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A preemptive Java thread migration mechanism ∗
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Delta Execution is a preemptive and transparent thread migration mechanism for supporting load distribution and balancing in a
cluster of workstations. The design of Delta Execution allows the execution system to migrate threads of a Java application to different
nodes of a cluster so as to achieve parallel execution. The approach is to break down and group the execution context of a migrating
thread into sets of consecutive machine-dependent and machine-independent execution sub-contexts. Each set of machine-independent
sub-contexts, also known as a delta set, is then migrated to a remote node in a regulated manner for continuing the execution. Since Delta
Execution is implemented at the virtual machine level, all the migration-related activities are conducted transparently with respect to the
applications. No new migration-related instructions need to be added to the programs and existing applications can immediately benefit
from the parallel execution capability of Delta Execution without any code modification. Furthermore, because the Delta Execution
approach identifies and migrates only the machine-independent part of a thread’s execution context, the implementation is therefore
reasonably manageable and the resulting software is portable.

1. Introduction

Traditional UNIX-like systems such as Sprite [7] and
MOSIX [2] support dynamic load balancing in a cluster by
implementing process migration at the kernel level. Be-
cause the kernel has the best knowledge of all the activ-
ities and resources that are distributed within the cluster,
it can perform resource management effectively. However,
as UNIX was not designed with the notion of process mi-
gration from ground up, extending it to support migration
usually requires a substantial amount of software effort and
the portability of the system could be compromised as a
result [3].

Delta Execution aims at providing a high-level and
portable implementation of migratable Java threads that is
not entangled with any low-level and system-dependent is-
sues. The implementation is carried out at the middle-ware
level by extending the Java Virtual Machine. Because of
this high-level approach, the Delta Execution mechanism
is also applicable to other language environments that are
based on virtual machines for supporting preemptive thread
migration.

The Delta Execution mechanism identifies and separates
the machine-independent sub-contexts from the machine-
dependent sub-contexts in the execution context of a run-
ning thread. Machine-independent sub-context is the state
information that can be expressed in terms of execution
state of the virtual machine, such as data stored in the virtual
machine’s registers. Mahine-dependent sub-context is the
state information that are part of the internal state of the ex-
ecuting program that implements the virtual machine, such
as the hardware program counter that points to the current
machine instruction when the virtual machine is executing
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a native method. When a thread migrates to a remote node,
only the machine-independent sub-contexts are migrated in
a regulated manner. The manipulation of any machine-
dependent sub-contexts is avoided by keeping them intact
at the home node where execution involving these sub-
contexts will continue to be performed. Active execution
of the migrated thread is observed as a sequence of execu-
tions on the machine-dependent and machine-independent
sub-contexts that switches back and forth between the home
and the remote node. Because the migrated thread only in-
crementally advances its execution by a delta amount every
time the execution control switches between the two nodes,
thus we give this mechanism the name Delta Execution.

The Delta Execution mechanism is implemented as part
of the JESSICA (Java-Enabled Single-System-Image Com-
puting Architecture) middle-ware [9,10] for cluster com-
puting. JESSICA is a distributed Java Virtual Machine that
abstracts away the distributed nature of the cluster hard-
ware and provides multi-threaded Java applications with an
illusion of a single multi-processor machine.

In summary, the main features of Delta Execution in-
clude:

• Transparent migration. The Delta Execution mecha-
nism is implemented entirely at the virtual machine
level which is transparent to a migrating thread; together
with a redirection mechanism for forwarding location-
dependent operations and a distributed shared-memory
subsystem that supports location-independent memory
access, migration transparency can be guaranteed.

• Bytecode-level migration granularity. A thread can be
stopped at any time and be migrated once the execution
of the current bytecode instruction is finished. The sys-
tem can swiftly respond to any change in system load
across the cluster for load balancing.

 Baltzer Science Publishers BV



84 M.J.M. Ma et al. / Delta Execution: A preemptive Java thread migration mechanism

• Portable and manageable implementation. Unlike tra-
ditional systems that implement migration at the kernel
level, Delta Execution is implemented on top of the ker-
nel without having to deal with any low-level details of
the operating system or the hardware. This approach
provides better portability and the software effort re-
quired is more manageable.

