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Abstract—This paper studies jamming-resilient distributed
backbone construction in multi-hop wireless networks. Specif-
ically, a strong adversarial jamming model is proposed that
captures the general jamming phenomena suffered by wireless
communications. The jamming model is based on the realis-
tic Signal-to-Interference-plus-Noise-Ratio (SINR) interference
model, and is featured by local-uniformity, unrestricted energy
budget and reactivity, which covers more jamming scenarios
and is much closer to reality than existing jamming models.
Under the strong adversarial jamming model, we propose a
randomized distributed algorithm that can construct a backbone
in T (O(logn + logR)) rounds with high probability, where
T (O(logn + logR)) is the number of rounds in the interval
from the beginning of the algorithm execution that contains
O(logn + logR) unjammed rounds for every node. This result
is asymptotically optimal considering the trivial lower bound of
Ω(logn) for a successful transmission even without interference
and jamming.

I. INTRODUCTION

Jamming is a common and critical phenomenon in real
wireless networks, which has attracted much attention from
researchers in recent years. A node is jammed if the ambient
noise at the node is too large relative to message recep-
tion. Jamming in wireless networks can be caused by the
environment or jamming attacks. Once a node is jammed,
transmissions to that node cannot be guaranteed anymore.
It has been shown that the widely used IEEE 802.11 MAC
protocol fails in delivering any message even when jamming
persists for just a small fraction of time [3].

There have been many jamming-resilient algorithms [2],
[15], [18], [19], [20], [21] proposed in previous works. Most
of these works are based on traditional graph-based models,
where the interference is simplified to a local and binary
phenomenon. More recently, SINR-based jamming models
were introduced [13], [14]. The SINR model depicts the
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accumulative and fading features of wireless interference. It
defines that the interference fades with distance and can come
from all simultaneously transmitting nodes, not just the nearby
nodes. Hence, the SINR-based model reflects the wireless
interference in a more precise manner than traditional graph-
based models.

The adversarial approach of jamming modeling has been
used in many existing works, such as [13], [14], [20], [21].
In these models, an adversary is set to cause jamming at the
nodes. Some restrictions are usually added to the adversary so
that they will not be overly potent, such as uniform jamming
or limited energy budget. With uniform jamming, the jamming
at the nodes must be the same; and with limited energy
budget, the adversary can only jam a constant fraction of
time slots in every time window. Though these restrictions
can greatly facilitate jamming-resilient protocol performance
analysis, jamming happening in reality can be dramastically
different from these restrictions. Jamming can be bursty, and
can span a long period of time, leaving only a small fraction of
time slots to be available; and jamming can be localized, where
the noises injected by the jammer can be different at different
regions. Hence, it is necessary to propose a comprehensive
jamming model that can cover the most general jamming
scenarios, such that the devised algorithm can indeed be
jamming-resilient in real operations.

In this work, we propose a strong adversarial jamming
model which can cover more jamming scenarios and thus is
closer to the reality than previous models. In our strong ad-
versarial jamming model, the wireless interference is depicted
by the SINR model. The jamming model is characterized by
local uniformity, unrestricted energy budget and reactivity.
Specifically, local uniformity requires that the jamming (the
injected noise) at nodes within a local region to be the
same, while the jamming in different regions is allowed to be
different. The unrestricted energy budget means that there is no



budget restriction on the energy for jamming and the adversary
can jam any round at will. Only some necessary unjammed
rounds for communications are assumed. The adversary being
reactive means that it can make decisions based on the history
and the current state of the protocol execution. We believe this
strong adversarial jamming model is comprehensive enough to
cover most of the jamming scenarios in reality.

Under the proposed strong adversarial jamming model, we
study the fundamental problem of backbone construction. For
nodes in a given network, a connected dominating set (CDS) is
a set of connected nodes, and for every node in the network,
it is either in a CDS or one hop away from nodes in the
CDS. A backbone is a CDS with the following additional
constraints: (1) constant degree: each node in the CDS has
a constant degree in the subgraph induced by the CDS;
(2) constant approximate diameter: the diameter of the new
communication graph constructed by connecting nodes outside
the CDS with their designated one hop neighbors inside the
CDS is asymptotically similar to that of the network; and (3)
constant approximate size: the CDS is also asymptotically
similar in size to the minimum CDS in the network. A
backbone can greatly improve the efficiency of information
exchange. When a backbone is constructed, the following two
transmissions can be guaranteed: (a) the transmission between
neighboring nodes in the backbone; and (b) the transmission
between nodes outside the backbone and their designated one
hop neighbors (usually called leaders) inside the backbone.
Given such a backbone, many communication operations such
as gossip, local broadcast, message broadcast, and one-to-one
communication can then be implemented efficiently.

We target at jamming-resilient distributed solutions for
backbone construction, as distributed solutions are more suit-
able for implementation in decentralized large-scale networks
such as those used by Internet-of-Things. Our main contri-
butions are summarized as follows. The performance of the
proposed algorithm is guaranteed with high probability, i.e.,
with probability 1− n−c for some constant c, where n is the
number of nodes in the network.
• We propose a strong adversarial jamming model which is

more comprehensive (i.e., covers more jamming scenarios
in reality) than existing models.

• We present an efficient randomized distributed algorithm
for backbone construction. The algorithm adopts a simple
transmission strategy for information exchange between
neighbors, where the nodes transmit with a specified
constant probability. Surprisingly, this simple oblivious
strategy, which is not affected by the jamming strategy
of the adversary, can fully make use of the spatial reuse
provided by the SINR model and provide perfect commu-
nication efficiency. Specifically, the proposed algorithm
can construct a backbone in T rounds with high prob-
ability, where T is measured from the beginning of the
algorithm’s execution and contains O(log n+ logR) un-
jammed rounds for every node; R is the communication
range of nodes. Considering the lower bound Ω(log n)
for a successful tranmission even without interference

and jamming [22] and in reality R is usually bounded
by poly(n), our algorithm is asymptotically optimal.

