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Interval routing is a space-efficient routing method for computer networks. The method is said to
be optimal if it can generate optimal routing paths for any source–destination node pair. A path is
optimal if it is a shortest path between the two nodes involved. A seminal result in the area, however,
has pointed out that ‘the interval routing algorithm cannot be optimal in networks with arbitrary
topology’. The statement is correct but the lower bound on the longest routing path that was derived

is not. We give the counterproof in this paper and the corrected bound.
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1. INTRODUCTION

Interval routing [1, 2] is a space-efficient routing method
for general topologies. It keeps a table of sizeO(d logn)

at every node, whered is the degree of the node andn is
the number of nodes. Interval routing has attracted a fair
amount of attention in recent years partly because it has been
adopted as the routing method in a commercial routing chip
[3]. The space concern aside, an interval routing scheme
(IRS), in order to be practical, must try to achieve reasonable
performance which is measured in terms of the lengths of the
routing paths generated by the scheme. An IRS is optimal if
all the routed paths are shortest paths.

The graphs we consider are connected, of whichE is the
set of edges andV the set of nodes. Every edge inE is
bidirectional. There aren nodes inV . To implement interval
routing, each node is labelled with a unique integer, called
node number, from the cyclically ordered set{0, . . . , n−1}.2
In the following, we identify a node by its node number—
for example,v1 has the node number 1. In the simplest
kind of IRS, the one-label interval routing scheme (1-IRS),
every edge in each direction is labelled by at most one label
which is of the form [p, q] where p, q ∈ {0, . . . , n − 1}.
During routing, the destination node number is compared
with the interval labels at a node to determine the next edge
to traverse.

Figure 1 explains how interval routing works for a very
simple network. The figure shows the routing path of a
message that travels fromv2 to v0. An interval label of the
form [p, q] corresponds to the range of node numbers from
p to q (p andq included); intervals of the form [r ] contain
the single node numberr . The message first takes the edge
to v3 because 0 is contained in the interval [3, 0], and then
takes the edge tov4 because 0 is contained in [4, 0], and so

1Author to whom correspondence should be addressed.
2Non-cyclically ordered sets are used in linear interval routing schemes

(LIRS). See the paper by Kranakiset al. [4].
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FIGURE 1. Example of interval routing.

on. Note that interval labels are cyclic, and so the label [3, 0]
represents the interval spanning{3, 4, 0}. It can be seen that
O(d logn) space is sufficient at a node.

For some of the popular types of graphs, optimal 1-IRSs
exist [2]. For arbitrary graphs, Ruˇzička [5] proved that it is
not possible to have an optimal 1-IRS. He derived a lower
bound of 3

2 D + 1
2 for the longest path in a graphG, where

D is the diameter.3 We find this bound, however, to be
incorrect. In Section 2, we give a valid 1-IRS forG whereby
all the routing paths are of length no greater than3

2 D − 1.
A valid IRS is one that can route a message from any node
to any other node. In fact,32 D − 1 is the best any 1-IRS
can achieve for any graph inG. We derive a matching lower
bound forG in Section 3 to substantiate the claim. The graph
G has a simple, planar structure. Although the lower bound
on the longest path has gone through several improvements
since Ruˇzička’s result, the latest being the 2D − 3 and
2D−o(D) bounds by Tse and Lau [6], all of these results are

3Precisely,G is family of graphs, parametrized by two parameters,k
ands.
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FIGURE 2. A [labelled] graphG (k = 3, s = 14).

based on non-planar graphs. For planar graphs, Ruˇzička’s
bound (after the correction) still stands as the only valid
bound. Whereas the gap between the 2D upper bound (due
to Santoro and Khatib [1]) and the latest lower bounds based
on non-planar graphs is practically closed, there is still a
wide gap between the same upper bound and the corrected
bound presented here for the planar domain.

The graphG has an even diameter. In Section 4, we
consider a similar graph having an odd diameter, and prove
a lower bound of32 D − 1

2 for it. So, the revised bound we
are proposing in this paper isd3

2 De − 1.
Let L(u, v) denote the interval label for the edge that goes

from u to v. A nodeu is said to be contained in [p, q] if (1)
p ≤ u ≤ q for p ≤ q, or (2) p ≤ u ≤ n − 1 or 0≤ u ≤ q,
otherwise. The following are some essential properties of a
valid labelling scheme [7].

PROPERTY1. (Completeness)The set of interval labels
for edges directed from a nodeu is complete. That is, every
other node (6= u) in the graph must be contained in some
interval atu.

PROPERTY2. (No ambiguity) The interval labels for
edges directed from a nodeu are disjoint. That is, every
nodev ( 6= u) is contained in exactly one of these intervals.

PROPERTY3. (No bouncing)For any edge(u, v) in the
graph, there exists no nodew 6= u, v such thatw is
contained in bothL(u, v) andL(v, u).