• Compatibility with existing Java applications. Because
the migration mechanism does not require adding any
new migration-related instructions to a Java program,
the implementation offers maximum compatibility to the
vast number of existing Java applications.

• A language-neutral solution. The design of Delta Exe-
cution and its accompanying redirection mechanism for
handling migration transparency is not only applicable
to the Java programming language alone. It is a generic
solution that can also be applied to other programming
languages which execute by means of virtual machines
for supporting transparent thread migration.

The rest of the paper is organized as follows. Section 2
presents the system architecture of JESSICA. Section 3 dis-
cusses the Delta Execution mechanism in detail. Section 4
evaluates the performance of an experimental prototype.
Section 5 discusses related work and finally Section 6 con-
cludes the paper.

2. JESSICA system architecture

JESSICA comprises a group of daemons running in all
the nodes in a cluster of computers. They execute as user-
level processes on top of the UNIX operating system, and it
is the collaboration and coordination among these JESSICA
daemons that a single-system-image illusion is offered to
Java applications, as depicted in figure 1.

The single-system-image illusion is established through
the provision of a global thread space. The global thread
space is a logical thread space that spans all the nodes in
the cluster, where the machine boundaries are hidden and
threads can freely migrate from one node to another by fol-

Figure 1. Global Thread Space creates an SSI illusion over a cluster of
computers.

lowing the Delta Execution mechanism. The distributed-
shared memory (DSM) subsystem enables memory objects
to be globally-accessible by threads independent of their
current physical locations. Together with a master-slave
redirection mechanism that forwards I/O and other location-
dependent operations back to the home node for execution,
thread migration within the global thread space is entirely
transparent to applications. As a result, this free move-
ment of threads provides an opportunity for optimizing the
utilization of shared resources within the cluster.

In JESSICA, we classify cluster nodes as either console
or worker as follows:

• Console node. Java applications can be started in any
node in the JESSICA cluster. The node in which a Java
application is initiated will become the home of that
application and is known as the console node.

• Worker node. When an application is instantiated in
the console node, other nodes in the JESSICA cluster
will play the role of supporting the console to execute
the application. The worker nodes are there in stand-by
mode and would serve any requests forwarded from the
console.

2.1. JESSICA daemon

Each JESSICA daemon is composed of the following
four components that provide bytecode execution, memory
management, thread creation, scheduling and synchroniza-
tion to Java applications the same way as a standard Java
Virtual Machine (JVM).

• Bytecode Execution Engine (BEE). It is responsible for
binding an active thread and executing its method code.
Parallel execution of a multi-threaded application is re-
alized by having multiple BEEs running on multiple ma-
chines to execute multiple threads simultaneously.

• Distributed Object Manager (DOM). It is responsible for
managing the memory resources in its local node and to
cooperate with DOMs running on other nodes to create
a global object space. The physical locations of objects
are transparent to the threads living within the global
object space.

• Thread Manager (TM). It is responsible for creating,
scheduling and destroying threads running on the local
node. During the course of migration, it coordinates
with TMs running on other nodes to marshal, ship, and
demarshal the execution contexts of migrating threads.

• Migration Manager (MM). It is responsible for collect-
ing load information of the local node and exchanging
that information with MMs running on other nodes in
order to enforce a migration policy.

2.2. A master-slave model for migrating threads

When a thread running in the console node migrates,
it does not actually pack its entire execution context and
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Figure 2. Interactions between the master and the slave threads that hide migration from the rest of the system.

move to the destination worker node. Instead, it is split
into two cooperating entities, one running in the console
node called the master, and the other running in the worker
node called the slave. The slave thread is in fact created
anew at the worker node and acts as the migrated thread
image to continue the execution of the original thread. The
execution context is divided into sets of machine-dependent
and machine-independent sub-contexts as identified by the
Delta Execution mechanism. All the machine-dependent
sub-contexts are processed locally by the master thread
while the remaining machine-independent sub-contexts are
migrated to the slave thread for execution. As a result, this
master-slave design provides an opportunity for the imple-
mentation to isolate and process machine-dependent con-
texts from machine-independent contexts in a manageable
way.