• We also show that the local-uniformity assumption is nec-
essary in order to obtain asymptotically optimal solutions
that are as efficient as our solution.

Roadmap. The remainder of the paper is organized as
follows. Sec. II introduces the related work. Sec. III presents
our strong adversarial jamming model. The backbone con-
struction algorithm and performance analysis are covered in
Sec. IV and Sec. V respectively. The necessity of the local-
uniformity assumption is given in Sec. VI. Sec. VII presents
the simulation results. Sec. VIII concludes the paper.

II. RELATED WORK

There have been many works focusing on jamming-
resilient communication, including mechanisms designed to
avoid/detect jamming at the physical layer [10], [12], [23],
coding strategies/channel surfing/spatial retreat [1], [5], [25] at
the MAC layer against jamming, and hiding the transmission
message from the adversary [24]. However, all these protocols
can only handle oblivious jamming, which is fixed initially
and is unrelated to the particular algorithm execution. Subse-
quently, stronger jamming models with adaptive adversary [2],
[18], [21] and reactive adversary [13], [14], [19], [20] were
proposed. If the adversary in the jamming model knows the
protocol and all the communication history, and the adversary
can make decisions based on the history of the algorithm
execution, the adversary is called adaptive. If the adversary
also knows the current network information and can instantly
make a jamming decision based on that information, it is
called reactive. Under the assumptions of adaptive adversary
and that the adversary can only jam a constant fraction of the
time steps uniformly, the problem of medium access control
in a multi-hop network was studied [21]. With a similar
assumption, jamming-resilient MAC protocols that can attain
a constant competitive throughput were presented in [2], [18]
for single-hop and multi-hop networks respectively. The result
was then improved to the case of reactive jamming in a
single-hop network in [19]. Under a similar reactive jamming
setting, the problem of self-stabilizing leader election in a
single-hop network was studied in [20]. All above results are
derived under graph-based interference models. Due to the
difficulty posed by the SINR model on distributed algorithm
design, there are only a few works focusing on jamming-
resilient protocols under this more realistic model. In [13],
[14], distributed MAC protocols were presented under an
SINR-based jamming model, where there is some contraint on
the energy budget for the adversary such that it can only jam
a constant fraction of time slots. Besides the energy budget
constraint, jamming was set as totally uniform in previous
works, i.e., all nodes in the network suffer from the same
jamming in each round. Our jamming model considers the
reactive adversary without an energy budget, as well as the
local uniform assumption, which makes our model much more
general than all previous ones. Additionally, [13], [14] show
that the contention balancing techniques proposed in previous



works will not work anymore if there is no energy budget
constraint.

Backbone construction has also been extensively studied
under the SINR model. However, all these works assume
reliable channels for communication. In [8], the backbone con-
struction for the case of spontaneous wakeup was considered,
where the nodes are awake initially. Under the assumption
that nodes know the location information, an algorithm was
proposed with complexity of O(∆ log3N) rounds, where ∆
is the maximum node degree, and N is a linear estimate of n.
The case of non-spontaneous wakeup was studied in [16], [17],
and algorithms for backbone construction under different as-
sumptions about the nodes’ knowledge were presented. In the
scenario where nodes do not have location information, Chle-
bus et al. presented algorithms for both spontaneous wakeup
and non-spontaneous wakeup settings that can construct a
backbone in O(∆ log7N) and O(n log2N + ∆ log7N) with
high probability [6], [7]. Then deterministic algorithms under
the same setting were given in [11]. In [9], the construction of
a quasi-backbone which allows groups of nodes within certain
distance to communicate was considered, and an algorithm
with time complexity of O(D log2 n) was proposed. To the
best of our knowledge, there has been no proposal of any
jamming-resilient backbone construction algorithm.

III. MODELS AND PROBLEM DEFINITIONS

We consider a network where n nodes are arbitrarily placed
on a two dimensional Euclidean space, possibly in a worst-
case fashion. Each node v has a unique identifier IDv . For
two nodes u and v, denote by d(u, v) the Euclidian distance
between them. The minimum distance between any pair of
nodes is normalized to 1.

Communication Model. Initially, there is no prior structure
in the network. The time is divided into synchronized time
slots, each of which is the minimum time needed to send a
message package depending on the message size. A node can
communicate with other nodes via a shared channel. To make
the designed algorithm applicable to both half-duplex and full-
duplex transceiver equipped networks, we assume each node
is equipped with a half-duplex transceiver, i.e., in each time
slot, a node can transmit or listen, but cannot do both.

We assume that all nodes use the same transmission power,
which is usually called uniform power assignment [9]. Clearly,
the uniform power assignment is the easiest one to implement
in real networks.

Simultaneous transmissions interfere with each other. We
adopt the SINR model to depict the signal reception. In
particular, a message sent by a node u can be correctly
received by node v if and only if the following defined SINR
rate SINR(u, v) is above a hardware defined threshold β,
which is larger than 1 usually.

SINR(u, v) =
P/d(u, v)α

N (v) +
∑
w∈W

P
d(w,v)α

≥ β, (1)

where α is the path-loss exponent normally between 2 and 6;
N (v) is the ambient noise at node v, W is the set of nodes

simultaneously transmitting with u, and
∑
w∈W

P
d(w,v)α is the

interference experienced by v when u transmits.
Jamming model. Given a distance R1, we say two nodes

are R1-neighbors if they are within distance R1. Assume that
the network is connected with respect to distance R1, i.e.,
by connecting all pairs of R-neighbors, the obtained graph is
connected. A pair of R-neighboring nodes are simply said to
be neighboring.

