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Abstract 

Set multi-covering is a generalization of the set covering problem where each 

element may need to be covered more than once and thus some subset in the 

given family of subsets may be picked several times for minimizing the number of 

sets to satisfy the coverage requirement. In this paper, we propose a family of 

exact algorithms for the set multi-covering problem based on the inclusion-

exclusion principle. The presented ESMC (Exact Set Multi-Covering) algorithm 

takes *((2 ) )nO t time and *(( 1) )nO t + space where t is the maximum value in the 

coverage requirement set (The *( ( ))O f n notation omits a log( ( ))poly f n factor). We 

also propose the other three exact algorithms through different tradeoffs of the 

time and space complexities. To the best of our knowledge, this present paper is 

the first one to give exact algorithms for the set multi-covering problem with 

                                                 
* Corresponding author 

DRAFT 



 2

nontrivial time and space complexities. This paper can also be regarded as a 

generalization of the exact algorithm for the set covering problem given in [2].  

1. Introduction 

Recently it has been shown that for some exact algorithms, using the inclusion-

exclusion principle can significantly reduce the running time. For example, 

Björklund et al. have applied the inclusion-exclusion principle to various set 

covering and set partitioning problems, obtaining time complexities that are much 

lower than those of previous algorithms [2]. This principle has also been used in 

some early papers, such as [1] and [7]. By using the Möbius inversion technique 

which is an algebraic equivalent of the inclusion-exclusion principle, Björklund et 

al. give a fast algorithm for the subset convolution problem [3] and Nederlof 

presents a family of fast polynomial space algorithms for the Steiner Tree 

problem and other related problems [8]. In this paper, we are interested in 

designing inclusion-exclusion based exact algorithms for the set multi-covering 

problem [10,11]. This problem is a generalization of the set covering problem in 

which each element needs to be covered by a specified integer number of times 

and each set can be picked multiple times in order to satisfy the coverage 

requirement. It is a bit surprising that only approximation algorithms have so far 

been proposed for the set multi-covering problem. In fact, by using the same 

greedy strategy as for the set covering problem, which is to repeatedly add the 

set containing the largest number of uncovered elements to the cover, one can 

achieve the same (log )O n approximation for the problem [10]. Feige shows that 

the set covering problem can not be approximated better than lnn unless 
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loglog( )nNP DTIME n∈ [5]. Some parallel approximation algorithms for the set 

covering problem and its generalizations, such as the set multi-cover problem, 

the multi-set multi-cover problem and the covering integer programs problem 

have been presented in [11]. In all these related work on approximation solutions, 

the set multi-covering problem appears to be no harder than the set covering 

problem. In this paper, we will see that finding an exact solution for the set multi-

covering problem can take much longer time than that for the fastest exact 

algorithm for the set covering problem [2]. To the best of our knowledge, this 

present paper is the first one to give exact algorithms for the set multi-covering 

problem with nontrivial time and space complexities.  

      The structure of this paper is as follows. In Section 2, we give a formal 

definition of the set multi-covering problem. In Section 3, we give a brief 

introduction of the inclusion-exclusion principle and then transform the set multi-

covering problem to the problem of counting the number of k-tuples that satisfy 

the integral coverage requirements. We then give four algorithms for counting 

these numbers of k-tuples in Section 4. In Section 5, we give a constructive 

algorithm for finding the minimum number of sets that meet the coverage 

requirements. A simple illustrating example for our algorithms is given in the 

Appendix. We conclude the paper in Section 6. 

2. The Set Multi-covering Problem 

A summary of the various notations used in this paper and their corresponding 

definitions is given in Table 2.1. Throughout the paper, we let the union of a k-

tuple 
1
,...,

k
s s< >  which is denoted as

1

k

i
i

C s
=

= U represent a multi-set. This means 
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that we just put all the elements in each
i

s into the set C without removing 

duplicated elements.   

Table 2.1: Summary of notations and their definitions 

Notation Definition 

N The universe set, where {1,..., }N n= and| |N n= . 

F A family of subsets of N, where
1 | |

{ ,..., }
F

F s s= and| |F is 

the total number of subsets in F. 

T The integral coverage requirement set, 
where

1
{ ,..., }

n
T t t= ; each i N∈ must be covered at 

least 1
i

t ≥ times in the picked subsets over F. 

t The maximum integer in the set T, i.e., 
1

max{ }
ii n

t t
≤ ≤

= . 

( )
k

c F  The number of k-tuples 
1
,...,

k
s s< >  over F such that the 

union of each k-tuple, i.e.,
1

k

i
i

C s
=

= U  , satisfy the specified 

coverage requirement T.  

( )
k

n X  The number of k-tuples 
1
,...,

k
s s< >  over F such that 

each i X∈ ( X N⊆ ) appears at most ( 1)
i

t − number of 
times in the setC . 

( )a X  The number of subsets in F that avoid X. 

( , )b X Y  The number of subsets in F that include Y but 
avoid \X Y . 

1 | |
( ,..., )X

q X
p n n

or
( )X

q X
p n  

The number of q-tuples over F such that each j X∈  
appears

j
n times in the union of each q-tuple. For 

simplicity, we use
X

n to denote
1 | |

{ ,..., }
X

n n . 

 

The Set Multi-covering Problem: Let {1,..., }N n= be the universe, and F a given 

family of subsets { }
i

s  over N, and the union of all the subsets in F covers all the 

elements in N. A legal ( , )k T cover is a collection of k subsets over F such 

that
1

k

k
i

s TN
=

≥U , where
1

{ ,..., }
n

T t t=  and the inequality means that eachi N∈ must 
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appear at least 1
i

t ≥ times in the union of the k subsets. Note that the k subsets 

can be non-distinct which means that some subsets in F can be picked several 

times. The goal of the set multi-covering problem is to find the minimum k to 

make a legal( , )k T cover.  

Remark 1: Since each subset in F can contain each element of N at most once, in 

order to find a legal ( , )k T cover, k must be greater than or equal to t, the 

maximum integer in the coverage requirement set T , i.e., k t≥ . Also, since the 

union of F covers all the elements in N, we havek tn≤ . 

3. Counting based Exact Algorithm for the Set Multi-covering 

Problem 

3.1 The Inclusion-Exclusion Principle 

     FACT 3.1 [folklore]: Let B be a finite set with subsets
1 2
, ,...,

n
A A A B⊆ . With the 

convention that
i i

A B
∈∅

=I , the number of elements in B which lie in none of 

the
i

A is 

| |

1

| | ( 1) | |
n

X

i i
X Ni i X

A A
⊆= ∈

= − ⋅∑I I                                      (3.1) 

3.2 Counting the number of k-tuples 

      LEMMA 3.2:  Let ( )
k

n X denote the number of k-tuples 
1
,...,

k
s s< >where for 

each j X∈ , the number of j in the set
1

k

k
i

C s
=

= U  is at most 1
j

t − ; then the number of 

k-tuples that satisfy the coverage requirement T can be computed from the 

following equation: 
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| |( ) ( 1) ( )X

k k
X N

c F n X
⊆

= − ⋅∑                                 (3.2) 

      PROOF:  Let B be the set of k-tuples 
1
,...,

k
s s< >  from F, and let 

i
A be the set 

of k-tuples where element i in the set C appears at most ( 1)
i

t − times. The left side 

of Equation 3.1 is the number of k-tuples in which each element i in the universe 

N is covered at least 
i

t  times, which is represented by ( )
k

c F , the left side of 

Equation 3.2. Accordingly, | |
i

i X
A

∈
I  is the number of k-tuples in which each j X∈ , 

which is an element in the set C, appears at most( 1)
j

t − times; i.e., ( ) | |
k i

i X
n X A

∈
= I  . 