The master thread remaining at the console represents
the original thread and is now responsible for performing
any location-dependent operation such as I/O for the slave.
With this design we are able to create the global thread
space that maintains the same semantics and relationships
between all the objects in the execution environment as the
case when there is no migration, as shown in figure 2. All
the interactions between the slave and other threads have
to go through the master. The redirections make the master
appear to other threads as the only thread they are inter-
acting with. On the slave side, all the location-dependent
operations are redirected transparently back to the console
to be performed by the master. As a result, the execution
environment observed by a running thread in JESSICA is
the same as that in a standard JVM, regardless of whether
the thread has been migrated or not.

3. Delta execution

The primary task for performing thread migration is to
capture the execution context of a migrating thread com-
pletely at the console node so that the context can be cor-
rectly reproduced at the destination worker node. Execu-
tion context represents the current state of a running thread.
The execution state reconstructed at the worker node will
be used to resume execution of the migrated thread at ex-
actly the same place where the thread was frozen at the
console.

3.1. Method invocation sequence and Java method frame

Observe that the life of an active Java thread be-
gins with the calling of java.lang.Thread.start()
method, or the equivalent if this thread is a sub-class of
java.lang.Thread. The bytecode instructions of this
method will be executed by the bytecode execution engine,
which may further call other methods, and so on. Finally,
the thread terminates when this start() (or the equiva-
lent) method returns. In other words, the execution context
of a running thread can be represented by a sequence of
method calls and their respective execution context local to
each method.

Here a structure called Java method frame (JMF) is de-
fined to help represent the method invocation sequence of
an active thread. The purpose of JMF is to capture the ex-
ecution context of a Java method under execution. A JMF
contains:

• a program counter (PC) pointing to the bytecode that is
currently under execution;

• NPC, the location of next bytecode instruction to be
executed;
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Figure 3. Factorial.java.

• a stack pointer (SP) pointing to the top of the Java
method stack;

• the set of local variables of this method;

• the Java method stack;

• other miscellaneous information such as that for Java
exception handling.

Notice that information containing in a JMF is platform-
independent.

With the JMF defined, we will be able to describe the
execution context of a running thread. When the bytecode
execution engine first activates a thread by invoking its
java.lang.Thread.start() method (or the equiva-
lent), it pushes the corresponding JMF, labeled as f0, onto
the thread runtime stack before executing code that im-
plements the method. The inserted f0 is responsible to
store state information that comprises the execution con-
text of the start() method during execution. Consider
at some point the start() method tries to invoke an-
other method, m1, by using one of the invokeMethod1

instructions, the thread will instantiate a new JMF, f1, for
storing the execution context of the invoking method m1

and pushes it onto the thread runtime stack. When m1 re-
turns, its method execution context will also be discarded.
This is done by popping f1 from the runtime stack. The
popping action will also cause the execution context of the
start() method, i.e. f0, to be restored automatically.
Since at this moment the NPC of f0 is pointing to the
instruction immediately following the previous m1 call, the
thread can then continue its execution from the point of re-
turn of the m1 call. Notice that because of this arrangement,
the JMF sitting on the top of the runtime stack will always
correspond to the execution context of the current method.

3.2. A simple thread migration example

The Factorial.java example shown in figure 3 il-
lustrates how thread migration is carried out and how exe-
cution states are captured and transferred based on the JMF
structure. The compiled bytecode instructions are shown in
figure 4. The numbers following the line numbers in fig-
ure 4 represent the corresponding locations of the bytecode
instructions to be stored in the program counter (PC).

1 The bytecode execution engine can invoke a Java method
by executing one of the invokevirtual, invokespecial,
invokeinterface, or invokestatic bytecode instructions.

Figure 4. Disassembled bytecode of the class Factorial.

Consider the console node triggering a migration when
the Factorial program has already recursed three times
and the running thread is frozen at PC = 8 of method
f() (figure 4, line 18). After the current instruction at
PC = 8, i.e., iload 0, has been completed, the execution
context of the main thread can be represented pictorially as
in figure 5.

