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Abstract

In this paper, a method for through-wall human detection based on the sin-
gular values decomposition of the measurement matrices is presented. After
demonstrating the sparsity of the matrices using CLEAN algorithm, an SVD
algorithm based on Lanczos process is applied to compute their singular val-
ues. We also analyze the singular values of matrices constructed by difference
square techniques for different types of walls and compare our algorithm with
a 2-D imaging approach proposed by researchers in Time Domain Company.
Detection results show that our method performs well in gypsum wall, brick
wall, and wooden door.

Keywords: Through-wall Detection, UWB, Singular Value Decomposition,
Lanczos Process

1. Introduction

UWB radars are used nowadays for different applications such as subsur-
face sensing, classification of aircrafts, collision avoidance, etc. In all of these
applications the ultra-high resolution of UWB radars is essentially used [1].
UWB radar emissions are at a relatively low frequency-typically between
100 MHz and 3 GHz. Additionally, the fractional bandwidth of the signal
is very large (greater than 0.25). In this definition, bandwidth means the
difference between the highest and lowest frequencies of interest and con-
tains about 95% of the signal power [2][3]. Such radar sensor has exceptional
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range resolution that also has an ability to penetrate many common materials
(e.g., walls). Law enforcement personnel have used UWB ground penetrating
radars (GPRs) for at least a decade. In 1995, James D. Taylor’s [3] Introduc-
tion to Ultra-Wideband Radar Systems introduced engineers to the theory
behind a promising new concept for remote sensing. Since then, the field
has undergone enormous growth with new applications realized and more
applications conceptualized at a remarkable pace [2], such as through-wall
detection. In [4], Immoreev gave an overview on new practical applications
of UWB radars. In [5], through-wall UWB radar operating within FCC’s
mask was studied for heart beat and breathing rate. In [1][6][7], UWB radar
for detection and positioning of human beings in a complex environment was
studied. Recently, UWB radars were used in sense-through-foliage target
detection [8][9][10][11][12].

Through-wall detection has a variety of application, not only in military
industry but for security and rescuing as well. Many of these applications
prefer to choose UWB radar due to its good penetration through non-metallic
building materials and high resolution as a result of small pulse duration.

Detection of human beings with radars is based on movement detec-
tion [13] [14]. In [15], an algorithm designed for respiration motion detection
was proposed. It separates the nonstationary clutter from the respiratory-
motion response, which leads a significantly higher detection rate in low
signal-to-noise-and-clutter ratio (SNCR) conditions than for the detection
algorithm presented in [16]. Three different detection techniques is discussed
in [17] for different types of walls. Both the Doppler based method with
Discete Fourier Transform(DFT) and the clutter reduction method using
singular value decomposition work for gypsum wall, brick wall and wooden
door, but fail in case of a thick concrete wall. And only for gypsum wall,
the second singular value, computed by the new approach based on STET
and SVD, changes relatively in presence of target. The method presented
in [18] is based on the detection of body movement and using Fast Fourier
Transform and S transform. It has high accuracy and can be implemented
simply in complex environment with strong clutter.

The remaining of this paper is organized as follows. Section 2 describes
the specifications of the UWB radar used in this experiment and the config-
uration of the environment where the measurements are taken. The sparsity
of the measurement matrix is demonstrated in Section 3 using a variant of
CLEAN Algorithm. Section 4 introduces the sparse SVD algorithm used for
Target detection and its advantages. Finally, experiment results are shown
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in Section 5 and the conclusions are drawn in Section 6.

2. Experiment Setup

The experiment is based on the data collected with an Ultra-WideBand
(UWB) radar ‘PulseON 220’ manufactured by Time Domain Corporation.
The radar has a center frequency of 4.3 GHz with 10-dB bandwidth at 2.3
GHz and provides a resolution of 6.5 cm as its pulse duration is 430 pS.
Ported with two omni-directional antenna, the radar works in monostatic
mode as shown in figure 1.

2
(])

Figure 1: P220 in Monostatic mode

The radar was configured using GUI PulsON 220 MSR 1.1 application
software provided with the radios. The pulse repetition frequency was set
to the highest supported rate of the radar, 9.6 MHz, at which the maximum
unambiguous range is approximately 50 ft. By setting the Window Size and
the Step Size to 10 ft and 1 bin respectively, there were about 6400 samples
per scan. The scan rate of the radar was calculated to be 1.47 scans/sec after
setting its Hardware Integration to 512 and software integration to 2. So,
100 scans were captured in each measurements set for a total time duration
of 68 sec.

The measurements were taken on different sides of a 1-ft thick Gypsum
partition wall at UTA (NH room 202 & 203). The UWB radar was located
on one side of the wall and the height of its antennas from ground was 3.3
ft. Person was standing at a distance of 6.5 ft from the radar on the other
side of the wall. A set of measurements taken with person and another set
taken without target are considered in this experiment.
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Figure 2: UWB radar (Right), Human target (Left)
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Figure 3: Single Scan For Gypsum Wall
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3. Sparsity Analysis

We applied a variant of the CLEAN algorithm introduced in [19]to extract
the channel Impulse response, which is then used to demonstrate the Sparsity
of the Measurement Matrix.

The CLEAN algorithm, first introduced in [20] is a commonly used de-
convolution technique in the radio astronomy and microwave communities.
It has been applied in communication channel characterization problems
in [21] and [22] and modified to process impulsive UWB measurements by [23]
and [24]. In [19] a variant of the CLEAN algorithm is proposed to extract
the channel Impulse response by deconvolving the effects of the measure-
ment system from the received echoes. The main procedure of the algorithm
is searching the received echoes iteratively with the transmitted pulses to
find the maximum correlation [25], as shown in the following steps.

