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Abstract

A geographically distributed web server (GDWS) system consists of multiple server

nodes interconnected by a metropolitan area network (MAN) or a wide area net-

work (WAN). It can achieve better eÆciency in handling ever-increasing web re-

quests than centralized web servers because its throughput will not be limited by

available bandwidth connecting to a central server. The key research issue in the

design of GDWS is how to replicate and distribute the documents of a website

among the server nodes. This paper proposes a density-based replication scheme

and applies it to our proposed Extensible GDWS architecture. We adopted a par-

tial duplication scheme where document replication targets only at hot objects in

a website. To distribute the replicas generated via the density-based replication

scheme, we propose four di�erent document distribution algorithms: Greedy-cost,

Maximal-density, Greedy-penalty, and Proximity-aware. A proximity-based rout-

ing mechanism is designed to incorporate these algorithms for achieving better

web server performance in a WAN environment. Simulation results show that the

Greedy-penalty algorithm yields most stable load balancing performance, and the

Greedy-cost algorithm causes least internal traÆc. Our scheme can achieve 80% of

the performance of full-replication, with half the disk space.
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1 Introduction

The rapid growth of the World Wide Web has brought huge increases in

traÆc to popular websites. One prominent example is the website for the

2000 Olympic Games (www.olympics.com), which had to handle an average

of 7900 requests per second [22]. Web users of such popular websites would

encounter slow responses if the servers behind them are not powerful enough.

Techniques such as Web caching and prefetching have been used to mitigate

this problem by placing the web documents closer to the users. However,

previous research has shown that the maximum cache hit rate achievable by

any caching algorithm is bounded [1]. The demand for more powerful web

servers that can eÆciently handle large amount of HTTP requests persists.

To construct a powerful web server, one could either use a single, powerful

machine, or a collection of machines working together as a distributed system.

The single-machine approach is not attractive due to the ever-increasing user

demand and the fast obsolescence of today's hardware. The cost to maintain a

powerful server machine could also be a problem. The other approach is more


exible and sustainable. It uses a Distributed Web Server (DWS) system, in

which multiple server nodes are interconnected to act as one single server.

We classify a DWS system as either \locally" or \geographically" distributed,

based on how its server nodes are interconnected. A locally DWS (LDWS)

system takes the form of a computing cluster which is normally based on

a LAN. Its performance is thus limited by the bandwidth of the system's

connection to outside network. A geographically DWS (GDWS) system uses

public networks (MAN or WAN) for its interconnections, and may span over

multiple networks. Previous research has shown that GDWS systems is able
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to handle large amounts of user requests better than traditional web servers

and LDWS systems [8].

As the network speed of a MAN or WAN is limited when comparing to a LAN-

based network, in GDWS systems, movement of documents between server

nodes is an expensive operation. Therefore, a strategy that can optimally and

eÆciently distribute documents and replicate selected documents is needed in

the design of a GDWS system. Such a strategy is the subject of this paper.

According to the degree of document replication among the server nodes,

GDWS systems can be classi�ed into three categories: full-replication, non-

replication, and partial-replication. In a full-replication GDWS system, each

server node maintains copies of all the documents of the site [14]. Incoming re-

quests are then passed on to the server nodes using content-blind mechanisms

(e.g. via a DNS server). Full-replication is most fault-tolerant, which however

could waste much disk space because of documents that are not frequently re-

quested. In non-replication GDWS systems, no documents are replicated [5].

They depend on content-aware distribution software to direct a client request

to the server node that has the requested document. Advanced features can

be added to such a GDWS system, such as when a server node is overloaded,

some of its documents are migrated to other nodes. But if the website has too

many popular web pages with extremely high request rates, to equalize the

load is absolutely non-trivial.

In a partial-replication GDWS system, only a subset of the web documents

are replicated [16,30]. Partial-replication aims at using a reasonable amount

of disk space to achieve a good replication which in turn helps remove possible

hot spots. And fewer hot spots automatically translates to a more even load
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across the system. We believe that partial-replication GDWS system is the

most promising solution to providing a powerful web server.

In this research, we focus on document replication and distribution algo-

rithms for partial-replication GDWS systems. These algorithms implement

the mechanism to decide which documents to replicate, how many replicas

and where they should be placed|collectively known as the document distri-

bution scheme.

Existing document distribution schemes for partial-replication GDWS systems

fall into two main categories. The �rst is based on a dynamic approach, where

dynamically, each server node checks the current global load situation; the

server then replicates one of its documents to the underloaded servers and

revokes one of its replicas from the overloaded servers. This approach is used

in DC-Apache [16]. As we will see in later sections, the performance of this

approach is not always satisfactory. The other approach is to replicate and

distribute the documents based on past access patterns [20]. However, how to

update the document distribution based on up-to-the-minute access patterns

as well as current document location information is rarely discussed in existing

literature.

In this research, we propose an architecture for GDWS systems, which is called

the Extensible Geographically Distributed Web Server (EGDWS). With this

architecture, documents are periodically replicated according to their popu-

larities during the past period. The replicated documents are then distributed

among the server nodes taking into account the current locations of the docu-

ments. Thus internal traÆc generated can be reduced. The system is extensible

in that after adding a new server node, the system can resume its load-balance
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promptly, and the existing server nodes minimally a�ected by the addition.

We propose several algorithms for the operation of an EGDWS system. The

replication algorithm makes use of a \density" attribute (the workload each

unit of a document brings to a server) of a document to calculate the desired

number of replica. We try and compare several di�erent distribution algo-

rithms: the Greedy-cost algorithm minimizes the traÆc by keeping as many

documents stationary as possible; the Maximal-density algorithm tries to bal-

ance the load among the server nodes; the Greedy-penalty algorithm tries to

improve Maximal-density by allocating the documents in a certain sequence

in order to reduce the traÆc; the Proximity-aware algorithm distributes the

documents according to their popularities in di�erent Internet regions. Results

we obtained show that our scheme can achieve 80% of the performance of a

full-replication scheme, but with half the disk space.

The rest of the paper is organized as follows. Section 2 surveys related work.

Section 3 presents details of the architecture of our EGDWS, and the formu-

lation of the data replication problem. Section 4 proposes and discusses the

document distribution algorithms. Section 5 presents the simulation results.

Section 6 concludes the paper and suggests future directions in this research

area.

2 Related Work

There has been a substantial amount of work done on the subject of data

replication. The general problem refers to how to decide on the number and

placement of replicas across multiple servers, with the aim to improve the

overall system performance and minimize the costs involved. Previous work
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on data replication has focused on networked systems, distributed database

systems, and most recently, content delivery networks (CDNs).

