into s grid cells, each corresponding to
a pdf sample point. Each sample point is associated with a
randomly generated probability value, normalized so that
the sum of probabilities of the MBR is equal to 1. These
probability values give a discretized representation of the
pdf fi of the corresponding object.

The second type, semisynthetic data, is based on real
data. The real data are a geographical data set containing
53,145 points in two dimensions representing geographic
locations in the Long Beach County of California in the
United States. This data set contains point-valued data.
We transform this real data set into many uncertain data
sets by replacing each data point with an MBR and pdf
generated in the same way as described above. By
varying the parameters d and s, we get many semisyn-
thetic data sets.

In each set of experiments, we generate a data set as
described above, as well as k random points to serve as the
initial cluster centers. The data set and initial cluster centers
are then fed to the algorithms. The clustering results from
all algorithms are compared to ensure that they are the
same. For each set of parameters, five sets of experiments
are run and the average values are taken and reported.

The parameters used for the experiments are summar-
ized in Table 2. The rightmost column of the table shows the
baseline values of the various parameters.

5.2 Results of Baseline Experiment

We carried out the first set of experiments using the
parameters shown in Table 2 on synthetic data sets. The
results are shown in Table 3. Depending on the data set, it
takes 85-186 iterations before the solution converges. (Note
that for each data set, every algorithm takes the same
number of iterations.) To mask out the effects of such
variations, we report the average execution time per iteration

KAO ET AL.: CLUSTERING UNCERTAIN DATA USING VORONOI DIAGRAMS AND R-TREE INDEX 1227

TABLE 2
Parameters for the Experiments

TABLE 3
Baseline Results on Synthetic Data Set

1. http://www.qhull.org/.

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on August 10,2010 at 14:30:15 UTC from IEEE Xplore. Restrictions apply.

(tI) in the second and fourth columns. The value tI is defined
as the total execution time taken divided by the number of
iterations executed. The column NED shows the average
number of ED calculations per object per iteration. The value
NED is defined as the total number of ED calculations
divided by the number of objects (n ¼ 20;000 in our baseline
setting) and the number of iterations. Columns 2-3 show the
results for the plain pruning algorithms, whereas columns 4-
5 show the results when these algorithms are combined with
the CS technique [6].

It is obvious from the first three columns of Table 3 that
our new algorithms all output-perform MinMax-BB sig-
nificantly. The Voronoi-diagram-based pruning methods
can save 20 percent of the execution time. Employing an
R-tree index on MinMax-BB brings about a time saving of
>55%. The fastest algorithm is RBi, which gives a time
reduction of 57 percent w.r.t. MinMax-BB. All these five
algorithms blend well with the cluster-shift technique.
Cluster-shift delivers up to 13 percent reduction in execu-
tion time when combined with the other algorithms. This
reduction is relatively minor when compared to Voronoi-
diagram-based pruning and R-tree boosting. Moreover, the
reduction is quite consistent throughout all our experi-
ments, So, we will omit the cluster-shift technique in the
rest of this section for brevity.

To compare the pruning effectiveness of the algo-
rithms, we need to examine the NED-column. Since NED is
the number of ED calculations per object per iteration, a
smaller value indicates more effective pruning. Note that
if we had performed the same experiment with UK-
means (Algorithm 1, which does not perform any
pruning), the number NED for UK-means would be k
[6]. This is because in each iteration, UK-means computes
for each object all k expected distances from the object to
the k cluster representatives. In our baseline setting,
k ¼ 50, and therefore, NED for UK-means would be 50.
From Table 3, we see that the pruning algorithms are
very effective. All of the pruning algorithms reduce NED

from k ¼ 50 (UK-means) to below 0.88. That is a reduction
of more than 98 percent. We can see that VDBi is more
effective than MinMax-BB, whereas RBi is more effective
than RMinMax-BB, thereby confirming Theorem 1: Bisec-
tor pruning is stronger than MinMax-BB pruning. Also,
note that RMinMax-BB (respectively, RBi) always gives
the same NED value as MinMax-BB (respectively, VDBi).
This is because the function of R-tree boosting is to enable
batch processing in the application of a pruning method.
It thus lowers the pruning overheads and improves
pruning efficiency. However, an R-tree index does not
affect the pruning effectiveness. Therefore, it lowers
execution time but does not affect NED. To better
understand the benefits of applying an R-tree index, let

us examine a breakdown of tI (for the case without
cluster-shift) in Fig. 5.

