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ABSTRACT
We propose a method that can find the optimal tradeoff
point between transcoding overhead (CPU cost) and stor-
age needed for the various pre-processed content variants
(I/O cost). The method selectively pre-adapts a subset of
content variants and leaves the generation of the residue
to dynamic content adaptation with this pre-adapted sub-
set as an input. We prove bounds regarding the optimality
of the algorithm employed. The proposed model creates a
collaborative environment across the components of client,
proxy and server, based on which we study the distribu-
tion of adaptation complexity across these components. We
use simulation to verify the projected benefits. The method
has been successfully implemented in a trial PDF document
content adaptation system.

Categories and Subject Descriptors
H.4.m [Information Systems]: Miscellaneous; I.6.m [Simu-
lation and Modeling]: Miscellaneous

General Terms
Design, Performance, Algorithms, Experimentation

Keywords
Content adaptation, pre-adaptation, mobile computing, per-
vasive computing, performance optimization

1. INTRODUCTION
Mobile computing is creating a new class of applications

and new massive markets combining mobile services and
hand-held device electronics. The limited computational
power of client devices and the constrained cellular connec-
tivity give rise to many opportunities for the design of new
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patterns of computation for effective presentation of con-
tents available from the Internet. The problem is nontrivial
as web pages are becoming increasingly rich in content and
varied in format and style, and client devices are getting
diversified in their rendering capabilities.
While web users complain about the “World Wide Wait”

problem due partly to slow last-mile speeds, cellular net-
works are working at even lower data rates, which can work
fine for plain text, but far from adequate for web pages [8].
The mismatch between rich multimedia contents and the
constrained client capability presents a research challenge.
Content adaptation has emerged as a potential technology
to tackle some of the problems arising from the mismatch.
Content adaptation generally involves a series of transcoding
phases which could be very time consuming, and is therefore
unacceptable to mobile device users [4]. There is a need to
make content adaptation work much more efficiently—this
is the subject of this paper.

1.1 Related work
Content adaptation involves creating different versions suit-

able for rendering by mobile devices from some original con-
tent such as a web page. Content adaptation can be classi-
fied into two main types according to when these different
content variants are created [18]. In static adaptation, dif-
ferent “pre-adapted” versions are created and stored in the
server at content creation time. During runtime, a version
that best matches the desirable version in a request will be
returned. The Odyssey system [26] uses pre-adapted ver-
sions; so does InfoPyramid [24], where the content variants
are arranged in a pyramid-like representation scheme.
To create a pre-adapted content version, a human designer

can be involved to hand-tailor a version for some specific ren-
dering requirement. The models on semantic equivalence in
[2] support a strategy for augmentation of multimedia docu-
ments by semantically equivalent presentation alternatives.
To help the authoring process, some helper tools [16, 25]
have been developed. For example, the video annotation
feature in [25] allows linking of video segments with corre-
sponding text segments as alternatives for the constrained
environment.
With the static adaptation approach, the content provider

can have a tight control over what is transcoded and how
the result is presented [3]. The primary shortcoming of
static adaptation however is that the management and main-
tainence of a number of content variants in the server could



result in considerable storage and other I/O costs. Although
storage costs are rapidly coming down nowadays, given the
huge volume and variety of multimedia contents and the di-
versity of rendering capabilities of the devices, pre-computing
a sufficient number of content variants to cover all possible
client requests is impractical. If only a limited set is stored,
there would arise the awkward situation where the most op-
timal version of content falls between two pre-adapted ones.
Increasing the number in the set, however, would increase
the I/O costs.
To achieve a good match for specific devices, the original

content can be pre-adapted along the device dimension—
i.e., the matched content version would be a best fit for
the device’s capabilities. Yahoo.com [31] and e-bay.com [10]
for instance have created multiple versions of contents for
different types of devices including pagers, PDA’s and web-
enabled phones. This static adaptation approach requires
upgrading whenever a new device needs to be supported.
Given the increasing number of devices, this could be an
issue. Furthermore, “device” is only one of several possi-
ble dimensions which the adaptation process can take into
account, one of them being the user’s own preference.
In dynamic adaptation, the desired content is synthesized

on the fly, according to dynamic requirement presented to
the server, which could be based on the current charac-
teristics of the client environment [1, 5, 6, 11, 12]. This
approach presents no storage problem to the server, but
the transcoders could be overwhelmed by heavy workload
as transcoding is computationally intensive [6, 14], and the
delay incurred can be orders of magnitude larger than that
of accessing just the original content.
In fact, adaptation operations can take place in the server,