By the right side of Equation 3.1, we can derive the right side of Equation 3.2.  

     LEMMA 3.3:  We can find a legal( , )k T cover if and only if ( ) 0
k

c F > . 

     PROOF: ( )
k

c F is the number of k-tuples over F that satisfy the coverage 

requirement T. The number of legal ( , )k T covers is the number of k subsets over 

F that satisfy the coverage requirement T. Since different orderings of the k 

subsets mean different k-tuples while the ( , )k T cover concerned remains the 

same, we know that only when ( ) 0
k

c F > can there be a legal ( , )k T cover. 

Similarly, if there is a legal ( , )k T cover, it guarantees that ( ) 0
k

c F > . This finishes 

the proof. 

      According to Lemma 3.3, we have the following corollary. 

     COROLLARY 3.4:  The minimum k value to make a legal ( , )k T cover is equal 

to the minimum k value that satisfies ( ) 0
k

c F > . 
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      Thus we can transform the set multi-covering problem to the problem of 

computing ( )
k

c F . By using binary search, sincet k tn≤ ≤ , the time for solving the 

set multi-covering problem equals the sum of the times for computing 

the (log( ))O tn numbers of ( )
k

c F . In the next section, we introduce several 

algorithms for computing ( )
k

c F with different time and space complexities. 

4. Algorithms for Computing ( )
k

c F  

In this section, we show how to compute ( )
k

c F , i.e., to count the number of k-

tuples 
1
,...,

k
s s< >  over F such that the union of each such k-tuple satisfies the 

given coverage requirement T.  

4.1 How to compute ( )
k

n X  

According to Equation 3.2, we know that the crux of computing ( )
k

c F is to 

obtain ( )
k

n X , i.e., the number of k-tuples over F such that each i X∈ appears at 

most ( 1)
i

t −  times in the union of every k-tuple. Without loss of generality, we 

assume {1,2,..., }X m= , and for the simplicity of notation, we let 
1 2

{ , ,..., }
X m

n n n n= . 

We then denote 
1 2

( ) ( , ,..., )X X

q X q m
p n p n n n= , the number of q-tuples over F  such 

that for each j X∈  the number of the element j in the union of every q-tuple is
j

n . 

Now since the union of each q-tuple can cover each j X∈ at most q times, for 

each
1 2

( , ,..., )X

q m
p n n n , we have

j
n q≤ for each j X∈ ; otherwise, 

1 2
( , ,..., )X

q m
p n n n equals 0. From these definitions, we can easily obtain the 

following Equation 4.1. This equation means that, in order to obtain ( )
k

n X , we 
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should sum all the ( )X

k X
p n values (

1

m

ii
t

=
∏ of them), where ( )X

k X
p n is 

from (0,0,...,0)X

k
p to

1 2
( 1, 1,..., 1)X

k m
p t t t− − −  . Now our problem becomes how to 

efficiently compute all the ( )X

k X
p n values.  

                                           
0 1
1

( ) ( )
i i

X

k k X
n t
i m

n X p n
≤ ≤ −
≤ ≤

= ∑                                                    (4.1) 

       Before delving into the details of calculating all these ( )X

k X
p n values, we need 

to introduce some notations. We use ( )a X to denote the number of sets in F that 

avoid X where X N⊆ , and ( , )b X Y to denote the number of sets in F that include 

Y but avoid \X Y , whereY X⊆ . We show next how to get ( )a X for all X and 

( , )b X Y for all X and Y. 

4.2 How to compute all ( )a X  

There are two ways to compute ( )a X . The first way is to use the fast zeta 

transform technique introduced in [2]. By using this technique, all ( )a X values can 

be computed in * (2 )nO time. And since the technique uses a look-up table to store 

all the interim values including ( )a X for all X N⊆ , it requires * (2 )nO space. The 

second way is to compute ( )a X directly without storing all the interim values into 

a look-up table. In order to compute ( )a X where X N⊆ , we just need to test 

every subset \S N X⊆ to see if S is in F, which takes time * | |(2 )n XO − by assuming 

that the membership test in F can be decided in polynomial time and polynomial 

space. Then for all X N⊆ , the total time for computing ( )a X  

equals * | | * *

0
(2 ) ( 2 ) (3 )

n
n X r n r n

n
X N r

O O C O− −

⊆ =
= =∑ ∑ . 
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4.3 How to compute all ( , )b X Y  

Based on the two different ways of computing ( )a X , we have two corresponding 

ways to compute all ( , )b X Y  for allY X⊆  and for all X N⊆ . 

      For arbitrary X and Y, whereY X⊆ , we let | |X m= and| |Y r=  and r m≤ . 

Without loss of generality, assume {1,2,..., }X m= and {1,2,..., }Y r= . 

Then ( , )b X Y can be computed via Equation 4.2. 

   | | | |( , ) ( 1) ( ( \ )) ( 1) ( { 1,..., })Z Z

Z Y Z Y
b X Y a Z X Y a Z r m

⊆ ⊆
= − ⋅ = − ⋅ +∑ ∑U U                    (4.2) 

      Equation 4.2 is obtained by applying the inclusion-exclusion principle. 

According to Fact 3.1, suppose B is a family of subsets of F which avoid \X Y , 

and let 
i

A B⊆ ( i Y X∈ ⊆ ) be the family of subsets which further avoid element i . 

Then the left side of Equation 3.1(
| |

1

| |
Y

i
i

A
=
I ) is the number of sets in F that 

coverY but avoid \X Y which is the value of ( , )b X Y . Accordingly, the right side of 

Equation 3.1(| |
i

i Z Y
A

∈ ⊆
I ) is the number of sets in F that avoid ( \ )Z X YU which is 

the value of ( ( \ ))a Z X YU . Thus according to Equation 3.1, we have Equation 

4.2. Then we calculate how much time we need to compute all ( , )b X Y . 

      First, we do not use a table to store all ( )a X values, and the time complexity is 

given in Lemma 4.1. 

      Lemma 4.1: For allY X⊆  and for all X N⊆ , ( , )b X Y can be obtained 

in * (6 )nO time and polynomial space. 
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     PROOF: As mentioned earlier, in order to compute ( )a X where X N⊆ , we 

just need to test every subset \S N X⊆ to see if S is in F, which takes 

time * | |(2 )n XO − . For given X and Y, according to Equation 4.2, the time for 

computing ( , )b X Y  can be calculated from the formula *

0

(2 )
r

i n i m r

r
i

C O − − +

=
⋅∑ .  By using 

the Binomial theorem, we have Equation 4.3. 

