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Abstract—In wormhole meshes, many fault-tolerant routing
algorithms have been proposed. None of them, however, can
tolerate general (irregular) fault model without virtual chan-
nels. In this paper, a 0-virtual channel fault-tolerant deadlock-
free routing algorithm for general fault model is proposed for
wormhole routing in two-dimensional meshes.
Considering XY-routing as a precious property of two-

dimensional meshes, we try to keep as many XY-routings
as possible without incurring any deadlock. During the pre-
processing, the mesh is divided into a number of fault-free
(healthy) rectangular regions, and a minimum spanning tree
connecting all these regions is built. Routing within a region
uses XY-routing mainly; and routing across regions will use the
spanning tree. An online solution is given for handling dynamic
faults and recovery.

Keywords-Wormhole Routing, virtual Channel, 2D-Mesh,
fault-tolerance.

I. INTRODUCTION

Multiprocessor systems rely on an interconnection net-
work between processors to exchange data and synchronize
with each other. Wormhole routing divides a message into
packets and the packets into flits, it then routes the flits
in each packet through the network in a pipeline fashion.
Header flits contain all of the routing information for a
packet and lead each packet through the network. When the
header flits reach a node that has no suitable output channel
available, all of the flits in the packet wait where they are
for a suitable channel to become available. One disadvantage
of wormhole routing relative to store-and-forward routing is
that it tends to support routing that is less fault tolerant.
In multiprocessor systems, routing algorithms provide

mechanisms for communication between processors, and the
efficiencies of routing algorithms is important for achieving
high performance in a multiprocessor system. Examples of
commercial multi-computers and research prototypes based
on mesh networks are Intel Paragon(2D mesh), IBM Blue

Gene [1](3D mesh), Alpha 21364[11](2D torus),and Cray
T3D/T3E [15](3D torus).
Recently, main microprocessor manufactures have shifted

to chip multi-processor for their latest products. Intel has an-
nounced a research chip with 48 cores under the Tera-Scale
Computing Research Program [8]. The most straightforward
topology for on-chip networks is the 2D mesh structure
as it offers regularity and simplicity for routing. Defective
components may break topology regularity, thus efficient
routing becomes a challenge. Currently, many solutions
[7][12][13] [20] have been proposed to handle this problem.
These schemes are focused on routing implementation on
a chip. For example, an universal logic-based distributed
routing (uLBDR) is proposed to any irregular topology
derived from 2D meshes in [12][13]. The uLBDR relies
on a compact representation of routing algorithm, and the
routing algorithm implementation with uLBDR is based on
a set of routing restrictions to ensure deadlock freedom. Y.
Fukushima et al. [7] proposed a routing control algorithm
for non-virtual channel router of irregular 2D mesh network-
on-chips, their fault model is rectangle faulty regions, which
needs to deactivate healthy nodes around faulty nodes.
Numerous fault-tolerant routing algorithms in general

mesh networks have been proposed, and most of these
algorithms augment the dimension-order routing algorithm
to tolerate some faults. R.V. Boppana and S. Chalasani
proposed a fault-tolerant routing algorithm in mesh networks
[3][5], or in mesh and torus networks [4]. The deadlock can
be prevented by using four virtual channels per physical
channel for deterministic(dimension- order) fault tolerant
routing, and their fault models are rectangle[3][4] and spe-
cial convex [5]. P.H. Sui and S.D. Wang [16] improved
Boppana and Chalasani’s algorithm [3], and proposed a
fault-tolerant routing algorithm with three virtual channels
per physical channel to tolerate the rectangle fault model.
Tsai [18][17] proposed fault-tolerant routing algorithm
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with two virtual channels, which prohibit routing to some lo-
cations and the fault blocks in the model could include non-
faulty nodes. J. Wu [21] proposed a fault-tolerant extended
XY-routing protocol, which is based on dimension-order
routing and odd-even turn model and does not use any virtual
channels in 2D meshes. The paper uses extended faulty
block (disjointed rectangles), which consists of connected
unsafe and faulty nodes. The proposed protocol in [24]
can be applied in 2D meshes with orthogonal faulty blocks
(convex polygon). The extended XY-routing protocol pro-
hibits certain location of faults and destinations, their fault
models includes non-faulty nodes. D. Wang [19] proposed
a rectilinear-monotone polygonal model MCC (Minimal-
Connected-Component) for fault-tolerant minimal routing
in meshes. The contribution of the proposed fault model
in [19] is that it includes fewer non-faulty nodes in fault
block, many non-faulty nodes that would have been included
in rectangular fault blocks can become candidate routing.
However, MCC model includes non-faulty nodes, too.
D. Xiang et al. [22][23][24] proposed a fault-tolerant