the client or the intermediary proxy. The end-to-end ap-
proach suggests that all the manipulations of a web object
should be done at the end points of the network and not
at any intermediary node. The argument for this is that
the end-points could carry out more optimized and complex
transformations based on client needs [22]. These operations
should be well within the capabilities of a typical server, and
the approach is referred to as server-based adaptation [26].
In client-based adaptation [35], the required transcoding is
performed by the client device taking into account the de-
vice’s capabilities which might not otherwise be available to
the remote server. The transcoding however may require a
considerable amount of resources on the client side, which
cannot be assumed to always exist. The idea of “thin client”
[11, 28] comes in here, which suggests that only some min-
imal amount of rendering should be done at the client de-
vice, leaving the bulk of the operation to some nearby proxy
server. The idea was tested in [13] where experiments were
designed to compare some image processing functions be-
ing performed entirely by a standard PDA versus letting a
proxy to help with computing some of the computationally
intensive tasks. The results clearly showed that the response
time could be much improved when the process is assisted
by a proxy server.
Alternatively, we could rely on the proxy server to take

up the entire task of producing the needed content ver-
sion, without having to involve the client at all. This is the
intermediary-based approach where the proxy server is the
intermediary situated in between the client and the content-
providing server [1, 5, 6, 11, 12]. The advantage of this ap-
proach is that it simplifies the design of the provider server

and the client device by pushing the transformation com-
plexity to the intermediary infrastructure. The potential
problem is that when the intermediary performs transcod-
ing, it might not have access to the necessary semantic infor-
mation needed for a satisfactory operation. Context-aware
adaptation [18, 34, 33, 32, 9] aims to solve this problem,
where context information containing implicit or explicit
guidance can be provided to the intermediary. This infor-
mation could be provided by the server as in server-directed
transcoding [23]. The intermediary-based approach is gen-
erally not very scalable since transcoding is a resource in-
tensive process.
We can build a model for a mixed approach, which com-

bines the advantages of the various approaches just discussed
but tries to avoid their problems.

1.2 Motivations
In this paper, we propose a method to achieve an optimal

tradeoff between the real-time transcoding overhead (CPU
cost) of the dynamic approach and the storage overhead
of pre-adaptation (I/O cost) of the static approach. Our
hybrid approach selectively pre-adapts a subset of content
variants and leaves the generation of the residue to a dy-
namic algorithm that uses the pre-adapted subset as a base.
The algorithm considers the following in coming up with a
solution.

1. When: Whether the adaptation should be performed
at presentation time as in the dynamic adaptation ap-
proach or at content creation time as in the static ap-
proach.

2. Where: The model should create a collaborative en-
vironment between the proxy and the server and give
insight on how the adaptation complexity should be
shared between the two components.

3. What: Original untranscoded content versions need
to be always stored. The remaining space can be allo-
cated to storing transcoded content versions, some of
which could be hand-tailored versions to compensate
for the lossy nature of transcoding.

4. Which: To decide which content versions should be
pre-adapted and stored in the server. Storing versions
with rich content will give a greater coverage of future
requests while storing versions with less rich content
will favor online adaptation since these versions are
closer to the desired results.

Section 2 gives an overview of the proposed content adapta-
tion framework and discusses some essential characteristics
of the transcoding process. Section 3 presents the require-
ments for the design of our algorithm. In Section 4, we intro-
duce the transcoding relation graph for mapping the actual
application scenario to this representation. The represen-
tation is used in Section 5 where we discuss the details of
the pre-adaptation selection algorithm. Section 6 addresses
the performance of the algorithm, and Section 7 gives some
simulation results. Section 8 presents a prototype content
adaptation system built based on the proposed framework.



2. A CONTENT ADAPTATION FRAME-
WORK

2.1 Content negotiation and realization
There are two modules that make up our proposed con-

tent adaptation framework: the content negotiation module
[19, 20] and the content realization module. The content
negotiation module consists of a context-aware decision en-
gine that would automatically negotiate for the appropri-
ate adaptation configuration to be used by the content re-
alization module to produce the desired adapted version.
The negotiation happens between an internal data struc-
ture representing all possible solutions and the requirement
coming from the context. The negotiation follows a QoS-
sensitive approach which can complement the lossy nature
of the transcoding operations. The decision engine will look
for the best tradeoff among various parameters in order to
reduce the loss of quality in various domains. Scoring meth-
ods were suggested to measure the QoS of the content ver-
sions in various quality domains, and based on the particular
user requirement in these quality domains and other context
information on the client’s capabilities, the negotiation algo-
rithm can determine a content version with a good aggregate
score.
The decision from the content negotiation module is then