The File Allocation Problem (FAP) [10] studies how to assign �les to di�erent

nodes in a distributed environment to optimize a certain performance met-

ric (e.g., total network traÆc). The �les and their copies are allocated with

respect to the storage capacity of the nodes. FAP can be de�ned as follows:

Given a network of M sites with di�erent storage capacities and N �les ex-

hibiting various read frequencies from each site, allocate the objects to the

sites in order to optimize the given metric. This problem has been proved to

be NP-complete. An old but useful survey on models for FAP in computer

network systems can be found in [10]. Most previous results were based on

the assumption that access patterns are known and remain unchanged. Some

solutions for dynamic environments were proposed in [17,4,29].

The problem of data replication also exists in distributed database systems.

It can be modeled by an FAP-like formulation [2]. The author of [2] investi-

gated the complexity of the data replication problem in database systems, and

proposed several methods for obtaining optimal as well as heuristic solutions

taking into account the data allocation cost. The work of [15] and [6] studied

the data allocation problem in multimedia database systems and video server

systems respectively. Many proposed algorithms in this area try to reduce the

volume of data transferred in processing a given set of queries [2,15].

Another important data replication problem exists in Content Delivery Net-

works (CDNs). In a CDN, the set of documents in a website is replicated to

servers located at widely separated locations around world or in some large

geographic region. In [25], the replica placement problem in CDNs is formu-
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lated as the uncapacitated minimum K-median problem [19]: Given M sites,

we must select K sites to be centers, and then assign each input point j to

the selected center that is closest to it; if location j is assigned to center i, a

cost is incurred; the goal is to select K centers so as to minimize the sum of

such costs. In [26] and [25], di�erent heuristics were proposed based on this K-

median formulation to reduce network bandwidth consumption. The authors

of [11] take storage constraints into consideration, and reduce the knapsack

problem to the replica placement problem in CDNs.

The document distribution problem of GDWS systems can be seen as an

instance of the FAP, in which each document has multiple copies and storage

capacities are considered. It is also similar to the replica placement problem in

CDNs. However, the existing solutions cannot be directly applied to GDWS

systems, for the following reasons.

(1) Load constraints and load balance

Each server node of a GDWS system has a computational load capacity

in order to maintain certain service quality. This constraint needs to be

taken into consideration when allocating the documents. Not many of the

existing solutions to the FAP consider load capacities [12]. On the other

hand, current research on CDNs often assumes that the load capacity of

the server is unlimited. Thus, load balancing among the server nodes is

not considered an issue [12]. This assumption may be reasonable for CDNs

for they can a�ord to deploy powerful servers. But for GDWS systems

that are made of ordinary server machines, an unbalanced workload could

be a hindrance to satisfactory performance.

(2) Internal traÆc

In existing solutions for data replication problems, how to update the
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data allocation among the nodes based on changes of user access pat-

terns is seldom investigated. Furthermore, internal traÆc caused by such

updates was rarely discussed in solutions to the FAP. As most CDNs em-

ploy their own private high-speed networks [25], such an issue of traÆc

caused by data replication is not of concern. But since GDWS systems

are assumed to be constructed over public networks, the induced traÆc

may have a signi�cant in
uence on the performance.

3 EGDWS

In this section, we will discuss our proposed GDWS model, the Extensible

Geographically Distributed Web Server (EGDWS). We also present the for-

mulation of the document distribution problem, and our proposed document

replication algorithm.

The EGDWS has the following characteristics.

(1) Adaptive document replication: The replication and distribution of docu-

ments are periodically updated in adapting to the new access patterns.

(2) Hot object replication: We identify popular documents and replicate them

to di�erent server nodes to achieve balance of load. These hot objects are

identi�ed based on the access log collected during the immediately past

period.

(3) Proximity-aware request dispatching : As the server nodes are globally

distributed, it is desirable to �nd the server node that is \nearest" to

a client. The dispatching takes into account proximity when performing

request dispatching.
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Fig. 1. Overview of the EGDWS architecture

(4) Extensibility : Adding a new server node or new web documents to the

system is simple, and will not generate too much traÆc or cause unduly

disturbances to existing nodes.

3.1 Architecture Overview

Figure 1 gives an overview of the EGDWS architecture. The EGDWS consists

of several main components, including the request dispatcher, the document

distributor, and the server nodes.

The request dispatcher represents the advertised URL of the website and is

the entry into the system. The request dispatcher keeps an index to each server

node's documents. When a request arrives, it redirects the request to a server

node holding a copy of the requested document. In our EGDWS prototype,
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we use HTTP redirection to route the incoming requests to the server nodes,

because it is a standard web protocol and has been deployed in many systems.

In addition, HTTP redirection has better control of incoming requests than

other methods, and compared with DNS-based dispatching, it can achieve

�ner load balancing.

If multiple server nodes have the requested document, the request dispatcher

chooses one as directed by a certain dispatching algorithm. As only a subset

of documents are duplicated, a content-aware request dispatching algorithm is

used in the EGDWS. A table is kept in the request dispatcher, which records

where each document and its copies are located. The following is an elabora-

tion of the dispatching process.

� Round-robin: The requests for a document are assigned in a round-robin

fashion among the servers having a copy. With this approach, the request

dispatcher only needs to have the location information of the document

copies.

� Proximity-aware: A request is assigned to the server node that is \closest"

to the client. We use RTT (round trip time) to measure the proximity of a

client to a server. Using RTT can lead to reduced client-perceived latency

[21]. RTT takes also the least e�ort to obtain via existing simple utilities

such as traceroute and ping.

To prevent the dispatcher from becoming a performance bottleneck, we can

deploy multiple dispatchers in the system to share the load. Round-Robin

DNS can be used to distribute the requests among the dispatchers.

A document distributor is also located at the central site. It collects the access

records periodically from the server nodes, analyzes them to �nd new access
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patterns and to decide how documents should be replicated and redistributed.

It will then send instructions to all concerned server nodes to initiate the

actual document movements. The goal is to achieve better load balancing and

to minimize the access latency.

In the EGDWS, server nodes are connected by a MAN or WAN. Each of them

holds a part of the website's documents. When a request comes to a server

node, if the requested document is stored locally at the node, the node serves

the request directly. Otherwise, the node redirects the client to another server

node based on a partial-URL-to-server mapping table. If the mapping table

is not available, the node returns the request to the request dispatcher at the

central site.