The execution time can be broken down into three
components: 1) the time spent on ED calculations; 2) the
time spent on pruning; and 3) other costs. The time spent on
pruning involves a huge number of euclidean distance
computations (for MinMax-BB) or checking against Voronoi
cell boundaries (for VD and Bi). The number of such
calculations can be indicated by Ncand, the average number
of candidate object-cluster pairs per iteration per object, as
shown in the second column of Fig. 5. Without an R-tree,
this number equals k ¼ 50, i.e., the number of clusters. With
the help of an R-tree, many cluster candidates are
eliminated before we perform the pruning tests. As a result,
Ncand drops to below 4, which is a 92 percent reduction. As
the number of candidate object-cluster pairs to be consid-
ered decreases significantly, the associated pruning cost is
greatly reduced. We can see from the third column of Fig. 5
that while R-tree boosting has virtually no effect on the time
spent on ED calculations, it does significantly cut down the
pruning costs. For example, it reduces the pruning cost per
iteration of MinMax-BB by 89 percent from 587 to 62.4 ms.
The total time spent on the R-tree construction is only
800 ms, which translates to less than 10 ms per iteration). This
cost is included in the “others” cost component. The tree
construction time is thus negligible compared with tI . We
emphasize again that the R-tree needs only be constructed
once and is reused in each iteration. So, this cost is very low,
especially when the number of iterations is high.

For algorithms that employ Voronoi diagrams, there is a
time cost incurred in the computation of the diagrams. In
our experiments, the average cost of Voronoi diagram
construction is around 10 ms per iteration, which is only
1.1 percent of tI of MinMax-BB. So, the cost is negligible.
The diagram construction time is certainly paid off by the
huge number of ED calculations saved. Recall that bisector
pruning is strictly stronger than MinMax-BB pruning as
proved in Theorem 1. So, we can conclude that Voronoi-
diagram-based pruning is a more practical and effective
pruning technique than MinMax-BB. Combined with R-tree
boosting and the cluster-shift technique, much better
pruning efficiency and effectiveness can be achieved.

5.3 Results on Semisynthetic Data Set

We have done a similar experiment on semisynthetic data
sets. The parametersn ¼ 53;145 andm ¼ 2 are constrained by
the nature of the data. The other parameters are maintained at
their baseline values given in Table 2. The results are given in
Table 4. The relative performances are very similar to those
obtained from the synthetic data set. Therefore, in the rest of
this section, we present only the experimental results for

1228 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 9, SEPTEMBER 2010

Fig. 5. Breakdown of execution time (per iteration).

TABLE 4
Baseline Results on Semisynthetic Data Set

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on August 10,2010 at 14:30:15 UTC from IEEE Xplore. Restrictions apply.

synthetic data for which parameter values can be controlled
to conduct various sensitivity studies.

5.4 Effects of the Number of Objects

In our next set of experiments, we vary the number of
uncertain objects n from 5,000 to 80,000. Other parameters

are given their baseline values (Table 2). The resulting

execution times per iteration (tI) are plotted against n in

Fig. 6. It can be seen that the execution time per iteration

grows linearly with the number of uncertain objects. This is

because as long as the pruning effectiveness and the effects
of R-tree boosting remain stable, the total number of ED

computations and the amount of pruning overheads will be

proportional to the number of uncertain objects being

handled. The algorithms are thus scalable w.r.t. n.
We have also studied the variation of NED against n. The

finding is that NED is insensitive to n, and hence, have

roughly the same values, as given in Table 3. In other

words, the pruning effectiveness of the algorithms is
insensitive to the number of uncertain objects.

5.5 Effects of the Number of Samples

Next, we vary s, the number of samples used to represent
an object’s pdf. In this experiment, s is varied from 64 to

900. The execution times per iteration taken by the

algorithms are plotted in Fig. 7.
From the figure, we see that the execution times of the

algorithms generally increase linearly as s increases. This is

because the time to compute an ED grows linearly with s. We

observe from the figure that when s is large (e.g., s > 400),

the relative performance of the algorithms is mostly
consistent with that observed in our baseline experiment

(Table 3). When s is small, however, VDBiP starts to take

more time than VDBi. This is because computing an ED is

less costly when s is smaller. As a result, the extra pruning

cost incurred under Partial-ED pruning cannot be paid back

by the time saved on the reduced number of (lightweight)
ED calculations. All in all, for the wide range of values we

have tested, Voronoi-diagram-based pruning and R-tree

boosting can both deliver high efficiency. The combination

RBi has the best performance.