To construct a backbone network, clearly, we need to
ensure each node v can communicate with its R-neighbors.
By the SINR formula, only when N (v) ≤ P

Rαβ , v can
receive a message from its R-neighbor, and the equation
holds only in an ideal scenario where there are no other
simultaneous transmitters, which is impossible in multi-hop
networks. Hence, to tolerate some interference, we set a noise
threshold N = P

(1+ε)αRαβ , where ε is a positive constant. If in
a timeslot, N (v) ≥ N , we say that the timeslot is jammed at v,
and unjammed otherwise. In this work, the jamming variance
on the shared channel is round-based, i.e., the jamming at
every node is unchanging in each round, and a round may
contain a constant number of slots as defined later.

To simply define the jamming on the shared channel, we
assume there is an adversary which decides on the ambient
noiseN (v) of nodes v in each round. The adversary can define
a jamming pattern with the following features.
• Local-uniformity: Uniform jamming globally is assumed

in most previous work. Instead of that, we only need
jamming to be uniform in each local region. Clearly, this
local-uniform assumption on jamming is more realistic.
More specifically, the whole network is divided into a
grid; the adversary can determine the ambient noise at
nodes in each cell; the ambient noise is the same for
nodes in the same cell, but may differ for nodes in
different cells.
The division of the network area is as follows. Denote
by G the grid obtained by the division, which consists
of square cells of size aR × aR, where a is a constant
determined in the algorithm analysis. The division is in
such a way that all cells are aligned with the coordinate
axes: point (0, 0) is the grid origin. Each cell includes
its left side without the top endpoint, and its bottom side
without the right endpoint, and does not include its right
and top sides. We say that (i, j) is the coordinate of the
cell with its bottom left corner located at (aR∗ i, aR∗j),
for (i, j) ∈ Z2. A cell with coordinate (i, j) ∈ Z2 is
denoted as g(i, j). For a node v locating at position (x, y)
on the plane, we define its grid coordinate with respect
to the grid G as the pair of integers (i, j) such that the
point (x, y) is located in the cell g(i, j) of grid G (i.e.,
i∗aR ≤ x < (i+1)∗aR and j ∗aR ≤ y < (j+1)∗aR).
Let N g

t be the ambient noise of cell g in a round t. Then
for any node u, v in cell g, N (v) = N (u) = N g

t in
round t. In what follows, a round t is said to be jammed

1Note that R may not be a constant anymore after we normalize the
minimum distance between nodes to 1.



for a cell g, if N g
t > N , and unjammed otherwise.

• Unrestricted energy budget: We do not set any restriction
on the energy budget for the jammer. The adversary can
put enough ambient noise in each particular cell in an
arbitrary round to disrupt the message reception. The
only requirement is that in the considered time period,
Ω(log n) rounds are unjammed for each cell, or otherwise
there will be no successful transmissions in the network
as shown in [22], even if there is no jamming at all.

• Reactivity: The adversary is assumed to be reactive, i.e.,
it knows the history and the current state of the protocol
execution, and can instantly make a jamming decision
based on that information.

Knowledge and Capability of Nodes. All nodes wake
up initially. Each node know the values of R, the SINR
parameters α, β, and the jamming threshold N . Nodes do
not need to know the number of nodes n in the network or
the number of neighbors. The nodes can acquire the location
information through some services, such as GPS. But physical
carrier sensing is not needed, i.e., nodes cannot detect whether
the channel is busy or not.

IV. BACKBONE CONSTRUCTION ALGORITHM

We give our jamming-resilient backbone construction al-
gorithm in this section. Basically, the algorithm will elect
leaders in each non-empty cell and connect these leaders to
construct the backbone network by letting each leader know its
neighboring leaders in the backbone. However, implementing
this procedure presents some challenges. First, as there nearly
is not any restriction on the jamming pattern, the adaptive
contention balancing strategies used in previous work cannot
be used, as a long interval of jammed rounds can make the
nodes judge the contention level wrongly. Consequently, in
these strategies, the nodes continuously decrease their trans-
mission probability such that it will take an unacceptably long
time to make a transmission. Second, the global interference
defined in the SINR model is hard to bound in a distributed
setting where the nodes even do not know their neighbors. To
solve these problems, the nodes transmit with a fixed constant
probability. Surprisingly, this simple oblivious strategy, which
is not affected by the jamming strategy of the adversary, can
fully make use of the spatial reuse provided by the SINR
model and perfectly solve the problems posed by the harsh
communication environment.

We next introduce the algorithm in details. Initially, the
cells are colored using 9 colors as follows: the cell with grid
coordinate (i, j) gets color 3 ∗ (i mod 3) + (j mod 3). For
each node v, the color of the cell in which v is located is
called the color of v, denoted as color(v). The coloring of
cells generates a TDMA scheme for the algorithm’s execution.
Nodes in cells with the same color execute the algorithm
together, to avoid the interference from nodes in nearby cells.