routing algorithm, which is based on a new virtual network
partitioning scheme and block fault model. Two virtual
channels are used to support deadlock free adaptive routing
in meshes with arbitrarily shaped faults. A message is routed
along a series planes. The fault-tolerant routing method
in [9] provides planar-adaptive routing based on the 3D
MCC fault model. The method implements planar-adaptive
routing based on arbitrary orders of dimensions. Three
virtual channels are used to support deadlock free routing
in 3D meshes. F. Safaei and A. Mortazavi [14] proposed
a fault-tolerant routing algorithm to prevent static faults
in 2D mesh networks. It needs to know all faults in the
network when the system is started. In their routing scheme,
messages are avoided to enter congested faulty regions of
the network. According to this scheme, the system cannot
remain continuously operational when network components
fail, and five virtual channels are needed for deadlock free
routing.
In most situations, algorithms are designed to work only

when fault regions have certain shapes, and it can be made to
work for arbitrarily located faults by first deactivating certain
nodes in such a way that the regions of faulty/deactivated
nodes have the required shapes. Without assuming any spe-
cific shapes for faulty regions, and deactivating any nodes,
our aim is to design a deadlock-free routing scheme in a
faulty mesh, which uses only one 1-flit buffer at the ends of
each link and no virtual channel routing.
For a fault-free mesh, the common XY-routing is enough.

With the presence of faulty nodes, XY-routing may be
blocked. Inevitably, we must apply YX-routing in some
communication paths, and deadlock may occur. Therefore,
YX-routing should be handled carefully. For the general
fault model, previous algorithms use either more than one
1-flit buffer or virtual channel for routing. The underlining

idea is to avoid any cycle formed by communication paths.
However, to avoid any cycle using one 1-flit buffer without
virtual channel is theoretically not difficult. In the extreme,
spanning tree can be used for routing because of cycleless,
at the expense of all useful properties of mesh. We will
hardly satisfy with this solution, and in this paper, we give
a solution which uses much of the remaining properties of
a faulty mesh.

II. DEFINITIONS
Each node in a mesh is located in a unique (x, y)-

coordinate. The coordinate of a node v is denoted as
(v.x, v.y). The M × N mesh in question is an undirected
unit-cost graph G = (V,E) such that V = {(x, y)|x ∈
[1,M ], y ∈ [1, N ]} and E = {(v1, v2)|v1, v2 ∈ V, |v1.x −
v2.x|+ |v1.y−v2.y| = 1}, where M,N ∈ I+, and M ≥ N .
We follow the convention that the node in the top left
corner has coordinate (0, 0) and that in the bottom right
has coordinate (M − 1, N − 1).
There are two kinds of nodes, namely healthy and faulty

nodes. A healthy node can process and relay messages, and
has four ingoing and outgoing edges. Each edge has a one-
flit buffer at each end, and therefore, there are totally eight
buffers in each node. A faulty node is assumed to be inactive
in all aspects. In other words, we ignore the remaining
properties of a faulty node. A faulty block is a submesh
which nodes are all faulty. A healthy node can detect any
faulty neighbours. Without loss of generality, we assume all
healthy nodes are connected. Otherwise, we will handle each
connected region of healthy nodes separately. A rectangle is
a submesh of healthy nodes.
We now define the problem. The input consists of two

integersM andN , and the coordinates of top left and bottom
right nodes of each faulty block. The output is a routing table
for each healthy node such that the routing is deadlook-free
and uses no virtual channel.

III. THE ALGORITHM
There are three phases in our algorithm. Phase I is

to partition the healthy region into a number of disjoint
rectangles such that the number of possible XY-routings
within rectangles are reasonably large. It is because the XY-
routings are optimal. First, find all rectangles and associate
each rectangle with its area. Second, with the rectangles as
input, we find disjoint rectangles to cover all the healthy
nodes so as to maximize the sum of squares of areas. As the
sum of squares of areas equals to the sum of the XY-routings
plus the total number of healthy nodes which is determined
by the input, maximum sum of squares of areas directly
is equivalent to maximum sum of XY-routings. We design
a greedy algorithm which is a modification from Chvàtal’s
[6]. The modification is that after a rectangle S giving the
maximum area (which is equivalent to giving maximum
square of area) is picked, its disjointness with the chosen
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rectangles needed to be checked. If disjoint, S is accepted;
otherwise, delete S from the rectangle pool and try another
rectangle. This step will be executed until we can choose a
disjoint rectangle returning maximum area. If there are more
than one choice, choose the rectangle with more nodes. If
there are still many choices, choose arbitrarily. Figure 1 is
an example.
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Figure 1. Partitioning a mesh into rectangles