Note that the value of s only affects the amount of time
taken to compute an ED, not the number of ED computa-
tions. In the following experiments, we will concentrate on
measuring the pruning effectiveness of the algorithms.
Therefore, in the following sections, we will omit execution
times and report NED only. We have already established
that for large values of s, the relative efficiency of the
algorithms is similar to that reported in Table 3.

5.6 Effects of the Number of Clusters

In another experiment, we vary the number of clusters k
from 10 to 110. The other parameters are kept at their
baseline values. Note that since R-tree boosting does not
affect NED, we have omitted the curves for RMinMax-BB
and RBi for clarity. We do this for all subsequent plots of
NED. Fig. 8 shows the results. We see from the graph that
NED increases with k. This is because with a larger number
of clusters, cluster representatives are generally less spread
out. It is, therefore, less likely that the pruning algorithms
will be able to prune all but one cluster for a given object.
Hence, more ED will have to be computed to determine the
cluster assignment. For example, under VD pruning, a
larger number of clusters imply smaller Voronoi cells. It is
thus less likely that an object is found to be enclosed entirely

KAO ET AL.: CLUSTERING UNCERTAIN DATA USING VORONOI DIAGRAMS AND R-TREE INDEX 1229

Fig. 6. Effects of n on execution time per iteration.
Fig. 7. Effects of s on execution time per iteration.

Fig. 8. Effects of k on NED.

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on August 10,2010 at 14:30:15 UTC from IEEE Xplore. Restrictions apply.

within a particular Voronoi cell so that all but one cluster
representative are pruned.

From Fig. 8, we see that the NED curves are always

significantly lower than k. Recall that UK-means performs

k ED computations per object per iteration, Fig. 8 thus shows

that all three pruning algorithms are very effective for a wide

range of values of k. To better illustrate the algorithms’

pruning effectiveness with respect to the basic UK-means

algorithm, we plot NED=k against k in Fig. 9. The figure thus

shows the fraction of expected distances computed by the

various algorithms compared with UK-means.

From the figure, we see that the values of NED=k are very

small. The pruning algorithms are thus very effective. For

example, when k ¼ 10, MinMax-BB and VDBiP computed

3.39 and 1.93 percent of the EDs computed by UK-means,

respectively. These translate into a pruning effectiveness of

96.6 and 98.1 percent, respectively. Also, we see that NED=k

decreases as k increases for all three pruning algorithms. In

other words, the fraction of ED pruned by the algorithms

increases when there are more clusters. The pruning

effectiveness of VDBi is seen to be consistently better than

MinMax-BB over the whole range of k value. By achieving

additional pruning using partial ED computation, VDBiP

performs even better than VDBi.

5.7 Effects of the Size of MBR

To study the effect of the extent of uncertainty on the
algorithms’ performance, we vary d, the maximum side
length of an object’s MBR, from 1.0 to 20. Other parameters
are kept at their baseline values. Essentially, a larger MBR
implies a larger uncertainty region, and so, an object’s
location is more uncertain. The results are shown in Fig. 10.

We can see from the graph that NED increases as the size
of the MBRs increases. For MinMax-BB, a bigger MBR
causes the gap between MinD and MaxD to be bigger,
making the pruning condition MinDðoi; cjÞ > MinMaxDðoiÞ
less likely to be satisfied. Hence, the pruning effectiveness
of MinMax-BB drops significantly. In addition, as the size of
the MBRs increases, it is more likely that the MBRs overlap
with multiple Voronoi cells. This causes VD pruning and Bi
pruning to fail more often. Even though the pruning

effectiveness decreases when d becomes larger, Fig. 10

shows that the overall pruning effectiveness is still very

impressive (recall that NED for the basic UK-means

algorithm is 50). Comparing MinMax-BB and VDBiP, the

latter prunes 33-46 percent of the EDs computed by the

former. Our Voronoi-diagram-based pruning algorithms

are thus seen to outperform the corresponding MinMax-

based algorithms by a significant amount.

