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Abstract—In edge-cloud computing, a set of edge servers are
deployed near the mobile devices such that these devices can
offload jobs to the servers with low latency. One fundamental
and critical problem in edge-cloud systems is how to dispatch
and schedule the jobs so that the job response time (defined
as the interval between the release of a job and the arrival
of the computation result at its device) is minimized. In this
paper, we propose a general model for this problem, where the
jobs are generated in arbitrary order and times at the mobile
devices and offloaded to servers with both upload and download
delays. Our goal is to minimize the total weighted response
time over all the jobs. The weight is set based on how latency
sensitive the job is. We derive the first online job dispatching
and scheduling algorithm in edge-clouds, called OnDisc, which
is scalable in the speed augmentation model; that is, OnDisc is
(1 + ε)-speed O(1/ε)-competitive for any constant ε ∈ (0, 1).
Moreover, OnDisc can be easily implemented in distributed
systems. Extensive simulations on a real-world data-trace from
Google show that OnDisc can reduce the total weighted response
time dramatically compared with heuristic algorithms.

I. INTRODUCTION

With the development of cloud computing, more and more

mobile applications can leverage the rich computing resources

in cloud data centers [1]–[4]. Instead of relying on the

resource-limited mobile devices, mobile applications can of-

fload their computation-intensive jobs, such as image process-

ing tasks, to remote clouds. Although such job offloading

could significantly expand the capability of mobile devices,

a long communication delay gets in the way inevitably since

the remote clouds are usually far away from the mobile users.

Such long latencies may severely downgrade the user expe-

rience especially for delay-sensitive applications. To mitigate

the problem of long latencies, edge-clouds, also known as edge

computing, fog computing, and cloudlets, have been proposed,

which place a number of small scale servers at the network

edge. Edge cloud servers can be reached by nearby mobile

users via wireless connections. In this way, mobile devices can

offload their tasks to edge clouds and receive the computing

results with low network latency. However, because these

specially deployed servers are of smaller scale than the remote

ones, the resource and computation abilities of edge-clouds are

relatively constrained when compared to the remote cloud data

centers. Any particular edge-cloud might not be able to support

a wide range of mobile applications. Therefore, edge-clouds

are customarily backed by a remote cloud via the Internet so
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that they can offload some of their more demanding jobs to

the remote cloud. Moreover, recent studies also proposed to

connect multiple edge-clouds together (e.g., via a metropolitan

area network) so as to enhance the services provided to the

mobile users by sharing and balancing the workloads among

the participating edge-clouds [5]–[7].

In an edge-cloud network, the fundamental and critical

problem is when and where to offload a job from a mobile user.

A mobile device can choose between the remote cloud and a

nearby edge cloud to offload a job, which could be based on

such considerations as the latency, the amount of computation

and the resources required. This is a dispatching problem.

On the other hand, a remote or edge cloud server has to

determine which offloaded tasks should be served first, which

is a scheduling problem. Concerning scheduling, most works

on edge-clouds assumed a First-Come-First-Serve scheme (e.g.

[5], [8], [9]). There were some studies on dispatching the

jobs to achieve load-balancing [5], [8], [10]–[13]. However,

most of them assumed that the releases of jobs follow some

known stochastic process, so that they can make use of the

statistical knowledge of the jobs to implement an efficient

dispatch strategy. Actually, real-world mobile applications, the

stochastic optimization based solution may perform badly due

to the rapid changes and arbitrary releases of the jobs which

deviate significantly from the assumed distribution. Therefore,

an online dispatching and scheduling scheme without any

assumption about the distribution of the job releases is desired

in edge-cloud systems. Furthermore, in our study, the expected

latency is the focus. Note however that in some mission-critical

systems, a performance guarantee in the worst case is more

important than the expected value.

In this paper, we study online algorithms for the job

dispatching and scheduling problem in edge-cloud systems.

The goal is to minimize the total job response time. The

response time of a job is defined as the interval between

the job’s release in a mobile device and the time when it is

finished and the result is received by the device. The interval

can include the communication latency between the mobile

device and the server, the waiting time and the processing

time in the server. The online algorithm possess no future

knowledge of the coming jobs. Moreover, to be compliant

with practical scenarios, we assume the following general

setting: 1) The jobs are released by the mobile devices in

arbitrary order and times. 2) Weighted response time (WRT for

short): we attach to the response time of each job a weight, to



indicate its latency sensitivity; more latency-sensitive jobs will

be assigned a larger weight so that they can be served with a

higher priority. 3) Unrelated machines model: in most previous

works, the processing time of a job in a server is calculated as

the job size divided by the server’s computation speed; then,

although the machines1 are not identical, the job processing

times in different servers are related. In this work, we assume

a general setting where each job has a machine-dependent

processing time in each server, and there is no relationship

among the job processing times in different servers. 4) Upload
and download delay: for each pair of job j and server k,

there is not only an upload delay for offloading jobs to the

edge-cloud or remote server but also a download delay for

the server to send back the computation results, denoted as

Δ↑
kj , Δ↓

kj ≥ 0, respectively.

We use the competitive ratio as a metric to evaluate our

online algorithm, defined as the largest possible ratio between

the performance of the online algorithm and the offline optimal

algorithm for any possible set of jobs. Therefore, it is a

worst-case analysis of the online algorithm. Even without the

upload and download delay, i.e., Δ↑
kj = Δ↓

kj = 0, ∀k, j,

the job dispatching and scheduling problem can be proved

to be without a bounded competitive ratio based on the results

in [14]. Thus, during our theoretical analysis, we adopt the

speed augmentation model [15], where the servers and the

data transmission in the online algorithm are (1 + ε) times as

fast as that in the optimal offline algorithm. Our contributions

can be summarized as follows.