The algorithm execution is divided into rounds, and each
round consists of 10 slots. The detailed pseudo-code of each
round is given in Algorithm 1. In each round, there are two
periods: Leader Election Period (LEP) and Leader Connection

Algorithm 1: Jamming-resilient Backbone Construction

1 Initialization: statev = A;
In each round, each node v does:

2 LEP( );
3 LCP( );

LEP( ):
4 Slot = 0;
5 for Slot < 9 do
6 if statev = A and Slot = color(v) then
7 transmit the message Mv with probability p1;
8 if receive a message Mu from node u in the

same cell then
9 statev = S;

10 Slot+ +;

LCP( ):
11 if statev = A then
12 transmit the message Mv with probability p2;
13 if receive a message Mu from node u in a different

cell then
14 update the backbone neighbor list by the the

updating rule;

15 else
16 keep silent;

Period (LCP). The LEP, consisting of 9 slots each of which
is used for the algorithm execution of nodes of a particular
color, is used for nodes to compete for leadership. And in the
LCP, which contains 1 slot, leaders connect with neighboring
leaders to construct a backbone network.

In the algorithm, each node v has two states: statev = A,
the active state and statev = S, the silent or inactive state.
All nodes are in state A initially. During each round, in LEP,
the nodes execute the algorithm by the TDMA scheduling
generated by the coloring. In particular, the nodes in color
j execute the algorithm in the j-th slot of each round for
0 ≤ j ≤ 8. In the assigned slot, the nodes in state A transmit
with a specified constant probability p1. The transmitted
messageMv from a node v only contains v’s ID and location
information. If a node v in state A receives a message Mu

from another node u in the same cell, then v becomes inactive
and joins state S, which means that the node will not join the
backbone network. The above strategy, as shown later, ensures
that for each cell, after O(log n + logR) unjammed rounds,
there will be exactly one leader elected with a high probability,
which is the only alive node in the cell.

In the slot of LCP, each active node v transmits Mv with
constant probability p2 which will be given later. If node v
receives a message Mu from another active node u in a
different cell, v updates its backbone neighbor list with the
following updating rule: for node v in cell gv , when receiving
Mu from node u in cell gu, if there is no connection between



cell gv and gu in v’s backbone neighbor list, v records edge
(v, u) as the connection between cell gv and gu in its backbone
neighbor list; if there is already an existing but different edge
(v, u

′
) between cell gv and gu, then v replaces edge (v, u

′
)

with (v, u) in its backbone neighbor list. This updating rule
ensures that after leaders are elected, the neighboring leaders
can establish a connection.

To ease the analysis, we set the constant parameters in the
algorithm as follows: p1 = (1 − 1

(1+ε)α ) ∗ (1 − 21−α/2)/(3 ∗
2α+7β), p2 = ( (1+ε)α

(1+ε/2)α − 1)/( 4
√

2a+2+ε
a2 · 6πβ(1+ε)α

(1+ε/2)α−1 · α−1
α−2 ).

V. ALGORITHM ANALYSIS
A. Analysis Overview

Denote by T (r) the minimum number of rounds from the
beginning of the algorithm’s execution during which there are
r unjammed rounds for every non-empty cell. Basically, we
first prove that after T (O(log n+logR)) rounds, there will be
exactly one leader elected in every non-empty cell, as shown
in the following Lemma 1.

Lemma 1: After the algorithm executes for T (O(log n +
logR)) rounds, there is exactly one leader elected in each
non-empty cell w.h.p..

Then after the leaders are elected, it will be shown that
after T (O(log n)) rounds, each leader will send its message to
neighboring leaders, and the leaders constitute a CDS. Denote
tLEP as the first round right after leaders have been elected
in each non-empty cell.

Lemma 2: After T (O(log n)) rounds since tLEP , w.h.p.,
every leader sends its message to neighboring leaders, and the
leaders constitute a CDS.

Then, by showing that the constructed CDS satisfies the
properties of backbone, we have our final result.

Theorem 1: After T (O(log n + logR)) rounds, the back-
bone can be constructed w.h.p.

Based on the above overview, we divide the the following
analysis into three parts, to show Lemma 1, Lemma 2 and
the properties of the CDS, respectively. Also, we assume the
parameter a = min{

√
2
8 ε,
√

2
2 } in the network division.

B. Analysis for Leader Election Period
In LEP, by the TDMA scheme, nodes in cells of the same

color execute the algorithm together. Hence, we next consider
the LEP execution of nodes in the cells of a particular color.

A node division is used to depict the network topology in
each cell of the grid. Consider the network at the beginning
of a round r. V g is the set of nodes in cell g, which is divided
into classes {V gi : i = 0, 1, . . . , logR}. For a node v ∈ g, let u
be v’s nearest neighbor in g if v has at least one neighbor in g.
v is in class V gi for 0 ≤ i ≤ logR− 1 if d(u, v) ∈ [2i, 2i+1),
or otherwise v is in class V glogR. By the division of cells, it
can be seen that if V glogR is non-empty, there is only one node
in g. For set V gi at the beginning of round r, let ngi (r) = |V gi |.
Furthermore, we use V g<i to denote the sets of active nodes
in classes V gj s for j < i. ng<i(r) is defined as the number of
active nodes correspondingly at the beginning of a round r.

Basically for an initially non-empty cell g, only one leader
will be elected when all V gi for i ∈ {0, 1, . . . , logR − 1}

are reduced to empty. This is because when all V gi for
i ∈ {0, 1, . . . , logR − 1} are reduced to empty, there will
be exactly one active node left in V glogR.

We consider a particular non-empty cell g. The analysis for
LEP consists of two parts: We first prove the reduction speed
for the active nodes in g in an unjammed round, and then based
on this result, analyze the reduction time for V gi to become
empty in the strong adversarial jamming model.

We observe that with p1 = (1− 1
(1+ε)α )∗ (1−21−α/2)/(3∗

2α+7β), in an unjammed round, a constant fraction of
nodes in set V gi experience a limited interference from
nodes in ∪g∈GV g≥i; and with the assumption that ng<i(r) ≤
1−(21−α/2)

2 ngi (r), the interference from nodes in ∪g∈GV g<i
is also bounded. Thus in each unjammed round, a constant
fraction of nodes in V gi receive messages and become inactive.
Then, we get the result for the first part in the following
Lemma 3, and the proof is omitted because of lack of space.