passed on to the content realization module where the real
content will be generated. This paper focuses on the design
of this module. Our proposed model for this module has a se-
lection logic that can select a subset of “significant” content
variants to be pre-adapted in the web server, which could
help reduce the overhead of on-the-fly transcoding as well
as the transmission overhead. The latter is reduced because
the web server no long needs to always send to the proxy
the original version of the requested content. The Similar-
ity Algorithm in the model will determine the most suitable
pre-adapted content version in the web server from which
to dynamically generate the desired content version based
on the recommendation from the negotiation module. The
selected pre-adapted version is either an exact match, or a
version closest to the desired version in terms of transcoding
steps. The cost-effectiveness of the transcoding process is
guaranteed by the Similarity Algorithm. With handshaking
happening between the two models, the framework presents
a good collaborative environment in which to perform con-
tent adaptation.
The various content versions can be synthesized according

to settings in different adaptation “axes”. An example is the
axis of “device”, for which the number of possible content
variants is proportional to the variety of the device types.
With a device-specific authoring approach [1], the introduc-
tion of a new device would trigger updating of the content
variants. Alternatively, we could view a device as a combi-
nation of value settings along such axes as fidelity (quality or
rendering requirement) and modality (datatype) [24]. This
structure of axes should be extensible so that other related
attributes or requirements to define a device or a context
can be included. With this approach, the content adapta-
tion procedures can become device-independent.
The settings for synthesizing the desired content version

are provided by the decision engine of the content negotia-
tion module prior to the execution of the content adaptation
and realization procedures. The decision engine will take
into account the different types of context such as device ca-

pability profile, networking characteristics, user preference,
and metadata about the content itself to provide the neces-
sary input to the transcoding operations that can guarantee
the quality of service as outlined in Figure 2.

2.2 Characteristics of transcoding
The decision on a particular content version so generated

will be applied to the actual content adaptation procedure
to realize the generation of a real content variant. The real-
ization of content requires a series of transcodings towards
the desired content. The followings are some of the charac-
teristics of these transcoding processes.
In general, a high-fidelity content variant (with richer con-

tent) can be converted into a lower-fidelity variant, but not
vice versa. This is true for most images and HTML data
[22]. Hence, content versions with a high fidelity can be
used to fulfill requests for lower-fidelity contents by going
through transcoding. An object from one transcoding may
be further transcoded to yield yet a lower-quality object.
Each content variant can be transcoded from any one of
a subset of higher-quality versions. A transcoding relation
graph (TRG) [4, 7] can be used to represent the scenario,
which will be discussed in Section 4.
The adaptation process is combinatorial [30], consisting

of a number of transcoding processes each dealing with a
particular feature of the content being adapted. For exam-
ple, to adapt a 256-color, 100× 100-pixel JPEG image to a
2-color, 50 × 50-pixel GIF image, the process is composed
of several atomic transcoding processes such as color-depth
reduction, dimensional scaling, and format transformation
for the image. The transcoding path through these pro-
cesses can follow different possible sequences and the same
synthesized content variant would result. There has been
work [17] to construct a transcoding chain through the pool
of available transcoders. The transcoders advertise their
capabilities using a simple BNF (Backus Naur Form) gram-
mar, called capability advertisement (CA). The system al-
lows type-preserving and type-changing transformations to
be combined within the scope of a single intermediary. The
approach, however, does not take into account the perfor-
mance of the transcoders when constructing the chains. An
improvement would be to consider performance when there
is a choice between two or more equivalent chains.

3. PRE-ADAPTATION REQUIREMENTS
In order to select a subset of significant content variants,

i.e., Vpre, to be pre-adapted in the web server with con-
sideration of cost factors such as transcoding overhead and
spatial consumption, we need to have a set of requirements
for the pre-adaptation strategy. The following four require-
ments are of primary importance.

1. The Sufficiency Requirement
The selected content variant subset pre-adapted in the
web server should be sufficient to synthesize any deliv-
erable content variant that will ever be requested by
clients.

2. The Mandatory Pre-adaptation Requirement
As transcoding involved in dynamic adaptation is lossy
in nature, there will be situations where adaptation
by the system will be inadequate or even counter-
productive [26]. Therefore, some content versions may



Figure 1: The Content Adaptation Framework.

Figure 2: The Negotiation Module.



need to be created manually by the author at content
creation time so that the important semantics will not
be lost during real-time adaptation. This set of manu-
ally pre-adapted versions is indicated as VMan in this
paper.

3. The Spatial Boundary Requirement
The number of pre-adapted content versions should be
constrained by the specific capability of the web server.
In particular, the space consumption by such contents
should not exceed a threshold imposed by the server.