                                     *

0

(2 )
r

i n i m r

r
i

C O − − +

=
⋅∑ = * (2 3 )n m rO − ⋅                                          (4.3) 

     Now for allY X⊆ , the time for computing ( , )b X Y can be calculated through 

the formula *

0

(2 3 )
m

r n m r

m
r

C O −

=
⋅ ⋅∑ . Similarly, by using the Binomial theorem, we have 

Equation 4.4. 

                                     *

0

(2 3 )
m

r n m r

m
r

C O −

=
⋅ ⋅∑ = * (2 )n mO +                                             (4.4) 

     Finally, for all X N⊆ , the time for computing ( , )b X Y can be calculated through 

the formula *

0

(2 )
n

m n m

n
m

C O +

=
∑ . Again by the Binomial theorem, we have Equation 4.5. 

                                     *

0

(2 )
n

m n m

n
m

C O +

=
∑ = * (6 )nO                                                      (4.5) 

     According to the computation steps of Equations 4.3, 4.4 and 4.5, since we did 

not use any look-up table to store the exponential number of ( )a X values to 

speed up the calculation of ( , )b X Y  , the space used is only polynomial. This 

completes the proof. 

      Now we give another way to compute all ( , )b X Y  by using exponential space. 

Its time and space complexities are given in Lemma 4.2. 
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     Lemma 4.2: For all Y X⊆  and for all X N⊆ , ( , )b X Y can be obtained 

in (4 )nO time and * (2 )nO space. 

     PROOF: As before, by using the fast zeta transform technique introduced in 

[2], all ( )a X values can be computed in * (2 )nO time and * (2 )nO space. Then for 

some given X and Y, according to Equation 4.2, since all ( )a X values are 

known, ( , )b X Y can be computed in time 2r where | |r Y= . The time for 

computing ( , )b X Y  for allY X⊆ equals 
0

2 3
m

r r m

m
r

C
=

⋅ =∑ . Similarly, the time for 

computing ( , )b X Y  for all X N⊆ equals 
0

3 4
n

m m n

n
m

C
=

⋅ =∑ . This finishes the proof.  

4.4 Four algorithms for computing all ( )X

k X
p n  

As mentioned in Section 4.1, we need to compute
1

m

ii
t

=
∏

1 2
( ) ( , ,..., )X X

k X k m
p n p n n n=  

values, where0 1
i i

n t≤ ≤ −  and1 i m≤ ≤ . Without loss of generality, we assume 

the positive integers in
1 2

{ , ,..., }
m

n n n form a set
1

{ ,..., }
Y r

n n n= , where 

{1,2,..., }Y r= and0 r m≤ ≤ . Then from the definitions of ( )a X and ( , )b X Y  , we 

have
1 1 2

( , ,..., ) ( ,{1,2,..., })X

m
p n n n b X r=  and

1
(0,0,...,0) ( )Xp a X= . Now for brevity of 

notation, for any subset
1

{ ,..., }
i

Z r r Y= ⊆ , we use( 1 )Z

X
n −  to denote the 

set
11 1

{ ,..., 1,..., 1, ,..., }
i ir r r m

n n n n n
+

− − , i.e., for all j Z∈ , the corresponding
j

n values 

are decremented by 1, and for all j Z∉ , we keep the corresponding 
j

n values. 

Then for 2 q k≤ ≤ , we use the following recursive function to obtain ( )X

q X
p n .  

                                     
1

( ) ( , ) ( 1 )X X Z

q X q X
Z Y

p n b X Z p n
−

⊆
= ⋅ −∑                                   (4.6) 
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      Basically, this equation tells us how to calculate the ( )X

q X
p n value when 

given
1
( 1 )X Z

q X
p n

−
− values for all Z Y⊆ . For example, when Z = ∅ , ( , ) ( )b X a X∅ =  

and
1 1
( 1 ) ( )X Z X

q X q X
p n p n

− −
− = . We already know ( )a X means the number of sets in F 

that avoid X, and
1
( )X

q X
p n

−
 means the number of (q-1)-tuples from F  where for 

each j X∈  the number of the element j in the union of every (q-1)-tuple is
j

n ; 

thus the product of ( )a X  and
1
( )X

q X
p n

−
 is the total number of ways to add a set to 

each of the 
1
( )X

q X
p n

−
 (q-1)-tuples to make it a q-tuple while keeping 

X
n unchanged. 

Similarly, for each nonempty Z Y⊆ , we know ( , )b X Z means the number of sets 

in F that cover Z but avoid \X Z , where Z Y X⊆ ⊆ , and 
1
( 1 )X Z

q X
p n

−
− means the 

number of (q-1)-tuples from F  where for each j X∈  the number of the element j 

in the union of every (q-1)-tuple equals the updated
j

n value in the set ( 1 )Z

X
n − ; 

thus the product of ( , )b X Z and 
1
( 1 )X Z

q X
p n

−
−  is the total number of ways to add a 

set to each of the 
1
( 1 )X Z

q X
p n

−
−  (q-1)-tuples to make it a q-tuple while satisfying all 

the
j

n values in the set
X

n . Finally, the summation of all these products yields the 

number of q-tuples from F such that for each j X∈  the number of the element j in 

the union of every q-tuple equals
j

n , which is ( )X

q X
p n . 

     So according to Equation 4.6, in order to get all ( )X

k X
p n , we need to calculate 

all ( )X

q X
p n where1 q k≤ < . We now give four algorithms for computing all ( )X

k X
p n . 

But first we will analyze the special case where the maximum integer t in the 

integral coverage requirement set
1

{ ,..., }
n

T t t= equals 1. In this case, set multi-
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covering becomes the set covering problem. Then as mentioned in Section 4.1, 

we only need to compute
1

1
m

ii
t

=
∏ = number of ( ) (0,...,0)X X

k X k

m

p n p= 123 values. This 

means that the number of positive integers in the set
1 2

{ , ,..., }
X m

n n n n= is zero, i.e., 

the set Y in Equation 4.6 is an empty set. Accordingly, Equation 4.6 becomes                

1 1
(0,...,0) ( , ) (0,...,0) ( ) (0,...,0)X X X

k k k
p b X p a X p

− −
= ∅ ⋅ = ⋅ . Since

1
(0,...,0) ( )Xp a X= , we 

can obtain (0,...,0) ( ( ))X k

k
p a X= . Finally from Equations 3.2 and 4.1, we 

obtain | |( ) ( 1) ( ( ))X k

k
X N

c F a X
⊆

= − ⋅∑ , which is the same as the formula given in [2] for 

counting the number of k-tuples that satisfy the set covering requirement. As 

discussed in [2], based on whether we use exponential space or not (c.f. Section 

4.2), ( )
k

c F can be computed in * (2 )nO time and * (2 )nO space, or can be computed 

in * (3 )nO time and polynomial space.  

