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Interval routing is a space-efficient routing method for computer networks. The method is said to

be optimal if it can generate optimal routing paths for any source—destination node pair. A path is

optimal if it is a shortest path between the two nodes involved. A seminal resultin the area, however,

has pointed out that ‘the interval routing algorithm cannot be optimal in networks with arbitrary

topology’. The statement is correct but the lower bound on the longest routing path that was derived
is not. We give the counterproof in this paper and the corrected bound.
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1. INTRODUCTION

[1.2] (2]
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Interval routing [1, 2] is a space-efficient routing method
for general topologies. It keeps a table of si2éd logn)

at every node, wherd is the degree of the node andis

the number of nodes. Interval routing has attracted a fair
amount of attention in recent years partly because it has been
adopted as the routing method in a commercial routing chip
[3]. The space concern aside, an interval routing scheme [0,1]
(IRS), in order to be practical, must try to achieve reasonable
performance which is measured in terms of the lengths of the
routing paths generated by the scheme. An IRS is optimal if

[4.0]

all the routed paths are shortest paths. 4 3
The graphs we consider are connected, of wikcis the B amessage destined for Vo
set of edges an¥ the set of nodes. Every edge i is
bidirectional. There are nodes invV. To implement interval FIGURE 1. Example of interval routing.
routing, each node is labelled with a unique integer, called
node number, from the cyclically ordered §@t. . ., n—1}.2 on. Note that interval labels are cyclic, and so the labg)]3

In the following, we identify a node by its node number— represents the interval spannif8 4, 0}. It can be seen that
for example,v1 has the node number 1. In the simplest O(dlogn) space is sufficient at a node.
kind of IRS, the one-label interval routing scheme (1-IRS),  For some of the popular types of graphs, optimal 1-IRSs
every edge in each direction is labelled by at most one labelexist [2]. For arbitrary graphs, Ri€ka [5] proved that it is
which is of the form p, q] wherep,q € {0,...,n — 1}. not possible to have an optimal 1-IRS. He derived a lower
During routing, the destination node number is compared bound of%D + % for the longest path in a grapgh, where
with the interval labels at a node to determine the next edge D is the diamete?. We find this bound, however, to be
to traverse. incorrect. In Section 2, we give a valid 1-IRS f@rwhereby
Figure 1 explains how interval routing works for a very all the routing paths are of length no greater tl%[m —1.
simple network. The figure shows the routing path of a A valid IRS is one that can route a message from any node
message that travels from to vg. An interval label of the to any other node. In facgo — 1 is the best any 1-IRS
form [p, q] corresponds to the range of node numbers from can achieve for any graph . We derive a matching lower
pto g (p andq included); intervals of the fornr] contain  bound forG in Section 3 to substantiate the claim. The graph
the single node number The message first takes the edge G has a simple, planar structure. Although the lower bound
to v3 because 0 is contained in the interval 0§ and then  on the longest path has gone through several improvements
takes the edge toy because 0 is contained in,[@], and so  since Ruitka's result, the latest being theD2— 3 and
2D —0(D) bounds by Tse and Lau [6], all of these results are

1Author to whom correspondence should be addressed.
2Non-cyclically ordered sets are used in linear interval routing schemes ~ 3Precisely,G is family of graphs, parametrized by two parametéss,
(LIRS). See the paper by Kranalés al. [4]. ands.
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FIGURE 2. A [labelled] graphG (k = 3, s = 14).

based on non-planar graphs. For planar graphgjcRa’s For any nodeu, Property 2 implies thatl(u,v) N
bound (after the correction) still stands as the only valid L(u, w) = @, where(u, v) and (u, w) are any two edges
bound. Whereas the gap between tlie Bper bound (due  directed fromu. Property 3 implies that (u, v) "L (v, u) =
to Santoro and Khatib [1]) and the latest lower bounds basedd. It should be noted that these properties are necessary but
on non-planar graphs is practically closed, there is still a not sufficient for a valid IRS.
wide gap between the same upper bound and the corrected
bound presented here for the planar domain. - THE COUNTERPROOF

The graphG has an even diameter. In Section 4, we The graphG in [5] is of size Xs — s + 2 wherek > 2 and
consider a similar graph having an odd diameter, and proveS = 14. k is the number of columns of nodes (including the

a lower bound 0,3_2 D— % for it. So, the revised bound we Middle column) on one side of the graph (imagine cutting the
are proposing in this paper F% D] —1. graph in the middle)s is the number of layers of nodes in

Let L(u, v) denote the interval label for the edge that goes Fhe graph. The c'ham(_—zter.of the grafi, is equal to B. An
. . . . . instance ofG is given in Figure 2, wherk = 3,s = 14, and

fromu to v. A nodeu is said to be contained irp| q] if (1) : C
p<u<qforp<gor(@p<u<n—1or0<u<aq, the total n_umber of node_s'ls 72. This is in ff’:lCt the smallest
otherwise. The following are some essential properties of aG that satlsﬁes_ the conditions in the proof in [5]. Without

. . loss of generality, we label the nodes from 0 to 71 as shown
valid labelling scheme [7]. . .

in the figure.