• We formulate the job dispatching and scheduling problem

in edge-clouds under a general model as described in Sec

III, and design an online algorithm to minimize the total

WRT of all jobs.

• We propose an online scalable algorithm for the job

dispatching and scheduling problem, called OnDisc,

with a competitive ratio of O( 1ε ) at (1 + ε)-speed,

where ε ∈ (0, 1) is a constant2. To the best of our

knowledge, this is the first online algorithm for the job

dispatching and scheduling problem in edge-clouds with

a nontrivial competitive ratio. Our result also extends the

theoretical machine scheduling problem (e.g., [14], [15])

by considering the job upload and download delays.

• For the model where mobile devices can choose to

process their jobs themselves, we claim that OnDisc can

still achieve the above competitive ratio by determining

whether each job is to be processed locally at its device or

offloaded to a server. We also discuss how to implement

OnDisc in distributed systems.

• Based on a real workload trace from Google, we conduct

extensive simulation to evaluate the performance of our

online algorithm. The experimental results show that

OnDisc can significantly reduce the WRT of the jobs

when compared to heuristic algorithms. Our simulation

1In this paper, we use “machine” and “server” interchangeably.
2An online algorithm is called scalable if it is O(1)-competitive when given

the smallest amount of computing resource over the offline algorithm.

results also confirm that it is practical to implement

OnDisc in distributed systems.

The remainder of this paper is organized as follows. In

Section II, we present the related works. In Section III, we

give the formal definitions of the system model and the

problem. We propose and analyze our online dispatching and

scheduling algorithm in Section IV. In Section V, we evaluate

our algorithm by simulations with a real-world data trace. We

conclude the paper in Section VI.

II. RELATED WORK

A. Cloud and Edge Computing
With cloud computing as the enabling technology, offload-

ing heavy computation jobs to the remote cloud data centers

has been studied for over a decade. CloneCloud [1] was

proposed to use cloned virtual machine images in the cloud

for mobile job offloading. ThinkAir [2] made an improvement

by parallelizing the execution to enhance the power of mobile

job offloading. COMET [16] adopted the distributed shared

memory model to allow the application threads to migrate

freely between the mobile device and the cloud server.
However, job offloading to the remote cloud suffers from

heavy latency between the mobile devices and the remote

cloud. Therefore, the concept of edge-clouds was proposed

to provide nearby rich computing resources to the mobile

users [17]. The computing resources at the edge-clouds are

still limited. Thus there have been quite a lot of studies

on the load sharing and balancing problem among the edge

clouds and the remote clouds. The intuitive idea to offload

the jobs to the nearest edge-clouds cannot work since it

may lead to too many mobile devices competing for the

limited computing resources of one edge-cloud [5], [8],

[10]. Urgaonkar et al. [8] formulated the workload scheduling

problem as a Markov Decision Process problem and adopted

some Lyapunov optimization technique to solve this problem.

Tong et al. [10] proposed a hierarchical architecture for the

edge-clouds. They divided the edge-clouds into different levels

according to the distance to the edge, so that the peak load

at the edge-clouds can be offloaded to the higher tier edge-

clouds. They also presented a heuristic algorithm to dispatch

the workload within this hierarchical architecture. Based on the

hierarchical architecture, they designed a heuristic algorithm

to dispatch the jobs according to their loads at the edge-clouds.

Jia et al. [5] pointed out that the load balancing among the

edge-clouds can bring huge performance gain, much more than

only processing the jobs at the edge-clouds in isolation. This

model is useful in the metropolitan area networks where the

edge-cloud servers can communicate with a low latency. Most

of the above load balancing schemes in the edge-clouds are

based on stochastic optimization, for which they assume that

the job release process follows a certain distribution. However,

in practice, the jobs released from mobile device can be in

arbitrary order and times. Therefore, online algorithms without

any assumption on the job release distribution are desired.
Besides designing algorithms for a fixed edge-cloud config-

uration, there are a number of works studying reconfiguration



on edge-clouds. Amble et al. [12] proposed a reconfiguration

method by assuming that the request arrival is an independent

and identically distributed (i.i.d.) process, while Wang et al.

[13] considered a Markov process. Hou et al. [18] derived

an online algorithm with competitive analysis, where they

showed that their online algorithm can even perform better

than the stochastic optimization based approaches, especially

in the worst case.

B. Classic Online Machine Scheduling Problem

The problem of job dispatching and scheduling in edge-

clouds has some similarities to the classic online machine

scheduling problem on unrelated machines. In the classic

problem, a list of jobs are released in an online manner,

i.e., a job’s information is unknown before its release. Each

job can have different and unrelated processing times on

different machines. A machine processes at most one job at

one time. We need to decide how to dispatch the jobs and how

to schedule the jobs at each machine to minimize the total

(weighted) response time (also known as the flow time in the

original papers cited here), which is the sum of the waiting

and processing times of the jobs. It has been shown that no

online algorithm can have a bounded competitive ratio, by

Garg and Kumar [14]. Chadha et al. [15] proposed the speed

augmentation model to analyze this kind of online algorithms,

where an online algorithm can have ε-fraction more speed

in a machine than one that runs an offline algorithm. They

also derived a greedy algorithm with a competitive ratio of

O( 1
ε2 ). Im and Moseley [19] improved the competitive ratio

to O( k
ε2+2/k ) for the lk-norm of total WRT. Anand et al. [20]

further achieved a competitive ratio of O( 1ε ) for the l1-norm

and O( k
ε2+1/k ) for the lk-norm of the total WRT.