3.2 Problem Formulation

There are three main steps in our document distribution scheme:

(1) Access pattern analysis: To analyze the log �les collected from all partic-

ipating web servers to determine the popularity of each document.

(2) Document replication: To determine the number of replicas for each doc-

ument according to its popularity and the available storage space.

(3) Document distribution: To determine the distribution of the documents

and their replicas. As this decision is made based on the result of the

document replication step as well as the current location of documents,

this step is also called \document redistribution".

We introduce the variables to be used in the model. Suppose there are M

server nodes and N documents in the system. Sj (j = 1; : : : ;M) refers to the
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jth server node. Di (i = 1; : : : ; N) refers to the ith document. We have the

following variables:

- si denotes the size of Di.

- ri denotes the access rate of Di during the past period.

- wi refers to the weight of Di. It represents the workload Di brings to

the server node holding it. wi = � � wcpu + (1 � �) � wdisk. For dynamic

documents, � = 0:5; for static documents, � = 1. In this research, we only

consider static documents. Therefore, wi = wdisk = si � ri.

- di refers to the density ofDi, which is computed as di = wi=si. di represents

the workload per unit storage of Di brings to a server node.

- ci denotes the replica number of Di. If Di is replicated, each of its replicas

has size of si, weight of wi=ci, and thus density of di=ci.

- Ri is the replica set i. It contains the replicas of the set of document Di.

- Cj denotes server node Sj's storage capacity and Lj denotes Sj's load

capacity which is the maximum number of simultaneous HTTP connec-

tions Sj can support. If C1 = C2 = � � � = CM and L1 = L2 = � � � = LM ,

we call such a system a homogeneous system. For a homogeneous system,

C and L denote the storage capacity and the load capacity respectively.

- Wj denotes the weight or load of Sj It is equal to the sum of the weights

of all replicas on Sj.

- Gj refers to the density of Sj, computed as Wj / (amount of used disk

space in Sj).

- pij (i = 1; : : : ; N; j = 1; : : : ;M) denotes the cost link between document

set Ri and server node Sj. It is equal to the number of bytes Sj needs to

fetch from other server nodes if it is assigned a replica of Di. We can see

that pij is equal to either zero or si, depending on whether Sj already holds
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a replica of Di.

- We also have the following variables to show whether a replica of Di is

assigned to Sj after document distribution:

tlij =

8>>>>>><
>>>>>>:

1; if Dl
i is allocated to Sj

0; otherwise

j 2 f1; : : : ;Mg; i 2 f1; : : : ; Ng; l 2 f1; : : : ; cig

In the document distribution scheme, we assume that the total size of the doc-

uments does not exceed the total storage capacity, that is,
PN

i=1 si �
PM

j=1Cj.

The replication and distribution are supposed to be done under the following

constraints: (1) a server can only hold replicas whose total size does not exceed

the server's storage capacity; (2) a server can hold at most one replica of any

document; (3) all replicas are placed on the server nodes; (4) the weight of a

server is proportional to its load capacity.

Based on these constraints, we can construct an optimization problem. Its ob-

jective function is to minimize the total communication costs needed to update

the document distribution. This problem was proved to be NP-complete [31].

We call a replica placement that ful�lls all the constraints \feasible place-

ment". However, because of constraint (3), this optimization problem does

not necessarily have a feasible solution. Therefore, for practical document dis-

tribution, we relax the constraint (3) to: each document has at least one copy

in the system.

In this research, we con�ne our discussion to homogeneous systems and het-

erogeneous systems in which L1=C1 = L2=C2 = � � �LM=CM , that is, the load

capacity is proportional to the storage capacity. The document replication

and distribution problem in more general heterogeneous systems can be much
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Step1.  R = 
1

M

j
j

C
=
�  - 

1

N

i
i

s
=
� , R’ = 0, ci’ = 0 (i = 1,…N) 

Step2.  Sort documents by decreasing density di (i = 1,…N).  
    Find minimal density dmin. 

Step3 for i = 1 to N { 
3.1 ci’ = di / dmin  
3.2 R’ = R’ + si * ci’ } 

Step4. for i = 1 to N { 
   4.1 ci = ci’ * R / R’ 

    4.2 if (ci >= M-1){ 
   ci = M-1  

   R’ = R’– ci’ * si 
   R = R– ci * si }} 

Step5.   for i = 1 to N { ci = ci + 1 } 

Fig. 2. Pseudo code of the proposed Density algorithm

more complicated.

3.3 Document Replication Algorithm

Intuitively, we prefer to duplicate documents that bring more workload to the

system while having a small size. Therefore, in the replication algorithm, we

use the density of a document as the measure of its popularity. The larger a

document's density, the more replicas it should have, that is, Di's number of

replicas is roughly proportional to its di. The algorithm is thus named as the

\Density algorithm".

The Density Algorithm is shown in Figure 2. We �rst reserve the disk space

that is equal to the total size of the documents, so that ci for each document

is at least 1. Step 2 sorts the documents by their densities decreasingly, and

�nds the minimal density. In Step 3, each document gets a temporary replica

number, which is computed in such a way that the densities of the temporary

replicas are nearly equal to the minimal density. Normally, in Step 4, the

replica numbers are computed according to the ratio between the available
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disk space and the total size of the temporary replicas. Thus, the resulting

replicas will still have similar densities. One special case is when the replica

number ci of Di is larger than M � 1. In this case, ci is reduced to M � 1,

because a document can have at most M replicas and the space for one copy

of it has been reserved in Step 1. We then subtract the appropriate space from

the available disk space and the total size of the temporary replicas to adjust

the ratio between these two values. After computing the replica number for

each Di, in Step 5, ci is �nally decided as an integer not exceeding M .

We give an example showing how the Density algorithm works. Suppose there

are 8 documents and 4 server nodes. For simplicity, we let these documents be

of the same size 1 and the size of the server node be 4. The algorithm executes

as follows.

In Step 1, we get R = 8.

After Steps 2 and 3, we get the densities: f30; 10; 6; 5; 4; 3; 2; 1g, R0 = 63.

In Step 4:

1) For D1, c1 = 30 � 8=63 � 4. Since ci > M � 1, ci = 3. R = 8 � 3 = 5,

R0 = 63� 30 = 33.

2) For D2, c2 = 10� 5=33 � 2.

3) For D3, c3 = 6� 5=33 � 1.

4) For D4, c4 = 5� 5=33 � 1.

5) For D5, c5 = 4� 5=33 � 1.

6) For D6, c6 = 3� 5=33 � 0.

7) For D7, c7 = 2� 5=33 � 0.