     For the following, we assume that the maximum integer t in the integral 

coverage requirement set
1

{ ,..., }
n

T t t= is greater than or equal to 2. 

Algorithm 1 for computing all ( )X

k X
p n  

Input: The value k  wheret k tn≤ ≤ ; the set {1,2,..., }X m= ; the integral coverage 

requirement set for X , i.e., 
1 2

{ , ,..., }
X m

T t t t= . Here
X

T is a subset ofT , and we use 

min( )
X

T and max( )
X

T to denote the minimum and the maximum integers 

respectively in the set
X

T . 

Output: The values for all ( )X

k X
p n . 

1: For all X N⊆ , by using the fast zeta transform technique given in [2], we 

compute all ( )a X and store them in a look-up table.  
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2: Based on the first step, for allY X⊆ and X N⊆ , we compute all ( , )b X Y and 

store them in another look-up table.  

3:  For q=2 to k do: 

4:  By using Equation 4.6, we compute all ( )X

q X
p n from (0,...,0)X

q
p to 

1
(min( , 1),...,min( , 1),...,min( , 1))X

q i m
p q t q t q t− − −  and we store all 

these ( )X

q X
p n values in a look-up table. Here the function min( , 1)

i
q t − means 

choosing the minimum value betweenq and( 1)
i

t − . 

5:  End For.                               

      Without storing all of the ( )X

q X
p n values in a table, we have the second 

algorithm for computing all ( )X

k X
p n . 

Algorithm 2 for computing all ( )X

k X
p n  

1: Same as the first step in Algorithm 1. 

2: Same as the second step in Algorithm 1. 

3: For each of the 
1

m

ii
t

=
∏ number of ( )X

k X
p n , where ( )X

k X
p n is 

from (0,...,0)X

k
p to

1
( 1,..., 1)X

k m
p t t− − , we use Equation 4.6 to compute their values 

directly without storing any of these values in a table. 

     Then, without storing all of the ( , )b X Y values into a table, we have the third 

algorithm for computing all ( )X

k X
p n . 

Algorithm 3 for computing all ( )X

k X
p n  

1: Same as the first step in Algorithm 1. 

2: Same as the third step in Algorithm 2. But since we did not store all 

the ( , )b X Y values into a look-up table, we need to use Equation 4.2 to calculate 

the ( , )b X Y value for eachY X⊆ . 
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      Finally, without storing all of the ( )a X values into a table, we have the fourth 

algorithm for computing all ( )X

k X
p n . 

Algorithm 4 for computing all ( )X

k X
p n  

1: Same as the third step in Algorithm 2. But since we did not store all 

the ( )a X and ( , )b X Y values into the look-up tables, we need to calculate them on 

the fly. 

      With these algorithms for computing all ( )X

k X
p n , we can calculate ( )

k
n X  and 

then ( )
k

c F . We analyze in the following the time and space complexities for 

calculating ( )
k

c F through using these four algorithms for computing all ( )X

k X
p n .  

4.5 Time and space complexities for calculating ( )
k

c F  

     Theorem 4.3: By using Algorithm 1 for computing all ( )X

k X
p n , ( )

k
c F can be 

computed in * ((2 ) )nO t  time and * (( 1) )nO t + space. 

     PROOF: The first step of Algorithm 1 uses * (2 )nO time and * (2 )nO space. For 

the second step, according to Lemma 4.2, computing all ( , )b X Y takes time (4 )nO . 

Obviously there are
0

2 3
n

m m n

n
m

C
=

=∑ ( , )b X Y , so storing all ( , )b X Y in a look-up table 

takes * (3 )nO space.  

     In the ‘For’ loop (step 3 to step 5), we calculate 

all ( )X

q X
p n from 2q = toq k= and store all these ( )X

q X
p n values in a look-up table. 

So according to Equation 4.6, for each ( )X

q X
p n , since all the ( , )b X Y values have 

been stored and so have all the
1
( )X

q X
p n

−
values, the time to 

compute ( )X

q X
p n is

0
2

r
j r

r
j

C
=

=∑ where r is the number of positive integers in the set
X

n . 

So in order to calculate the total time for calculating all ( )X

q X
p n , we just need to 

count how many ( )X

q X
p n we need to compute. 
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     Since we know the number of positive integers in the set
X

n is r, for each q 

where 2 q k≤ ≤ , the number of ( )X

q X
p n we need to compute equals 

1
min( , 1)

r

ii
q t

=
∏ − , 

i.e., those ( )X

q X
p n from {(1,...,1,0,...,0)X

q

r m r

p
−

123 to 
1

(min( , 1),...,min( , 1),0,...,0)X

q r

m rr

p q t q t
−

− − 1231444442444443
.  

      So if min( ) 1 1
X

q T t≤ − ≤ − , the number of ( )X

q X
p n we need to compute is rq , i.e., 

all ( )X

q X
p n from {(1,...,1,0,...,0)X

q

r m r

p
−

123 to ( ,..., ,0,...,0)X

q

m rr

p q q
−

123123 . Similarly, if 1t q k− < ≤ , the 

number of ( )X

q X
p n we need to compute equals

1
( 1)

r

ii
t

=
∏ − which is less than( 1)rt − , 

i.e., all ( )X

q X
p n from {(1,...,1,0,...,0)X

q

r m r

p
−

123 to
1

( 1,..., 1,0,...,0)X

q r

m rr

p t t
−

− − 1231442443
. Finally, if 

min( ) max( ) 1 1
X X

T q T t≤ ≤ − ≤ − , the number of ( )X

q X
p n we need to compute is at 

most rq . 

     From the above analyses, for a given
X

n where the number of positive integers 

equals r and for all 2 q k≤ ≤ , the total number of ( )X

q X
p n we have computed is at 

most:  

                                               
1

2
( 1) ( 1)

t
r r

q
q k t t

−

=
+ − + ⋅ −∑                                        (4.7) 

      As mentioned earlier in this proof, since the time for computing each 

( )X

q X
p n is 2r , the total time for computing all these ( )X

q X
p n  is at most 

                                   
1

2
2 ( ( 1) ( 1) )

t
r r r

q
q k t t

−

=
⋅ + − + ⋅ −∑  
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    Then for all
X

n where r, the number of positive integers in each of them, varies 

from 0 to m, the total time for computing all ( )X

q X
p n is at most: 

1 1

0 2 2
(2 ( ( 1) ( 1) )) (2 1) ( 1) (2 1)

m t t
r r r r m m

m
r q q

C q k t t q k t t
− −

= = =
⋅ + − + ⋅ − = + + − + ⋅ −∑ ∑ ∑         

     Now according to Equation 4.1 which is for computing ( )
k

n X , the total time for 

computing ( )
k

n X is less than
1

2
(2 1) ( 1) (2 1)

t
m m m

q
q k t t t

−

=
+ + − + ⋅ − +∑ , where the last 

term mt accounts for the at most mt number of additions of ( )X

k X
p n to obtain ( )

k
n X . 