However, the above results cannot be applied to our job

dispatching and scheduling problem in edge-clouds, because

they assumed that the jobs can arrive at the machines instantly

after their releases, while there is in fact a significant latency

for the transmission between the mobile devices and the

servers, especially when the servers are at the remote clouds.

With the presence of communication latencies, at release time,

a job does not know what might happen before its actual arrival

at a machine. For example, after a mobile device decides to

dispatch a job j to an idle edge-cloud server, it is possible

that a lot of jobs from other devices are dispatched to the

same server, which might even arrive before j. In this case,

the job j will end up suffering a long waiting time due to

resource contention on the server. Thus, it might be more

difficult to design online algorithms for the job dispatching

and scheduling problem in edge-clouds. We wish this work

could inspire further studies on the classic machine scheduling

problem with job transmission latency.

III. SYSTEM MODEL

We consider an edge-cloud system with K heterogenous

edge-cloud servers, K = {s1, s2, ..., sK}, each of which is

configured to serve a set of mobile applications. There are a

set J = {j1, j2, ...} of indivisible jobs (if a job can be divided,

we will treat each portion as a new job) released by the mobile

devices in arbitrary order and times. We set rj as the release

time of the job j. A mobile device will dispatch a job to an

edge server or the remote clouds immediately after its release3.

We do not allow the servers to migrate a job to other servers

after the dispatching to avoid migration overhead.

A server can execute at most one job at a time preemptively;

that is, the server can switch to another job and resume the

current job later. Thus, each server should carefully schedule

its unfinished jobs. There is an upload delay Δ↑
kj for job j to

be dispatched to sk. Thus, sk cannot start processing the job

j until time rj +Δ↑
kj . The processing time for job j at sk is

denoted as pkj . Also, there is a download delay Δ↓
kj which

is the latency for the mobile device to download the result of

job j after its computation at sk. Note that the uploading and

downloading of a job do not consume any computing resource

of the servers, so a server can process a job while transmitting

other jobs at the same time. Because the remote cloud servers

can be modeled as edge-cloud servers with long transmission

delay and more powerful processing capability, we do not

explicitly differentiate between the edge-cloud servers and the

remote cloud servers here.

For a job j, we use the term “release” to indicate its

generation by a mobile device at time rj , and “arrival” as the

completion of its dispatching and uploading to sk at rj+Δ↑
kj .

Moreover, “computation completed” indicates its processing is

finished by an sk, and the term “fully completed” means the

result of the job has reached the mobile device. Each job j has

a weight wkj when dispatched to sk, where wkj = +∞ if the

server cannot process this job; otherwise, wkj is a parameter

to indicate how sensitive it is to the delay. Recall that the

response time of job k processed at sk is the duration between

its release and the time when it is fully completed. Then, its

WRT is wkj times the response time. We assume that for any

job, there is at least one server that can process it.

We study the online job dispatching and scheduling problem

in edge-cloud systems. The information of any job j is

unknown until it is released by a mobile device, including its

upload delay Δ↑
kj , its download delay Δ↓

kj , its job processing

time pkj and its weight wkj at server sk. Our goal is to

minimize the total WRT of all the jobs. Recall that it has been

proved there is no online algorithm with a bounded compet-

itive ratio for this problem, even when the upload/download

delays are set to zero. Therefore, we evaluate the performance

of our online algorithm by its competitive ratio in the speed

augmentation model, where the server and data transmission

in the online algorithm can be 1 + ε times as fast as that in

the offline algorithm. Formally, for a constant c, we define

c-competitive in the speed augmentation model as:

Definition 1. An online algorithm η is c-competitive with
speed (1 + ε), if Fη

OPToffline
≤ c for every possible set of jobs,

3Alternatively, the mobile device can offload its job to a nearby server which
will determine instantly whether to process this job or to further dispatch it
to other servers. In our problem, this is equivalent to the mobile device itself
handling the dispatching.



where Fη and OPToffline denote the performance of the online
algorithm η and the optimal offline algorithm, respectively.

IV. ONLINE DISPATCHING AND SCHEDULING

With the general model described above, we next propose

our online dispatching and scheduling algorithm and present

its competitive analysis. We also discuss how to extend the

algorithm to suit more general settings, and how to apply it

in distributed systems.

A. Online Algorithm

The algorithm is composed of two parts which are driven

by two policies respectively: the dispatching policy and the
scheduling policy. All the mobile devices follow the same

dispatching policy to choose servers to offload their jobs, and

all servers adopt the same scheduling policy to determine the

processing order of their unfinished jobs.

• Scheduling Policy: Let dkj � wkj/pkj denote the weight

density of job j on server sk, which is its weight divided

by its processing time. Set pj(t) as the remaining processing

time of job j at time t. Then, we define the residual density

of job j at time t as dj(t) � wij/pj(t). Let Ak(t) denote

the jobs at sk, which have arrived but whose computations

have not finished. Each server follows the Highest Residual

Density First (HRDF) rule to schedule its unfinished jobs, i.e.,

sk processes the job j′ = argmaxj∈Ak(t)
dj(t) at time t. When

there is a tie, the job arrives earlier has the higher priority.

