
 1

 Set Multi-Covering via Inclusion-Exclusion

Qiang-Sheng Hua1, Yuexuan Wang2,*, Dongxiao Yu1, and Francis C.M. Lau1

1Department of Computer Science, The University of Hong Kong, Pokfulam Road,

Hong Kong, China
qshua@cs.hku.hk, dxyu@cs.hku.hk, fcmlau@cs.hku.hk

2Institute for Theoretical Computer Science, Tsinghua University, Beijing, 100084,
China

wangyuexuan@tsinghua.edu.cn

Abstract

Set multi-covering is a generalization of the set covering problem where each

element may need to be covered more than once and thus some subset in the

given family of subsets may be picked several times for minimizing the number of

sets to satisfy the coverage requirement. In this paper, we propose a family of

exact algorithms for the set multi-covering problem based on the inclusion-

exclusion principle. The presented ESMC (Exact Set Multi-Covering) algorithm

takes *((2))nO t time and *((1))nO t + space where t is the maximum value in the

coverage requirement set (The *(())O f n notation omits a log(())poly f n factor). We

also propose the other three exact algorithms through different tradeoffs of the

time and space complexities. To the best of our knowledge, this present paper is

the first one to give exact algorithms for the set multi-covering problem with

* Corresponding author

DRAFT

 2

nontrivial time and space complexities. This paper can also be regarded as a

generalization of the exact algorithm for the set covering problem given in [2].

1. Introduction

Recently it has been shown that for some exact algorithms, using the inclusion-

exclusion principle can significantly reduce the running time. For example,

Björklund et al. have applied the inclusion-exclusion principle to various set

covering and set partitioning problems, obtaining time complexities that are much

lower than those of previous algorithms [2]. This principle has also been used in

some early papers, such as [1] and [7]. By using the Möbius inversion technique

which is an algebraic equivalent of the inclusion-exclusion principle, Björklund et

al. give a fast algorithm for the subset convolution problem [3] and Nederlof

presents a family of fast polynomial space algorithms for the Steiner Tree

problem and other related problems [8]. In this paper, we are interested in

designing inclusion-exclusion based exact algorithms for the set multi-covering

problem [10,11]. This problem is a generalization of the set covering problem in

which each element needs to be covered by a specified integer number of times

and each set can be picked multiple times in order to satisfy the coverage

requirement. It is a bit surprising that only approximation algorithms have so far

been proposed for the set multi-covering problem. In fact, by using the same

greedy strategy as for the set covering problem, which is to repeatedly add the

set containing the largest number of uncovered elements to the cover, one can

achieve the same (log)O n approximation for the problem [10]. Feige shows that

the set covering problem can not be approximated better than lnn unless

 3

loglog()nNP DTIME n∈ [5]. Some parallel approximation algorithms for the set

covering problem and its generalizations, such as the set multi-cover problem,

the multi-set multi-cover problem and the covering integer programs problem

have been presented in [11]. In all these related work on approximation solutions,

the set multi-covering problem appears to be no harder than the set covering

problem. In this paper, we will see that finding an exact solution for the set multi-

covering problem can take much longer time than that for the fastest exact

algorithm for the set covering problem [2]. To the best of our knowledge, this

present paper is the first one to give exact algorithms for the set multi-covering

problem with nontrivial time and space complexities.

 The structure of this paper is as follows. In Section 2, we give a formal

definition of the set multi-covering problem. In Section 3, we give a brief

introduction of the inclusion-exclusion principle and then transform the set multi-

covering problem to the problem of counting the number of k-tuples that satisfy

the integral coverage requirements. We then give four algorithms for counting

these numbers of k-tuples in Section 4. In Section 5, we give a constructive

algorithm for finding the minimum number of sets that meet the coverage

requirements. A simple illustrating example for our algorithms is given in the

Appendix. We conclude the paper in Section 6.

2. The Set Multi-covering Problem

A summary of the various notations used in this paper and their corresponding

definitions is given in Table 2.1. Throughout the paper, we let the union of a k-

tuple
1
,...,

k
s s< > which is denoted as

1

k

i
i

C s
=

= U represent a multi-set. This means

 4

that we just put all the elements in each
i

s into the set C without removing

duplicated elements.

Table 2.1: Summary of notations and their definitions

Notation Definition

N The universe set, where {1,..., }N n= and| |N n= .

F A family of subsets of N, where
1 | |

{ ,..., }
F

F s s= and| |F is

the total number of subsets in F.

