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Preparata and Vuillemin proposed the cube-connected cycles (CCC) in 1981, and in the same paper
gave an asymptotically-optimal layout scheme for the CCC. While all the known optimal layouts of
the CCC, including the Preparata–Vuillemin layout, have long wires, we give a new layout scheme
which has no long wires while keeping the asymptotically-optimal area. Hence, we can conclude
that the CCC can be laid out optimally (within a constant factor) both in area and in wire length.
We also show how large a constant-factor blow-up in area is needed in order not to produce any

long wire in the layout.
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1. INTRODUCTION

The interconnection network is an important part in the
design of parallel computers. There are many aspects
that need to be considered when choosing a specific
interconnection for processors. With the technological
progress in very large-scale integrated (VLSI) electronic
circuits that has taken place so far, it is reasonable to
conceive of a huge number of processors being integrated
tightly together to cooperate on the execution of parallel
algorithms. As such, one of the major criteria by which to
judge the suitability of an interconnection network is how
compactly it can be laid out in a VLSI grid. Two most
frequently used measures of a layout are the layout area and
the maximum wire length.

The cube-connected cycles (CCC), one of the most
extensively studied and frequently cited interconnection
networks, was proposed by Preparata and Vuillemin in 1981
as a practical substitute for the hypercube [1]. They also
gave an asymptotically-optimal layout scheme for the CCC.
Their layout scheme, however, has two drawbacks: it is
not ‘minimal’ in area; and it has long wires. Our research
aims at finding better layout schemes for the CCC, with two
goals: (1) to seek the best minimal layout area of the CCC,
and (2) to reduce the long wires of the CCC layout while
keeping the asymptotically-optimal area. We have already
achieved the first goal, proposing an improved layout [2]
which is more compact than the Preparata–Vuillemin layout.
This paper addresses the second goal by introducing yet
another new layout of the CCC which is free of long wires
while keeping the asymptotically-optimal area. Based on
this result, we can conclude that the CCC can be laid out
optimally both in area and in wire length, thus answering a
question posed by Beigel and Kruskal [3].

Wire problems have received much attention from
computer designers and chip designers [4]. Wires do cost—
they could take up a lot of space, and spend a lot of time
in transmitting data [5, 6]. Hence, it is justified that we
should look for a layout that is sufficiently small and that
uses reasonably short wires. Beigel and Kruskal found a
layout of a special class of networks called bidelta networks
without long wires [3]; Lai and Speangue proposed a layout
of the hypercube without long wires [7]; and Lau and Chen
showed that some networks can be laid out minimally both
in area and in maximum wire length [8]. Note that not all
graphs can have a layout that is optimal in both area and
wire length [9].

Our work is motivated by and closely related to the paper
by Beigel and Kruskal [3], who point out that the laying
out of the CCC can be based on the laying out of bidelta
networks. Although they gave an optimal layout of bidelta
networks without long wires, they did not make use of
the relationship between the CCC and bidelta networks to
produce a layout for the CCC. In this paper, we first give an
improved layout of the bidelta networks, which uses fewer
stages and thus less area than the layout by Beigel and
Kruskal. Using this improved layout, we then derive our
layout for the CCC. This layout has a maximum wire length
which is better than that in all existing layouts (including [2])
by a logarithmic factor. We also show how large a constant-
factor blow-up in area is necessary in order to keep wires
short in a CCC layout.

2. PRELIMINARIES

2.1. The Thompson model

Among the many mathematical models that have been
proposed for VLSI computations, the most widely accepted
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FIGURE 1. (a) A 3-dimensional hypercube. (b) A 3-dimensional CCC. (c) Another drawing of the 3-dimensional CCC: thin lines, cube
edges; full lines, cycle-edges. (d) A 3-dimensional CCC unfolded. (e) An 8 × 8 indirect binary cube. (f) An 8 × 8 omega network. (g) An
8 × 8 baseline network.

is the Thompson grid model [10, 11]. In this model, the chip
is presumed to consist of a grid of vertical and horizontal
tracks which are spaced apart at unit intervals. Two layers
of interconnect are used to route the wires. Vertical wires
are routed in the top layer of the interconnect and horizontal
wires are routed in the bottom layer. Hence, wires may cross
each other but cannot overlap for any distance or cross a
node to which they are not incident. To change direction,
wires may turn into the other layer by contact cuts or vias
which facilitate connections between the two layers. The
routing of wires in this fashion is also known as layer per
direction routing or Manhattan routing. In our discussion,
no knock-knees are allowed—that is, two wires cannot turn
at the same grid point [12, 13].