Note that, on one server, if a job j1 has a higher density

than another job j2 at some time t, j1 will always have the

higher density, i.e., if ∃t, dj1(t) > dj2(t), then dj1(t
′) >

dj2(t
′), ∀t′ ≥ t. This is a nice property as it avoids frequent

switches of jobs being processed on a server. If all jobs have

a unique weight, the scheduling policy would be the same as

the SRPT (Shortest Remaining Processing Time) policy [21].

• Dispatching Policy: When t = rj , job j is released by a

mobile device, and needs to be dispatched to a server instantly.

Our policy is to greedily dispatch a job to the server which

brings the least increase to the total WRT. Set s∗j as the server

to which job j is dispatched. Let dkj(t
′) be the residual density

of job j at time t′ if it is dispatched to sk. Set t∗kj as the

computation completion time of j by assuming that no new

job will be dispatched to sk in the future. t∗kj can be calculated

by simulating the scheduling policy at server sk.

If job j is dispatched to sk, the increase of the total WRT is

composed of three parts:

1) the weighted waiting time of j due to the other jobs at sk
with larger residual density than j (called Type-I jobs to j);

2) the weighted processing time and transmission delays of j;

3) extra weighted waiting time brought by j to the jobs with

smaller residual density than j (called Type-II jobs to j).

Note that for job j, its Type-I and Type-II jobs may not only

be the jobs that have already arrived at sk, but also the jobs

that have been released by time t and to be dispatched to sk

but not yet arrived. We define a set A†
kj(t

′, t) as follows:

A†
kj(t

′, t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{j′ | s∗j′ = k, rj′ ≤ t, rj′ +Δ↑
kj′ ≤ t′,

pj′(t
′) > 0}, t′ = t+Δ↑

kj

{j′ | s∗j′ = k, rj′ ≤ t,

rj′ +Δ↑
kj′ = t′}, t′ > t+Δ↑

kj ,

where pj′(t
′) is the remaining processing time of job j′ at time

t′ by assuming there will be no job dispatched to sk after time

t. That is to say, when t′ = t+Δ↑
kj , A†

kj(t
′, t) is the set of jobs

which have arrived at sk but whose computation has not been

finished; when t′ > t+Δ↑
kj , A†

kj(t
′, t) is the set of jobs that

have been dispatched to sk by time t and will arrive exactly

at time t′. Obliviously, the Type-I and Type-II jobs to job j
are all in A†

kj(t
′, t).

Let Tk(t) denote the set of times when there is at least one job,

which has been released by t, arrives at sk
4. Define A1

kj(t)
as a set of the combinations of job j′ in Type-I for job j and a

time t′, which is given by A1
kj(t) = {(j′, t′)|t′ ∈ Tk(t) : t∗kj >

t′ ≥ t + Δ↑
kj , j

′ ∈ A†
kj(t

′, t) : dj′(t
′) ≥ dkj(t

′)}. Similarly,

we define A2
kj(t) as a set of the combinations of Type-II jobs

and the time, which is given by A2
kj(t) = {(j′, t′)|t′ ∈ Tk(t) :

t∗kj > t′ ≥ t+Δ↑
kj , j

′ ∈ A†
kj(t

′, t) : dj′(t′) < dkj(t
′)}.

Based on the above notations, when job j is released at time

t, we can now compute the increase of the total WRT, denoted

as Qkj(t), if it is dispatched to sk.

Qkj(t) =
1

1 + ε

{
wkj

∑
(j′,t′)∈A1

kj(t)

pj′(t
′)

+ wkj(pkj +Δ↑
kj +Δ↓

kj) +
∑

(j′,t′)∈A2
kj(t)

pkj(t
′)wkj′

}
, (1)

The first, second and third terms inside the brackets of Eqn.

(1) denote Parts 1), 2) and 3) of the increase of the total

WRT, respectively. 1
1+ε is the speed augmentation factor. Our

dispatching policy is to assign the job j to sk which minimizes

Qkj(t), i.e., s∗j = argminsk∈K Qkj(t).
Note that the following two types of jobs will not be included

in the calculation of Eqn. (1), since they will never be

affected by or affect the processing of job j: the jobs whose

computation completes before time t+Δ↑
kj (when job j arrives

at sk); and the ones which arrive after time t∗kj (when job j’s

computation completes).

Example 1. Fig. 1 shows an example of calculating the
increase of the total WRT for job 0 which is released at time
t. When Job 0 is released and dispatched, there are also Jobs
1–5 dispatched to this server. After its arrival, Job 0 needs
to wait until the Type-I jobs (Jobs 1 and 2) complete their
computation. Also, Job 0 will introduce more waiting time to
the Type-II jobs (Job 3) when Job 3 arrives at the server. In
addition, Job 4 and Job 5 would not influence the calculation

4Note that Tk(t) may contain a time larger than t, because there may be
some jobs that have been dispatched to sk but have not arrived by t.



Fig. 1. Calculation of the increase of the total WRT for job j0 released at
time t. The download delay is not shown in this figure.

because Job 4’s computation completes before the arrival of
Job 0, and Job 5 arrives after the computation of Job 0.

Based on the dispatching and scheduling policies, we sum-

marize our online algorithm OnDisc as Algorithm 1.