For any nodeu, Property 2 implies thatL(u, v) ∩
L(u, w) = ∅, where(u, v) and (u, w) are any two edges
directed fromu. Property 3 implies thatL(u, v)∩ L(v, u) =
∅. It should be noted that these properties are necessary but
not sufficient for a valid IRS.

2. THE COUNTERPROOF

The graphG in [5] is of size 2ks − s + 2 wherek > 2 and
s ≥ 14. k is the number of columns of nodes (including the
middle column) on one side of the graph (imagine cutting the
graph in the middle);s is the number of layers of nodes in
the graph. The diameter of the graph,D, is equal to 2k. An
instance ofG is given in Figure 2, wherek = 3, s = 14, and
the total number of nodes is 72. This is in fact the smallest
G that satisfies the conditions in the proof in [5]. Without
loss of generality, we label the nodes from 0 to 71 as shown
in the figure.

It is easy to check that the labelling satisfies the necessary
conditions for a valid IRS.

PROPOSITION1. All the paths in Figure 2 using interval
routing are of length≤ 3

2 D − 1.

Proof. The graph is symmetric about the middle column (the
C nodes); so is the labelling. We need to consider three kinds
of nodes: the two end nodes (v0 andv71), theC nodes and
the A andA′ nodes.

(i) The routing paths fromv0 or v71 to any other node in
the graph are the shortest paths.
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(ii) The length of the routing paths from theC nodes to any
other node is bounded by32 D−1 since the farthest node
to aC node is one that is on a different row and within
the rightmost or leftmost column.

(iii) The interval label on the right-hand edge of anyA node
covers a distance of at least1

2 D; hence, for anA node to
reach any one of the other nodes in the graph, it would
traverse at most a distance of 2D − 1− 1

2 D = 3
2 D − 1.

Similarly for theA′ nodes. �

The labelling strategy as demonstrated in Figure 2 can be
easily generalized and applied to any instance ofG.

The labelling in Figure 2 does not use any complement
label. An edge with a complement label is taken when
the interval labels of all other edges fail to contain the
destination node number. A complement label can be
viewed as a set of multiple interval labels being attached to
the same edge. Intuitively, complement labels can lead to
a better IRS. In the following, we prove, however, that the
labelling in Figure 2 is optimal; complement labels will not
make the labelling any better.

3. A 3
2D − 1 LOWER BOUND

Let G+ = (V , E), whereV is the set of nodes andE the set
of bidirectional edges defined as follows

V = {vi, j |1 ≤ i ≤ s, 1 ≤ j ≤ 2k − 1} ∪ {u, w}
E = {(u, vi,1)|1 ≤ i ≤ s}

∪ {(w, vi,2k−1)|1 ≤ i ≤ s}
∪ {(vi, j , vi, j+1)|1 ≤ i ≤ s, 1 ≤ j ≤ 2k − 2}

wheres ≥ 5 andk > 1. Note thatG+ as a family of graphs
includesG. Figure 3 shows the smallest possibleG+. We
useG+ instead ofG because a lower bound that is applicable
to a larger family of graphs seems desirable, especially when
deriving practical labelling algorithms. The lower bound on
the longest path we are going to prove forG+ is 3

2 D − 1.

i,1 i,3

k k+1

u w

v vi,2v

D = 2k = 4

1 or k-1

FIGURE 3. A [labelled] graphG+ (k = 2, s = 5).

If we allow null labels (which contain nothing) in any
node inG+, it can be easily seen that 2D − 1 is the lower
bound on the longest path between a node having one or
more null labels and any other node. Hence, it is not
necessary to consider labellings that use null labels. Some

schemes allow a complement label to be attached to one
of the edges in a node, which is the ‘default’ next hop
when all other labels fail to match. For all the degree-
two nodes inG+, a complement label would be equal to
an ordinary interval label because the complement would
consist of one interval. Therefore, the nodes that can have a
real complement label (consisting of more than one interval)
are u and w. Without loss of generality, assume the two
complement labels ofu andw respectively are in the last two
layers ofG+. We are then left with a subgraph, consisting of
the firsts −2 layers ofG+, which has only ordinary interval
labels. Sinces − 2 ≥ 3, we consider the first three rows.

We use the set notation to denote containment of node
numbers in an interval. For example,{u, v,w} refers to the
three node numbers of nodesu, v,w, respectively, that are
contained in some interval but whose order is not specified.
We use the notationu ≺ v ≺ w to denote the cyclic ordering
of node numbers. The expressionu ≺ {v,w} ≺ x means
thatv andw are contained in some interval and that they are
ordered afteru and beforex , and the order ofv andw is not
known.

If there exists a labelling scheme such that the longest path
in the labelled graph is shorter than3

2 D − 1, then we have
the following lemmas.

LEMMA 1. There exist three interval labels containing
respectively the three disjoint intervals{vi,1, vi,k+1} for i =
1, 2, 3.