Phase II is to output a spanning tree of rectangles such
that the lengths of the routing paths along the tree edges
are reasonably bounded. First, form an undirected weighted
graph R of rectangles. In the graph, rectangles are nodes,
and for any two adjacent rectangles, form an edge in R.
In the mesh, choose a link such that the distance between
their middle points through the link is minimized. If there
are more than one possible choice, choose one arbitrarily for
routing while the others are not used. Exact one link is used
because we want to avoid cycles. This link is called bridge.
Figure 1 gives examples that the rectangles are connected
by bridges—the thick lines. The weight of the edge of R
is defined by the distance between the middle points of the
two rectangles. The reason will be given after the discussion
of Phase III. Next, find the minimum cost spanning tree
by Prim’s algorithm [10]. The spanning tree will be used
for routing between rectangles, and it is the reason why
minimum cost is a requirement. Performance evaluation will
be done on different techniques on choosing bridge, and
different calculations on the costs of edges.
Phase III is to build the routing table for each healthy

node. The routings inside a rectangle are all XY-routings.
Consider inter-rectangle routings. First, route to the correct
bridge by XY-routing. After crossing the bridge, use again
XY-routing to go to the destination or another bridge,
depending on whether the destination node resides in this
rectangle. The worst case ratio on the path length is clearly
O(MN), because we need to avoid any cycle. The worst

case is that a routing between neighbours needs to traverse
the whole spanning tree.
Now we are back to the weights of edges of R. We

consider the weight of an edge between rectangles P and
Q as a measure of the cost not only between P and Q,
but also between any other rectangles which use them in
their communication paths. This cost depends on the position
of the chosen link between P and Q, as well as the links
connecting them to the other neighbour rectangles. However,
it is bounded by the sum of X-lengths and Y-lengths of P
and Q, as XY-routing is used inside each rectangle according
to Phase III. The whole algorithm is illustrated in Figure III.
We now prove the correctness of the algorithm.
Theorem 1: Each healthy node is reachable if the buffers

needed are eventually available.
Proof: We can easily check the completeness and

disjointness of the sets of nodes directed by the routing table
in each node. We now prove that the routing path between
any two healthy nodes is simple.
Suppose the path is not simple and there exists a loop

in a routing path. If the loop crosses over two rectangles,
the routing table of the bridge in between violates the
disjoint property. Therefore, the loop must appear within a
single rectangle. The destination of the path must be outside
the rectangle; otherwise XY-routing will be applied, and
there does not exist any loop. However, according to the
construction of the routing tables, XY-routing should be
applied to direct the path to the correct and unique bridge,
and then go out of the rectangle. There must not be any
loop within the rectangle. This results in a contradiction,
and completes the argument that the routing path is simple.
The theorem follows.
Theorem 2: The routing scheme is deadlock-free.
Proof: It suffices to show that there is no buffer-waiting

cycle. Assume the contrary that there exists such a cycle C.
Recalling that each routing path is simple, C must be formed
by a number of routing paths.
As XY-routing is used for routings within rectangles, C

does not occur in a single rectangle, and it must cross
over more than one rectangle. Since the spanning tree of
rectangles are used in inter-rectangle routings, there is one
rectangle A such that C enters into A and leaves A through
the same bridge b, without passing any other bridges. The
paths of C inside A starts from b, turns at least a round
and ends at b. However, there is no YX-routing inside A.
Therefore, at each YX-turning, the Y-path must stop at the
corner and the subsequent X-path must start at the same
point. (Figure 5 gives two examples of YX-turnings.) It then
breaks the buffer waiting cycle. A contradiction.