Algorithm 1: OnDisc
1 Job Dispatching: when a job j is released at t = rj , it is

dispatched to the server s∗j = argminsk∈K Qkj(t);
2 Job Scheduling on a Server: at any time t′, the server

sk processes the job j∗ = argminj∈Ak(t′) dj(t
′);

B. The Competitive Analysis

Let F denote the total WRT obtained by our online al-

gorithm OnDisc. In order to analyze the competitive ratio,

we have to find a lower bound of the total WRT for our job

dispatching and scheduling problem in the offline mode, i.e.,

all the information of the jobs are known beforehand. Here, we

can the offline job dispatching and scheduling problem as the
original problem. We mainly adopt the dual fitting technique

[20], and the general idea is as follows:

• We first derive an LP (Linear Programming) relaxation

of the original problem, and prove that the LP-relaxation

provides a lower bound.

• Then, we write out the dual LP to the LP relaxation

and construct a feasible solution to the dual problem. A

feasible solution to the dual LP is always a lower bound

of the primal LP, and hence also a lower bound of our

original problem.

• By showing the relationship between F and the objective

in the dual LP, we can finally derive the competitive ratio

of our online algorithm OnDisc.

1) the primal LP relaxation: We divide the time into slots.

A server can allocate different fractions of a time slot to

process different jobs. However, recall that a server can only

process one job at most at a specific time point. Set xkjt as

the fraction of time slot [t, t+1] used by server sk to process

job j after j’s arrival, i.e., t ≥ rj + Δ↑
kj . For a job j, we

tailor-make a parameter Λj(x) defined as

Λj(x) �
∑

k,t wkj · xkjt ·
(

t−(rj+Δ↑
kj)

pkj
+ 1

2 (1 +
Δ↑

kj+Δ↓
kj

pkj
)
)
, (2)

where x is the collection of all xkjt. The primal LP relaxation

of the original problem is shown in Problem 1.

Problem 1 (The Primal LP Relaxation).

min
∑
j

Λj(x) (3)

s.t.
∑
k,t

xkjt

pkj
≥ 1 ∀j, (4)

∑
j

xkjt ≤ 1 ∀k, t, (5)

xkjt ≥ 0 ∀j, k, t ≥ rj +Δ↑
kj . (6)

The constraint (4) means any job j must be completely

processed. Note that here a job can be divided into fractions

and allocated to multiple servers, and even the different

fractions can be processed simultaneously in different servers.

Constraint (5) refers to the fact that each server can process at

most one job at a specific time point. Therefore, the constraints

in Problem 1 are a relaxation of the original problem where

the jobs can only be dispatched and executed at one server.

Let S be any feasible dispatching and scheduling strategy for

the original problem. It is clear that we can uniquely translate

S to a feasible solution, denoted as xS , to Problem 1.
We have the following lemma that claims Problem 1 gives a

lower bound for the original offline dispatching and scheduling

problem in edge-clouds.

Lemma 1. The total WRT of any feasible strategy S for the
original problem is at least

∑
j Λj(xS).

Proof: For job j, we assume in strategy S it is dispatched

to sk. Denote tc as the computation completion time of j, so

that xkjt′′ = 0, ∀t′′ > tc. Λj(xS) is maximized when job j
is processed from tc − pkj to tc. Thus we have

Λj(xS) ≤ wkj

∑pkj

t′=1

(
tc−(rj+Δ↑

kj)−t′

pkj
+ ( 12 +

Δ↑
kj+Δ↓

kj

2·pkj
)
)

= wkj(tc − rj −
Δ↑

kj

2 +
Δ↓

kj

2 ) ≤ wkj(tc − rj +Δ↓
kj). (7)

The rightmost term in Eqn. (7) is the WRT of job j in strategy

S. Therefore, any feasible solution S to the original problem

has a total WRT at least
∑

j Λj(xS).
2) the dual LP: The dual LP of the primal LP relaxation

in Problem 1 is given as

Problem 2 (The Dual LP to Problem 1).

max
∑
j

αj −
∑
k,t

βkt (8)

s.t.
αj

pkj
− βkt ≤ dkj(t− (rj +Δ↑

kj))

+
wkj

2 (1 +
Δ↑

kj+Δ↓
kj

pkj
) ∀k, j, t ≥ rj +Δ↑

kj , (9)

αj ≥ 0, βkt ≥ 0 ∀k, j, t, (10)



where αj and βkt are the dual variables.

Recall that F denotes the total WRT in our online algorithm

OnDisc. Our goal is to achieve what is stated in the following

theorem.

Theorem 1. There exists a feasible solution αj and βkt

to Problem 2, such that the objective value (i.e.,
∑

j αj −∑
kt βkt) is Ω(ε · F).

Proof: We need to find a set of values for the dual

variables αj and βkt to satisfy Theorem 1. We define α∗
j

as the increase of the total WRT by job j in OnDisc, i.e.,

α∗
j = mink Qkj(rj). Let Bk(t) denote the set of unfinished

jobs which have been dispatched to sk at time t 5. We define

β∗
kt to equal to 1

1+ε times the total weights of the jobs in

Bk(t), i.e., β∗
kt =

1
1+ε

∑
j∈Bk(t)

wkj .

It is obvious that
∑

k,t β
∗
kt is exactly equal to F

1+ε , and∑
j α

∗
j is equal to F . Therefore, we have

∑
j α

∗
j −

∑
k,t β

∗
kt =

ε
1+ε · F .

Lemma 2. By setting αj = α∗
j/2 and βkt = β∗

kt/2, we get a
feasible solution to Problem 2.