     Finally, according to Equation 3.2 which is for calculating ( )
k

c F , the time for 

computing ( )
k

c F is at most:  

1

0 2
( (2 1) ( 1) (2 1) )

n t
m m m m

n
m q

C q k t t t
−

= =
+ + − + ⋅ − +∑ ∑  

=
2

2
(2 2) ( 2) (2 ) ( 1)

t
n n n

q
q k t t t

−

=
+ + − + ⋅ + +∑                                                     

     Now according to the following helping lemma, Lemma 4.4, 

2

2
(2 2) ( 2) (2 ) ( 1)

t
n n n

q
q k t t t

−

=
+ + − + ⋅ + +∑  

= (( 1) (2 2) ) ( 2) (2 ) ( 1)n n nO t t k t t t− ⋅ − + − + ⋅ + + = * ((2 ) )nO t . 

Lemma 4.4: For any positive integer s, we have 

1
( 1) ( / 2) ( 1) / 2

s
n n n

i
s s i s s

=
+ ⋅ ≤ ≤ + ⋅∑ . 
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PROOF: First we define a function ( ) ( )n nf x x s x= + − , where 0 x s≤ ≤ . By 

computing the second derivative of ( )f x , we know ( )f x is a convex function. Thus 

it achieves the largest value at the boundaries of the x values, which are 

either 0x = or x s= . By computing the first derivate of ( )f x , we find that it 

achieves its smallest value at / 2x s= . So we have 12 ( )n n ns f x s− ≤ ≤ for 

all 0 x s≤ ≤ . Then by replacing x with all its integer values from 0 to s, and 

summing these inequalities together, we obtain the result. This finishes the proof.        

      After proving the time complexity for calculating ( )
k

c F , we now turn to the 

space complexity. This is equivalent to finding out the total interim values we 

have stored in the look-up tables. We know already the total spaces for storing 

all ( )a X and ( , )b X Y values are * (3 )nO , and now we only need to know the total 

number of ( )X

q X
p n we have stored in the table. As given in Equation 4.7, for a 

given
X

n and for all 2 q k≤ ≤ , the total number of ( )X

q X
p n we have computed is at 

most
1

2
( 1) ( 1)

t
r r

q
q k t t

−

=
+ − + ⋅ −∑ . Then for all

X
n , the total number of ( )X

q X
p n we have 

stored is at most: 

1 2

0 2 2
( ( 1) ( 1) ) ( 1) ( 2)

m t t
r r r m m

m
r q q

C q k t t q k t t
− −

= = =
+ − + ⋅ − = + + − + ⋅∑ ∑ ∑  

       Finally, for all X N⊆ , the total number of ( )X

q X
p n we have stored is at most: 

2 2

0 2 2
( ( 1) ( 2) ) ( 2) ( 2) ( 1)

n t t
m m m n n

n
m q q

C q k t t q k t t
− −

= = =
+ + − + ⋅ = + + − + ⋅ +∑ ∑ ∑  

     Again, according to Lemma 4.4, we have: 
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2
1 *

2
( 2) ( 2) ( 1) ( ( 2) ( 1) ) (( 1) )

t
n n n n n

q
q k t t O t k t t O t

−
+

=
+ + − + ⋅ + = + − + ⋅ + = +∑      

Since 2t ≥ , all the time and spaces consumed in the first and the second step of 

Algorithm 1 can be subsumed in * ((2 ) )nO t and * (( 1) )nO t + , respectively. This 

finishes the proof of Theorem 4.3. 

      Next, we analyze the time and space complexities for calculating ( )
k

c F by 

using Algorithm 2. 

Theorem 4.5: By using the Algorithm 2 for computing all ( )X

k X
p n , ( )

k
c F can be 

computed in * ((2 1) )k nO +  time and * (3 )nO space. 

PROOF: First, for computing all ( )X

k X
p n , Algorithm 2 chooses to compute 

each ( )X

k X
p n using the recursive function in Equation 4.6. According to this 

Equation, for some X N⊆ where | |X m= , we know that 

each ( )X

q X
p n where1 q k≤ < can be called by at most 2m number of

1
( )X

q X
p n

+
. From 

this observation we conclude that after each ( )X

q X
p n  has been called by at 

most2m number of
1
( )X

q X
p n

+
, all the

1
( )X

q X
p n

+
values have been calculated. So in order 

to calculate the total time for calculating all
1
( )X

q X
p n

+
(represented as

1
( ( ))

X

X

q X
n

T p n
+∑ ), 

we have the following two steps. First, we need to compute the time for 

each ( )X

q X
p n being called by at most 2m number of

1
( )X

q X
p n

+
(the calculating time 

for ( )X

q X
p n is denoted as ( ( ))X

q X
T p n ).  According to Equation 4.6, this needs to 

include the total time for computing ( , )b X Z  for all Z Y X⊆ ⊆  (represented 

as ( ( , ))
Z
T b X Z∑ ) and the 2m number of product times 

between ( , )b X Z and ( 1 )X Z

q X
p n + . Second, by summing the calculating times in 
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the first step for all ( )X

q X
p n  we can obtain the upper bound for

1
( ( ))

X

X

q X
n

T p n
+∑ . Thus 

we have the following inequality. 

                 
1

( ( ))
X

X

q X
n

T p n
+

≤∑ (2 ( ( )) ( ( , )) 2 )
X

m X m

q X
n Z

T p n T b X Z⋅ + +∑ ∑                         (4.8) 

      We first calculate ( ( , ))
Z
T b X Z∑ . Since all ( , )b X Y  values have been stored in 

the look-up tables, each look-up takes constant time. So we 

have ( ( , )) (2 )m

Z
T b X Z O=∑ . And since all

1
( )X

X
p n values are equivalent to the 

corresponding ( , )b X Y values, we have
1

( ( )) ( ( , ))
X

X

X
n Z

T p n T b X Z=∑ ∑ = (2 )mO . Note 

that, similar to the proof for Theorem 4.3, when1 q t≤ < , there are( 1)mq + ( )X

q X
p n ; 

whent q k≤ ≤ , there are mt ( )X

q X
p n . From this observation, by repeatedly using 

Inequality 4.8, we can obtain the upper bound for the total time for computing 

all ( )X

k X
p n in terms of the following inequality. 

          
1 1

( ) ( ) *

2
( ( )) 3 2 2 (2 ( 1) ) 2 ( 2 ) (2 )

X

t k
X km k i m m m k i m km

k X
n i i t

T p n i t O
− −

− −

= =
≤ ⋅ + ⋅ + + ⋅ =∑ ∑ ∑             (4.9)                              

     Now similar to the proof for Theorem 4.3, according to Equation 4.1 which is 

for computing ( )
k

n X , the total time for computing ( )
k

n X equals * (2 )kmO . Then 

finally, according to Equation 3.2 which is for computing ( )
k

c F , the time for 

computing ( )
k

c F equals * *

0

( (2 )) ((2 1) )
n

m km k n

n
m

C O O
=

= +∑ .  