8) For D8, c7 = 1� 5=33 � 0.

In Step 5, the replica numbers are determined as f4; 3; 2; 2; 2; 1; 1; 1g.
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From this example, we can see that the larger a document's density, the more

replicas it has. However, even though Da is extremely popular, its ca can-

not exceed the number of server nodes. Although this may decrease the gap

between the density of Da's replicas and the densities of other replicas, the

load balancing will not be a�ected because Da's replicas are placed on all

server nodes. On the other hand, when the number of server nodes is very

large, replicating the popular documents on each server node may result in

the decrease in other documents' replica numbers. This is reasonable because

previous research has shown that most accesses target at only a very small

portion of the popular documents [3,23].

The Density algorithm's time complexity is �(N logN +N). From Step 4, we

know that for any two documents Du and Dv, if 1 < cu, cv = M and du > dv,

du=(cu� 1) � dv=(cv� 1); and if cv = 1, 1 < cu and du > dv, du=(cu� 1) � dv.

Thus, we can assume that using the Density algorithm, for any two documents

Du and Dv, if du > dv, then du=cu > dv=cv. This conclusion will be used in

the following document distribution algorithms.

4 Document Distribution Algorithms

After determining the replication of the documents, the replicas (in the fol-

lowing discussion, this refers to all the documents and their replicas) need to

be distributed among the server nodes. We �rst present several algorithms

that can reduce the internal traÆc of the EGDWS system. Afterwards, an

algorithm that is aware of network proximity is proposed.
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Step1.   Sort (i, j) pairs by increasing cost, pij 
Step2. for j = 1 to M {Vj = Cj } 
Step3. for each (i, j) in the sorted list{ 

if (ci > 0) && (Vj ≥ si) && (tij
l = 0, l = 1,…ci){ 

// allocate a replica of Di to Sj  
ci = ci –1, Vj = Vj – si 
l = ci, tij

l = 1 }} 

Fig. 3. Pseudo code of the Greedy-cost Algorithm

4.1 Greedy-cost Algorithm

This very �rst algorithm aims to minimize the traÆc by keeping as many as

documents untouched as possible, and does not care if the load of the server

nodes is balanced or not. In each round of distributing the replicas, it chooses

a pair of < document, server node > which is has the smallest communication

cost among the remaining pairs.

This algorithm is shown in Figure 3. It �rst sorts the < i; j > pairs by the

communication cost between Di (i = 1; : : : ; N) and Sj (j = 1; : : : ;M) increas-

ingly. Based on this order, a replica of Di is allocated to Sj, if Sj has enough

empty space and has not been assigned the same replica in this period. The to-

tal time complexity of Greedy-cost algorithm is �(MN logMN +MN). From

the de�nition of pij, we know that this algorithm only duplicates and moves

those documents whose replica numbers in this period are larger than the

numbers of their copies in the system. It keeps most of the other documents

untouched in order to reduce the communication costs.

Although this algorithm does not consider the server load during document

distribution, we still expect that it would lead to some degree of spreading

the load among the server nodes because the Density algorithm has replicated

the documents as needed. The main problem with the Greedy-cost algorithm
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is that it may not be able to adapt to the change of the user access pattern

quickly, because it tends to keep the documents where they are.

4.2 Maximal-density Algorithm

 

Step1. Sort Ri (i = 1,…N) by decreasing density, di / ci   
Step2  for j = 1 to M {Do Vj = Cj } 
Step3  for each Ri in the sorted list{ 

3.1 Sort Sj (j = 1,…M) by increasing communication cost, pij.  
Servers having the same pij are sorted by decreasing density, Gj 

3.2 for j = 1 to M in the sorted list{  
   if (ci > 0) && (Vj ≥ si) && (tij

l = 0, l = 1,…ci) { 
// allocate a replica of Di to Sj  
Vj = Vj – si, ci = ci –1 
l = ci, tij

l = 1 
Wj = Wj + wi / ci 
Gj = Wj / (Cj – Vj) }}} 

Fig. 4. Pseudo code of the Maximal-density algorithm

Unlike the Greedy-cost algorithm, the Maximal-density algorithm hopes to

adapt to the changing user access pattern as well as reduce the traÆc caused

in updating the document distribution. To achieve this, Maximal-density al-

gorithm aims to see a balanced load after distributing the replicas. We expect

this algorithm to achieve better load balancing performance than the Greedy-

cost algorithm.

If the load is balanced after the document distribution, a server node's weight

should be approximately proportional to its load capacity. In the EGDWS,

a server node's storage capacity is proportional to its load capacity; and the

Density algorithm makes best use of the total available storage. Therefore, we

expect the densities of the server nodes to be approximately the same if the

load is balanced. Inspired by this, Maximal-density algorithm tries to equalize

the densities of the server nodes in order to balance the load among the server
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nodes.

The details of the Maximal-density algorithm are shown in Figure 4. To equal-

ize the server nodes' densities, it makes use of the densities of the replicas.

First, the replica sets Ri (i = 1; : : : ; N) are sorted by decreasing density;

they are then allocated in this order. To reduce communication costs, when

choosing server nodes for Ri, the server nodes are sorted by increasing com-

munication cost pij. If two server nodes have the same cost, the one with the

larger density Gj is chosen. As the densities of the replicas waiting to be as-

signed must be smaller than Gj (j = 1; : : : ;M), such a choice reduces the

di�erence between the densities of the two server nodes. Each time a replica is

distributed to Sj, Wj and Gj are updated. The time complexity of Maximal-

density algorithm is �(N logN +NM logM). For simplicity, we can use the

sorting result of the Density algorithm, based on the assumption that for any

two documents Du and Dv, if du > dv, du=cu > dv=cv. Thus the algorithm

only takes �(NM logM) time.