Lemma 3: For non-empty cell g in an unjammed round r,
if for i ∈ {0, 1, . . . , logR − 1}, ng<i(r) ≤ εngi (r) with ε =
1−(21−α/2)

2 , then with probability 1 − eΩ(|V gi |), γ fraction of
nodes in V gi will become inactive at the end of round r, where
γ = p1(1−p1)

8∗(2s+5)2 .
Even with Lemma 3, it is still not easy to analyze the

reduction of active nodes in cell g, because the reduction
of {V gi } may be influenced by the jamming round and
continuously changes since some active nodes in V g<i join
V gi because their nearest neighbors become inactive. We need
to show that even with these influences, each class V gi for
i ∈ {0, 1, 2, . . . logR − 1} finally reduces to empty, which
means that there is exactly one active node left in g, and the
reduction time is proved to be T (O(log n+ logR)) rounds.

Let γ1 = 1 − γ and γ2 = γ1 + ρ/(1 − ρ) where ρ is a
constant that will be fixed later. In what follows, we will try
to upper-bound the number of active nodes in each class V gi
by a series of vectors. In particular, we define {mg

i (t) : t ≥
0 and 0 ≤ i ≤ logR− 1} as follows.

∀t ≥ 0 : mg
i (t) =

{
n/γ1 t ≤ Ti
bmg

i (t− 1) ∗ γ2c t > Ti

Here Ti = i ∗ h and h = dlogγ2 ρe.
Our ensuing analysis consists of two parts. We first find a

bound T̂ such that all mg
i (T̂ ) becomes 0. Then define random

events E(j) for j ≥ 0: E(j) occurs when for some round
r, ngi (r) ≤ mg

i (j) for all i ∈ {0, 1, . . . , logR − 1}. Hence
when E(T̂ ) occurs, all classes V gi for i ∈ {0, 1, . . . , logR−1}
become empty. So we only need to analysis when E(T̂ ) occurs.

By the definition of mg
i (t), obviously, T̂ ∈ O(log n+logR).

We next give a sufficient condition for E(j+1) to occur when
E(j) has occurred. Let m̂g

i (t+ 1) = γ1m
g
i (t).

Lemma 4: If in an unjammed round r for cell g, E(j) occurs
and ngi (r) ≤ m̂

g
i (j + 1), then ngi (r + 1) ≤ mg

i (j + 1).
Proof: We prove this lemma in two cases: (case 1) when

mg
i (j) = n/γ1, ngi (r + 1) ≤ n < mg

i (j + 1) = nγ2γ1 ;
(case 2) with mg

i (j) < n/γ1, because E(j) occurs, for ∀i ∈



{0, 1, . . . , logR − 1}, ngi (r) ≤ mg
i (j), and

∑i−1
s=0 n

g
s(r) ≤∑i−1

s=0m
g
s(j) = mg

i (j)ρ/(1− ρ), then,

ngi (r + 1) ≤ ngi (r) +

i−1∑
s=0

ngs(r) ≤ m̂
g
i (j + 1) +

i−1∑
s=0

mg
s(j)

≤ mg
i (j)γ2 −mg

i (j)ρ/(1− ρ) +mg
i (j)ρ/(1− ρ)

= mg
i (j + 1)

Combining the two cases, we finish the proof.
Lemma 5: If in an unjammed round r, E(j) occurs, then

with probability at least 1−e−Ω(ngi (r)), ngi (r+1) < mg
i (j+1),

where i ∈ {0, 1, . . . , logR− 1}.
Proof: We consider this in three cases: (case 1) with

mg
i (j) = n/γ1, m̂g

i (j + 1) = n and (case 2) with ngi (r) <
m̂g
i (j + 1), the lemma can be directly proved for case 1 and

by Lemma 4 for case 2. We next consider (case 3) where
ngi (r) ≥ m̂

g
i (j + 1) and mg

i (j) < n/γ1.
Because E(j) occurs and mg

i (j) < n/γ1, ng<i(r) ≤
mg
<i(j) ≤ mg

i (j)ρ/(1 − ρ). Then mathematically we have
ng<i(r) ≤ ngi (r)

ρ
γ1(1−ρ) . By setting ρ to be small enough to

make sure ρ/(1− ρ) < γ1ε, we obtain ng<i(r) < εngi (r) from
the above inequation. Then, in round r, by Lemma 3, with
probability 1− e−Ω(ngi (r)),

ngi (r + 1) ≤ γ1n
g
i (r) +

i−1∑
s=0

ngs(r) ≤ γ1m
g
i (j) +

i−1∑
s=0

mg
s(j)

= m̂g
i (j + 1) +

i−1∑
s=0

mg
s(j) ≤ m

g
i (j + 1)

We next bound the number of unjammed rounds between
the time from E(j) to E(j + 1). Assume that the algorithm’s
processing is divided into successive intervals J, each of which
consists of max{ 2τ

a1(1−γ2) , 2τ} unjammed rounds, where τ =

max{mg
i (j + 1)/m̂g

i (j + 1)} > 1 for i ∈ {0, 1, . . . , logR −
1}, m̂g

i (j+1) > 0 and a1 is the constant behind the Ω notation
in the probability guarantee in Lemma 5. Then

Lemma 6: If E(j) happens at the beginning round of in-
terval Ja, E(j + 1) occurs at the beginning round of interval
Ja+1 with probability at least 1/2.