5.8 Effects of the Number of Dimensions

We now vary parameter m from 2 to 6 to see the effects of

the number of dimensions on NED. The results are shown

in Fig. 11.
It can be seen from the figure that the pruning

effectiveness of VDBi and VDBiP is consistently better than
that of MinMax-BB for all the number of dimensions
experimented. Comparing each algorithm across different
values of m, we find that MinMax-BB attains a minimum
NED at four dimensions. There are two competing factors
here affecting NED. On the one hand, since the number of
clusters k is kept constant but the volume of the space
½0; 100	m (expressed as a multiple of the unit hypercube)
increases with m, the average distance between any two
cluster centers increases rapidly with m. As an example,

1230 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 9, SEPTEMBER 2010

Fig. 9. NED=k versus k. Fig. 10. Effects of d on NED.

Fig. 11. Effects of number of dimensions on NED.

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on August 10,2010 at 14:30:15 UTC from IEEE Xplore. Restrictions apply.

Table 5 shows the average intercluster distance measured in
the experiment. Consequently, the cluster centers become
more spread apart, and there is a higher chance for the
pruning criterion of MinMax-BB to be met. This has an
effect of driving down NED as m rises. On the other hand,
the maximum side length of the MBR of the uncertain
objects is fixed at d. As m increases, the difference
MaxDðoi; cjÞ �MinDðoi; cjÞ (for any uncertain object oi and
cluster representative cj) increases as well. The empirical
evidence is shown in Table 5. Consequently, the bounds
MinD and MaxD become looser and looser as m increases.
With looser bounds, the pruning effectiveness of MinMax-
BB decreases. This causes NED to increase as m increases.
These two effects compete with each other and affect NED at
the same time. Apparently, from Fig. 11, the first effect
dominates from 2D up to 4D. So, NED for MinMax-BB goes
down from 2D to 4D. Beyond that, the second effect starts to
dominate. This explains why NED goes up again for
MinMax-BB beyond 4D.

For algorithms based on VD and Bi pruning, the general
trend is that the higher the number of dimensions, the lower
the value of NED, and hence, the more effective the pruning
is. Moreover, this decrease in NED is more remarkable than
MinMax-based pruning. To see why this is so, we note that
the average volume of each Voronoi cell is 100m=k. On the
other hand, the average volume of the MBR of an uncertain
object is dm. So, on average, the volume ratio of MBR to
Voronoi cell is kðd=100Þm ¼ kð5=100Þm (because we use the
baseline value d ¼ 5). As this ratio decreases rapidly with
m, the likelihood that an MBR lies completely within a
Voronoi cell increases, thus increasing the probability of
successful Voronoi cell pruning and also bisector pruning.
Therefore, as the number of dimension increases, the
pruning effectiveness of these algorithms increases. Judging
from these results, we conclude that our Voronoi-diagram-
based pruning techniques are not only more effective, but
also scale better than MinMax-BB with the number of
dimensions.

5.9 Effects of R-Tree Block Size

Finally, we test the effects of the block size of R-tree nodes on
R-tree boosting. The block size affects the height of the R-tree
built, its compactness, the granularity of the groups, and also
the size of the MBR of each group. Its effect is thus complex.
As we have explained previously, R-tree boosting improves
pruning efficiency but has no effect on the pruning
effectiveness. So, we examine the execution time of the
algorithms. The results are shown in Fig. 12. The numbers
along the top side of the figure show the heights of the R-trees
constructed. For example, at a block size of 2,048 bytes, the
R-tree is three-level tall. The algorithms MinMax-BB, VDBi,
and VDBiP do not employ R-tree, and hence, they are not
affected by variations in b. Nevertheless, we have included

horizontal lines, with values taken from Table 3, to show tI
for these algorithms in Fig. 12 for reference.

We observe that, in general, execution time increases
slightly with block size. With smaller blocks, the number of
nodes in the R-tree increases, and so does the height of the
R-tree. This has a positive effect on pruning-cost reduction
because a deeper R-tree allows more opportunities for
batching the pruning computation, which can be applied to
a larger number of nodes at more diverse granularities.
Moreover, a smaller block holds fewer child entries, giving
smaller MBRs for the parent group. These smaller MBRs
allow pruning to be done early (i.e., at the higher level
nodes), which favors R-tree boosting.

On the other hand, smaller blocks imply a larger number
of R-tree nodes. This has the adverse effect of more
processing, and thus, a slower execution time. So, when the
block size is extremely small, such costs would increase up to
a level that the time savings brought about by R-tree boosting
cannot compensate. This is observed in Fig. 12 at b ¼ 256.
This block size is too small, generating an R-tree with as
many as eight levels. The overhead incurred in traversing
and processing so many nodes is too high. So, it eventually
takes more time to complete than the case when b ¼ 512.