       For the space complexity, as have been shown in the beginning of the proof 

of Theorem 4.3, the spaces we need to store all the ( )a X values 
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and ( , )b X Y values are * (2 )nO and * (3 )nO , respectively. So the total space 

complexity is * (3 )nO . This ends the proof of Theorem 4.5. 

Remark 2: The time complexity given in Theorem 4.5 is a loose upper bound 

especially fort k tn≤� . The reason is that, in our time complexity analysis, we 

have assumed that each ( )X

q X
p n is called by 2m number of

1
( )X

q X
p n

+
. However, this 

is not true for every ( )X

q X
p n . For example, for some 1q t≥ − , ( 1,..., 1)X

q
p t t− − can 

only be called by one
1
( )X

q X
p n

+
which is

1
( 1,..., 1)X

q
p t t

+
− − . For all 1t q k− ≤ < , this 

counting error is present in each call of ( )X

q X
p n for calculating

1
( )X

q X
p n

+
. So the time 

complexity analysis given in the proof for Theorem 4.5 is tighter for smaller k 

values than for larger k values. Currently we can not come up with a tighter time 

upper bound analysis for Algorithm 2. Since we will also use Inequality 4.8 for 

analyzing the time complexities of Algorithms 3 and 4, this remark can also be 

applied to Theorems 4.6 and 4.7. 

Theorem 4.6: By using Algorithm 3 for computing all ( )X

k X
p n , ( )

k
c F can be 

computed in * 1((3 2 1) )k nO −⋅ + time and * (2 )nO space. 

PROOF: The only difference between Algorithm 2 and Algorithm 3 is that we do 

not store all the ( , )b X Y values in a look-up table in the latter. This will affect the 

time for computing ( ( ))
X

X

q X
n

T p n∑ including the initial
1

( ( ))
X

X

X
n

T p n∑ and the time for 

computing ( ( , ))
Z
T b X Z∑ . Now according to Equation 4.2 which is for 

computing ( , )b X Z , since all ( )a X values have been stored in the look-up table 

(c.f. step 1 of Algorithm 3), we know the time for computing ( , )b X Z is equal to | |2 Z . 
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From this we know the total time for computing all ( , )b X Z where Z X⊆  is equal 

to 
0

( 2 ) (3 )
m

i i m

m
i

O C O
=

=∑ . In addition, as mentioned in the proof for Theorem 4.5, we 

have
1

( ( )) ( ( , )) (3 )
X

X m

X
n Z

T p n T b X Z O= =∑ ∑ . Now by repeatedly using Inequality 4.8, 

we know that the total time for computing all ( )X

k X
p n which is represented 

as ( ( ))
X

X

k X
n

T p n∑ can be calculated from the following inequality. 

1 1
( ) ( ) ( ) ( )

1 1 1
( ( )) (3 2 ) (3 2 ) (2 ( 1) ) (2 )

X

t k t k
X m k i m m m k i m m k i m m k i m m

k X
n i i t i i t

T p n i t i t
− −

− − − −

= = + = =
≤ ⋅ ⋅ + ⋅ ⋅ + ⋅ + + ⋅∑ ∑ ∑ ∑ ∑  

                     = * 1((3 2 ) )k mO −⋅                                                                                (4.10) 

     According to Inequality 4.10, we know the total time for computing ( )
k

n X is less 

than * 1((3 2 ) )k mO −⋅ . Then according to Equation 3.2, we know the time for 

computing ( )
k

c F is at most * 1 * 1

0

( ((3 2 ) )) ((3 2 1) )
n

m k m k n

n
m

C O O− −

=
⋅ = ⋅ +∑ .  

      For the space complexity, since we only store all the ( )a X values in the look-

up table, the total space used is also * (2 )nO . This ends the proof of Theorem 4.6. 

Theorem 4.7: By using Algorithm 4 for computing all ( )X

k X
p n , ( )

k
c F can be 

computed in * 1((2 2) )k nO + +  time and polynomial space. 

PROOF: The only difference between Algorithm 3 and Algorithm 4 is that we did 

not store all the ( )a X values in a look-up table in the latter. Similarly, this will 

affect the time for computing ( ( ))
X

X

q X
n

T p n∑ and the time for computing ( ( , ))
Z
T b X Z∑ . 

Now according to Equation 4.2 which is for computing ( , )b X Z , we know the time 

for computing ( , )b X Z is equal to * | |(3 2 )Z n mO −⋅ (c.f. Equation 4.3). So for all Z X⊆ , 
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( ( , ))
Z
T b X Z∑ = * *

0

( (3 2 )) (2 )
m

i i n m n m

m
i

O C O− +

=
⋅ =∑ . Similar to the proof of Theorem 4.5, 

we have
1

( ( ))
X

X

X
n

T p n∑ = ( ( , ))
Z
T b X Z∑ = * (2 )n mO + . 

        From the above analysis, by repeatedly using Inequality 4.8, we can 

compute the total time for calculating all ( )X

k X
p n through the following inequality. 

* ( ) * ( )

1 1
( ( )) ( (2 ) 2 ) ( (2 ) 2 )

X

t k
X n m k i m m n m k i m m

k X
n i i t

T p n O i O t+ − + −

= = +
≤ ⋅ ⋅ + ⋅ ⋅∑ ∑ ∑  

                                           
1 1

( ) ( )

1

(2 ( 1) ) (2 )
t k

k i m m k i m m

i i t
i t

− −
− −

= =
+ ⋅ + + ⋅∑ ∑  

                                         = * ( 1)(2 2 )n m k mO + −⋅                                                           (4.11) 

     Now according to Inequality 4.11, the total time for computing ( )
k

n X is less 

than * ( 1)(2 2 )n m k mO + −⋅ . Then finally the time for computing ( )
k

c F is less than 

* ( 1) * 1

0

( (2 2 )) ((2 2) )
n

m n m k m k n

n
m

C O O+ − +

=
⋅ = +∑ .  

      For the space complexity, since we did not store all 

the ( )a X , ( , )b X Y and ( )X

q X
p n values in the look-up tables, the total space used is 

polynomial. This completes the proof of Theorem 4.7. 

5. A Constructive Algorithm for the Set Multi-covering 

Problem 

Although we have computed the minimum number of sets that satisfy the 

coverage requirement, we have not really constructed these sets. In this section, 
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we present an algorithm called ESMC for picking the minimum number of sets 

such that each element in the universe is covered by at least the required number 

of times as specified in the integral coverage requirement set. Before giving this 

constructive algorithm, we need to define two basic elements pair operations.      

5.1 Two basic elements pair operations  

We define two kinds of elements pair operations over a series of sets. One is 

called elements pair separation, which is to divide a set into two sets such that 

any pair of elements in the original set will fall into two different sets; the other is 

called elements pair coalition, which is to merge a pair of elements in the same 

set into a single element. Their formal definitions are given below. 

Elements Pair Separation: For any set
1

{ , , ,..., }
m

s a b x x=  in F which covers a pair 

of elements a and b, we replace the set s by separating the two elements into two 

different sets
1

{ , ,..., }
a m

s a x x= and
1

{ , ,..., }
b m

s b x x= . 