Suppose at this moment this main thread migrates, the
above five JMFs which constitute the entire execution con-
text of main, are packed and shipped to a worker node. Af-
ter the execution context arrives at the destination worker
node, they are unpacked and reconstructed, and eventually
bound to the execution context of a newly created slave
thread. When the slave thread resumes its execution, it
continues from the tail-JMF, and updates the value of PC
to 9, i.e., iconst 1 (figure 4, line 19), according to the
content of the NPC. The result is an integer constant 1 being
pushed onto the tail-JMF’s method stack. From this point
onwards, the slave thread continues its execution correctly
from the point where the master was previously stopped.
When the recursive method f() at this level (n = 7) re-
turns, the JMF is popped and the context of the previous
JMF (n = 8) is restored. The method stack now should
contain two integer elements: 8, and 5040, i.e., the value
of n and the evaluated value of f(7), respectively. From
this point onwards, the execution context of the slave thread
further unwinds itself and the JMFs of the method f() are
popped from the thread runtime stack one after another as
the recursive calls return. Eventually when all the JMFs
are exhausted the slave thread will have completed its ex-
ecution, and the result is the return value of f(10) stored
at the top of the method stack.
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Figure 5. Execution context of thread main after a number of iterations.

Figure 6. Bar.java and Foo.java.

Figure 7. Disassembled bytecode of the class Bar.

3.3. How machine-dependent sub-context comes about

Although the JMF structure appeared to be comprehen-
sive enough to capture the execution context of a run-
ning thread, it turns out that such solution is only good
for some cases. If a thread invokes methods directly
through the bytecode execution engine using one of the
invokeMethod instructions, then the scheme of using a
sequence of JMFs as described previously can sufficiently
capture and represent the execution context of this run-
ning thread. On the other hand, if this thread invokes a
native method2, or if the bytecode execution engine ex-
ecutes an instruction such that the instruction will invoke
another method as a side-effect, this will generate machine-
dependent sub-context that a sequence of JMFs alone can-
not capture. An example of machine-dependent state in-
formation so generated is the hardware return address of
the native method. This can be illustrated by the following
Bar and Foo classes as shown in figure 6. Their cor-
responding disassembled bytecode are shown in figures 7
and 8, respectively.

An illustrating example
This example demonstrates how machine-dependent

state information is introduced into a thread’s execution
context when the bytecode execution engine executes a
bytecode instruction that in turn invokes another method.

2 A native method is a method implemented by the native machine code
of the underlying hardware.
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Figure 8. Disassembled bytecode of the class Foo.

Figure 9. Simplified implementation for the new bytecode instruction in
C/C++.

The Bar class contains a class initialization method which
will be executed once when it is loaded by the bytecode ex-
ecution engine the first time. When class Foo tries to create
a new instance of object Bar using the new bytecode in-
struction, the bytecode execution engine will load the Bar
class and invoke its initialization method just before allocat-
ing a new Bar object. Machine-dependent state informa-
tion is introduced into the execution context at this point. If
the thread migrates before the initialization method returns,
such machine-dependent sub-context cannot be captured by
a JMF sequence. In this example, the static block in the
class Bar defines the class initialization method (figure 6,
line 03) and is internally denoted as method <clinit>
by the virtual machine implementation (figure 7, line 12).
According to this example, the initialization method will
initialize the class variable count to 100 when class Bar
is first loaded (figure 6, line 03).

When the execution of class Foo begins, the main
thread of the bytecode execution engine enters the main()
method of class Foo (figure 6, line 08) and executes its
first bytecode instruction, i.e., new, at PC = 0 (figure 8,
line 06). Within the bytecode execution engine, the im-
plementation looks up and loads class Bar into the sys-
tem (figure 8, line 06) and invokes the class initialization
method. The bytecode execution engine then allocates a
free memory block and returns it as a new Bar object.
The C/C++ code segment in figure 9 shows a possible way
to implement the new bytecode instruction for the bytecode
execution engine, which summarizes the above actions.

Figure 10. Execution context of thread main after entering the class ini-
tialization method <clinit>.

When the main thread invokes the class initialization
method <clinit> by calling the vmExecuteJava-
Method()3 function from the instruction new()
implementation at line 10 of figure 9, it pushes a new JMF
onto the thread runtime stack so as to represent the exe-
cution context of clinit. If at this moment the console
decides to migrate the thread when the bytecode execution
engine is executing the first instruction of clinit, i.e.,
bipush (figure 7, line 13), the main thread will be frozen
once the bipush instruction has been completed. At this
stage the execution context of the thread can be represented
by the JMF sequence as illustrated in figure 10.