4.3 Greedy-penalty Algorithm

The Greedy-penalty algorithm is proposed to as a method to further decrease

the communication costs. It follows a more careful allocation sequence of the

replica sets. This is motivated by the observation that the allocation sequence

of the replica sets may a�ect the total traÆc generated. For example, if we

allocate Di at time X, we can assign it to server x with smaller pix; if we

delay allocating it for a while to time Y (X < Y ), however, server x may

have become full and Di has to be placed on server y with larger piy. We call

the extra traÆc caused by an improper allocation sequence \penalty". We use
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Step1. Sort Ri (i = 1,…N) by decreasing density, di / ci  
Step2. for j = 1 to M {Vj = Cj } 
Step3. While there are unassigned replica sets { 

3.1 for each unassigned replica set Ri{ 
u = 0, X = Φ 

 for j = 1 to M { 
        if Vj ≥ si, u = u + 1, add Sj to X } 

if (u ≤ ci) { 
 for each Sj in X { 

allocate a replica of Di to Sj  
Vj = Vj – si } 

goto step 3 } 
else { 

sort servers in X by increasing cost, pij. servers having the  
same pij are sorted by decreasing density, Gj 
fi = cost of (ci+1)th server node - cost of 1st server node }} 

3.2 Sort unassigned replica sets in decreasing penalty, fi 
    find the replica set Rmax with largest fi 
3.3 for each Sj in best placement for Rmax { 

if (ci > 0) && (Vj ≥ si) && (tij
l = 0, l = 1,…ci) { 

  //allocate a replica of Di to Sj 

Vj = Vj – si, ci = ci –1 
l = ci, tij

l = 1  
Wj = Wj + wi / ci 
Gj = Wj / (Cj – Vj )}} 

Fig. 5. Pseudo code of the Greedy-penalty algorithm

fi (i = 1; : : : ; N) to denote the value of penalty for Di and try to minimize

the sum of penalties. Similar algorithms have been used to solve the General

Assignment Problem [18].

In Greedy-penalty algorithm, fi is computed as the di�erence between the

costs of Ri's best and second best allocations, according to the current sta-

tus of the server nodes. A possible allocation for Ri is \better" if it incurs

less communication cost. When the server nodes with enough empty space

are sorted in increasing pij, the �rst to the cith server nodes form the best

allocation, while the second to the (ci + 1)th form the second-best allocation.

Therefore, fj is the di�erence between the communication costs of the �rst

server node and the (ci + 1)th server node in the sorted list. The algorithm

iteratively places the replica sets until they are all allocated to some server

21



nodes. Each time it computes the penalties for all unassigned replica sets, and

the set yielding the largest penalty is placed with its best placement. If there

are multiple replica sets with the same penalty value, they are placed in the

order of decreasing densities.

The Greedy-penalty algorithm reduces the traÆc by reducing penalties caused

by distributing the replicas in the wrong order. However, using this algorithm,

documents that have many replicas may have small penalties and thus be

placed after unpopular documents, which may lead to large load imbalance.

To avoid such problems, when there are only or fewer than ci server nodes

having enough empty space for Ri, fi is set to MAX VALUE. Then the replica

of Di will be placed on every server that has enough space, like what is shown

in Step 3.1 of Figure 5. In this way, most popular documents are always placed

earlier than other documents and the load will be balanced to some extent.

The time complexity of this algorithm is �(N logN +N2 logN +NM logM).

If we use the sorting results of the Density algorithm, the time complexity is

reduced to �(N2 logN +NM logM).

4.4 Proximity-Aware Algorithm

In the above algorithms, we assume that the popularity distribution among

the di�erent geographic regions is uniform, that is, most documents experience

the same popularity at di�erent server locations. For the next algorithm, we

assume that the server nodes are distributed in U di�erent Internet regions,

and documents may have di�erent popularities in di�erent Internet regions.

We introduce a proximity-aware document distribution algorithm which dis-
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Step1. Sort Ri (i = 1,…N) by decreasing density, di / ci  
Step2. for j = 1 to M {Vj = Cj } 
Step3. for each Ri in the sorted list{ 

3.1 sort Eu (u = 1,…U) by decreasing weight, wiu 
3.2 for u = 1 to U in the sorted list{ 
   copyu = (wiu / Σwiu) * ci 
   if (copyu > M / U) 
   copyu = M / U } 
3.3 u = 0 in the sorted list 

while (ci – Σcopyu > 0) { 
   if (copyu < M / U)  
    copyu ++; 
   u = u + 1 

if u = U, u = 1; } 
3.4 for u = 1 to U in the sorted list { 

   sort servers in Eu by increasing communication cost, pij 
for each server Sj in the sorted list { 

   if (ci > 0) && (Vj ≥ si) && (tij
l = 0, l = 1,…ci)  

&& (copyu > 0){ 
// allocate a replica of Di to Sj  
Vj = Vj – si 
ci = ci –1 
l = ci, tij

l = 1 
copyu =copyu – 1 }}}} 

Fig. 6. Pseudo code of the Proximity-aware algorithm

tributes the replicas of a document according to its popularities at di�erent

Internet regions.

The set of Internet regions is represented by E = fE1; : : : ; EUg. We use riu to

denote the access rate Di experiences in region Eu, and use wiu to denote the

weight of Di in region Eu. The details of the algorithm are shown in Figure 6.

We �rst sort the replica sets by their densities decreasingly. In Step 3, for each

replica set in the sorted list, we compute its number of replicas copyu in each

Internet region according to wiu (u = 1; : : : ; U). As there are onlyM=U server

nodes in each region, copyu cannot exceed M=U . Thus, it is possible that the

sum of copyu (u = 1; : : : ; U) is less than ci. If this is the case, in Step 3.3,

the remaining replicas of Di are distributed to the Internet regions, in order

of decreasing wiu. In Step 3.4, the server nodes in the same region are sorted

according to their communication cost with Di, increasingly, and the replicas

23



of Di are distributed to them in this order.

We can see that this algorithm places more replicas of Di in Eu with large

wiu. However, it does not care much about load balancing or communication

costs. Its load balancing performance and induced traÆc depend largely on

the distribution of user accesses among the Internet regions.

4.5 Proofs and Discussion

In this subsection, we �rst check if these document distribution algorithms

do keep at least one copy of each document in the system. Next, we compare

their load balancing performance and communication costs.

4.5.1 Correctness

To satisfy constraint (3), after executing any of the above document distribu-

tion algorithms, an adjustment algorithm is needed. It checks if there exists a

document without a copy in the system, and if there is, it removes copies of

some other documents to make room for this document.

We con�ne the correctness discussion to systems with
PN

i=1 si �
PM

j=1Cj=2,

PN
i=1(ci � si) �

PM
j=1Cj, si < Cmin=2 (i = 1; : : : ; N), where Cmin is the

smallest capacity among Cj (j = 1; : : : ;M). We prove that in such situations,

the adjustment algorithm can place at least one copy of every document in

the system.

Suppose before the adjustment algorithm is invoked, Da does not have a copy

on any of the server nodes. The adjustment algorithm then deletes copies of

24



documents with more than one copy in the system, and places Da in the �rst

server node with enough available space. The worst case is that each of the

documents already in the system has only one copy left before we can place

Da. At this time, Da can de�nitely be assigned to one server node, because

there must be one server node Sj whose available space is equal to or bigger

than Cj=2. Otherwise, the total used storage in the system will be larger than

PN
i=1 si and this is contradictory to our assumption.