Formally, an embedding or layout of a graph G in a
Thompson grid is an assignment of the nodes of G to

intersection points in the grid and the edges of G to paths
along the grid tracks. The layout area is the product of the
number of vertical tracks and the number of horizontal tracks
which contain a node or a path segment of the graph. The
maximum wire length is the length of the longest wire in the
layout.

2.2. The cube-connected cycles

The d-dimensional CCC is constructed from the d-
dimensional hypercube by replacing each node of the
hypercube with a cycle of d nodes in the CCC [1, 14]. The
ith-dimension edge incident to a node of the hypercube is
then connected to the ith node of the corresponding cycle of
the CCC. For example, see Figures 1a and b. The resulting
graph has d · 2d nodes each of degree 3. By modifying the
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labeling scheme of the hypercube, we can represent each
node by a pair 〈w, i〉 where i (0 ≤ i < d) is the position
of the node within its cycle and w (any d-bit binary string)
is the label of the node in the hypercube that corresponds to
the cycle. Then, two nodes 〈w, i〉 and 〈w′, i ′〉 are linked by
an edge in the CCC if and only if either

(1) w = w′ and i − i ′ = ±1(modd), or
(2) i = i ′ and w differs from w′ in precisely the ith bit.

Edges due to (1) are cycle-edges and edges due to (2) are
cube-edges. As shown in Figure 1c, the CCC is often
drawn in the multi-stage format. Alternatively, the CCC can
be unfolded along its wraparound links (long links inside
cycles); see Figure 1d where the first stage (of nodes) and the
last stage are identified. It should be noted that the CCC is
very similar to the butterfly network—compare (d) and (e) of
Figure 1. One can be embedded into the other with dilation 2
and congestion 2. Because of this similarity, we will show
that an optimal layout of the butterfly network without long
wires can directly give rise to an optimal layout of the CCC
without long wires.

The CCC is closely related to the butterfly network just
as the shuffle-exchange network is to the deBruijn network.
The group-theoretic relations of the four networks are well
studied in [15] where the CCC and the butterfly are proved
to be Cayley graphs derivable from the shuffle-exchange
network and the deBruijn network respectively; and
inversely, the shuffle-exchange network and the deBruijn
network are proved to be some coset graph of the CCC and
the butterfly network respectively.

In general, we say that a network of N nodes has
(asymptotically) optimal area if it can be laid out in area

(N2/T 2), where T is the time to execute an ascend–
descend algorithm. We say that a (constant-degree) network
has optimal wire length if the longest wire has length

(N/T 2). Accordingly, for the d-dimensional CCC with
n = 2d cycles, the optimal layout area is 
(n2) and the
optimal wire length is 
(n/log n). While all the known
optimal layouts of the CCC have maximum wire length

(n), we give a new optimal layout for the CCC whose
maximum wire length is 
(n/log n).

2.3. Bidelta networks

There has been a large amount of research on multistage
interconnection networks. Kruskal and Snir have found that
many of these networks, such as the indirect binary cube
(or unfolded butterfly network), the omega network, the SW
banyan network, and so on, are isomorphic [16]. That is,
one can be produced from the other by simply rearranging
the nodes at each stage. These networks are referred to as
bidelta interconnection networks.

Let n = 2d ; an n × n or d-stage bidelta network
is composed of d + 1 stages of nodes, interconnected
by d stages of connections. At each stage, nodes are
numbered from 0 to n − 1 and written in a d-bit binary
notation. Connections between columns of nodes are based
on permutation and correction of the d bits. A correction

represents two out-edges (a thin line and a full line in
Figures 1e, f and g) connected to the next stage for each
node; the permutation represents a permutation of the nodes
at the stage (represented by thick lines connecting the last
stage to this stage). For the first stage, the d bits are
ad−1ad−2 . . . a1a0. A bidelta network connects each bit ai

to a∗
i (= ai or āi) one at a stage. The connects do not have to

be in order. The final bit pattern is a∗
(d−1)a

∗
(d−2) . . . a∗

(1)a
∗
(0)

where (i) is a permutation of i: 0 ≤ i ≤ n − 1. That means
a∗
i can be at any bit position within the final bit permutation

pattern a∗
(d−1)a

∗
(d−2) . . . a∗

(1)a
∗
(0).