Nevertheless, the general observation is that as long as
the block size is not smaller than a critical value, using
smaller block sizes with RMinMax-BB and RBi results in
shorter execution time.

5.10 Summary

Our experiments have shown that our new techniques,
namely, Voronoi-diagram-based pruning and R-tree boost-
ing, are highly effective. They can bring down the execution
time of UK-means as well as MinMax-BB significantly.
Further pruning effectiveness and performance gain can be
achieved by combining them with cluster-shift. We have
found that RMinMax-BB and RBi, when combined with
cluster-shift, give the best performance, with RBi out-
performing RMinMax-BB when the number of objects is
moderately large.

KAO ET AL.: CLUSTERING UNCERTAIN DATA USING VORONOI DIAGRAMS AND R-TREE INDEX 1231

TABLE 5
Factors Affecting NED of MinMax-BB

Fig. 12. Effects of block size on execution time per iteration.

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on August 10,2010 at 14:30:15 UTC from IEEE Xplore. Restrictions apply.

6 CONCLUSIONS

In this paper, we have studied the problem of clustering
uncertain objects whose locations are represented by
probability density functions. We have discussed the UK-
means algorithm [5], which was the first algorithm to solve
the problem. We have explained that the computation of
expected distances dominates the clustering process,
especially when the number of samples used in represent-
ing objects’ pdfs is large. We have mentioned the existing
pruning techniques MinMax-BB and CS [6]. Although these
techniques can improve the efficiency of UK-means, they do
not consider the spatial relationship among cluster repre-
sentatives, nor make use of the proximity between groups
of uncertain objects to perform pruning in batch.

To further improve the performance of UK-means, we
have first devised new pruning techniques that are based on
Voronoi diagrams. The VDBi algorithm achieves effective
pruning by two pruning methods: Voronoi cell pruning and
bisector pruning. We have proved theoretically that bisector
pruning is strictly stronger than MinMax-BB. Furthermore,
we have proposed the idea of pruning by partial ED
calculations and have incorporated the method in VDBiP.

Having pruned away more than 95 percent of the ED
calculations, the execution time has been significantly
reduced. It has been reduced to such an extent that the
originally relatively cheap pruning overhead has become a
dominating term in the total execution time. To further
improve efficiency, we exploit the spatial grouping derived
from an R-tree index built to organize the uncertain objects.
This R-tree boosting technique turns out to cut down the
pruning costs significantly.

We have also noticed that some of the pruning
techniques and R-tree boosting can be effectively combined.
Employing different pruning criteria, the combination of
these different techniques yields very impressive pruning
effectiveness.

We have conducted extensive experiments to evaluate
the relative performance of the various pruning algorithms
and combinations. The results show that our new pruning
techniques outperform MinMax-BB consistently over a
wide range of experimental parameters. The overhead of
computing Voronoi diagrams for our Voronoi-diagram-
based technique is paid off by the large number of ED
calculations saved. The overhead of building an R-tree
index also gets compensated by the large reduction of
pruning costs. The experiments also consistently demon-
strated that the hybrid algorithms can prune more effec-
tively than the other algorithms. Therefore, we conclude
that our innovative techniques based on Voronoi diagrams
and R-tree index are effective and practical.

ACKNOWLEDGMENTS

This research is supported by Hong Kong Research Grants
Council Grant HKU 7134/06E.

REFERENCES

[1] P. Misra and P. Enge, Global Positioning System: Signals, Measure-
ments, and Performance, second ed. Ganga-Jamuna Press, 2006.

[2] W.R. Heinzelman, A. Chandrakasan, and H. Balakrishnan,
“Energy-Efficient Communication Protocol for Wireless Micro-
sensor Networks,” Proc. IEEE 33rd Ann. Hawaii Int’l Conf. System
Sciences (HICSS), Jan. 2000.

[3] S. Bandyopadhyay and E.J. Coyle, “An Energy Efficient Hier-
archical Clustering Algorithm for Wireless Sensor Networks,”
Proc. IEEE INFOCOM, Apr. 2003.

[4] O. Wolfson and H. Yin, “Accuracy and Resource Consumption in
Tracking and Location Prediction,” Proc. Symp. Spatial and
Temporal Databases (SSTD), pp. 325-343, July 2003.