After the JMF sequence of the migrating main thread is
transmitted to a destination worker node, its slave thread
will resume its execution according to the reconstructed
method execution context of <clinit>, where the value
of PC at this point equals to 2. This will cause the in-
teger value 100, as obtained from the top of the method
stack, to be stored to the class variable count before re-
turning from the initialization method (figure 7, line 14).
When the clinit method returns, the corresponding JMF
will be popped from the thread runtime stack and the ex-
ecution context of Foo.main() will also be restored.
Without special arrangement the bytecode execution engine
will continue the execution from the execution context of
Foo.main() and execute the next instruction at PC = 3,
i.e., invokestatic (figure 8, line 07). But this will lead
to an incorrect result as the slave thread will have “forgot-
ten” to allocate memory for the new Bar object, since the
instructions from lines 13–19 of figure 9 are skipped.

Note that if there is no migration, the control flow of
the main thread after returning from <clinit> should
continue from line 13 of the instruction new() code,
as shown in figure 9. In this case, the thread will obtain
a memory block from the memory manager and push the
memory handle onto the method stack (figure 9, lines 13–
19) before returning to the method execution context of
Foo.main() at PC = 3. In other words, there are certain
machine-dependent state information that failed to be cap-
tured between the two JMFs when the execution context is
migrated, as shown in figure 11.

3 vmExecuteJavaMethod() is an internal function of the JESSICA
implementation which allows invocation of Java methods from within
the implementation itself, the same function may takes other names and
forms in other Java Virtual Machine implementations.
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Figure 11. Revised execution context of thread main after entering the class initialization method <clinit>.

Figure 12. Revised thread execution context representation, where shaded
blocks are the machine-dependent sub-contexts not captured by JMFs.

The missing information, including the machine-dependent
return address at line 13 of the instruction new()
code in figure 9, are in fact stored in the UNIX process
stack of the daemon process running at the console. They
are the machine-dependent sub-contexts of a thread execu-
tion context which by all means are implementation- and
hardware-dependent.

3.4. Partitioning execution context into delta sets and
machine-dependent blocks

Concluding from the two examples discussed above, we
can categorize JMFs into two types:

• B Frame is the JMF that is pushed onto the thread
runtime stack as a result when a method is invoked
using either invokevirtual, invokespecial,
invokeinterface, or invokestatic bytecode
instruction. For example, the JMF being pushed as
method f() recursively invokes itself at line 21 of fig-
ure 4 is a B frame.

• C Frame is the JMF that is pushed onto the thread run-
time stack when the implementation code of a bytecode
instruction, or a native method, invokes a method us-
ing the vmExecuteJavaMethod() C/C++ function.
For example, the JMF being pushed at line 10 of the
instruction new() code in figure 9 is a C frame.

As illustrated by the shaded block in figure 11, it is the
machine-dependent sub-context introduced by the imple-
mentation code before pushing a C frame onto the thread
runtime stack that cannot be captured directly. We will
label such machine-dependent sub-context as a D block.
Consequently, for any thread execution context, the correct
representation should be expressed as a sequence of inter-
leaving B frames and C frames, with a D block inserted
before each C frame. Note that every sequence must begin

with a C frame, since any thread execution must be initiated
by the virtual machine implementation itself.

Our approach is to partition a thread execution context
into chunks of JMFs that are separated by D blocks, each
chunk is known as a delta set, ∆E. A delta set begins
with a C frame and is followed by zero or more B frames.
As shown in figure 12, ∆E1 is the first delta set inserted
into the execution context when a thread first enters its
start() method. ∆E2 and ∆E3 are the subsequent delta
sets appended to the tail of the execution context as the
thread invokes methods from native code by means of the
vmExecuteJavaMethod() function. Now, instead of
shipping the whole execution context to the destination all
at once as done in the traditional way of thread migration,
we ship them in an incremental manner, one delta set at a
time.

When the console node performs a migration operation,
the thread manager marshals and ships the tail delta set in
the execution context of the migrating thread. The slave
thread at the destination worker node, once it is instan-
tiated, will bind to this delta set and continue execution
until the JMFs in this set is exhausted. The execution con-
trol will then switch back to the master thread, to let it
finish the machine-dependent D block there. Immediately
after the machine-dependent execution is completed, con-
trol flow will switch back to the slave with the next delta
set migrated to continue execution at the worker node.