4.5.2 Communication Cost

We use MAX TRAFFIC to denote the maximal traÆc an algorithm may

cause. In the Greedy-cost algorithm, replicas are distributed in the order of

increasing communication cost with server nodes. Thus,

MAX TRAFFICgreedy�cost =
NX
i=1

(ci � si �
MX
j=1

pij)

On the other hand, using the Maximal-density algorithm, some replicas may

not be placed on server nodes that have smaller communication costs. This

is because the nodes may not have enough empty space to hold them. Such

documents form the set Q. Thus,

MAX TRAFFICmaximal�density =
X

i2D=Q

(ci � si �
MX
j=1

pij) +
X
i2Q

ci � si ,

Q = fDi that cannot be distributed to server nodes with minimal pijg

Similarly, the upper bound of communication cost of the Greedy-penalty al-

gorithm is:

MAX TRAFFICgreedy�penalty =
X

i2D=P

(ci � si �
MX
j=1

pij) +
X
i2P

ci � si ,
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P = fDi that cannot be distributed to server nodes with minimal pijg

We can see that generally the communication costs of the Maximal-density al-

gorithm and the Greedy-penalty algorithm are larger than that of the Greedy-

cost algorithm. Also, as the Maximal-density algorithms distributes the replica

sets in order of decreasing densities, documents in set Q tend to have larger

sizes than documents in set D=Q. On the other hand, as in most cases, penalty

fi is equal to si, and we know that the Greedy-penalty algorithm tends to dis-

tribute the replicas with larger sizes before the replicas with smaller sizes.

This means that documents in set P tend to have smaller sizes than docu-

ments in set D=P . Therefore, generally, the Maximal-density algorithm gen-

erates more traÆc than the Greedy-penalty algorithm. The more varied are

si (i = 1; : : : ; N), the larger is the di�erence in communication costs of these

algorithms.

The communication cost of the Proximity-aware algorithm depends largely on

the stability of the request distribution of the documents among the Internet

regions. The more stable the request distribution, the smaller is the cost.

4.5.3 Load Balancing

It is diÆcult to analyze the load balancing performance of the algorithms;

therefore we only discuss the main factors in
uencing load balancing. To do

this, we use yi to denote the number of copies of Di in the system after doc-

ument distribution. We know that the more similar the densities of replicas,

i.e., di=yi (i = 1; : : : ; N), the smaller is the load imbalance. In the ideal case,

all replicas are placed on the server nodes and yi = ci (i = 1; : : : ; N). ci

(i = 1; : : : ; N) are decided by the Density algorithm and are the same for
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all document distribution algorithms. However, during placing the replicas,

the adjustment algorithm may delete some replicas so that yi is not equal to

ci. As Maximal-density and Greedy-cost place replicas in order of increasing

sizes, their load balancing may be a�ected more than Greedy-penalty by this

process. The distribution of replicas also a�ects the load balance. As Greedy-

cost places the replicas according to their communication cost with the server

nodes, generally, its load balancing performance is not as good as Maximal-

density and Greedy-cost, which monitors Gj (j = 1; : : : ;M) in placing the

replicas. Finally, the load balancing performance of the proximity-aware al-

gorithm also depends on the request distribution of the replicas among the

Internet regions. The more homogeneous the request distribution, the smaller

is the load imbalance in the system.

5 Performance Results and Analysis

In this section, we present our simulation results and analyze the performance.

5.1 Simulation Setup

We use the CSIM 18 package [9] to simulate a homogeneous EGDWS system

of 16 server nodes. Each node has storage capacity C and load capacity L =

3000 [13]. HTTP 1.1 is used in the simulation. The �rst request of a connection

always goes to the request dispatcher. The dispatcher then redirects the client

to a server node according to its request dispatching algorithm. If the chosen

server node is already holding L existing HTTP connections, the request is

dropped. Otherwise, the client sends its subsequent requests directly to the
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chosen server node. When the client requests a document that is not stored

locally in this server node, the request is returned to the dispatcher, which

then selects another server node for the client.

Initially, the website's documents are randomly assigned to the server nodes

without replication. Afterwards, the document distribution scheme is executed

once every 3 hours. The simulation lasts for one day. The algorithms are

simulated in the following patterns.

� GC: Density algorithm together with the Greedy-cost algorithm

� MD: Density algorithm together with the Maximal-density algorithm

� GP: Density algorithm together with the Greedy-penalty algorithm

� Prox: Density algorithm together with the Proximity-aware algorithm

For the purpose of comparison, we include another document distribution

scheme, Dynamic Scheme (DS), in the simulation. In this scheme, each

server node owns a part of the collection of documents. Periodically each

server examines the number of bytes a server has served in the last period, and

determines whether it is under-loaded or overloaded. A server is overloaded

if the number of bytes it served is 50% more than the average number of

bytes served by a server 1 . A server is under-loaded if the number of bytes

it served is less than the average value. Each server then replicates one of

its documents to the under-loaded nodes or revokes a replica of its documents

from the overloaded nodes. The load of the servers is updated correspondingly.

This scheme is used in DC-Apache [16]. In the simulation, the servers check

the load status every 30 minutes.

1 We also did simulation with \overloaded" being 10%, 20%, 30% and 40%. The

results were similar and thus are not shown here.
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Table 1

Data Sets Statistics

Data Set 1 Data Set 2 Data Set 3

Total Documents 9,354 26,915 131,142

Minimal Document Size (KB) 0.028 0.015 0.001

Maximal Document Size (KB) 2,854.8 5,597.6 179,803.2

Document Size Variance 2840 1770 135676

Total size of Documents (KB) 250,868 437,544.9 7,464,779.2

Duration Aug 3-31, 1995 Sep 4-10, 1995 Jan 24-30, 2001

We used three real traces of web accesses 2 . They are summarized in Table 1.

In the simulation, for simplicity, documents that are under the same second-

level directory are grouped together. The resulting groups are used as units in

document replication and distribution. Figure 7 re
ects the reference locality

of the three web traces. The x-axis represents the percentage of total docu-

ments, and the y-axis represents the percentage of total requests. We can see

that in Data Set 3, a smaller part of requests are responsible for most requests

than in Data Set 1 and Data Set 2.

The following metrics are used in the presentation of the simulation results.