[5] M. Chau, R. Cheng, B. Kao, and J. Ng, “Uncertain Data Mining:
An Example in Clustering Location Data,” Proc. Pacific-Asia Conf.
Knowledge Discovery and Data Mining (PAKDD), pp. 199-204, Apr.
2006.

[6] W.K. Ngai, B. Kao, C.K. Chui, R. Cheng, M. Chau, and K.Y. Yip,
“Efficient Clustering of Uncertain Data,” Proc. IEEE Int’l Conf.
Data Mining (ICDM), pp. 436-445, Dec. 2006.

[7] F.K.H.A. Dehne and H. Noltemeier, “Voronoi Trees and Cluster-
ing Problems,” Information Systems, vol. 12, no. 2, pp. 171-175,
1987.

[8] B. Kao, S.D. Lee, D.W. Cheung, W.-S. Ho, and K.F. Chan,
“Clustering Uncertain Data Using Voronoi Diagrams,” Proc. IEEE
Int’l Conf. Data Mining (ICDM), pp. 333-342, Dec. 2008.

[9] N.N. Dalvi and D. Suciu, “Efficient Query Evaluation on
Probabilistic Databases,” The VLDB J., vol. 16, no. 4, pp. 523-544,
2007.

[10] D. Barbará, H. Garcia-Molina, and D. Porter, “The Management of
Probabilistic Data,” IEEE Trans. Knowledge and Data Eng., vol. 4,
no. 5, pp. 487-502, Oct. 1992.

[11] R. Cheng, D.V. Kalashnikov, and S. Prabhakar, “Querying
Imprecise Data in Moving Object Environments,” IEEE Trans.
Knowledge and Data Eng., vol. 16, no. 9, pp. 1112-1127, Sept. 2004.

[12] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J.S. Vitter, “Efficient
Indexing Methods for Probabilistic Threshold Queries over
Uncertain Data,” Proc. Int’l Conf. Very Large Data Bases (VLDB),
pp. 876-887, Aug./Sept. 2004.

[13] J. Chen and R. Cheng, “Efficient Evaluation of Imprecise Location-
Dependent Queries,” Proc. Int’l Conf. Data Eng. (ICDE), pp. 586-
595, Apr. 2007.

[14] A.P. Dempster, N.M. Laird, and D.B. Rubin, “Maximum Like-
lihood from Incomplete Data via the EM Algorithm,” J. Royal
Statistical Soc., vol. B39, pp. 1-38, 1977.

[15] H.-P. Kriegel and M. Pfeifle, “Density-Based Clustering of
Uncertain Data,” Proc. Int’l Conf. Knowledge Discovery and Data
Mining (KDD), pp. 672-677, Aug. 2005.

[16] J. MacQueen, “Some Methods for Classification and Analysis of
Multivariate Observations,” Proc. Fifth Berkeley Symp. Math.
Statistics and Probability, pp. 281-297, 1967.

[17] H. Hamdan and G. Govaert, “Mixture Model Clustering of
Uncertain Data” Proc. 14th IEEE Int’l Conf. Fuzzy Systems, pp. 879-
884, May 2005.

[18] S.D. Lee, B. Kao, and R. Cheng, “Reducing UK-Means to K-
Means,” Proc. First Workshop Data Mining of Uncertain Data
(DUNE), in Conjunction with the Seventh IEEE Int’l Conf. Data
Mining (ICDM), Oct. 2007.

[19] G. Cormode and A. McGregor, “Approximation Algorithms for
Clustering Uncertain Data,” Proc. Symp. Principles of Database
Systems (PODS), M. Lenzerini and D. Lembo, eds., pp. 191-200,
June 2008.

[20] C.K. Chui, B. Kao, and E. Hung, “Mining Frequent Itemsets from
Uncertain Data,” Proc. Pacific-Asia Conf. Knowledge Discovery and
Data Mining (PAKDD), pp. 47-58, May 2007.

[21] C.C. Aggarwal, “On Density Based Transforms for Uncertain Data
Mining,” Proc. Int’l Conf. Data Eng. (ICDE), pp. 866-875, Apr. 2007.

[22] H.-P. Kriegel and M. Pfeifle, “Hierarchical Density-Based Cluster-
ing of Uncertain Data,” Proc. Fifth IEEE Int’l Conf. Data Mining
(ICDM ’05), pp. 689-692, Nov. 2005.