IV. DYNAMIC FAULTS AND RECOVERY
Whenever there are few more faulty nodes after execution

of the above algorithm, we can apply some simple tricks for
temporary partitioning. Suppose a new faulty node u appears
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Figure 2. Graph of rectangles for the example in Figure 1
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Figure 3. Minimum spanning tree of the above graph

in a rectangle B. Partition B into two to four rectangles,
depending on the position of u, and the shape of B. If B
is a linear array and the new faulty node appears at its end,
then the remaining healthy nodes are a rectangle. In any case,
the number of XY-routings inside B needs to be maximized.
We use the example in Figure 1 to illustrate this idea and
give the partitioning in Figure 6. In this figure, only the
new rectangles and their neighbours are shown. B is the
original rectangle 3 and u is the black node. The rectangle is
partitioned into a, b, c and d. After partitioning, the graph of
rectangles and its spanning tree need corresponding changes.

First, remove B and its edges from the graph and spanning
tree. So the spanning tree may become a forest of trees. Add
the new rectangles as nodes and form a larger forest. Put the
edges of the new rectangle into a pool of edges, together with
the original unused edges, i.e., the edges in the original graph
but not in the spanning tree. Start Prim’s algorithm, until the
forest becomes a new spanning tree or all edges have been
tested. In this section, the input is a forest, not nodes. As the
new faulty node can disconnect the healthy nodes, there may
be more than one spanning trees outputted. These spanning
trees may not be minimum, because those unaffected edges
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Figure 7. The new graph and its spanning tree.

in the previous tree are kept. Figure 7 shows the graph and
spanning tree for the rectangles in the example in Figure 6.
The straight lines represent the old edges, and the curves
are for new ones. The solid and dotted styles are for chosen
and un-chosen edges, respectively. The edges with cost are
in the pool for re-building the new tree. The edges with their
costs hidden do not participate in this process. Assignment
of routing tables is similar as before.

In some situations, a node can be temporarily faulty, and
will be recovered by itself shortly. Therefore, we need a
dynamic approach to accept the return of a node. The new
node can be treated as a rectangle and attached to one of its
neighbours. However, it is not efficient in terms of benefit.
We design a rectangle enlargement scheme for this purpose.
Since it is a dynamic scheme, only the neighbours of the
returned node are considered. The new healthy node and all
its neighbours are grouped together and form a larger healthy
region. Similar to Phase I, find all possible rectangles in this
healthy region, and apply the modified Chvàtal’s algorithm.
Figure 8 shows the recovery of a faulty node in the example
given in Figure 1. The rectangles with thicker surroundings
are new. After the new rectangles are formed, perform the
same procedures as for new faulty nodes. That is, remove the
old nodes and their edges from the graph and its spanning
tree, and then by Prim’s algorithm, choose the minimum
cost edges from the new and old unused edges to connect
the new nodes to the forest and form a new spanning tree.
Figure 9 shows the spanning tree for the above example. The
meanings of solid and dotted, lines and curves are the same
as above. The resulting spanning tree may not be minimum
as the chosen edges in the existing forest or partial spanning
tree may have higher weights. As for the purpose of dynamic

recovery, “local” minimum is chosen.

V. CONCLUDING REMARKS
We propose an algorithm for the wormhole deadlock-

free routing problem in faulty 2D-meshes. We consider
asynchronous mesh and all-to-all routing between connected
non-faulty nodes. The contribution of our algorithm is that it
employs no virtual channel and can be applied to any fault
pattern.
Although the problem has been studied for years, re-

search is still much needed for the following areas, which
include a metric for the performance of routing and one
for the computational complexity for preprocessing. The
performance of routing can be measured by the number
of virtual channels used, the number of non-XY-routings
used where XY-routing is unblocked, and their tradeoffs.
It is a measure of the price for deadlock-free routing. The
tradition stretch factor may not tell the quality of routing
because O(MN) is unavoidable for avoiding cycles. The
computational complexity for constructing routing tables or
rules can be a performance measurement. It further falls
into categories of online, offline, centralized and distributed
manners.
Another direction of research can be focused on the

heterogeneities of faults. For example, we can allow some
faulty nodes to forward messages in X-direction only, and
some undirected edges to become directed due to faults.
There are still much rooms for research.
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[6] V. Chvàtal, “A greedy heuristic for the set covering problem”,
Mathematics of Operation Research 4:233–235, 1979.

[7] Y. Fukushima, M.Fukushi, I.E. Yairi, and T. Hattori, ”A
hardware-oriented fault-tolerant routing algorithm for irregu-
lar 2D-mesh network-on-chip without virtual channels”, 2010
25th International Symposium on Defect and Fault Tolerance
in VLSI Systems, Kyoto, Japan, Oct. 6-8, 2010, pp.52-59.