4. The Minimal Cost Requirement
The time cost needed to generate any deliverable con-
tent variant should be minimized with the pre-adapted
content variants as the transcoding starting point.

4. TRANSCODING RELATION GRAPH

4.1 Mapping to a graph representation
We use a transcoding relation graph (TRG) to represent

the different versions of the same object and the allowed
transcoding operations that link them from one to another.
The set of vertices V = {v0, v1, . . . , vn} represent the differ-
ent content variants. Each content variant is different along
the axes of fidelity and modality. For example, vi can be
with scaling factor of 75%, color depth of 4 bits and en-
coded in bitmap while vj can be with scaling factor of 50%,
color depth of 1 bit and encoded in the Wireless Bitmap for-
mat. The vertex set corresponds to the set of all the possible
content versions that can be recommended by the decision
engine. The TRG is a directed graph which consists of the
edge set E = {E1, E2, . . . , Em}. The edge (vi, vj) indicates
the feasibility of transcoding from vi to vj . Each edge will
be associated with a cost to indicate the time cost required
for going through this particular transcoding process.
To begin, we need to build an initial TRG, TRG0, by

Algorithm 1, such as the one shown in Figure 3. The algo-
rithm takes a set of vertices, representing all possible con-
tent variants, as input and connects them with edges. In
the figure, the edges have labels which are costs of the cor-
responding transcoding processes associated with the edges.
These costs are added to the graph based on the cost model
to be discussed next. Note that this initial TRG is also
the final TRG used in a dynamic approach, where any con-
tent version, except the original version itself, is generated
dynamically on-the-fly.

Algorithm 1 Building an initial TRG.

Build-TRG0(V, E):

E ← ∅
if the fidelity level associated with v is larger
than or equal to that of u for any v, u ∈ V (v �= u)
and v is transcodable in modality to u
then E ← E

S
(v, u)

return G(V, E)

4.2 Transcoding cost model
As soon as the client device submits a request for some

content, the whole content delivery process will suffer a num-
ber of delays, such as the transmission delay on the slow

Figure 3: The initial TRG

wireless network or the transcoding time of the adaptation
process. As transcoding tends to be time-consuming, it is vi-
tal to try to guarantee that the transcoding overhead would
not turn into a bottleneck for the whole content delivery
process. A better performance in time can be achieved
if we apply transcoding to a content variant already pre-
adapted in the web server with certain fidelity and modal-
ity. Some studies have provided experimental models for
the relationship of transcoding time against different fac-
tors such as number of pixels (image dimension) and input
bytes [14]. They can offer a foundation for the calculation
of the transcoding cost.
A cost model is needed in order to capture the transcoding

overhead during the process of dynamic adaptation. The
model forms the basis for determining the cost attribute to
attach to each edge in the TRG. The cost model should be
datatype-specific, and under normal circumstances, a linear
cost model can be assumed [4, 7]:

tj = m× |vi|+ c

where tj is the transcoding time required to synthesize a
content version, vj , using source content version vi; c is the
fixed overhead of synthesizing any content version regardless
of content size. m is the transcoding time per unit size of
the source content version; | | is the size operator (in bytes
or dimensional size in area).
This model was applied to image transcoding [14], where

experiments revealed that the transcoding time can be ap-
proximated by a linear function of the area of the input
image. It was suggested that this linear dependency is due
to the fact that the largest component of time in image
encoding and decoding (in JPEG) is due to the DCT oper-
ation. The number of DCT’s invoked per image is a direct
linear function of the number of blocks, hence the area, of
the image.
The cost model is cleanly separable from the TRG. One

can feed any cost model to the system to capture the specific
transcoding time behavior while the underlying mechanism
is kept unchanged.

4.3 Building an intermediate TRG
When each time we add a content variant to the pre-

adaptation set, the TRG representation will change accord-
ingly. In keeping with the requirements presented earlier,
the change of the graph must be such that

1. each un-pre-adapted content version must be synthe-
sizable from the pre-adapted content versions (Suffi-
ciency); and



2. the transcoding involved in synthesizing any content
version will have the least cost among all possibilities
(Minimal Cost).

That means that each vertex that does not belong to the
pre-adaptation set Vpre must be pointed to by an edge from
one of the pre-adapted vertices with the least cost (among
all possibilities) indicated on the edge. The Build-Graph
Procedure (BG) will build up the TRG according to the
above guidelines and return a TRG denoted by G’.
In the TRG representation, we indicate a pre-adapted con-

tent variant with a filled vertex and a variant not in the pre-
adapted set with a hollow vertex. Note that e is a subset of
E, and G′ a subgraph of G.