[23] E.H. Ruspini, “A New Approach to Clustering,” Information and
Control, vol. 15, no. 1, pp. 22-32, 1969.

[24] J.C. Dunn, “A Fuzzy Relative of the Isodata Process and Its Use in
Detecting Compact Well-Separated Clusters,” J. Cybernetics, vol. 3,
pp. 32-57, 1973.

[25] J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function
Algorithms. Plenum Press, 1981.

[26] M. Sato, Y. Sato, and L.C. Jain, Fuzzy Clustering Models and
Applications. Physica-Verlag, 1997.

[27] M. Tabakov, “A Fuzzy Clustering Technique for Medical Image
Segmentation” Proc. 2006 Int’l Symp. Evolving Fuzzy Systems,
pp. 118-122, Sept. 2006.

1232 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 9, SEPTEMBER 2010

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on August 10,2010 at 14:30:15 UTC from IEEE Xplore. Restrictions apply.

[28] I. Stanoi, M. Riedewald, D. Agrawal, and A.E. Abbadi, “Discovery
of Influence Sets in Frequently Updated Databases,” Proc. 27th
Int’l Conf. Very Large Data Bases (VLDB ’01), pp. 99-108, Sept. 2001.

[29] F. Korn and S. Muthukrishnan, “Influence Sets Based on Reverse
Nearest Neighbor Queries,” Proc. ACM SIGMOD, pp. 201-212,
May 2000.

[30] Y. Tao, D. Papadias, and X. Lian, “Reverse kNN Search in
Arbitrary Dimensionality,” Proc. Int’l Conf. Very Large Data Bases
(VLDB), pp. 744-755, Aug./Sept. 2004.

[31] Y. Manolopoulos, A. Nanopoulos, A.N. Papadopoulos, and Y.
Theodoridis, R-Trees: Theory and Applications. Springer, 2005.

[32] F. Aurenhammer, “Voronoi Diagrams—A Survey of a Funda-
mental Geometric Data Structure,” ACM Computing Surveys,
vol. 23, no. 3, pp. 345-405, 1991.

Ben Kao received the BSc degree in computer
science from the University of Hong Kong in
1989, and the PhD degree in computer science
from Princeton University in 1995. From 1989 to
1991, he was a teaching and research assistant
at Princeton University. From 1992 to 1995,
he was a research fellow at Stanford University.
He is currently an associate professor in the
Department of Computer Science at the Uni-
versity of Hong Kong. His research interests

include database management systems, data mining, real-time sys-
tems, and information retrieval systems.

Sau Dan Lee received the BSc and MPhil
degrees from the University of Hong Kong in
1995 and 1998, and the PhD degree from the
University of Freiburg, Germany, in 2006. He
is a postdoctoral fellow at the University of
Hong Kong. He is interested in the research
areas of data mining, machine learning, un-
certain data management, and information
management on the WWW. He has also
designed and developed back-end software

systems for e-Business and investment banking.

Foris K.F. Lee is currently working toward the
MPhil degree in the Department of Computer
Science, The University of Hong Kong, under the
supervision of Dr. Benjamin Kao. His research
interest is uncertainty and data clustering.

David Wai-lok Cheung received the MSc and
PhD degrees in computer science from Simon
Fraser University, Canada, in 1985 and 1989,
respectively. Since 1994, he has been a faculty
member in the Department of Computer Science
at The University of Hong Kong. His research
interests include database, data mining, data-
base security, and privacy. He was the program
committee chairman of the Fifth Pacific-Asia
Conference on Knowledge Discovery and Data

Mining (PAKDD 2001), the program cochair of PAKDD 2005, the
conference chair of PAKDD 2007, and the conference cochair of the
18th ACM Conference on Information and Knowledge Management
(CIKM 2009). He is a senior member of the IEEE.

Wai-Shing Ho received the BE and PhD
degrees from The University of Hong Kong in
1999 and 2005, respectively. He teaches in the
Department of Computer Science, The Univer-
sity of Hong Kong. His research interests include
uncertain data classification and clustering, and
online analytical processing of sequence data.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

KAO ET AL.: CLUSTERING UNCERTAIN DATA USING VORONOI DIAGRAMS AND R-TREE INDEX 1233

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on August 10,2010 at 14:30:15 UTC from IEEE Xplore. Restrictions apply.