Elements Pair Coalition: For any set
1

{ , , ,..., }
m

s a b x x=  in F which covers a pair of 

elements a and b, we replace the set s with the set
1

{ , ,..., }
ab m

s ab x x=  where the 

two elements a and b are merged into a new single elementab .  

5.2 The constructive algorithm for the set multi-covering problem  

We now give a constructive algorithm for finding the minimum number of sets in F 

that satisfy the integral coverage requirement set T. This algorithm is based on 

finding the minimum k value such that the value of ( )
k

c F is greater than zero. 

ESMC: Exact Set Multi-Cover Algorithm 
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Input: A family F of subsets over the universe N ; a coverage requirement set T 

which states the integral coverage requirement for each element in N . 

Output: The minimum number of sets from F to satisfy the requirement T. 

1:  Set
bak

F F= . 

2:  Calculate the minimum value of k such that ( ) 0
k

c F > . 

3:  Pick any element a in the universe N. 

4:  Find all the elements
1

{ ,..., }
m

x x in N that appear with a in some set in F. 

5:  Set
0

F F= . 

6:  For i=1 to m do:     

7:    
0

F F= .                                   

8:  For the pair of elements ( , )
i

a x , we apply the Elements Pair Separation 

operation over the setF to generate a new set called
i

F . 

9:    Calculate the value of ( )
k i

c F . 

10:  End For 

11: If all of the ( )
k i

c F values where0 i m≤ ≤ are greater than zero, we can deduce 

that there exists a set in the optimal covering which only covers the element a 

since otherwise there must exist some
i

x whose separation with the element a 

can make ( ) 0
k i

c F ≤ . So we just pick this set inF which covers a and contains the 

least number of elements. We then decrement the value of k by 1 and update the 

coverage requirement set T, i.e., for all elements
i

x in the picked set we 

decrement each of the corresponding
i

t values by 1. Also if any 0
i

t ≤  we remove 

the element i in the universe set N. 

12: Else we pick any i such that ( ) 0
k i

c F ≤ . Then for the pair of elements { , }
i

a x , 

we apply the Elements Pair Coalition operation over the setF . Note that the 

element a has become a new single element ( )
i

ax . 

13:  Repeat step 4 to step 12 until we have picked a set fromF . 

14:  Set
bak

F F= and we repeat step 3 to step 13 until 0k = .  
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5.3 Correctness analysis 

First, according to step 2, we know that the value of k we choose guarantees that 

we only use the minimum number of sets to satisfy the coverage requirement.  

Second, according to step 11, we know that, when we pick a set from F in each 

step, we can guarantee that the picked set must exist in some optimal legal ( , )k T  

covering sets. From this we also know that, when we pick this set, there must 

exist a legal '( 1, )k T− cover where 'T is the updated coverage requirement set after 

picking a subset from F. From the above analysis, we can conclude that we do 

pick the minimum number of sets from F that satisfies the coverage requirement 

set T. 

5.4 Time and space complexities analyses 

The time of the ESMC algorithm can be divided into two parts. The first part is 

due to step 2, which is to calculate the minimum k value for a legal( , )k T cover. By 

using binary search, since t k tn≤ ≤ , its time corresponds 

to (log( ))O tn calculations of ( )
k

c F (c.f. Section 3.2). The second part is due to 

steps 4 to 12 of the algorithm which is to pick a subset from F. We can easily see 

that it takes 2( )O n calculations of ( )
k

c F . Since we need to pick k subsets, we 

need 2( )O kn evaluations of ( )
k

c F in total. So the overall time complexity is 

dependent on the time complexity for computing ( )
k

c F . Now according to 

Theorem 4.3, we have the following corollary. 
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COROLLARY 5.1: By using Algorithm 1 for computing all ( )X

k X
p n , the ESMC 

algorithm takes * ((2 ) )nO t  time and * (( 1) )nO t + space where t is the maximum 

integer in the coverage requirement set T. 

     Similarly, according to Theorems 4.5, 4.6 and 4.7, we can get the 

corresponding time and space complexities for the ESMC algorithm. But since 

the first part of the ESMC algorithm needs to test different k values for finding the 

minimum k value to make a legal ( , )k T cover, the time consumed in this part 

could be very large depending on which k values we have tested. But 

since t k tn≤ ≤ , we have the following Corollary 5.2 which corresponds to 

Theorem 4.7. By employing Theorems 4.5 and 4.6 we can obtain similar results 

as Corollary 5.2 which we omit here. 

COROLLARY 5.2: By using Algorithms 4 for computing all ( )X

k X
p n , the ESMC 

algorithm takes
2* ( )(2 )O tnO  time and polynomial space. 

6. Conclusion 

In this paper, we have generalized the inclusion-exclusion based exact algorithm 

for the set covering problem to the set multi-covering problem. We have 

presented a family of exact algorithms to solve the set multi-covering problem 

through different tradeoffs between the time and space complexities. We have 

shown that by using more space, the time complexity can be significantly reduced.  

      Although the simple greedy strategy applied to the set covering problem can 

be applied to the set multi-covering problem to yield the same approximation 

ratio (log )O n , our fastest exact algorithm which takes *((2 ) )nO t time 
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and *(( 1) )nO t + space consumes much more time and space than the currently 

fastest exact algorithm for the set covering problem which takes *(2 )nO time 

and *(2 )nO space [2]. In addition, if we restrict to polynomial space, the time 

consumed for the set multi-covering problem is much longer than its set covering 

counterpart which takes *(3 )nO time [2].  

      The following are some possible directions for designing exact algorithms for 

the set multi-covering problem. First, as mentioned in Remark 2, the time 

complexity analyses for the Algorithms 2, 3 and 4 for computing all 

the ( )X

k X
p n values are not tight, so much tighter time complexity analyses for the 

three algorithms will be needed. Second, it is possible to extend our algorithms to 

other generalized covering problems, such as multi-set multi-cover [10]. Third, as 

shown in [4] and [9], some techniques in information theory can help analyze 

exact algorithms that need counting steps. So it will be interesting to apply this 

kind of technique to those generalized set covering scenarios. Finally, like what 

was done by the authors in [6], it might be possible to apply our algorithm to 

wireless scheduling problems which have drawn increasing attention in the 

wireless networking community in recent years. 
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Appendix 

In this appendix, we give a very simple example to show how we calculate the 

value of ( )kc F and how the ESMC algorithm works for the given example.  

     Suppose the universe {1,2,3}N = , the family of subsets over N 

is {{1,2},{1,3},{2,3}}F =  and the coverage requirement set {2,1,1}T = . Now we first 

find the minimum k value to make a legal ( , )k T cover.  This is equivalent to 

calculating the minimum k value such that ( ) 0kc F > . Suppose we first test the 

case where 2k = . 