Proof: Fix a server k and a job j. Let t denote the release

time of j and t† ≥ t+Δ↑
kj . We need to prove

α∗
j

pkj
−β∗

kt† ≤ dkj(t
†−(t+Δ↑

kj))+
wkj

2
(1+

Δ↑
kj +Δ↓

kj

pkj
) (11)

All terms in (11) will not be affected by the jobs being released

after t, except for β∗
kt† by increasing its value (as there will

be more jobs in the set Bk(t
†)). Therefore, We can assume

there is no new job released after job j.

We suppose sk will process job js at time t†. Let ts denote

the corresponding time of js appearing in A1
kj(t)

⋃
A2

kj(t),
i.e., (js, ts) ∈ A1

kj(t)
⋃
A2

kj(t). There are two possible cases:

(1) (js, ts) ∈ A1
kj(t), (2) (js, ts) ∈ A2

kj(t), or js never appears

in A1
kj(t)

⋃A2
kj(t). In both cases, we can achieve:

(1 + ε)α∗
j

pkj
< dkj(t

† − (t+Δ↑
kj))(1 + ε)

+ wkj(1 +
Δ↑

kj +Δ↓
kj

pkj
) + β∗

kt†(1 + ε) (12)

We skip the details due to limited space. By dividing both

sides of Eqn. (12) by 2(1 + ε), we have

α∗
j

2 · pkj
≤

dkj(t
† − (t+Δ↑

kj))

2
+

wkj(1 +
Δ↑

kj+Δ↓
kj

pkj
)

2(1 + ε)
+

β∗
kt†

2

⇒ α∗
j

2·pkj
− β∗

kt†
2 ≤ dkj(t

† − (t+Δ↑
kj)) +

wkj

2 (1 +
Δ↑

kj+Δ↓
kj

pkj
)

Therefore, it can be determined that α∗
j/2 and β∗

kt/2 satisfy

the inequality (11) in both Cases 1 and 2.

5It includes the unfinished jobs that have arrived at sk , the jobs that have
not arrived but have been released and dispatched to sk , and the jobs that have
been completely processed but the results have not been fully downloaded.

Moreover, if all the jobs dispatched to sk have been com-

pleted (sk is idle), the inequality (11) still holds due to the

fact that β∗
kt† ≥ 0 and

wkj

2 (t† − (t + Δ↑
kj) + Δ↓

kj) ≥ α∗
j

2 in

this case. This completes the proof of this lemma.
Thus, we get that αj = α∗

j/2 and βkt = β∗
kt/2 are the

feasible solution to Problem 2. And the objective function∑
j αj − ∑

kt βkt = 1
2 (
∑

j α
∗
j − ∑

k,t β
∗
kt) = ε

2(1+ε)F =

Ω(ε) · F , when ε ∈ (0, 1) is constant. This completes the

proof of Theorem 1.
Recall that the objective value of Problem 2 is a lower bound

of the total WRT in the offline dispatching and scheduling

problem. We have

Corollary 1. The online algorithm OnDisc is O( 1ε )-
competitive with (1 + ε)-speed augmentation.

C. Discussion
1) Offloading or Locally Processing a Job: By now, we

have only studied the dispatching and scheduling strategy for

the jobs to be offloaded to the edge-clouds and the remote

clouds. Some previous works (e.g., [22], [23]) also allowed the

jobs to be executed locally at the mobile device and studied

the problem of whether to offload a job or not. Our algorithm,

OnDisc, can be extended to suit the same model and make

online decision as to whether to offload a job or not. For a

mobile device m, we can regard it as a less powerful edge-

cloud server with zero upload/download delay to the jobs

released by itself. Moreover, the jobs released by the other

mobile devices are set to have an infinitely large weight on m
so that these jobs will never be dispatched to m.

Note that by setting finite weights of jobs released by one

mobile device at other devices, we can get a more general

model in which the mobile devices can offload tasks onto one

another. Clearly, our algorithm can also work in this model.
2) No Resource Contention at Remote Clouds: In our

system model, remote cloud servers have no essential differ-

ence from edge-cloud servers, except that they have larger

upload/download delays and more powerful processing capa-

bility. Resource contention may still exist and hence there

could be a waiting time for the jobs in the remote clouds.

However, in some other models (e.g., [8], [10], [24]), when

a job is dispatched to a remote cloud, a new server can

be activated to process the job if there is no available idle

server that is already activated. Therefore, there will be no

waiting time for the jobs offloaded to the remote clouds. Our

online algorithm OnDisc can also be modified to work with

this model, where there will be no scheduling in the remote

clouds and we need not consider the waiting time at remote

clouds during dispatching. This modification will change our

competitive analysis a little: i.e., a new LP relaxation is

required. Due to the limited space, we omit the details here.
3) Distributed Implementation: In order to get efficient

dispatching and scheduling algorithms in edge-clouds, most

previous works (e.g., [5], [8], [9], [13]) required a central

controller, which collects the states of all servers in real-

time. This is difficult to implement in practice when edge-

cloud servers are extensively deployed. It will lead to system



hiccup if the controller is attacked or experiences a hardware

failure. Therefore, a distributed dispatching and scheduling

algorithm is desired. Thanks to the simplicity of our online

algorithm, OnDisc, the algorithm can be easily implemented

in a distributed fashion. Firstly, our HRDF-based scheduling

can work locally at each server. We only need to consider how

to implement the dispatching policy distributedly, which can

be achieved by following steps:

When a job j is released by a mobile device at time t,

• Step 1: the device sends the information of job j to

each server, including the upload/download delay, the

processing time, and the weight.