(1) Load Balance Metric (LBM)

The Load Balance Metric (LBM) was proposed in [7]. It is used to mea-

sure load-balancing performance. During the simulation, the utilization,

i.e., the percentage of time a server node is busy, is measured once every

2 Downloaded from http://ita.ee.lbl.gov/html/traces.html
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10 minutes. The LBM value is the weighted average of the peak-to-mean

ratios captured at the sampling points. The sampling point with a heavy

load has a higher weight. The value of the LBM ranges from 1 to M ,

where M is the number of server nodes in the system. A smaller LBM

value indicates better load balancing performance.

(2) Average TraÆc (AT)

This metric is used to compare the traÆc caused by di�erent algo-

rithms in redistributing documents. We record the total traÆc caused

by all servers each time the document distribution scheme is executed.

At the end of the simulation, the average traÆc is computed. The ratio

between the average traÆc and the total size of web documents without

duplication is computed. This ratio is denoted as AT in the following

discussion.

We performed two sets of experiment. In Experiment 1, we simulated a MAN-

based environment, in which all the server nodes are in one Internet region. In
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Experiment 2, the server nodes are dispersed in di�erent Internet regions. The

proximity-based document distribution algorithm and the request dispatching

algorithm are deployed in Experiment 2. The improvement on performance is

then analyzed.

5.2 Experiment 1|MAN-based Experiment

In this experiment, we assume all 16 server nodes are in the same Internet

region. Therefore, the distances between a client and di�erent server nodes

are treated as equal. The reported processing time of a web request comprises

(1) redirection (if necessary), (2) waiting in the queue of the serving server

node, and (3) reading the document from disk. For simplicity, we assume the

redirection time is �xed at 100 ms [24]. If the redirection is initiated by a server

node and not by the request dispatcher, the client will be redirected twice.

Thus, the redirection time is equal to 2�100 = 200 ms. The dispatcher deploys

a round-robin request dispatching algorithm. The disk latency parameters are

derived from Seagate ST360020A technical speci�cation [27]. Disk access time

is of 8.9 ms and disk transfer time is of 21 MB/s.

We �rst compare the average user-perceived response time achieved by the

proposed algorithms. The results are shown in Figures 8, 10 and 12. The

x-axis shows the degree of document replication, that is, the ratio between

the servers' storage capacity and the total size of the documents, C=
PN

i=1 si.

For example, C=
PN

i=1 si = 1/16 implies no replication and C=
PN

i=1 si = 16/16

implies a full-replication scheme. The y-axis is the speedup achieved by various

document distribution algorithms, as compared to the average response time

measured under the same con�guration but without document replication. The
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�gures show that our document distribution scheme can improve the speedup

up to three times. However, the improvement in Data Set 3 is not so apparent.

This is because the reference locality in Data Set 3 is not as obvious as in the

other data sets. In this case, the scheme of replicating popular documents is

not eÆcient in distributing the load or cutting down redirections.

We next examine the load balancing performance. Figures 9, 11 and 13 present

the LBM values at di�erent document replication degrees. When C=
PN

i=1 si

= 1/16, no documents are replicated and all algorithms yield the same LBM

value. Using our scheme, the system can be �ve to six times more balanced

than using the Dynamic Scheme (DS). The load balancing performance of our

scheme increases as storage capacity increases. This is because the Density

Algorithm replicates as many documents as the storage capacity allows. One

exception is for Data Set 3, when C=
PN

i=1 si is larger than 1/2, LBM value in-

creases instead of decreases. This may be due to some dramatic access pattern

change in the log �le.

The three proposed algorithms di�er little in load balancing performance be-

cause they use the same replication algorithm. As expected, GC generally

performs worst as it does not care about the system load when it distributes

the replicas. However, when the storage capacity is relatively small, MD some-

times yields the largest LBM values. This is because MD places the replicas

in order of decreasing densities; when some unpopular but large documents

are not placed on any server nodes, the adjustment algorithm will delete other

documents' replicas and thus disturb the balance of load. For data sets that

contain Di with very large si, e.g. Data Set 3 in this experiment, such case

is easier to happen. On the other hand, GP places replicas with larger sizes

before replicas with small sizes; therefore, its load balancing results will be
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less in
uenced by the variation of si (i = 1; : : : ; N).

Finally, we compare the traÆc generated by the schemes in updating doc-

ument distribution. Average TraÆc (AT) is represented in y-axis in Figures

14, 15 and 16. We can see that when the number of server nodes is �xed, the

traÆc caused by our scheme �rst increases as the storage capacity C increases,

and then decreases. This is because when there is more available disk space,

more documents are replicated; meanwhile, the numbers of replicas of pop-

ular documents are larger. Therefore, once the access pattern changes, more

replicas of the past period are revoked and more new replicas need to be dis-

tributed. For example, Data Set 3 has the least reference locality and thus
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causes most traÆc. Our scheme at most causes two times more average traÆc

than the DS. Among the algorithms, GC incurs the least traÆc, 50% less than

MD. GP generates 20-30% less traÆc than MD. When the storage capacity

is large, more documents have replica numbers equal to or close to M . Thus,

the di�erence between traÆc caused by MD and GP decreases.

The above simulation results indicate that our document distribution scheme

can lead to shorter response time and better load balancing. Another obser-

vation is that when the document replication degree C=
PN

i=1 si = M=2 (i.e.,

half of the server nodes), our scheme can achieve 80% of the performance

of full-replication. On the other hand, when the replication degree continues

to increase, the load balancing performance (LBM) improves little while the

internal traÆc (AT) increases much. Therefore, we conclude that our docu-

ment distribution scheme is most suitable for GDWS systems with small to

moderate storage capacity.

The simulation results also enable comparison of the di�erent document distri-

bution algorithms. This comparison will help select an appropriate algorithm

for a given system. Among the three algorithms discussed in Experiment 1,

GC's load balancing performance is not as good as that of GP and MD, and

is the easiest to be a�ected by initial placement of the documents. However, it

generates the least internal traÆc. MD needs shortest computing time. Its load

balancing performance is best in most cases and only generates a little more

traÆc than GP. However, when si (i = 1; : : : ; N), are very varied, MD's load

balancing performance may deteriorate when the storage capacity is small.

Comparatively, GP yields the most stable load balancing performance, but it

requires more computation than the other algorithms.
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Table 2

Network types in WAN-based connection

Bandwidth Type Bandwidth (B) Redirection Time (rdt)

Large 1.35 Mbps [40, 70]ms

Medium-large 0.9 Mbps [120, 150]ms

Medium-narrow 0.7 Mbps [180, 210]ms

Narrow 0.4 Mbps [270, 300]ms

Table 3

Bandwidth types between Internet regions

1 2 3 4

1 Large Large Medium-large Medium-narrow

2 Large Large Medium-narrow Narrow

3 Medium-large Medium-narrow Large Medium-narrow

4 Medium-narrow Narrow Medium-narrow Large

5.3 Experiment 2 - WAN-based Experiment

In this experiment, we assume that the Internet is divided into four regions

located in di�erent geographic areas. Each region contains M=4 server nodes.