Algorithm 2 The Build-Graph (BG) Procedure

BG(Vpre):

1. e← ∅
2. for z ∈ V − Vpre

3. for all (v, z) ∈ E where v ∈ Vpre

4. find the minimum c(v, z)

5. e← e
S
(v, z)

6. return G′(V, e)

5. PRE-ADAPTATION SELECTION ALGO-
RITHM

The goal of our work is to develop techniques to satisfy
the four primary requirements presented above. We need
to devise a Pre-adaptation Selection Algorithm with which
a subset of the content variants will be identified for pre-
adaptation at the web server. The four requirements can be
mapped to the TRG representation as follows.

1. Each hollow vertex can be reached by one filled vertex
(guaranteed by the BG Algorithm). The untranscoded,
original content version, v0, should be included in Vpre

so that the Sufficiency Requirement is always satisfied.

2. Vpre at the beginning should contain the set VMan to
satisfy the Mandatory Pre-adaptation Requirement.

3. We are constrained by the capability of the web server
to pre-adapt only a subset of the content variants. The
summation of the spatial sizes of the filled vertices
should be bounded by Sthreshold (the Spatial Bound-
ary Requirement).

4. If there are two or more edges that can point to a
vertex, we must choose the one with the minimum cost.
Obviously, there are many possible final TRG’s, but we
should aim at the one with the summation of all the
edge costs being the minimum among all possibilities
(the Minimal Cost Requirement).

This optimization problem is NP-complete—it is a straight-
forward reduction from the set-cover problem. We therefore
look for an approximate solution. One way to solve the

problem is by a “greedy” algorithm, where we select a se-
quence of content versions one after another, each of which
is the best choice given what has been selected before cannot
be changed. The problem is very much like the minimum
spanning tree algorithm [27] in the sense that each pair of
nodes is connected by one and only one edge, but they are
different in the terminating condition and directionality of
edges. Here we need to terminate at any time whenever the
spatial threshold is reached, and every edge has a direction.
We apply the greedy selection algorithm as suggested in [15]
with modifications.

5.1 A greedy selection algorithm
To suit our working scenario, we design a similar greedy-

selection algorithm which is a modification of the original
algorithm for data cubes [15] with our own selection function
having graph building intelligence.

Algorithm 3 The Pre-Adaptation Selection Algorithm

Greedy-Selection(Vpre):

1. Vpre ← VMan

2. Stotal ← |Vpre|
3. while Stotal < Sthreshold

4. select v not in Vpre such that C(v
S

Vpre) is mini-
mized

5. Vpre ← Vpre

S
v

6. Stotal ← |Vpre|
7. return Vpre

The Greedy-Selection Algorithm will select the content
versions one by one based on a parameter called the ag-
gregated transcoding cost, while keeping to the four require-
ments during the process. The aggregated transcoding cost,
C(), is the sum of the transcoding cost associated with each
edge in the TRG, as defined by Algorithm 4. |V | stands for
the total spatial size of any set V of content variants. The
mandatory pre-adapted set Vman is first assigned to the set
Vpre. In each round of the loop (lines 3–6), the unselected
v yielding the smallest aggregated cost will be picked and
then added to the set Vpre until the threshold on spatial size,
Sthreshold, is reached. It is important to note that in each
round of the selection, the Vpre set will be different because
of the newly added content variant.

Algorithm 4 The evaluation of the aggregated transcoding
cost.
C(Vpre):

G’ ← BG(Vpre)
return

P
(i,z)∈E[G′] c(i, z)

Take Figure 4 as an example, for which the value of Sthreshold

is set to 850 KBytes. At the beginning, only v0 is in the pre-
adapted set Vpre, which is the situation in the figure. The



Figure 4: Vpre = {v0}.

Figure 5: Greedy-Selection at Vpre = {v0}.

Greedy-Selection Algorithm will select the next vertex that
would give the minimum aggregated cost to perform pre-
adaptation. The transcoding time is used as the cost. Refer-
ring to Figure 5(4) and Table 1, the minimum occurs when
Vpre = {v0, v4}. So v4 is picked and added to Vpre. Stotal

becomes 600 KBytes which is below the server’s threshold.
The next round picks v1 with Stotal being increased to 850
KBytes. The algorithm stops here, with Vpre = {v0, v4, v1},
since there is not enough space within the threshold to ac-
commodate any more vertices. Figure 6(1) shows the final
TRG established.

5.2 Taking space into account
The Greedy-Selection Algorithm concerns mainly with the

transcoding (time) costs so long as the total space required
is within the threshold. We are interested also in a solution
that can optimize on both space and time. If two solutions
have similar time costs, we will then pick the one that uses

Table 1: The greedy selection order.