Proof: For i ∈ {0, 1, . . . , logR − 1}, for the cases:
mg
i (j) = 0 or ngi = 0, it is easy to get ngi ≤ mg

i (j) ≤
mg
i (j + 1); for the case that mg

i (j) ≥ n
g
i > 0, the probability

that ngi is larger than mg
i (j + 1) after the interval is

e−2τngi /(1−γ2) ≤ (1− γ2)/(2τngi ) ≤ (1− γ2)/(2τm̂g
i (j + 1))

≤ (1− γ2)/(2mg
i (j + 1)).

Then using union bound on the error probabilities given above
for all is, the probability that there is at least one ngi larger
than mg

i (j + 1) after interval Ja is at most
logR−1∑
i=0

(1− γ2)/(2mg
i (j + 1)) ≤ 1− γ2

2

+∞∑
i=0

γi2 ≤
1

2

Hence, with probability at least 1/2, E(j + 1) occurs at the
beginning round of Ja+1, which completes the proof.

Now we are ready to prove Lemma 1 by combining the
analysis in LEP together.

Proof for Lemma 1
Proof: By the definition of E(T̂ ), when E(T̂ ) occurs,

all V gi , i ∈ {0, 1, . . . , logR − 1} are reduced to empty, and

each non-empty cell has exactly one leader elected. We bound
the time when E(T̂ ) occurs by induction. Since E(0) always
occurs, and by Lemma 6, after each interval, a new event E oc-
curs with probability 1/2. In expectation after O(T̂ ) intervals,
E(T̂ ) occurs. Using the Chernoff bound, it is easy to show
that at most after O(log n+ logR) of intervals, E(T̂ ) occurs
w.h.p.. Noting that each interval contains constant unjammed
rounds, and T̂ ∈ O(log n+ logR), we get the conclusion that
after T (O(log n + logR)) rounds, each non-empty cell has
one active node elected as leader with probability of 1− 1

nc ,
c is a constant larger than 1. With at most n non-empty cells
in network, summing the error probability of each non-empty
cell, we prove lemma 1.
C. Analysis for Leader Connection Period

As we have assumed, at round tLEP , each non-empty cell
has one and only one leader elected, which will run the fol-
lowing pseudo-code in LCP. In the following rounds, leaders
connect with each other. Even though there may be some
previous connections before tLEP , according to the update
rules, all the previous connections will be replaced by the
later one after tLEP . After tLEP round, since the leaders have
already been fixed, so the connections will also not change. We
use the following lemmas to prove that T (O(log n)) rounds
after tLEP , each leader connects with all other leaders within
distance (1 + ε

2 )R w.h.p..
Lemma 7: For any leaders u, v within distance (1 + ε

2 )R,
during T (O(log n)) rounds, u receives message from v w.h.p..

Proof: The following three Claims prove the lemma.
Claim 1: During T (O(log n)) rounds, there are O(log n)

unjammed rounds for any leader u.
According to the definition of T (O(log n)), Claim 1 holds.

Considering a circle centered at leader u and with radius
of (1 + ε

2 )R, we first consider the interference Itu experienced
by u at round t from leaders outside the circle, and if Itu <
[ (1+ε)α

(1+ε/2)α − 1]N , we say u is in a good round.
Claim 2: In T (O(log n)) rounds, there are O(log n) good

rounds for leader u.
Proof: We divide the whole network into rings {Cj} for

j ≥ 1, where Cj is the ring with distance in the range [j(1 +
ε
2 )R, (j + 1)(1 + ε

2 )R) from u. Note that each non-empty
square cell with size aR× aR has one leader, so the number
of leaders sj in each ring Cj can be bounded.

Let Y tx be the random variable for leader x with value 1
if x transmits at round t and 0 otherwise. Denote by Itxu the
interference at leader u caused by leader x at round t, and
T1 be the set of unjammed rounds for u during T (O(log n))
rounds. Then, omitting the mathematical calculation, we get

sj ≤ π(2j + 1)(1 +
ε

2
)
4
√

2a+ 2 + ε

2a2

E[Itu] ==

∞∑
j=1

∑
x∈Sj

E[Itxu] = [
(1 + ε)α

(1 + ε/2)α
− 1]N/4,

Based on the above analysis and the Chernoff inequality, with
high probability,

∑
t∈T1

Itu ≤ |T1|E|Itu| ∗ 2 ≤ |T1|[ (1+ε)α

(1+ε/2)α −
1]N/2, i.e., at least half of the rounds in T1 are good rounds



for u. Otherwise, the inequality will be violated. Combining
that |T1| = O(log n), we prove this claim.

Claim 3: For any leader u and v within distance (1 + ε
2 )R,

if u is in a good round, then u receives message from v with
a constant probability.

Proof: Considering the circle centered at u and with
radius of (1 + ε

2 )R, the interference from leaders outside the
circle in a good round is already bounded. Let s0 be the
number of leaders inside the circle, then according to an area
argument:

s0 ≤
π[(1 + ε

2 )R+
√

2aR)]2

(aR)2
= π(

ε+ 2

2a
+
√

2)2 (2)

Thus, other than leaders u, v, there are at most another s0−2
leaders. So, with probability p2 ∗ (1 − p2)s0−1 that event “v
broadcasts and all other nodes in the circle listen” happens.
When this event happens, according to the SINR model,

SINR(v, u) ≥
P

((1+ ε
2 )R)α

N + [ (1+ε)α

(1+ε/2)α − 1]N
= β. (3)

Thus, u receives message from v.
Combining Claims 1, 2 and 3, and applying a Chernoff

bound, Lemma 7 is proved.
At round tLEP , each non-empty cell has a leader elected.