T The integral coverage requirement set,
where

1
{ ,..., }

n
T t t= ; each i N∈ must be covered at

least 1
i

t ≥ times in the picked subsets over F.

t The maximum integer in the set T, i.e.,
1

max{ }
ii n

t t
≤ ≤

= .

()
k

c F The number of k-tuples
1
,...,

k
s s< > over F such that the

union of each k-tuple, i.e.,
1

k

i
i

C s
=

= U , satisfy the specified

coverage requirement T.

()
k

n X The number of k-tuples
1
,...,

k
s s< > over F such that

each i X∈ (X N⊆) appears at most (1)
i

t − number of
times in the setC .

()a X The number of subsets in F that avoid X.

(,)b X Y The number of subsets in F that include Y but
avoid \X Y .

1 | |
(,...,)X

q X
p n n

or
()X

q X
p n

The number of q-tuples over F such that each j X∈
appears

j
n times in the union of each q-tuple. For

simplicity, we use
X

n to denote
1 | |

{ ,..., }
X

n n .

The Set Multi-covering Problem: Let {1,..., }N n= be the universe, and F a given

family of subsets { }
i

s over N, and the union of all the subsets in F covers all the

elements in N. A legal (,)k T cover is a collection of k subsets over F such

that
1

k

k
i

s TN
=

≥U , where
1

{ ,..., }
n

T t t= and the inequality means that eachi N∈ must

 5

appear at least 1
i

t ≥ times in the union of the k subsets. Note that the k subsets

can be non-distinct which means that some subsets in F can be picked several

times. The goal of the set multi-covering problem is to find the minimum k to

make a legal(,)k T cover.

Remark 1: Since each subset in F can contain each element of N at most once, in

order to find a legal (,)k T cover, k must be greater than or equal to t, the

maximum integer in the coverage requirement set T , i.e., k t≥ . Also, since the

union of F covers all the elements in N, we havek tn≤ .

3. Counting based Exact Algorithm for the Set Multi-covering

Problem

3.1 The Inclusion-Exclusion Principle

 FACT 3.1 [folklore]: Let B be a finite set with subsets
1 2
, ,...,

n
A A A B⊆ . With the

convention that
i i

A B
∈∅

=I , the number of elements in B which lie in none of

the
i

A is

| |

1

| | (1) | |
n

X

i i
X Ni i X

A A
⊆= ∈

= − ⋅∑I I (3.1)

3.2 Counting the number of k-tuples

 LEMMA 3.2: Let ()
k

n X denote the number of k-tuples
1
,...,

k
s s< >where for

each j X∈ , the number of j in the set
1

k

k
i

C s
=

= U is at most 1
j

t − ; then the number of

k-tuples that satisfy the coverage requirement T can be computed from the

following equation:

 6

| |() (1) ()X

k k
X N

c F n X
⊆

= − ⋅∑ (3.2)

 PROOF: Let B be the set of k-tuples
1
,...,

k
s s< > from F, and let

i
A be the set

of k-tuples where element i in the set C appears at most (1)
i

t − times. The left side

of Equation 3.1 is the number of k-tuples in which each element i in the universe

N is covered at least
i

t times, which is represented by ()
k

c F , the left side of

Equation 3.2. Accordingly, | |
i

i X
A

∈
I is the number of k-tuples in which each j X∈ ,

which is an element in the set C, appears at most(1)
j

t − times; i.e., () | |
k i

i X
n X A

∈
= I .

By the right side of Equation 3.1, we can derive the right side of Equation 3.2.

 LEMMA 3.3: We can find a legal(,)k T cover if and only if () 0
k

c F > .

 PROOF: ()
k

c F is the number of k-tuples over F that satisfy the coverage

requirement T. The number of legal (,)k T covers is the number of k subsets over

F that satisfy the coverage requirement T. Since different orderings of the k

subsets mean different k-tuples while the (,)k T cover concerned remains the

same, we know that only when () 0
k

c F > can there be a legal (,)k T cover.

Similarly, if there is a legal (,)k T cover, it guarantees that () 0
k

c F > . This finishes

the proof.

 According to Lemma 3.3, we have the following corollary.

 COROLLARY 3.4: The minimum k value to make a legal (,)k T cover is equal

to the minimum k value that satisfies () 0
k

c F > .

 7

 Thus we can transform the set multi-covering problem to the problem of

computing ()
k

c F . By using binary search, sincet k tn≤ ≤ , the time for solving the

set multi-covering problem equals the sum of the times for computing

the (log())O tn numbers of ()
k

c F . In the next section, we introduce several

algorithms for computing ()
k

c F with different time and space complexities.