Vpre Transcoding cost (sec) Total Space (KBytes)
v0 13.6 500

v0, v1 8.6 750
v0, v2 8.5 700
v0, v3 10.2 580
v0, v4 7.7 600

v0, v4, v1 3.5 850
v0, v4, v2 4.3 800
v0, v4, v3 6.8 680

Figure 6: Greedy-Selection at Vpre = {v0, v4}.

less space. To achieve this purpose, we need to extend the
basic greedy selection function to take into account the pa-
rameter of spatial consumption.

Algorithm 5 The evaluation of the aggregated transcoding
cost saving per unit space.

C’(Vpre ):

G’ ← BG(Vpre)

return
Costprevious−

P
(i,z)∈E[G′] c(i,z)

|Vpre|

We define a new greedy selection function, denoted by
C′(). This time, the corresponding algorithm will select the
content variant with maximum aggregated transcoding cost
saving per unit spatial consumption instead of the mini-
mized aggregated transcoding cost as used in the previous
model. Costprevious is the aggregated trancoding cost in the
previous round of the greedy selection. We need to replace
the C() function in line 4 of the Greedy-Selection Algorithm
by C′() if we are to adopt this space-and-time approach.
We refer to this later approach based on C′() as the space-

time approach, and the previous one based on C() the time-
only approach.

5.3 The Similarity Algorithm
From the execution of the pre-adaptation selection algo-

rithm, we obtain a final TRG, Gfinal, which will be used by
the web server to carry out the actual pre-adaptation.
During real-time processing, the negotiation module will

determine an optimal content version based on the client’s
context. This decision is then fed to the Similarity Algo-
rithm in the realization module whereby the most transcod-



ing cost-effective content pre-adapted in the web server will
be identified and from which on-the-fly dynamic adaptation
is applied to synthesize the desired content. The Similar-
ity Algorithm is a simple graph exploration algorithm that
finds the source of the edge with the desired content ver-
sion in question as the destination in the TRG. The cost-
effectiveness is already guaranteed by the property of the
TRG.

Algorithm 6 The Similarity Algorithm

Similarity(vdesire):

find (v, vdesire) ∈ E[Gfinal]
return v

Take for example Figure 6(1) where there is a final TRG
as discussed in the previous section. Given a request for
content variant v3 which is a WBMP image for WAP devices
with a small display, the Similarity Algorithm will find v4

which is a two-color bitmap with small dimensional size.
Hence, v4 will act as the starting point for the generation of
content variant v3.

6. PERFORMANCE GUARANTEE
To see how well the greedy algorithm as an approxima-

tion to the optimal solution performs, we measure the im-
provement on transcoding time it can achieve through pre-
adaptation. “Improvement” is defined as the reduction in
transcoding time over all content versions. We can show
that the improvement with using the greedy algorithm is at
least 63% of the improvement by the optimal algorithm in
most cases. The precise fraction is e−1

e
, where e is the base

of the natural logarithm. The proof for the greedy-selection
algorithm in [15] operates with a fixed number of “views”,
meaning that both the optimal and greedy algorithm will
produce k views regardless of the space used. But in our
case, the space consumption due to the set of content ver-
sions to be pre-adapted is under a fixed constraint (the space
threshold), and so the number of content versions could be
different from solution to solution. We borrow the idea of
the original proof of the ratio bound, but need to make mod-
ifications to reflect the difference.
We define B to be the improvement in transcoding time

with using the optimal solution, and A that with the greedy
solution. The ratio is found to be as follows.

A

B
≥ 1− (k

′ − 1
k′ )k

where k is the number of content versions selected by the
greedy approach and k′ is that by the optimal solution. For
example, if k = 9 and k′ = 8, we can say then that the
greedy algorithm is at least 70% of the optimal solution in
performance. The detailed proof can be found in [21].

7. EXPERIMENTATION
In this section, we report evaluation of the performance

of our proposed algorithm through simulation experiments.
The main objective of the simulation is to study the impact
on the transcoding overhead of the strategy of mixing pre-
adaptation with dynamic adaptation in content realization.
Given a pre-adaptation constraint imposed by the content

provider, we study the dynamic transcoding time saved by
our proposed approach. The experimental results shed light
on how to trade space used for a meaningful saving on con-
tent delivery time.

7.1 The simulation model
In the simulation model, we use a real data set with

content variants from a PDF document adaptation system
which we will discuss in more detail in the next section.
The input data for the simulation model include the file
size, the modality, and fidelity information of the content
objects handled by the PDF system. The transcoding rate
is defaulted to 20KB/s, as is used in [4, 7], and we assume
a linear cost model.