• Step 2: each server sk calculates Qkj(t) in Eqn. 1 and

replies the value to the mobile device.

• Step 3: after receiving all Qkj(t) from servers, the mobile

device dispatches j to the server with the smallest Qkj .

In Steps 1 and 2, in order to compute Qkj(t), the mobile

device needs to exchange information with all the servers.

The communication overhead with the edge-clouds nearby is

small. However, the overhead for communication with remote

clouds is so large that the job latency will be increased

dramatically. The following discussion highlights how we

can try to overcome this overhead. In the model without

resource contention at remote clouds, when the server sk
is in the remote clouds, there will be no waiting time for

job j, and Qkj(t) becomes the sum of the processing time

and the upload/download delay, all of which can be known

by the mobile device beforehand. Therefore, the value of

Qkj(t) can be calculated locally at the mobile device without

communication with the remote clouds. Moreover, for the

model that resource contention might exist in remote clouds,

we can still apply our online algorithm OnDisc by only

exchanging information with edge-clouds nearby. Because the

remote clouds have much more servers than the edge-clouds,

the waiting time in the remote clouds is relatively low so that

it can be ignored approximately. Our simulations in Sec V-C2

validate that with enough servers, OnDisc can still achieve a

good performance when ignoring the contention in the remote

clouds. Therefore, during the distributed implementation of

OnDisc, we need only to exchange information with edge-

clouds in Steps 1 and 2, and the communication overhead

becomes affordable.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed

online algorithm OnDisc by extensive simulations and using

a real-world data trace, and we compare it with two heuristic

baselines.

A. Experiment Settings

We use the data set from the Google cluster [25] to

obtain the release time, the processing time and the weights

(“priority” in the data trace) of the jobs. The data trace contains

more than 120000 jobs, among which we randomly choose

50000 jobs and group them into 10 non-overlapping sets.

All the experiments here are conducted on the 10 job sets

independently, and all the performance numbers are reported

in average. If not specified explicitly, the upload/download

delay to/from the edge-clouds and the remote clouds are set

in the range of [0.01, 0.03] seconds and [0.2, 0.4] seconds,

respectively. The processing time in a remote cloud server is

set as ∼ 0.75 times (in average value) of that in the edge-cloud

servers.

B. Two Heuristic Baselines

In addition to OnDisc, we also implement two heuristic

baselines, called “Nearest” and “Selfish”. All the algorithms

employ the dispatching and scheduling procedures to reduce

the total WRT. The dispatching of the two baselines is de-

signed as

• Nearest: after a job is released, dispatch the job to the

server with the smallest upload and download delay.

• Selfish: a job is dispatched to the server with the earliest

weighted completion time for this job assuming that there

will be no job dispatched to this server in the future.

Nearest is the most friendly approach to distributed systems, as

the mobile device only needs to communicate with the nearest

edge-clouds [26]. Most of the works (e.g., [5], [27]) on edge-

clouds adopted Nearest as the job dispatching policy. Selfish is

close to the practical scenarios where each job only cares about

their own performance [28]. In the figures, we will use O, N

and S to denote OnDisc, Nearest and Selfish, respectively.

As for the scheduling policy, we adopt the Highest Residual

Density First (HRDF) in OnDisc. Another popular scheduling

policy is the First-Come-First-Serve (FCFS), which is com-

monly used by the approaches based on queuing theory (e.g.,

[5], [8], [9]). We will combine both scheduling policies with

the dispatching polices and analyze the performance later.

If we use HRDF in Selfish, job j will be offloaded to the

server k = argmink′ Qselfish
k′j (t), where Qselfish

kj is defined as:

Qselfish
kj (t) = 1

1+ε

{
wkj

∑
(j′,t′)∈A1

kj(t)
pj′(t

′) + wkj(pkj +Δ↑
kj +Δ↓

kj)
}
. (13)

Note that Eqn. (13) is obtained from Eqn. (1) by dropping

the Type-II jobs. That is, in Selfish, one job only cares about

the performance of itself, but not the influence it brings to the

other jobs, i.e., the extra weighted waiting time to other jobs

with a smaller residual density.

C. Simulation Results

In this part, we present the simulation results on the impact

of the scheduling policies (FCFS and HRDF), the remote

clouds and the edge-clouds on the performance of the algo-

rithms. In all cases, our online algorithm OnDisc outperforms

the other baseline algorithms.

1) FCFS v.s. HRDF: Table I shows the average weighted

response time over the combinations of the dispatching and

scheduling policies. We configure 10 edge-servers with totally

randomly chosen 1000 jobs and there is no remote cloud

server. We can see HRDF always outperforms FCFS. Since

FCFS is non-preemptive, the performance gain of HRDF can

be regarded as the advantage of preemption in scheduling.



TABLE I
PERFORMANCE WITH FCFS OR HRDF

Dispatching

Avg WRT Scheduling

FCFS HRDF

Nearest 0.243s 0.235s

Selfish 0.177s 0.158s

Greedy in OnDisc 0.154s 0.153s

Interestingly, the performance gain of HRDF in Selfish is much

higher than that in Nearest and OnDisc. With HRDF, Selfish
can even achieve similar performance to OnDisc. It can be

explained as: when all jobs choose to be selfish in dispatching,

a more rational scheduling policy (such as HRDF) can alleviate

the impact of selfishness on the overall performance of the

system.

Since HRDF always outperforms FCFS, we adopt HRDF

in scheduling for all the algorithms in the rest of this paper.