Step 1: Calculate the autocorrelation of the transmit pulses rss(t) and the
cross-correlation of the transmit pulses with the received echoes rsy(t).

Step 2: Find the largest correlation peak in rsy(t), record the normalized
amplitudes oy and relative time delay 7, of the correlation peak.

Step 3: Subtract rss(t) scaled by ay from rsy(t) at the time delay 7.

Step 4: If a stopping criterion (e.g., a minimum threshold on the peak cor-
relation) is not met, go to step 2. Otherwise stop.

The channel impulse response h = [hy, hs, . .., h,] extracted by the variant
of the CLEAN algorithm based on one experiment is plotted in figure 4 and
it shows that h has very few nonzero taps. If no noise, the received echo
could be represented as

y(i) = hx (i) = Zhiw —j)=Th

where 1(7) represents the transmit pulse and W = [, s, . .., 1,| represents
the transform domain functions. Since most values in h are zeroes under
the transform basis , so the measurement matrix constructed by the received
echoes y is sparse. Since the UWB radar echoes are sparse, we apply sparse
singular value decomposition (SVD) to target detection.
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Figure 4: Channel Impulse Response h

4. Target Detection

In the experiments, the target is identified according the selected singular
value of the measurements matrix which can be computed by a sparse SVD
algorithm based on Lanczos Bidiagonalization [26].

Based on the relationship between the singular value decomposition of
a matrix A and the schur decomposition of some related symmetric matri-
ces, the singular values and vectors of A can be obtained by computing the
eigenvalue and corresponding eigenvectors of those symmetric matrices. For
example, the commonly used SVD algorithm, proposed by Golub and Ka-
han [26], obtains the singular vectors by solving the symmetric eigenvalue
problem of ATA. It first reduces A to a bidiagonal matrix B by House-
holder transformation, and then implicitly applies the QR algorithms on the
symmetric tridiagonal matrix BT B. Since BT B is orthogonally equivalent
to AT A, they have the same eigenvalues which equals to the square of the
singular values of A. However, this algorithm is not preferable if A is large
and sparse because the Householder bidiagonalization successively updates
A and destroys its sparsity.

The sparse SVD algorithm used here applies the Lanczos process on A7 A
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to get a tridiagonal matrix 7} and then obtain the selected singular values
by computing the eigenvalues of T). Different from the Householder trans-
formation, the Lanczos process [27], as shown in Algorithm 1, computes
the diagonal and subdiagonal elements of the tridiagonal matrix directly,
and can be implemented by only involving A in procedures of Matrix-vector
products. Moreover, this process extract information about the largest and
smallest eigenvalues values of the tridiagonal matrix early during its iteration
steps, and make it possible to obtain part of the extreme eigenvalues before
full Tridiagonalization. Therefore, the sparse SVD algorithm is very useful
when only a few of the largest singular values are desired.

Algorithm 1 Lanczos Process on a rectangular m X n matrix to generate the
diagonal element «y and the subdiagonal element 3, of a tridiagonal matrix
T
Choose a starting vector pg € R™, and let 81 =|| po ||2, u1 = po/ /1 and
Vo = 0
forj=1,2,...,k do
r; = ATUj — ﬂjvj—l
o =7 |l
vj =i/
p; = AUj — QU
Bir1 = pj ll2
ujy1 = p;j/Bj+1
end for

To apply sparse SVD algorithm to target detection, we have two ways
to construct matrix A. To detect the target, this experiment compares the
20 largest singular values of the matrices constructed using the two sets of
measurements. One comparison uses the matrix A constructed by arranging
each scan in a column. The other comparisons require to construct the
matrix Agg by difference square techniques. Suppose the measurements set
contains M scans, and each scan has N samples. The simple matrix A and
the difference square matrix A are constructed as follows.
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5. Experiment Result

Figure 5 shows the 20 largest singular values of A for gypsum wall. The
comparison from the second value specified as start shows that there are
obvious increases of the largest singular values of measurements with target.
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Figure 5: The Singular Value of A for Gypsum Wall

The singular values of Agy for different kinds of walls are plotted in
figure 6. It shows that all the 5 largest singular values specified as starts of
measurement with target increase for Gypsum wall, Brick wall and Wooden
door. If the singular values are normalized by dividing each value with the
first singular value, there will be decreases from the fourth normalized value
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to the tenth normalized value for any kind of wall. Based on the figures, we
can make the following observations:

1) Our method performs well in gypsum wall, brick wall, and wooden door.
2) It is hard to perform sense-through-wall human detection when the wall
is concrete wall.

We also compare our algorithm with an existing algorithm proposed by
researchers in Time Domain Company [28], a 2-D imaging approach, in which
a 2-D image could be created via adding voltages with the appropriate time
offset. The representative images created by single scans for Gypsum Wall
is shown in figure 7. In the left image created by a single scan with target,
the yellow bars located near 6 ft represent the target, but 20 percent of the
images are same as the middle one by which the target cannot be detected.
Moreover, the middle image is similar to the right one created by a single
scan without target. Therefore, although the 2-D imaging approach has the
ability to identify the target quickly by only one single scan, the detection
result is not reliable and is affected by the clutter.

6. Conclusion

The sparse SVD algorithm makes it possible to detect target and the
measurement matrix constructed by difference square techniques generates
more obvious detection result. Detection results show that our method per-
forms well in gypsum wall, brick wall, and wooden door, however, the results
is not reliable enough when it is applied to concrete wall. Compared with
other human detection methods, only perform SVD with the measurements
can not provide the extract position of the target.
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