According to Lemma 7 and our update rule, during the fol-
lowing T (O(log n)) rounds after tLEP , each pair of leaders
within distance (1 + ε

2 )R can successfully receive message
from each other and are connected. Then, we are going to
prove that the connected leaders construct a CDS.

Proof for Lemma 2
Proof: According to Lemma 1, all non-empty cells with

size aR × aR have their leaders elected, so the leaders can
construct a dominating set for the network. We then prove that
the dominating set is connected. The proof is by contradiction.
Otherwise, w.l.o.g., assume that the communication graph
obtained by connecting each pair of leaders within distance
(1 + ε

2 )R contains two connected subgraphs G1 and G2.
Let V1 and V2 be the set of nodes in G1 and G2 respectively.

Denote by V ′1 (V ′2 ) the union of V1 (V2) and the set of other
nodes within distance

√
2aR from nodes in V1 (V2). By the

connectivity assumption in model, there must be two nodes
u′ ∈ V ′1 and v′ ∈ V ′2 , such that d(u, v) ≤ R. Then by
Lemma 1, there are two nodes u ∈ V1 and v ∈ V2 such that
d(u, u′) ≤

√
2aR ≤ ε

4R and d(v, v′) ≤
√

2aR ≤ ε
4R. Then

d(u, v) ≤ d(u, u′) + d(u′, v′) + d(v, v′) ≤ (1 +
ε

2
)R. (4)

This means that G1 and G2 are connected, which contradicts
the assumption. This completes the proof for Lemma 2.
D. Analysis for backbone properties

As we have given is Sec. I, a backbone is a CDS with (1)
constant degree; (2) constant approximate diameter; and (3)
constant approximate size;

Proof for backbone property (1), (2), (3).
Proof: Note that each leader connects with other leaders

within distance (1 + ε
2 )R. The degree of a leader u w.r.t. to

other leaders in CDS, denoted as degreeu, is defined as the
number of other leaders connected with u. For a circle centered
at u and with radius (1+ ε

2 )R, according to the area argument

in Eqt. 2, degreeu ≤ π( ε+2
2a +

√
2)2. So, each leader in CDS

has a constant degree, and property (1) is proved.
For any two nodes u, v within distance R, assume that

nodes v, u are in cells gv and gu with corresponding leaders
v1 and u1 respectively. Since a cell has the size of aR× aR,
d(v, v1) ≤

√
2aR ≤ εR

4 , d(u, u1) ≤
√

2aR ≤ εR
4 . Then

d(v1, u1) ≤ d(v1, v) + d(v, u) + d(u, u1) ≤ (1 + ε
2 )R. Nodes

u, v are connected to their corresponding leaders, and their
leaders are also connected according to Lemma 7. So u, v
are connected within three hops via their leaders. Then, any
one hop connection in the network can be replaced by at
most a three-hop connection in the new communication graph.
Thus, the diameter of the new communication graph is at most
three times larger than that of the network, and property (2)
is proved.

Assume that the minimum CDS in the network contains
$ nodes. Then according to the definition of CDS, circles
centered at the $ nodes and with radius of R cover all
nodes in the network, including the leaders. According to an
area argument, a single circle with radius R consists at most
π[R+

√
2aR]2

(aR)2 = π( 1
a +
√

2)2 leaders in the constructed CDS.
Thus, there are at most π( 1

a+
√

2)2$ leaders in our constructed
CDS, i.e., the constant factor between our constructed CDS
and the minimum CDS is at most π( 1

a +
√

2)2. The property
(3) is proved.

With the above proofs, Theorem 1 is proved.

VI. NECESSITY OF LOCAL UNIFORMITY

Theorem 2: If the jamming violates the local-uniform as-
sumption, i.e., the noise injected by the adversary can be
different for nodes in the same cell, then to get a high
probability performance guarantee, any randomized algorithm
for backbone construction needs T (ω(log n)) time.
Theorem 2 can be proved by constructing a network in a cell
with n nodes, and applying different jamming schedules on
different nodes, the detail of which is omitted.

VII. SIMULATION RESULTS

We investigate the empirical performances of our backbone
construction algorithm in this section. Specifically, we inves-
tigate (i) the running time of the algorithm under different
jamming patterns and different network sizes; and (ii) the
properties of the constructed backbone, i.e., the degrees of
nodes in the backbone, the diameter of new constructed
communication graph and the size of backbone.

Jamming patterns. Similar to the simulation setting in
[13], here we adopt two types of jamming patterns, Regular
(or random) Jamming (REGJ) in which the adversary has
a constant probability ζ ∈ [0, 1) to jam the transmissions
in each cell in every round, and Bursty Jamming (BURJ)
in which the adversary randomly jams at most Tζ rounds
for each cell. The jamming parameters ζ in REGJ and Tζ
in BURJ reflect the jamming level, i.e., the larger ζ or Tζ
is, the heavier the jamming. The jamming in the cells is
independently determined.



TABLE I: Parameters in simulation
Parameters Value Parameter Value

n [500, 5000] ε 2
R 30m p1 0.05
p2 0.002 α 3
ζ {0, 1, 3, 5, 7, 9} ∗ 10−1 β 1.5
Tζ {0, 1, 3, 5, 7, 9} ∗ 103

Parameters. Basically, n nodes are randomly and uniformly
distributed into a network area of size 300m × 300m. Each
node has a uniform transmission range of 30m. The setting of
parameters is given in Table I. Over 20 runs of the simulation
have been carried out for each reported result. All experiments
are conducted on a Linux machine with Intel Xeon CPU E5-
2670@2.60GHz and 64 GB main memory, implemented in
C++ and compiled by the g++ compiler.
A. Running time of our algorithm

Under the two jamming patterns REGJ and BURJ, we
investigate the running time of our backbone construction
algorithm in reality when varying the network size and the
jamming level. Specifically, in the simulation, the network
size n varies from 500 to 5000. In regular jamming (REGJ),
the jamming ratio is ζ ∈ {0, 0.1, 0.3, 0.5, 0.7, 0.9}. In bursty
jamming (BURJ), we have the jamming parameter Tζ ∈
{0, 1, 3, 5, 7, 9} ∗ 103. The simulation results are illustrated in
Fig. 1. In Fig. 1, the running times of our algorithm in the
two jamming patterns when the number of nodes and jamming
levels change are shown.