Consider for example 3-stage bidelta networks. These
networks begin with the bits a2a1a0 and end with the bits
a∗
(2)a

∗
(1)a

∗
(0). There are three bits, and hence three stages of

connections are needed to correct them all. For the 3-stage
bidelta networks shown in Figures 1e, f and g, the following
are their bit changes, respectively. We use a larger font type
for the bit being corrected at a stage.

a2 a1 a0

a2 a1 a∗
0

a2 a∗
1 a∗

0

a∗
2 a∗

1 a∗
0

a2 a1 a0

a∗
0 a2 a1

a∗
1 a∗

0 a2

a∗
2 a∗

1 a∗
0

a2 a1 a0

a∗
0 a2 a1

a∗
0 a∗

1 a2

a∗
0 a∗

1 a∗
2

3. LAYOUT OF BIDELTA NETWORKS

Beigel and Kruskal [3] gave an (asymptotically) optimal
layout of bidelta networks without long wires. Their main
idea is to create a particular bidelta network (to which all
other bidelta networks are isomorphic) in which the stages
with long wires are spread out, thus amortizing the long wire
lengths across intermediary stages. Using the same idea,
we give an alternate layout of bidelta networks without long
wires. The area and maximum wire length of the alternate
layout are the same as the Beigel–Kruskal layout, but the
permutations of the nodes are different. As a result, the
new layout can be used to generate a layout for the butterfly
network (and hence the CCC) using fewer additional stages
than the Beigel–Kruskal layout.

The following lemmas are useful in the construction of the
new layout.

LEMMA 1. In a d-stage bidelta network, if the con-
nections at some stage do not involve the upper (most
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FIGURE 2. End-exchange using local operations.

significant) 
(log d) bits, then these connections do not
contain long wires.

Proof. The connections involve only the lower 
(d − log d)

bits. Therefore, obviously, the longest connection is of
length 2
(d−logd) = 
(n/log n).

We define end-exchange to be the operation that permutes
r bits from ar−1ar−2 . . . a1a0 to become a0ar−2 . . . a1ar−1
(i.e. a butterfly connection of 2r nodes), and local operation
to be one that causes a link to go from a node i to a node i

or i + 1 or i − 1 at the next stage.

LEMMA 2. The number of stages required to end-
exchange r bits using only local operations is 2r−1 − 1.

Proof. Refer to Figure 2. Note that the wires do not conflict
at any stage—that is, every stage is a permutation.

LEMMA 3. The number of stages required to shuffle (or
unshuffle) r bits using only local operations is 2r−1 − 1.

Proof. Refer to Figure 3.

Now we show the construction of the bidelta network
whose layout has optimal area and wire length. This network
is modified from the F network in [3]. As before, let
n = 2d , and assume for convenience that d + 1 is a power
of two. The results can be generalized for arbitrary d . Let
r = log (d + 1). By Lemma 1, we separate the d bits into
the upper r bits and the lower d − r bits. Let the stages be
numbered 0, 1, . . . , d − 1. We batch the stages into the first
(d + 1)/2, the next (d + 1)/4, the next (d + 1)/8, etc. Then
the stages can be represented by the ordered pairs

(0, 0), (0, 1), (0, 2), . . . , (0, ((d + 1)/2) − 1),

(1, 0), (1, 1), (1, 2), . . . , (1, ((d + 1)/4) − 1),
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FIGURE 3. Shuffle using local operations.

(2, 0), (2, 1), (2, 2), . . . , (2, ((d + 1)/8) − 1),
...

(r − 3, 0), (r − 3, 1), (r − 3, 2), . . . , (r − 3, 3),

(r − 2, 0), (r − 2, 1),

(r − 1, 0),

where the first index represents the batch number and the
second index represents the stage number within a batch.

Without loss of generality, we use a 15-stage network to
explain the bit changes. The bit changes for this particular
network are as given in Table 1. Here, r = log (d + 1) = 4.
There are 4 (r) batches, comprising respectively the first 8
((d + 1)/2) stages, then the next 4 ((d + 1)/4) stages, then
the next 2 ((d + 1)/8) stages, and the last 1 ((d + 1)/16)
stage. The bits are divided into the upper 4 (r) bits and the
lower 11 (d − r) bits. We refer to them as the upper bits and
the lower bits respectively. The bit changes are as follows.