With this arrangement of Delta Execution, we are able
to isolate those machine-dependent parts of a thread’s exe-
cution context that are not migratable and to have them
executed locally at the console, while those machine-
independent parts are migrated across machines in the form
of delta sets and are executed remotely at the worker nodes.
The cooperating console and worker nodes need only in-
crementally advance the execution of a migrating thread by
a delta amount each time.

4. Performance evaluation

To study the effectiveness of the Delta Execution mech-
anism, we have implemented the mechanism in a JESSICA
prototype that runs on a cluster of 12 SUN Ultra-1 work-
stations interconnected by a Fore ASX1000 ATM switch.
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The implementation is based on the KAFFE virtual ma-
chine [11] and the TreadMarks package [1] for Distributed
Shared-Memory (DSM) support.

4.1. Applications performance

We have implemented the following three multi-threaded
Java applications to measure the impact on performance due
to thread migration.

• π calculation. This application approximates π by eval-
uating an integral. The area under the correspond-
ing graph is divided into multiple regions and multiple
threads are deployed to find the sub-areas. The value
π is obtained by summing up all the sub-areas once all
the threads have finished. This application shows the
raw parallel performance of Delta Execution since there
is no interaction between the worker threads until all
the computations are done; the extra overhead due to
migration is minimal.

• Recursive ray-tracing. We have implemented a multi-
threaded recursive ray-tracer in Java where the worker
threads render the pixels of a projected 2D image by
shooting rays into a given 3D scene. The threads obtain
the next line of pixels to compute from a globally shared
job queue, which provides a load-balancing effect at the
application level. All worker threads are tightly syn-
chronized between themselves when they access the job
queue in order to maintain its consistency. This appli-
cation demonstrates how distributed thread synchroniza-
tion affects the performance of the worker threads that
are distributed across the cluster.

• Red–Black Successive Over-Relaxation (R/B-SOR) on a
grid. The R/B-SOR program creates multiple threads to
compute matrix elements in parallel. A huge 1024 ×
1024 matrix is divided into two sub-matrices, the Red
and the Black matrix, which in turn are divided into
roughly equal-size bands of rows, with each band as-
signed to a different thread. The threads repeatedly re-
trieve values from one matrix, compute the average, and
write the result back to the other matrix. Since the huge
matrix is allocated from the globally shared DSM space,
the execution imposes a significant amount of loading
on the DSM subsystem. Hence, this is a good candidate
for studying how the DSM overhead contributes to the
overall execution time as a result of migration.

Each of the applications was tested on the 12-node clus-
ter using 1, 2, 4, 8 and 12 processors with 1, 2, 4, 8 and
12 worker threads, respectively, running. The results are
presented in figures 13–15.

According to figure 13, it can be seen that almost ideal
speedup and efficiency are achieved in the π approxima-
tion application, since there is no communication or coor-
dination between worker threads until all the computations
are completed. The recursive ray-tracing experiment shows
that the efficiency is less than optimal and drops moderately
as more processors are used. The efficiency decreases from

69% when using two processors to 47% when using twelve
processors. This is because, as indicated in figure 14, the
distributed synchronization overhead contributes a signifi-
cant amount to the total execution time. As shown in fig-
ure 15, the R/B-SOR application can gain moderate speedup
when running with four or more processors. When running
with two processors, the speed gained by overlapping the
computation is offset by the extra overhead incurred due
to remote memory access. The efficiency stays at around
53% and improves slightly when the number of processors
is progressively increased from two to twelve. This could
be due to the fact that the amount of data shared, i.e., the
sizes of the Red and the Black matrices, remain the same
when executed by any number of processors, and therefore
the DSM overheads constitute roughly the same percentage
of the execution time.