Proof. Consideri = 1. The interval labelL(u, v1,1) must
contain{v1,1, v1,k+1}; otherwise, reaching these nodes from
u (via w) would take no fewer than32 D − 1 hops. Similarly
for i = 2 and 3.

LEMMA 2. (1) L(vi,k , vi,k−1) contains {v1,1, v2,1, v3,1}
and (2)L(vi,k , vi,k+1) contains{vi,k+1, w}, for i = 1, 2, 3.

Proof. If (1) is not true, reaching any one of{v1,1, v2,1, v3,1}
from vi,k (via w) would take no fewer than32 D − 1 hops.
Similarly for (2).

THEOREM 1. There exists no labelling scheme forG+
such that the longest path of the labelled graph is shorter
than 3

2 D − 1.

Proof. Without loss of generality, supposev1,1 ≺ v2,1 ≺
v3,1. If there is a labelling scheme such that the longest path
in the labelled graph is shorter than3

2 D−1, then by Lemma 1
we have

{v1,1, v1,k+1} ≺ {v2,1, v2,k+1} ≺ {v3,1, v3,k+1}.
Denote these three intervals byI1, I2 and I3, respectively.
By Lemma 2, we also have two disjoint interval labels
containing {v1,1, v2,1, v3,1} and {v3,k+1, w}, respectively.
The situation is as depicted in Figure 4, where we assume
without loss of generality that the ‘gap’ between the two
ends of the interval label containing{v1,1, v2,1, v3,1} is
betweenI1 andI3.4

4w could be insideI1 or I3.
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FIGURE 4. The proof.

By Lemma 2, L(v2,k, v2,k+1) contains {v2,k+1, w}.
However, any interval label containing{v2,k+1, w} would
also contain eitherv1,1 or v3,1. If that is the case, then going
from v2,k to v1,1 or v3,1 would take 3

2 D − 1 hops, which
contradicts our assumption about the longest path.

Note that we needed threeIs to arrive at the final
contradiction, which is why we sets to be≥5 (3 + two layers
for complement labels).

Since G+ includesG, the lower bound for the longest
path in G is also 3

2 D − 1, and the labelling strategy as
demonstrated in Figure 2 is optimal for bothG+ andG for
all values ofk.

4. A 3
2D − 1

2 LOWER BOUND

G+ has a diameter which is even (D = 2k). We can
construct another graph family,G∗, having an odd diameter
D = 2k + 1, wherek > 1. An example is shown
in Figure 5, which is the smallestG∗ graph (allowing
complement labels) for which our lower bound applies. As
in the case ofG+, we haves ≥ 5. The lower bound on
the longest path for this graph is32 D − 1

2. Although the
kth column is shifted one position to the left, the proof is
exactly (in fact, literally) the same as the proof forG+—
that is, if there exists a labelling scheme forG∗ such that the
longest path in the labelled graph is shorter than3

2 D − 1
2,

then Lemmas 1 and 2 apply. We have the following forG∗.

THEOREM 2. There exists no labelling scheme forG∗
such that the longest path of the labelled graph is shorter
than 3

2 D − 1
2.

Combining Theorems 1 and 2, we have the following.

THEOREM 3. There exists a planar graph with diameter
D such that using any interval labelling scheme, the longest
path in the labelled graph is no shorter thand3

2 De − 1.

w

i,1v i,3

k k+1

u

vi,2v

k+2

vi,4

D = 2k+1 = 5

1 or k-1

FIGURE 5. A [labelled] graphG∗ (k = 2, s = 5).

5. CONCLUDING REMARKS

Ružička has made an important contribution in proposing
a graph for which no 1-IRS can be optimal; he has since
called this graph the globe graph [8]. We have proved in
this paper a lower bound ofd3

2 De − 1 on the longest path
due to any 1-IRS for the globe graph (even or odd diameter),
thus correcting Ruˇzička’s bound. If we disallow complement
labels, the smallest such graph to which our bound applies—
a G+ with an even diameter—has 11 nodes (k = 2, s = 3)
and a degree of 3. Comparing this to the size of the smallest
graph in [7] (131) and that in [6] (1, 491, 345, 315), the
bound we have derived here seems to be much closer to
reality. The significance of small graphs is that they are
more likely to be embedded as subgraphs in larger graphs.
An interesting question at this point may be: What is the
smallest graph (any kind of graph) for which 1-IRS is not
optimal? In [9], Fraigniaud and Gavoille gave a seven-node
circular-arc graph (a planar graph) which is the smallest
graph we know of that would not admit an optimal 1-IRS.

The 2D − 3 and 2D − o(D) bounds [6] are based on and
applicable to non-planar graphs. If we isolate planar graphs
as a class by themselves, then there is a relatively wide gap
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between the 2D upperbound [1] and thed3
2 De − 1 lower

bound given in this paper. Further work is needed to narrow
the gap.
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