PROPERTY1. (Completenessyhe set of interval labels It is easy to check that the labelling satisfies the necessary
for edges directed from a nodeis complete. That is, every  conditions for a valid IRS.
other node # u) in the graph must be contained in some

_ ProPOSITIONL. All the paths in Figure 2 using interval
interval atu.

routing are of length 3D — 1.

PROPERTYZ2. (No ambiguity) The interval labels for  pyoof. The graph is symmetric about the middle column (the
edges directed from a nodeare disjoint. Thatis, every  C nodes); so s the labelling. We need to consider three kinds
nodev (# u) is contained in exactly one of these intervals. 5t nodes: the two end nodesg(andv71), the C nodes and

PrROPERTY3. (No bouncing)ror any edge(u, v) in the the AandA’ nodes.
graph, there exists no node # u,v such thatw is () The routing paths fromyg or v71 to any other node in
contained in both_(u, v) andL (v, u). the graph are the shortest paths.
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(ii) The length of the routing paths from ti@nodesto any ~ schemes allow a complement label to be attached to one
other node is bounded %D—l since the farthestnode of the edges in a node, which is the ‘default’ next hop
to aC node is one that is on a different row and within when all other labels fail to match. For all the degree-
the rightmost or leftmost column. two nodes inG™*, a complement label would be equal to

(iii) The interval label on the right-hand edge of aAyode an ordinary interval label because the complement would
covers a distance of at Iea%D; hence, for arA node to consist of one interval. Therefore, the nodes that can have a
reach any one of the other nodes in the graph, it would real complement label (consisting of more than one interval)
traverse at most a distance dd2- 1 — %D = %D —1. areu and w. Without loss of generality, assume the two
Similarly for the A’ nodes. O complement labels af andw respectively are in the last two

. L layers ofGT. We are then left with a subgraph, consisting of
The labelling strategy as demonstrated in Figure 2 can beq firsts — 2 layers ofG*, which has only ordinary interval

easily generalized and applied to any instanceof labels. Sinces — 2 > 3, we consider the first three rows.

The labelling in Figure 2 does not use any complement \ye ;se the set notation to denote containment of node
label. - An edge with a complement label is taken when ,,mhers in an interval. For example, v, w} refers to the
the interval labels of all other edges fail to contain the {06 node numbers of nodesv, w, respectively, that are

destination node number. = A complement label can be ;qonained in some interval but whose order is not specified.
viewed as a set of multiple interval labels being attached t0 \yjs ;se the notation < v < w to denote the cyclic ordering

the same edge. Intuitively, complement labels can lead to ot ,ode numbers. The expression< {v, w} < X means

a better IRS. In the following, we prove, however, that the hat,, anduw are contained in some interval and that they are

labelling in Figure 2 is optimal; complement labels will not ordered aften and beforex. and the order of andw is not
make the labelling any better. ’

known.
3 If there exists a labelling scheme such that the longest path
3. A3D—-1LOWERBOUND in the labelled graph is shorter thg® — 1, then we have
LetG* = (V, E), whereV is the set of nodes ar the set  the following lemmas.
of bidirectional edges defined as follows LEMMA 1.There exist three interval labels containing
respectively the three disjoint interv , Vj fori =
V=fujll<i<s1<j=<2k—1U{u w} AT : A8, 1. vy )

E = u, vj 1<i< S . . .
( U"1)|_ - - }, Proof. Consideri = 1. The interval labeL (u, v1,1) must
U{(w, vj,x—1)I11 < I. =s} _ contain{v1 1, v1 k+1}; otherwise, reaching these nodes from
U{(ij,vij+)1<i <s1<j=<2k-2} u (via w) would take no fewer thagD — 1 hops. Similarly

) fori =2and 3. O
wheres > 5 andk > 1. Note thatG™ as a family of graphs

includesG. Figure 3 shows the smallest possilBe. We LEMMA 2. (1) L(vik, vik—1) contains{vi 1, v21, v3.1}
useG™ instead ofG because a lower bound that is applicable and (2)L (vj k, vi.k+1) contains{vj k41, w}, fori =1, 2, 3.
to a larger family of graphs seems desirable, especially when
deriving practical labelling algorithms. The lower bound on
the longest path we are going to prove @r is %D —1.