4.2. Analysis of migration latency

Figure 16 illustrates in detail the interactions between
the console and the worker node when a thread is migrated
from the former to the latter. The migration latency is the
time between the moment the migrating thread is frozen
by the console and the moment it is restarted later as a
slave thread at the worker node. Let T0 be the time taken
to notify the destination node and to have the destination
node prepare itself for the migration. The value of T0 is
relatively constant. Let T1 be the time taken to marshal a
delta set at the console node, to send the marshaled data
across the network, and eventually to de-marshal received
data at the destination node. The value of T1 is therefore
proportional to the size of the transferring delta set. The
migration latencies, i.e., T0 +T1, for different sizes of the
delta sets are measured.

According to the data collected, when the size of delta
set is zero, the migration latency is about 24.55 mil-
liseconds (T0). T0 is the time taken to execute the
java.lang.Object.clone() method in the slave as
well as that for sending the four handshake messages be-
tween the master and the slave, as shown in figure 16.
The purpose of the clone() method is to create an im-
age of the migrating thread at the destination node which
will then become the slave thread. A further breakdown of
this T0 value reveals that the time required to invoke the
clone() method is about 17 milliseconds and that for a
handshake message to be sent between the master and the
slave is about 2 milliseconds. Now consider the case when
a thread is migrated just before it starts executing the first
instruction; the delta set contains only one JMF and the
corresponding method stack is empty. If there is no local
variable defined in the method, the size of this minimal
JMF is 208 bytes. Consequently, the minimum migration
latency of the Delta Execution mechanism is measured to
be about 28.12 milliseconds.

It can be seen that the minimum migration latency is
dominated by the time for invoking the clone() method,
which accounts for over 60% of the migration time. It is
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Figure 13. Performance results of the approximation of the value π with 100 M intervals.

Figure 14. Performance results of the recursive ray-tracer to produce a 480× 640 image.

Figure 15. Performance results of the red/black successive-over-relaxation application on a 1024× 1024 matrix.

relatively expensive for the virtual machine in JESSICA to
invoke a method like clone(), when compared to tradi-
tional migrating mechanisms which execute in native ma-
chine code. It is the intrinsic characteristic of JESSICA
that a thread object cannot be duplicated by simply copy-
ing its memory content but a particular clone() method
has to be invoked to clone the object. Although this cloning
method is expensive, it is only to be invoked once for mi-
grating a thread, and there is no addition overhead in the
later part of the Delta Execution process. Besides, despite
this overhead, we are still able to achieve good speedup
by migrating threads to different nodes in the cluster for

parallel execution, as demonstrated in the experimental ap-
plications discussed.

5. Related work

MOSIX [2] supports transparent process migration and
follows the monolithic kernel approach. NOW MOSIX [3]
uses the home model whereby user processes are created
to run seemingly at the user’s home workstation. Location
transparency is maintained for migrated processes by redi-
recting any system call that is location-dependent. How-
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Figure 16. Interactions between the console and the worker during migration.

ever, considerable modifications have been made to the
kernel in order to support the transparency.

On the other hand, since Delta Execution is implemented
at the middle-ware level, it enables the migration mech-
anism to focus only on the machine-independent part of
a thread execution context, and to leave the remaining
machine-dependent part untouched. As a result, the im-
plementation of Delta Execution did not have to delve into
any low-level layers of the underlying operating system or
the hardware. Consequently, the implementation requires
much less effort than that of MOSIX and the resulting soft-
ware is more manageable.

Bouchenak’s MobileThread package [4] supports Java
thread mobility by extending the Java Virtual Machine.
MobileThread inherits and extends the java.lang.
Thread class in order to provide an interface for extract-
ing and restoring the execution context of an active Java
thread. This allows thread migration and checkpointing for
the purpose of load balancing and fault-tolerance.

Bouchenak’s work is different from the Delta Execution
in that the Bouchenak’s migration is not transparent. The
MobileThread package requires the application programmer
to decide what to do with the extracted state, whether to
save the state to some non-volatile storage or to send the
state to another machine to resume execution. Existing ap-

plications cannot benefit from the MobileThread package
until they are modified and adapted to the MobileThread
API. The Delta Execution mechanism introduces no new
primitives nor requires any modification in existing appli-
cations in order to support thread migration.

Java/DSM [12] is a distributed Java Virtual Machine that
runs on a cluster of heterogeneous computers. It provides
an illusion to Java applications as if they are running on
a single JVM with multiple processors attached. Paral-
lel execution of a multi-threaded application is possible by
having multiple threads running on multiple nodes in the
cluster.