From Fig 1, we can find that as the number of nodes gets
larger, the running time increases logarithmically. Also as the
jamming ratio (number of jamming rounds) gets larger, the
running time increases.

From the figures, it can also be found that our algorithm
is insensitive to jamming in the sense that the number of
unjammed rounds used by our algorithm is rarely affected
by particular jamming in the network. Take Fig. 1(a) as an
example. In the case of n = 3000, the running time is about
5 ∗ 103 rounds, which means our algorithm needs 5 ∗ 103

unjammed rounds to accomplish the task in a network without
jamming. Then for the case with jamming ratio ζ = 0.9,
the running time is about 5 ∗ 104. In this case, there are
5 ∗ 104 ∗ (1 − ζ) = 5 ∗ 103 unjammed rounds in expectation
during the 5 ∗ 104 running time. So, the 4.5 ∗ 104 jamming
rounds do not increase our algorithm’s requirement for un-
jammed rounds and our algorithm mainly uses the remaining
5 ∗ 103 unjammed rounds to complete the task.
B. Properties of constructed backbone

We then verify the properties of the constructed backbone.
Degree of nodes in backbone. Fig. 2 illustrates the degrees

of nodes in the constructed backbone for networks with
different sizes and in different jamming situations. The x-axes
in Fig. 2 represent the number of nodes in the network. The
y-axes represent the average and maximum degree of nodes
in the constructed backbone respectively in Fig. 2(a)(b) and
Fig. 2(c)(d). From Fig. 2, we can see that (1) the average
degree and maximum degree increase first when n gets larger
and becomes stable subsequently; (2) the average degree and
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(b). Running time in BURJ
Fig. 1: Running time of our algorithm in two jamming patterns
when network size and jamming level change.
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500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of nodes

16

18

20

22

24

26

28

30

32

34

36

M
ax

im
u
m

 d
eg

re
e 

/ 
n
o
d
es

T
ζ
 = 0

T
ζ
 = 1*10

3

T
ζ
 = 3*10

3

T
ζ
 = 5*10

3

T
ζ
 = 7*10

3

T
ζ
 = 9*10

3
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Fig. 2: Average/maximum degree of the backbone in two jam-
ming patterns when network size and jamming level change.

maximum degree of the constructed backbone are not large in
reality, which are always smaller than 25 and 35 respectively;
(3) the average (maximum) degrees are almost the same in
different jamming situations. So, our constructed backbone is
insensitive to jamming in terms of nodes’ degrees.

Diameter of new communication graph. Fig. 3 shows
the diameter of the new communication graph, which is
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(b). Diameter in BURJ
Fig. 3: Diameter of the new constructed communication graph
in two jamming patterns when network size and jamming level
change.
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Fig. 4: Size change of the constructed backbone in two jam-
ming patterns when network size and jamming level change.

constructed by connecting nodes outside the backbone with
their designated one hop neighbors inside the backbone, in
networks of different sizes and having jamming situations. In
Fig. 3, we use the diameter of the original network as the
baseline. From the figures in Fig. 3, we can see that (1) the
diameter of the new communication graph is very close to the
diameter of the original network, which is at most two hops
longer; (2) the diameters of the new communication graph
in different jamming levels are almost the same. In other
words, the algorithm is insensitive to jamming in terms of
the diameter of the newly constructed communication graph.

Size of backbone. Fig. 4 illustrates the size of the con-
structed backbone, i.e., the number of nodes in the backbone,
when n and the jamming level change. In Fig. 4, the x-axes
and y-axes represent the number of nodes in the network and
the size of the constructed backbone respectively. In Fig. 4,
the sizes of backbones constructed for the cases of REGJ and
BURJ are nearly the same. When n is 500, since the network
is too sparse, a large fraction of nodes are by nature needed for
the backbone construction. When the network becomes larger,
the ratio of backbone size and network size gradually becomes
smaller. When n is 5000, the backbone consists of 900 nodes.
C. Summary

The simulated results show that our algorithm can construct
a backbone efficiently in a jamming environment. Further-
more, when the number of unjammed rounds used to construct
a backbone is nearly unchanged for different jamming levels,
our backbone construction algorithm is insensitive to the
jamming in the network in terms of the running time and the
various properties of the constructed backbone.

VIII. CONCLUSION

We presented a strong adversarial jamming model to portray
general jamming phenomena in wireless networks. The pro-
posed model, featured by local-uniformity, unrestricted energy
budget and reactivity, can cover more jamming scenarios and
is closer to reality than models in previous work. Under
the strong adversarial jamming model, an efficient jamming-
resilient backbone construction algorithm was given which can
construct a backbone in T (O(log n + logR)) rounds with a
high probability guarantee. Extensive simulations reveal the
efficiency of our algorithm in realistic situations.

The strong adversarial jamming model and the protocol
designed in this work provide a useful base for further work in

jamming-resilient distributed protocol design and analysis. It
will also be interesting to devise specific efficient algorithms
for other fundamental problems, such as broadcast and aggre-
gation, under the proposed jamming model.
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