7.2 Some results
Based on the output data from the simulation, we study

the following aspects using various measures.

1. We use aggregated transcoding cost saving as the main
performance measure. It is derived from the difference
between the data obtained for the initial TRG (i.e.,
pure dynamic adaptation approach) and those for the
intermediate or final TRG with pre-adapted versions.

2. We use the spatial consumption of the pre-adapted
contents and the pre-adaptation capacity as the perfor-
mance measures along the dimension of storage cost.
The pre-adaptation capacity is the ratio between the
desired spatial consumption applicable to the content
server and the summation of the sizes of all the deliv-
erable objects to the clients—i.e.,

pre-adaptation capacity

=
Desired spatial consumption

P spatial consumption of all deliverable objects

Experiments with variation in this capacity ratio re-
veal how the cost saving in transcoding overhead is
affected by the ratio.

3. Another performance metric is the coverage degree which
is defined as the ratio of the total number of the se-
lected pre-adapted content variants to the total num-
ber of the deliverable content variants. This indicates
how well a given spatial consumption in the content
server can cover the number of content versions. The
higher the degree, the greater would be the chance of
finding a pre-adapted version that can serve as the
base for transcoding or even without transcoding. A
value of 1 for the coverage degree means that no ex-
tra dynamic real-time transcoding is required at all to
synthesize the content variants as the space used can
cover all the deliverable content variants.

Figure 7 shows the aggregated transcoding cost saving
against each round of the greedy selection for the first 120
rounds. During each round, a pre-adapted content variant
will be added, which invariably increases the saving on the
transcoding cost. At the initial stages of the selection, the
cost saving grows significantly, meaning that each newly in-
serted content variant has a major positive impact on the
transcoding overhead. After a while the saving becomes
more steady and the increase is less dramatic. The most
cost-effective rounds of selection therefore are those at the



Figure 7: Aggregated transcoding cost saving in sec
at each round of selection.
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Figure 8: Spatial consumption in KB against aggre-
gated transcoding cost saving.
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initial stages. If we stop at some point during these initial
rounds, the space consumption will be minimal. Hence, it
is worth focusing on this region of the graph.
Each round of the greedy selection corresponds to a cer-

tain increase in the spatial consumption. Figure 8 shows the
relationship betweeen spatial consumption and transcoding
time saving.
We can modify the simulation model a little by using the

pre-adaptation capacity as the spatial constraint, which may
be more useful for the content provider when doing resource
planning. For instance, a constraint of pre-adaptation ca-
pacity of 0.1 means one-tenth in total size of the web objects
are allowed to be pre-adapted. Figure 9 shows the relation-
ship between this pre-adaptation capacity and the time sav-
ing. For this one and some of the subsequent simulations,
we tested both the time-only approach (based on C()) and
the space-time approach (based on C′(), as discussed in Sec-
tion 5.2). The former is represented by a dashed line, and
the latter by a dotted line in the graphs.
In both Figures 8 and 9, we can see that the space-time

approach outperforms the time-only approach that considers
only the transcoding time. This can be easily explained as
the space-time selection strategy would favor those content
variants that are can produce more benefits in time but use

Figure 9: Pre-adaptation capacity against aggre-
gated transcoding cost saving.
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Figure 10: Spatial size of content selected at each
round.
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the same amount of space (or less) as some others.
We can also look at the performance the other way round—

that is, given a desired spatial consumption or capacity ratio,
we would like to know how well the space is being utilized—
i.e., the coverage degree. As shown in Figure 11, the cover-
age degree increases with the spatial cost. We can observe
in Figure 10 that initially, contents with larger spatial con-
sumption are more easily picked by the basic C() function
since these versions are probably richer in content and there-
fore can yield a more significant transcoding cost saving over
all the content versions. A threshold on the pre-adaptation
capacity is set to 0.15 for the simulation in Figure 10. For
this particular capacity ratio, the C′() function can pack in
a few more content variants. As a result, the space-time
approach performs better than the time-only approach, as
shown in Figure 11.