Both Java/DSM and JESSICA follow a similar ap-
proach by implementing a distributed virtual machine at the
middle-ware level. They utilize DSM systems to simplify
their implementations. However, in Java/DSM, load distri-
bution is achieved by remote invocations of Java threads
alone, while JESSICA supports also transparent thread mi-
gration. Besides, The current Java/DSM prototype focuses
mainly on supporting DSM in a heterogeneous environ-
ment, other issues such as location transparency are not
addressed.

Arachne [6] is a portable user-level programming library
that supports thread migration over a heterogeneous clus-
ter. However, migration is not transparent to the application
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Table 1
Comparison of characteristics between JESSICA and the related work discussed.

Level of Method of load Implementation Characteristics Transparent
approach distribution techniques migration

JESSICA Middle-ware Thread migration DSM + Message Execution by Yes
redirection by means of a
helper threads virtual machine

NOW Monolithic Process migration Message redirection Process migration following Yes
MOSIX kernel by shadow process the home model

MobileThread Middle-ware Thread migration Extend the Thread class to Can support checkpointing No
support extraction and restoration and thread persistency
of execution context

Java/DSM Middle-ware Remote execution DSM + data Execution by means of a virtual No
of thread translation machine, heterogeneous

Arachne Application Thread migration Provide a set of migration Heterogeneous migration, No
programming related routines to be no data sharing between
interface (API) included into applications migrated threads

programmers – they have to include the Arachne migration-
related primitives into the code. It is the programmer’s
responsibility to decide when to migrate, which thread to
migrate, and where to migrate. In addition, it introduces
new keywords to the C++ programming language in order
to facilitate the implementation of thread migration. Even
though the primary objective of Arachne is to support effi-
cient thread migration on a heterogeneous network, it lacks
certain features such as thread synchronization that is fun-
damental to a thread package. Besides, migrated threads
cannot share data.

In contrast, the Delta Execution mechanism enables JES-
SICA to provide a flexible, portable, efficient and useable
thread package to the application programmers. Migration
is entirely transparent to programmers in JESSICA; there
is no migration primitive that programmers need to insert
into their code. Migrated threads can share object of any
data types. Furthermore, the Delta Execution mechanism
is portable as it does not introduce any new keyword to the
Java programming language.

Table 1 provides a comparison between JESSICA and
the related work discussed in this section.

6. Conclusion

Delta Execution takes a novel approach in dealing with
thread migration. Instead of moving the whole execu-
tion context to the destination, the context is separated
into machine-dependent and machine-independent parts,
and only the machine-independent parts are transported in
a controlled manner. This design imposes no limitation on
the type of threads that can migrate, such as whether they
are using location-dependent resources or not. The master–
slave model makes the whole system easy to control and
monitor. In addition, the design also prepares the ground for
further development of thread migration in a heterogeneous
environment as all the state information migrated are hard-
ware independent. Hence, the Delta Execution approach

provides maximum flexibility and portability for thread mi-
gration. This advantage is a direct consequence of using the
Java programming language, whereby execution via a vir-
tual machine provides an extra layer of abstraction. The vir-
tual machine approach allows the implementation of Delta
Execution to be carried out entirely at the user level, without
having to deal with any operating system specific or hard-
ware specific issues. Moreover, Delta Execution needs no
insertion of new migration instructions into a Java program,
thus enabling JESSICA to provide maximum compatibility
to the vast number of existing Java applications.

The Delta Execution mechanism and JESSICA together
create a parallel execution platform with good speedup for
all the experimental applications discussed. Efficiency we
measured ranges from about 50–95% when executing on
two to twelve nodes. The major overhead comes from re-
mote object accesses made by migrated threads as well as
distributed thread synchronization. Although the current
prototype is not all that optimized because we traded sim-
plicity for efficiency during the implementation process, we
are optimistic about the future development of JESSICA.
We are in the process of porting the JESSICA prototype to
a Linux-based cluster which is equipped with the Direct-
Point fast communication subsystem [8] and the JUMP
DSM subsystem [5]. Our future work will study the ef-
fect of different DSM consistency models on the remote
object access overhead; we will also try to fine-tune the
implementation and to reduce the distributed synchroniza-
tion overhead.
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