2) The Impact of Remote Clouds: In the subsection, we

analyze how the remote clouds impact the WRT in edge-

cloud systems. Because Nearest only dispatches the jobs to

the nearest edge-cloud server, its performance will never be

impacted by the remote cloud servers.
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Fig. 2. The average weighted flow time with different number of jobs.

Existence of Remote Clouds: Fig. 2 demonstrates the per-

formance with and without the remote cloud servers when the

number of jobs increases from 1000 to 5000. In Fig. 2(a),

when there is no remote cloud, the average WRT severely

increases when more jobs come. Specifically, the job waiting

time becomes much longer and plays the most important

role in the response time. It is easily understood since more

jobs will incur more resource contention in edge-clouds. With

powerful remote cloud servers to offload the jobs, Fig. 2(b)

shows that the average WRT of OnDisc and Selfish dramat-

ically decreases, although longer upload/download delays are

introduced.

Number of Remote Cloud Servers: Fig. 3 illustrates the

weighted average response time affected by the number of

servers in remote clouds. We set the number of edge-cloud

servers to 10. Here, we also evaluate the distributed implemen-

tation of our algorithm OnDisc in Sec IV-C3 (denoted as D

in the figures), which always ignores the resource contention

in the remote clouds. Fig. 3(a) shows the case with 3000 jobs.

As 3000 jobs would exceed the processing capacity of edge-

cloud servers, the remote cloud servers can significantly reduce

the average WRT. We can see that with more servers in the

remote clouds, the WRT of all the algorithms decreases except

for Nearest as it never adopts any remote cloud.

In Fig. 3(a), when the number of remote cloud servers is s-

mall, our distributed OnDisc performs badly since there is ac-

tually severe resource contention (and hence long job waiting

time) in the remote clouds which should not be ignored. With

the increase of the number of remote servers, the performance

of distributed OnDisc gets closer and closer to OnDisc.

In the last column with infinite number of remote servers,

there is indeed no resource contention in the remote clouds

(i.e. the model mentioned in Sec IV-C2); then, the distributed

OnDisc achieves the same performance as OnDisc. This

simulation result validates that our online algorithm OnDisc
can be implemented distributedly with small communication

overhead when there are enough computation resources in the

remote clouds as discussed in Sec IV-C3.
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Fig. 3. The impact of the remote cloud server on the average WRT.

Upload/Download Delay to the Remote Clouds: Fig. 3(b)

shows the impact of the upload and download delay on

the remote clouds. In this experiment, there is one remote

cloud server with no resource contention and we evaluate the

algorithms by changing the upload and download delay to the

remote server as a multiple (from 10 to 500 times) of the

average upload and download delay of the edge-cloud servers.

We can find that OnDisc and Selfish perform worse with

larger delays. Note that the job waiting time also increases

with larger remote cloud upload/download delay. The reason

is that more jobs will be dispatched to the edge-cloud servers

when the delay to the remote clouds becomes larger.

3) The Impact of Edge-cloud Servers: When designing an

edge-cloud system, a natural problem arises: how many edge-

cloud servers are enough? In other words, we need to figure

out the factors affecting the number of edge-cloud servers

needed in an edge-cloud system. Here, we investigate two

most important factors: the system workload, i.e., the number

of jobs released by the mobile devices, and the upload and

download delay to the remote clouds.

In this experiment, we set all the mobile devices to be

located closely to one of the edge-cloud servers, so that the

importance of the dispatching policy can be better measured.

Fig. 4 shows the average WRT with different numbers of

edge-cloud servers under different workloads and delays to the
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remote clouds. Since Nearest performs very badly in this case,

we do not show it due to the scaling of the figures. Obviously,

with more edge servers, the algorithms will have smaller total

WRT, as shown in Fig. 4(a). However, with 1000 and 3000

jobs, the performance gain becomes very small when adding

more edge-servers after the server number reaches 20. In the

case of 5000 jobs, the performance gain is still significant

when increasing the edge-cloud server number from 20 to 30.

Thus, we can see that the system load can heavily affect the

number of edge-cloud servers required.

Fig. 4(b) shows the performance with different up-

load/download delays of the remote cloud servers, which are

set as a multiple (e.g., 10, 100 and 500 times) of the average

upload/download delay of the edge-cloud servers. With more

edge-cloud servers, the average WRT is reduced due to the

decrease of the jobs dispatched to the remote clouds that suffer

from large delays. We can see that the performance gain from

adding more edge-servers is greater when the remote delay

is larger. For example, we should preferably have nearly 50

edge-cloud servers in the 500x case, and only about 20 servers

in the 10x case.

VI. CONCLUSION

In this paper, we study the online job dispatching and

scheduling problem in edge-cloud systems where jobs are

released in arbitrary order and times by mobile devices and

offloaded to unrelated servers with both upload and download

delays. We pose a general model for this problem with the

objective to minimize the total weighted response time of all

the jobs. We propose the first online approximate algorithm,

called OnDisc, and prove that it is (1 + ε)-speed O(1/ε)-
competitive for any constant ε ∈ (0, 1) based on the speed

augmentation model. We also show that OnDisc can be easily

implemented in distributed systems. Our simulations based on

real-world workload traces show that our algorithm can run

efficiently and dramatically reduce the total weighted response

time in edge-clouds compared with heuristic algorithms. Here,

our proposed algorithm is clairvoyant, which means we know

the processing time of a job at a server before its computation

is completed. An interesting extension of this work is to

investigate the non-clairvoyant model.
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