8. A PDF DOCUMENT CONTENT ADAP-
TATION SYSTEM

We have implemented the proposed greedy algorithm in a
PDF document content adaptation system. Currently, the
system is aware of the user context in five quality domains:
color, downloading time, scaling, modality, and segmenta-



Figure 11: Spatial consumption against content cov-
erage ratio.
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Figure 12: The content generation process.

tion. The modality domain corresponds to how the user
feels about preserving the mode or accepting transcoding to
a different mode. The segmentation domain corresponds to
how the user feels about cropping of the content. The user
can also specify the maximum downloading time he/she can
tolerate for the content delivery. For the context of device
capability, we use information for some commercial portable
device models, and the system will take into account the
screen size, the supported color depth, media type, markup
language and the memory buffer size (e.g., the maximum
deck size acceptable for the WAP phone). For the network
context, a set of parameters such as bandwidth and round-
trip time of some current popular communication channels
(e.g., CDMA, GPRS, CDPD, etc.) can be applied to our
system so that the system can adapt to the networking sit-
uation as well. Figure 2 in Section 2 shows a set of these
context parameters being divided into different categories.
After receiving the decision on the optimal content ver-

sion from the content negotiation module, the content real-
ization module is set in motion where various transcoding
operations will be invoked in order to synthesize the desired
content. Some of these technical transcoding operations can
also be found in Figure 2. The Similarity Algorithm will de-
termine the most cost-effective content version that has been
pre-adapted in the web server and make a request for it. For
the current system, we set the pre-adaptation capacity to 0.1
so that only one-tenth in size of all the deliverable content
variants would be pre-adapted and become available on the

Figure 13: Useful messages appearing on the proxy’s
screen.

web server. Having been sent the requested pre-adapted
version, the intermediary proxy will carry out real-time dy-
namic adaptation to synthesize the desired content to be
returned to the client. An example in shown in Figure 12
where the desired content version is determined by the nego-
tiation module to be one in WBMP format with appropriate
scaling and segmenting. The Similarity Algorithm in the in-
termediary proxy then selects a two-color BMP version to
be the most transcoding cost-effective content version in the
web server. This version is sent by the web server to the
intermediary proxy for processing to generate the desired
content version. The generation trace will be displayed at
the intermediary proxy, as shown in Figure 13, to show the
steps during content realization, together with the URL of
the web server, the modality and fidelities of the desired con-
tent variant determined by the negotiation module, and the
closest matching content variant in the web server selected
by the Similarity Algorithm.
With the cooperation between the negotiation module

with QoS sensitivity and the content realization module
equipped selection algorithms to optimize on spatial and
transcoding costs, the most appropriate content version is
returned to the client device in the end. By varying the var-
ious settings of the context parameters serving as input to
the negotiation module, different content variants will result
from the content realization module. Figure 14 shows the
sample deliverables of the same PDF document to a WAP
device and a PDA using our system. The difference in the
presentation is due to the difference of user preference for
the two conflicting parameters, the downloading time and
the modality preservation of the negotiation module. As
shown in Figure 14 (a) to (e), different versions of the re-
quested object, image in WBMP, text in WML, PDF, image
in BMP, and text in HTML, emerge as a result of the dy-
namic adaptation of the corresponding pre-adapted content
versions determined by the Similarity Algorithm in the in-
termediary proxy
The user can also specify the maximum downloading time



Figure 14: Change of modalities due to capability of
devices and user preference.

Figure 15: Sample deliverables vs. change of maxi-
mum tolerable downloading time.

Figure 16: Adaptability of the system to the net-
working context.

he/she feels is tolerable and the system will generate the
appropriate, cost-effective content version automatically, as
shown in Figure 15. The adaptability of the system to the
networking context (mainly the bandwidth of the connec-
tion) is shown in Figure 16.

9. CONCLUSION AND FUTURE WORK
This paper presents a strategy for realizing the actual con-

tent in response to the decision given by the decision engine
in the negotiation module. The proposed framework can
guarantee the cost-effectiveness of the approach in terms of
real-time transcoding overhead and the storage space used
to accommodate the various pre-adapted content variants.
We presented a brief summary of the experimental results
which confirm the viability of the pre-adaptation strategy.
A content adaptation system for PDF documents has been
implemented to show the collaborative operations between
the negotiation decision engine and the content realization
module, and the results of collaboration.
The pre-adaptation selection presented here has assumed

that all the content variants are equally popular. We can
further propose a variation of the algorithm in which differ-
ent content variants may be assigned different popularities.
Knowledge such as poplarity of certain mobile device and
user patterns of content subscription can be used in the pop-
ularity assignment. For example, Palm PDA’s, which enjoy
a fairly large market share, all ask for 320 × 240 4-bit con-
tent, and so the corresponding content variants having this
setting can be assigned a higher popularity. The idea is quite
similar to the PBS-U Algorithm (Pick-By-Size) proposed in
[29] whereby the selection of a view to be materialized in
a database is determined by its size weighted by probabil-
ity of occurrence. Further research can be developed in this
direction.
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