     According to Equation 3.2, we have | |

2 2
( ) ( 1) ( )X

X N
c F n X

⊆
= − ⋅∑ . Now due to 

Equation 4.1, we have
2 2 1 | |

0 1
1 | |

( ) ( ,..., )
i i

X

X
n t
i X

n X p n n
≤ ≤ −
≤ ≤

= ∑ . Then based on these equations 

we have Table A.1 which is to calculate
2
( )n X values for all X N⊆ . 

Table A.1: Calculating
2
( )n X for all X N⊆  

X  
2
( )n X  

∅  
2 ( )p ∅ ∅  

{1} {1}

2 (0)p + {1}

2 (1)p  

{2} {2}

2 (0)p  

{3} {3}

2 (0)p  

{1,2} {1,2}

2 (0,0)p + {1,2}

2 (1,0)p  

{1,3} {1,3}

2 (0,0)p + {1,3}

2 (1,0)p  

{2,3} {2,3}

2 (0,0)p  

{1,2,3} {1,2,3}

2 (0,0,0)p + {1,2,3}

2 (1,0,0)p  
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     The next step is to compute all the
2 1 | |

( ,..., )X

X
p n n values on the right side of 

Table A.1. By combining Equation 4.6 which computes
1 | |

( ,..., )X

q X
p n n and Equation 

4.2 which computes ( , )b X Y , we have Table A.2. 

Table A.2: Calculating
2 1 | |

( ,..., )X

X
p n n for all X N⊆  

X  
2
( )n X  

∅  
2 1( ) ( , ) ( ) ( ) ( )p b p a a∅ ∅∅ = ∅ ∅ ⋅ ∅ = ∅ ⋅ ∅ =3*3=9. 

{1} (1): {1}

2 (0)p = {1}

1({1}, ) (0)b p∅ ⋅  

                  = ({1}) ({1}, )a b⋅ ∅  
                  = ({1}) ({1})a a⋅  
                  =1*1=1; 
(2): {1}

2 (1)p = {1} {1}

1 1({1}, ) (1) ({1},{1}) (0)b p b p∅ ⋅ + ⋅  

                 = ({1}) ({1},{1}) ({1},{1}) ({1}, )a b b b⋅ + ⋅ ∅  
                 = ({1}) [ ( ) ({1})] [ ( ) ({1})] ({1})a a a a a a⋅ ∅ − + ∅ − ⋅      
                 =1*(3-1)+(3-1)*1=4; 
(3): {1}

2 (0)p + {1}

2 (1)p =1+4=5. 

{2} {2}

2 (0)p = {2}

1({2}, ) (0)b p∅ ⋅  

            = ({2}) ({2}, )a b⋅ ∅  
            = ({2}) ({2})a a⋅  
            =1*1=1. 
 

{3} {3}

2 (0)p = {3}

1({3}, ) (0)b p∅ ⋅  

            = ({3}) ({3}, )a b⋅ ∅  
            = ({3}) ({3})a a⋅  
            =1*1=1. 

{1,2} (1): {1,2}

2 (0,0)p = {1,2}

1({1,2}, ) (0,0)b p∅ ⋅  

                       = ({1,2}) ({1,2}, )a b⋅ ∅  
                       = ({1,2}) ({1,2})a a⋅  
                       =0*0=0; 
(2): {1,2}

2 (1,0)p = {1,2} {1,2}

1 1({1,2}, ) (1,0) ({1,2},{1}) (0,0)b p b p∅ ⋅ + ⋅  

                      = ({1,2}) ({1,2},{1}) ({1,2},{1}) ({1,2}, )a b b b⋅ + ⋅ ∅           
= ({1,2}) [ ({2}) ({1} {2})] [ ({2}) ({1} {2})] ({1,2})a a a a a a⋅ − + − ⋅U U  
=0*(1-0)+(1-0)*0=0; 
(3): {1,2}

2 (0,0)p + {1,2}

2 (1,0)p =0+0=0. 

{1,3} (1): {1,3}

2 (0,0)p = ({1,3}) ({1,3})a a⋅ =0*0=0;                       
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(2): {1,3}

2 (1,0)p = {1,3} {1,3}

1 1({1,3}, ) (1,0) ({1,3},{1}) (0,0)b p b p∅ ⋅ + ⋅  

                      = ({1,3}) ({1,3},{1}) ({1,3},{1}) ({1,3}, )a b b b⋅ + ⋅ ∅           
                      =0*1+1*0=0; 
(3): {1,3}

2 (0,0)p + {1,3}

2 (1,0)p =0+0=0. 

{2,3} {2,3}

2 (0,0)p = ({2,3}) ({2,3})a a⋅ =0*0=0. 

{1,2,3} (1): {1,2,3}

2 (0,0,0)p = ({1,2,3}) ({1,2,3})a a⋅ =0*0=0;                        

(2): {1,2,3}

2 (1,0,0)p   

     = {1,2,3} {1,2,3}

1 1({1,2,3}, ) (1,0,0) ({1,2,3},{1}) (0,0,0)b p b p∅ ⋅ + ⋅  

     = ({1,2,3}) ({1,2,3},{1}) ({1,2,3},{1}) ({1,2,3})a b b a⋅ + ⋅   
     =0*0+0*0=0;             
(3): {1,2,3}

2 (0,0,0)p + {1,2,3}

2 (1,0,0)p =0+0=0. 

 
  

     Having calculated all the
2
( )n X values which are shown on the right side of 

Table A.2, we can obtain | |

2 2
( ) ( 1) ( ) 9 5 1 1 0 0 0 0 2 0X

X N
c F n X

⊆
= − ⋅ = − − − + + + − = >∑ , 

which means that there are two 2-tuples that can satisfy the coverage 

requirement.  Since the maximum integer in the coverage requirement set T is 2, 

we know the minimum k value we need to pick is 2. Actually, by calculating the 

1
( )c F value, which is | |

1 1
( ) ( 1) ( ) 3 3 1 1 0 0 0 0 2 0X

X N
c F n X

⊆
= − ⋅ = − − − + + + − = − <∑ , 

we can also conclude that the minimum k value is 2 since picking one set from F 

does not meet the coverage requirement. 

      Now according to the ESMC algorithm, we briefly show in the following how to 

pick the two sets that can satisfy the coverage requirement T. 

     First, according to step 3, we pick the element 1 in the universe N. Then we 

can find the elements
1 2

{ 2, 3}x x= = that can appear with 1 in some subsets in F. 

Now according to step 6 to step 10, we obtain 
1

{{1},{2},{1,3},{2,3}}F =  

and
2

{{1,2},{1},{3},{2,3}}F = . From this we can calculate
2 1
( ) 0c F ≤ and

2 2
( ) 0c F ≤ . 

Then according to step 12, we choose to merge the elements pair (1,2) . Now 

since the new single element(12) does not appear with any other elements in the 

set F, we have 0m = . Then since
2 0 2
( ) ( ) 2 0c F c F= = > , according to step 11, we 
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just pick the first subset in F which is {1,2} . Similarly, we can pick the second 

subset in F which is {2,3} . This finishes the execution of the ESMC algorithm.         

 

 