• For the first stage of every batch, the lowest of the upper
bits is corrected. That is, a11, and then a14, and so on,
in the example.

• Within a batch, an end-exchange is applied to the lower
r−j bits of the upper bits, where j is the batch number.
That is, in the example, an end-exchange is applied to
all 4 (r − 0) bits in batch 0, and then the lower 3 (r − 1)
bits in batch 1, and so on.

• For all the stages other than the first within a batch, the
lower bits are corrected one at a stage in order (from the
lowest to the highest).

Based on the table, we have the layout of the 15-stage
bidelta network as shown in Figure 4a. There are 215 =
32768 nodes in a stage of nodes. The upper bits divide
these into 16 (2r ) groups (hence the upper bits represent
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TABLE 1. Bit changes for the 15-stage bidelta network.

a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0

a14 a13 a12 a∗
11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0� a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a∗

0� a10 a9 a8 a7 a6 a5 a4 a3 a2 a∗
1 a∗

0� a10 a9 a8 a7 a6 a5 a4 a3 a∗
2 a∗

1 a∗
0� a10 a9 a8 a7 a6 a5 a4 a∗

3 a∗
2 a∗

1 a∗
0� a10 a9 a8 a7 a6 a5 a∗

4 a∗
3 a∗

2 a∗
1 a∗

0� a10 a9 a8 a7 a6 a∗
5 a∗

4 a∗
3 a∗

2 a∗
1 a∗

0

a∗
11 a13 a12 a14 a10 a9 a8 a7 a∗

6 a∗
5 a∗

4 a∗
3 a∗

2 a∗
1 a∗

0

a∗
11 a13 a12 a∗

14 a10 a9 a8 a7 a∗
6 a∗

5 a∗
4 a∗

3 a∗
2 a∗

1 a∗
0� a10 a9 a8 a∗
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1 a∗
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( b )( a )

FIGURE 4. (a) Layout of the 15-stage bidelta network without long wires; each oval represents a group of n/(d + 1) contiguous nodes.
(b) Additional stages for bit shuffling to obtain the desired permutation at the end; each oval represents a group of 3n/2(d + 1) contiguous
nodes.

the number of a group), each consisting of 2048 (2d−r =
n/(d + 1)) nodes. An oval in the figure represents one
such group. Ovals are connected to ovals according to the
permutations and connections of the upper bits. Since these

permutations are actually end-exchanges, the pattern of the
connections within a batch is the same as the corresponding
one in Figure 2. The detailed connections due to changes of
the lower bits are not shown because of their sheer number.
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FIGURE 5. (a) Detailed layout of the 3-stage bidelta network without long wires. (b) Abstract layout; each oval represents a group of two
contiguous nodes.

We give another example, that of a 3-stage bidelta
network, in which all the connections can be clearly shown,
as in Figure 5a. The bit changes, based on the strategy given
above, are as follows.

a2 a1 a0

a2 a∗
1 a0

a∗
1 a2 a∗

0

a∗
1 a∗

2 a∗
0

Figure 5b gives an abstract view consisting of ovals similar
to that for the 15-stage network in Figure 4.

It is easy to see that the new layout has area 
(n2), and,
by Lemmas 1 and 2, the longest wire has length 
(n/log n).

4. LAYOUT OF THE BUTTERFLY NETWORK AND
THE CCC

A butterfly network can be obtained from an indirect binary
cube (a bidelta network) by identifying the last stage of
nodes with the first stage. That means the network needs
to be folded over horizontally to enable the wraparound
connections. This would increase the area and the longest
wire length by at worst a constant factor. In order to let the
first stage of nodes coincide with the last stage, the final bit
pattern (refer to the bit changes table) must be the same as
the original in terms of bit positions. For the 15-stage bidelta
network whose table is given as Table 1, the final bit pattern
is

a∗
11a

∗
14a

∗
13a

∗
12a

∗
10a

∗
9a∗

8a∗
7a∗

6a∗
5a∗

4a∗
3a∗

2a∗
1a∗

0

but we would want it to be

a∗
14a

∗
13a

∗
12a

∗
11a

∗
10a

∗
9a∗

8a∗
7a∗

6a∗
5a∗

4a∗
3a∗

2a∗
1a∗

0 .