Proof. If (1) is not true, reaching any one @f1 1, v2.1, v3,1}
from v k (via w) would take no fewer thang — 1 hops.
Similarly for (2). O

D=2k=4 THEOREM 1. There exists no labelling scheme fGrt
such that the longest path of the labelled graph is shorter
than3D — 1.

Proof. Without loss of generality, supposg 1 < v21 <
v31. If there is a labelling scheme such that the longest path
inthe labelled graphis shorter théD—l, thenby Lemmal

u W
we have
{v1,1, vik+1} < {v2,1, v2k+1) < {v3,1, V3 K1)
lork-1 Kk k+1 Denote these three intervals by, 1, and I3, respectively.
By Lemma 2, we also have two disjoint interval labels
FIGURE 3. A [labelled] graphG* (k = 2,5 = 5). containing {v1.1, v2.1, v3.1} and {va k41, w}, respectively.

The situation is as depicted in Figure 4, where we assume

If we aﬂow null labels (which contain nothing) in any oyt loss of generality that the ‘gap’ between the two
node inG™, it can be easily seen thaD2— 1 is the lower ends of the interval label containingi 1, va.1, va1} is

bound on the longest path between a node havmg ONe Ofyetweenl; andls.?
more null labels and any other node. Hence, it is not
necessary to consider labellings that use null labels. Some “w could be insidd4 or I.
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interval containing =,
V11 V2,1 V31

FIGURE 4. The proof.

By Lemma 2, L(v2k,v2k+1) contains {vo k41, w}.
However, any interval label containingz k+1, w} would
also contain eithews 1 or vz 1. If that is the case, then going
from v t0 v11 or vz 1 would take3D — 1 hops, which
contradicts our assumption about the longest path. O

Note that we needed threks to arrive at the final
contradiction, which is why we setto be>5 (3 + two layers
for complement labels).

Since GT includesG, the lower bound for the longest
path in G is also %D — 1, and the labelling strategy as
demonstrated in Figure 2 is optimal for b andG for
all values ofk.

4. A3D - 3 LOWER BOUND

G* has a diameter which is evelD(= 2k). We can
construct another graph familgg*, having an odd diameter
D 2k + 1, wherek > 1. An example is shown
in Figure 5, which is the smalless* graph (allowing
complement labels) for which our lower bound applies. As
in the case ofG*, we haves > 5. The lower bound on
the longest path for this graph D — 3. Although the
kth column is shifted one position to the left, the proof is
exactly (in fact, literally) the same as the proof 16r—
that is, if there exists a labelling scheme &f such that the
longest path in the labelled graph is shorter tian — 1,
then Lemmas 1 and 2 apply. We have the following@&odt.

THEOREM 2. There exists no labelling scheme f&r*
such that the longest path of the labelled graph is shorter
than3D — 3.

Combining Theorems 1 and 2, we have the following.

THEOREM 3. There exists a planar graph with diameter

I — D=2k+1=5 - =

Via  Vi2  Vig o Vg
@ @
@ @

u @ @ @ @ w

@ @
@ @

lork-1 k k+1 k+2

FIGURE 5. A [labelled] graphG* (k = 2, s = 5).

5. CONCLUDING REMARKS

RuZicka has made an important contribution in proposing
a graph for which no 1-IRS can be optimal; he has since
called this graph the globe graph [8]. We have proved in
this paper a lower bound (jf;’ D7 — 1 on the longest path
due to any 1-IRS for the globe graph (even or odd diameter),
thus correcting Reicka’'s bound. If we disallow complement
labels, the smallest such graph to which our bound applies—
a G™T with an even diameter—has 11 nod&s 2, s = 3)
and a degree of 3. Comparing this to the size of the smallest
graph in [7] (131) and that in [6] (B91, 345 315), the
bound we have derived here seems to be much closer to
reality. The significance of small graphs is that they are
more likely to be embedded as subgraphs in larger graphs.
An interesting question at this point may be: What is the
smallest graph (any kind of graph) for which 1-IRS is not
optimal? In [9], Fraigniaud and Gavoille gave a seven-node
circular-arc graph (a planar graph) which is the smallest
graph we know of that would not admit an optimal 1-IRS.
The 2D — 3 and D — o(D) bounds [6] are based on and

D such that using any interval labelling scheme, the longest applicable to non-planar graphs. If we isolate planar graphs

path in the labelled graph is no shorter thgg D1 — 1.

as a class by themselves, then there is a relatively wide gap
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between the B upperbound [1] and the% D] — 1 lower [6] Tse,S.S.H.andLau, F. C. M. (1997) An optimal lower bound
bound given in this paper. Further work is needed to narrow for interval routing in general networks. Rroc. 4th Int. Coll.
the gap. on Structural Information and Communication Complexity
(SIROCCO97) July, Ascona, Switzerland, pp. 112-124.
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