The network in a WAN-based connection can be classi�ed into four types:

large, medium-large, medium-narrow, and narrow, as shown in Table 2. The

bandwidth values reported in the table are taken from [28]. We assume that

the network bandwidth does not change during the experiment.
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In this experiment, the client requests come from di�erent Internet regions. If

a request originates from Ei and is redirected to Ej by the request dispatcher,

the redirection time equals to rdtij. If the redirection is initiated by a server

node in El, the redirection time is rdtli + rdtij. In addition to the redirection

time, waiting time and disk reading time, the response time also includes the

time needed to transfer the documents over the Internet. Suppose the user

is in Ei, the server node is in Ej, and the size of the document is W , the

communication time over the Internet is W=Bij, where Bij is the bandwidth

between Ei and Ej.

In this experiment, we simulate three scenarios:

� MD-RR: Maximal-density algorithm with round-robin request dispatching

strategy.

� MD-Prox: Maximal-density algorithm with proximity-aware request dis-

patching strategy.

� Prox-Prox: Proximity-aware algorithm with proximity-aware request dis-

patching strategy.

For better comparison, in the following discussion, the results of MD-RR are

used as the baseline. The results of MD-Prox and Prox-Prox are presented

in the form of relative values. Figures 17, 18 and 19 present the response

time results. The x-axis is document replication degree, C=
PN

i=1 si. The y-

axis is relative response time which is equal to response time / MD-RR's

response time. We can see that MD-Prox and Prox-Prox shortened the user

response time by up to 50%. This proves that the proximity-aware document

dispatching algorithm can reduce network latency. Prox-Prox further improves

the response time because it tries to place replicas near where they are most
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needed. The gap between MD-Prox and Prox-Prox decreases as C increases.

This is because there are more replicas in the system and more documents are

placed on all the server nodes.

Next we compare the load balancing performance of the three scenarios. In Fig-

ures 20, 22 and 24, the y-axis is the relative LBM value. We see that MD-Prox

and Prox-Prox yield worse load balancing than MD-RR. Their LBM values

can be up to 2.5 times larger. With the proximity-aware request dispatching

algorithm, the requests are not assigned equally to server nodes holding the

requested documents. Instead, requests are assigned to server nodes in a cer-

tain Internet region, based on where the requests originate. The worse load

balancing performance of MD-Prox thus implies that the documents experi-

ence di�erent popularities in di�erent Internet regions. However, by placing

more replicas of a document where it is more popular, Prox-Prox did not im-

prove load balancing. Using both MD-Prox and Prox-Prox, the relative LBM

values increase as the storage capacity increases. There are two reasons for

this. The �rst is the LBM value of MD-RR generally decreases as the storage

capacity increases. The other reason is that when most documents have copies

on almost every server node, redirecting requests to the nearest server node

causes more obvious load imbalance.

Figures 21, 23 and 25 present the average traÆc generated in the three scenar-

ios. The y-axis is the relative AT. We see that MD-Prox generates the same

amount of traÆc as MD-RR, because they use the same document distribu-

tion scheme. Actually, MD-Prox's traÆc is mainly caused by the change of the

documents' replica numbers. For example, when unpopular documents in the

last period become popular in this period, their replicas need to be copied on

more server nodes. On the other hand, Prox-Prox's traÆc is also caused by the
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change of the documents' request distributions. Even if a document's overall

popularity remains the same, when its access popularity in di�erent Internet

regions changes, its replicas still need to be moved among the server nodes in

di�erent regions. Therefore, generally Prox-Prox generates more traÆc than

MD-Prox. However, the actual delivery time of Prox-Prox could be shorter

than that of MD-Prox because the replicas may be transferred over networks

with higher bandwidths.

From the results of Experiment 2, we see that in a WAN-based EGDWS,

proximity-aware request dispatching algorithm and document distribution al-

gorithm can e�ectively reduce the response time. However, they also disturb

the load balancing in the system, especially when the storage capacity is large.

The performance improvement of the proximity-aware document distribution

algorithm is further o�set by the additional internal traÆc. Therefore, in a

WAN-based system, the proximity-aware request dispatching algorithm and

document distribution algorithm should be used with carefully so as not to

cause overloading in certain server nodes.

6 Conclusion and Future Work

In this paper, we describe the system architecture of the Extensible Geo-

graphically Web Server system, and propose a document distribution scheme

to support the eÆcient operation of the system. In the EGDWS, documents

are replicated and distributed to the server nodes periodically. Our document

distribution scheme periodically collects the access records of the server nodes,

computes the replica numbers for each document based on its popularity in
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Fig. 19. Relative response time for

Data Set 3

the last period, and then distributes the replicas to the server nodes. It consists

of several constituent algorithms that rely on information on the current doc-

ument locations and the documents' popularities from di�erent perspectives.

Their overall aim is to produce a balanced load and to minimize the traÆc

generated from document distribution or redistribution. For EGDWS systems

that have a large geographic span, a proximity-aware document distribution

algorithm is proposed to distribute replicas of documents to where they are

most wanted.

Simulation results show that our document distribution scheme could pro-
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vide better web service, and achieve better load balancing than the existing

dynamic schemes. We also found that our scheme can achieve performance

comparable to full-replication schemes but using only half of the disk space.

Therefore, in a MAN environment with modest storage capacity, our scheme

is most suitable. For WAN-based systems, our simulation results show that us-

ing the proximity-aware document distribution algorithm, the response time

can be much reduced, but the load could become less balanced, and there

is more internal traÆc due to transfers of replicas across long distances. We

found that, however, when using the other document distribution algorithms

we proposed with a proximity-aware request dispatching algorithm, we can

achieve similar response time speedup, but generating much less traÆc.

In the future, we hope to design an on-line algorithm that can dynamically

replicate the documents in response to the most current user access patterns.

We hope such an algorithm can achieve similar or better load balancing perfor-

mance, and further reduce the internal traÆc. This current research is limited

to homogeneous systems and heterogeneous systems whose servers' storage

capacity is proportional to their load capacity. New document distribution

algorithms that can be used in more complicated situations are good targets

for further research.
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