Hence, the upper 4 (r) bits need to be shuffled. According
to Lemma 3, another 7 (2r−1 − 1) extra stages are needed to
do this shuffling.

More stages means there are more nodes since n = 2d .
Without loss of generality, assume for convenience that d =
(2r − 1) + (2r−1 − 1), where the first term is for the bidelta
layout, and the second term is for the extra stages as just
explained. Each column is divided into 2r groups (ovals) as
we did in Section 3, but each group has 2d−r = 3n/2(d + 2)

contiguous nodes. Figure 4b shows the ‘extra stages’ of the
layout of a 22-stage butterfly network without long wires,
and Figure 6b shows the detailed layout of a 4-stage, 16×16
butterfly network (without folding over). The layout consists
of a 3-stage layout for the bidelta network (compare this with
Figure 5a) and one stage (since r = 2) for the shuffling to
achieve the desired permutation of bits. Its bit changes are
as follows.

a3 a2 a1 a0

a3 a∗
2 a1 a0

a∗
2 a3 a1 a∗

0

a∗
2 a∗

3 a1 a∗
0

a∗
3 a∗

2 a∗
1 a∗

0

Because of our use of the end-exchange operation to
permute the upper r bits instead of the unshuffle pattern in
the Beigel–Kruskal layout (see Figure 8 in [3]), we needed
only (2r−1 − 1) additional stages to shuffle the r upper bits
in our layout for the butterfly network, whereas the Beigel–
Kruskal layout would need more stages (approximately
square that of ours) to reverse the r upper bits.

Due to the affinity of the CCC and the butterfly network,
the optimal layout of the n×n butterfly network without long
wires can directly translate into the corresponding optimal
layout of the d-dimensional CCC without long wires, where
n = 2d . For example, the detailed layout for the 4-
dimensional, 16 × 16 CCC network without folding over
is shown in Figure 7b which is a straightforward derivation
from Figure 6b.
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FIGURE 6. (a) A 16 × 16 butterfly network. (b) Layout of the 16 × 16 butterfly without long wires; its isomorphism to (a) can be easily
checked with the help of the node numbers at the first stage.

5. LAYOUT IN THE THOMPSON MODEL

We have given in the last section a layout scheme for
the butterfly network and the CCC without long wires.
Referring to Figure 4 again, all wires are locally arranged—
i.e. each oval i (representing a group of 3n/2(d + 1)

contiguous nodes) is connected to oval i or i + 1 or i − 1
in the next stage. For the layout of the CCC, oval i is also
connected to itself or oval i + 1 or oval i − 1 in the same
stage. In any case, the wire length is 
(n/log n) and thus
optimal.

Our explanation above only shows that the given layout
is without long wires in a logical way. In practice, the wire
length and the area are model-dependent. Now we adopt
the widely-used Thompson model and show that the given
layout can be implemented in a Thompson grid with optimal
area and optimal wire length. We will compute the exact
upper bound for the area to see by how large a constant

factor the area is blown up in order to do away with the long
wires. Note that in the Thompson model, wires are limited
to Manhattan routing.

5.1. Optimal area

THEOREM 1. The CCC can be laid out optimally both in
area and in wire length.

Proof. Referring to Figure 4, there are three types of
connection patterns, as shown in Figures 8a, b and c. Refer
also to Figure 7b. For Figure 8a, a total of 3n/(d + 2)

contiguous nodes (in two ovals in the same stage) are
connected in pairs by 3n/2(d + 2) cube-edges. These
connections are shown in Figure 8d in thin lines, which
occupy 3n/2(d + 2) columns in the worst case. Then for
Figure 8b, 3n/2(d + 2) contiguous nodes within the same
oval are connected in pairs by 3n/4(d + 2) cube-edges,
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( b )( a )

FIGURE 7. (a) A 4-dimensional, 16 × 16 CCC. (b) Layout of the 4-dimensional CCC without long wires.

occupying 3n/4(d + 2) columns in the worst case. And
for Figure 8c, 3n/2(d + 2) contiguous nodes within the
same oval are connected in pairs by 3n/4(d+2) cube-edges,
occupying 3n/4(d + 2) columns in the worst case. Among
the three cases, only the last case has cycle-edges (in full
lines in the figures) that cross. To allow the crossing, an
additional 3n/2(d + 2) columns are needed, as shown in
Figure 8f.