[8] Intel.(2010). The single-chip cloud computer[online].
Avaiable: http://techresearch.intel.com/article/Tera-
Scale/142.htm.

[9] Z. Jiang, J.Wu, and D. Wang, ”A new fault information
model for fault-tolerant adaptive and minimal routing in 3D
networks”, IEEE Trans. reliability, Vol.57, No.1, Mar. 2008,
pp.149-162.

[10] J.B. Jr. Kruskal, “On the shortest spanning subtree of a graph
and the traveling salesman problem”, Proc. AMS, 7:1, 48–50.

[11] S.S. Mukherjee, R. Bannon, S. Lang, and A. Spink, ”The
Alpha 21364 Network Archi- tecture,”, IEEE Micro, pp.26-
35, 2002.

[12] S. Rodrigo, J.Flich, A. Roca, S. Medardoni, D. Bertozzi, J.
Camacho, F. Silla, and J. Duato, ”Addressing manufacturing
challenges with cost-effi cient fault tolerant routing”, 2010
Fourth ACM/IEEE International Symposium on Networks-
on-Chip, Grenoble, France, May 3-6,2010, pp. 25-32.

[13] S. Rodrigo, J.Flich, S. Medardoni, D. Bertozzi, J. Camacho,
F. Silla, and J. Duato, ”Cost-effi cient on-chip routing im-
plementations for CMP and MPSoC systems”, IEEE Trans.
on Computer-aided design of integrated circiuts and systems,
Vol.30, No.4,April 2011, pp. 534-547.

[14] F. Safaei and A. Mortazavi, ”A novel routing algorithm for
achieving static fault-tolerance in 2-D meshes”, 2010 10th
IEEE International Conference on Computer and Informa-
tion Technology(CIT 2010), June 29-July 1, Bradford, UK,
pp.2621-2627.

[15] S.L. Scott, ”Synchronization and communication in the T3E
multiprocessor”, Proc. of ASPLOS 7, Otc. 1996, pp. 26-36.

[16] P.H. Sui and S.D. Wang, ”An improved algorithm for fault-
tolerant wormhole routing in meshes,” IEEE Trans. Comput-
ers, Vol.46, No.9, pp. 1040-1042, Sept. 1997.

[17] M.J. Tsai, ”Fault-tolerant routing in wormhole meshes”, Jour-
nal of Interconnection Networks, Vol. 4, No. 4, pp. 463-495,
2003.

[18] M.J. Tsai and S.D. Wang, ”Adaptive and deadlock-free rout-
ing for irregular faulty patterns in mesh multicomputer”, IEEE
Trans. Parallel Distributed Systems. 11(2000), 50-63.

101



Initially, P , V , E, T , U and W are ∅.

Phase I:
1. For each healthy node a
1.1 Find all possible rectangles with top-left

coordinates at a, and store them in rectangle
pool P ;

1.2 Associate each rectangle with its area;
2 While P �= ∅ do
2.1 Find the rectangle A with maximum area from P ;
2.2 P := P \ {A};
2.3 If A is disjoint with all rectangles in V
2.3.1 V := V ∪ {A};

Phase II:
3. For any pair of rectangles in V
3.1 If they are adjacent to each other
3.1.1 Choose a bridge arbitrarily;
3.1.2 Create an edge with weight equal to the sum

of their X-lengths and Y-lengths;
3.1.3 Store the edge into E;

// Prim’s algorithm
4. Form a graph G := (V,E);
5. Choose an arbitrary node in V and store it in U

and all its edges in W ;
6. While W �= ∅ and U �= V do
6.1 Find the minimum-weight edge e from W ;
6.2 W := W \ {e};
6.3 If e is connected to a rectangle A �∈ U
6.3.1 U := U ∪ {A}; T := T ∪ {e};
6.3.2 Store all edges of A except e into W ;
// T will be the set of edges in the minimum spanning tree.

Phase III:
7. For each rectangle A ∈ V
7.1 Associate each rectangle in V \ {A} to the

corresponding bridge according to the minimum
spanning tree;

7.2 For each node a in A
7.2.1 For each node b �= a
7.2.1.1 If b is in A
7.2.1.1.1 Add to the routing table that XY-routing

is used;
7.2.1.2 If b is not in A
7.2.1.2.1 Add to the routing table that XY-routing

is used to direct the messages for b to
the corresponding bridge; and simply cross
the bridge if a is already its end node.

Figure 4. The algorithm
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