Hence, the width of any stage is 
(n/d). There are d

stages and thus the total width is 
(n). Plus the height

(n) of the layout, the total area is 
(n2) and thus optimal.
Clearly, the length of any wire is also 
(n/d).

5.2. An exact upper bound on area

There are r stages, i.e. stages (i, j) for j = 0, which only
contain pattern (a) in Figure 8. For each such stage, the
width is 3n/2(d + 2), referring to Figure 8d.

All the remaining d − r stages contain patterns (b) and
(c) in Figure 8. The width of such a stage is determined by

pattern (c) since pattern (c) needs additional 3n/2(d + 1)

columns because of the cross connections. The number of
columns required to connect the cube-edges within an oval
varies from stage to stage. Totally, there are 1 + 2 + 4 + 8 +
. . .+2d−r−1 = 2d−r −1 = (3n/2(d +2))−1 such columns.

Hence, the total width of the layout is

r
3n

2(d + 2)
+ (d − r)

3n

2(d + 2)
+ 3n

2(d + 1)
− 1 � 3

2
n.

The total height of the layout is equal to n plus the
number of extra rows added because of the connections
that cross (i.e. Figure 8f). Note that in Figure 8f, one
extra row (at the very bottom) is added when the wires are
laid out. According to Figure 4, the cross pattern in our
layout happens at all rows except the top and the bottom
row. Hence, we have the height of the layout equal to
n + (2r − 3) � n.

Finally, the layout has to be folded up to produce the
wraparound connections. By the standard technique, the
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( b )( a ) ( c )

( d ) ( e )
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.
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3 n

3 n

3 n
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FIGURE 8. (a), (b) and (c) are the three types of connection
patterns; each oval represents a group of 3n/2(d + 2) contiguous
nodes. (d), (e) and (f) show the detailed connection patterns of (a),
(b) and (c), respectively, in a Thompson grid. Figure 9 shows an
example of a complete layout.

original width and height are doubled. Hence, the final area
is 6n2 (save some lower-order terms).

6. CONCLUSION

It should be noted that the desired layout of the CCC cannot
be derived from the layout of the circular shuffle network,
although Beigel and Kruskal had expected the opposite
based on the similarity between the CCC and the circular
shuffle network [3, 17]. In fact, we are doubtful about the
existence of an optimal layout of the circular shuffle network

FIGURE 9. Optimal layout of a 4-dimensional CCC in a
Thompson grid.

without long wires. Even if one existed, the desired layout of
the CCC derived from it could not be better than our layout
in area, taking into account constant factors.3

Blum has shown that there exist some graphs whose
minimal-area layout require much longer wires than a
constant factor in comparison with some less-than-optimal
layouts [9]. On the other hand, there exist graphs, especially
those that are based on the mesh topology, that can be laid
out in both minimal area and minimal longest wire [8].

It is interesting and practical to try to analyse the tradeoff
between the area and the maximum wire length for important
graphs such as the CCC. In this paper, we have given a new
layout of the CCC whose maximum wire length is reduced
to an optimal level; the cost is a constant-factor blow-up in
area. Hence, we say that the CCC can be laid out optimally
within a constant factor both in area and in maximum wire
length. Specifically, the area of the new layout, which is
approximately 6n2, represents a blow-up of 12 times since
the best minimal layout area of the CCC is n2/2 [2].

Considering certain physical limitations in parallel
computers such as the speed of propagation of information,
small-diameter networks do not necessarily have an
advantage over, say, mesh-connected networks which have
a large diameter (
(N1/2)) [18, 19]. The problem of the
small-diameter networks is that they are often not scalable:
as they grow in size, the wire length must grow, thus
degrading communication performance. Hence, seeking an
efficient layout without long wires for the small-diameter
networks such as the CCC becomes very important in
order to demonstrate their suitability as an interconnection
network for the implementation of parallel computers.

Our further research is to establish lower bounds on the
area and the maximum wire length for the CCC taking into
account constant factors [20]. Must all the minimum-area
layouts have long wires? What is the minimal constant blow-
up when reducing the length of wires to an optimal level?

3The details are beyond the scope of this paper.
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