4. Algorithms for Computing ()
k

c F

In this section, we show how to compute ()
k

c F , i.e., to count the number of k-

tuples
1
,...,

k
s s< > over F such that the union of each such k-tuple satisfies the

given coverage requirement T.

4.1 How to compute ()
k

n X

According to Equation 3.2, we know that the crux of computing ()
k

c F is to

obtain ()
k

n X , i.e., the number of k-tuples over F such that each i X∈ appears at

most (1)
i

t − times in the union of every k-tuple. Without loss of generality, we

assume {1,2,..., }X m= , and for the simplicity of notation, we let
1 2

{ , ,..., }
X m

n n n n= .

We then denote
1 2

() (, ,...,)X X

q X q m
p n p n n n= , the number of q-tuples over F such

that for each j X∈ the number of the element j in the union of every q-tuple is
j

n .

Now since the union of each q-tuple can cover each j X∈ at most q times, for

each
1 2

(, ,...,)X

q m
p n n n , we have

j
n q≤ for each j X∈ ; otherwise,

1 2
(, ,...,)X

q m
p n n n equals 0. From these definitions, we can easily obtain the

following Equation 4.1. This equation means that, in order to obtain ()
k

n X , we

 8

should sum all the ()X

k X
p n values (

1

m

ii
t

=
∏ of them), where ()X

k X
p n is

from (0,0,...,0)X

k
p to

1 2
(1, 1,..., 1)X

k m
p t t t− − − . Now our problem becomes how to

efficiently compute all the ()X

k X
p n values.

0 1
1

() ()
i i

X

k k X
n t
i m

n X p n
≤ ≤ −
≤ ≤

= ∑ (4.1)

 Before delving into the details of calculating all these ()X

k X
p n values, we need

to introduce some notations. We use ()a X to denote the number of sets in F that

avoid X where X N⊆ , and (,)b X Y to denote the number of sets in F that include

Y but avoid \X Y , whereY X⊆ . We show next how to get ()a X for all X and

(,)b X Y for all X and Y.

4.2 How to compute all ()a X

There are two ways to compute ()a X . The first way is to use the fast zeta

transform technique introduced in [2]. By using this technique, all ()a X values can

be computed in * (2)nO time. And since the technique uses a look-up table to store

all the interim values including ()a X for all X N⊆ , it requires * (2)nO space. The

second way is to compute ()a X directly without storing all the interim values into

a look-up table. In order to compute ()a X where X N⊆ , we just need to test

every subset \S N X⊆ to see if S is in F, which takes time * | |(2)n XO − by assuming

that the membership test in F can be decided in polynomial time and polynomial

space. Then for all X N⊆ , the total time for computing ()a X

equals * | | * *

0
(2) (2) (3)

n
n X r n r n

n
X N r

O O C O− −

⊆ =
= =∑ ∑ .

 9

4.3 How to compute all (,)b X Y

Based on the two different ways of computing ()a X , we have two corresponding

ways to compute all (,)b X Y for allY X⊆ and for all X N⊆ .

 For arbitrary X and Y, whereY X⊆ , we let | |X m= and| |Y r= and r m≤ .

Without loss of generality, assume {1,2,..., }X m= and {1,2,..., }Y r= .

Then (,)b X Y can be computed via Equation 4.2.

 | | | |(,) (1) ((\)) (1) ({ 1,..., })Z Z

Z Y Z Y
b X Y a Z X Y a Z r m

⊆ ⊆
= − ⋅ = − ⋅ +∑ ∑U U (4.2)

 Equation 4.2 is obtained by applying the inclusion-exclusion principle.

According to Fact 3.1, suppose B is a family of subsets of F which avoid \X Y ,

and let
i

A B⊆ (i Y X∈ ⊆) be the family of subsets which further avoid element i .

Then the left side of Equation 3.1(
| |

1

| |
Y

i
i

A
=
I) is the number of sets in F that

coverY but avoid \X Y which is the value of (,)b X Y . Accordingly, the right side of

Equation 3.1(| |
i

i Z Y
A

∈ ⊆
I) is the number of sets in F that avoid (\)Z X YU which is

the value of ((\))a Z X YU . Thus according to Equation 3.1, we have Equation

4.2. Then we calculate how much time we need to compute all (,)b X Y .

 First, we do not use a table to store all ()a X values, and the time complexity is

given in Lemma 4.1.

 Lemma 4.1: For allY X⊆ and for all X N⊆ , (,)b X Y can be obtained

in * (6)nO time and polynomial space.

 10

 PROOF: As mentioned earlier, in order to compute ()a X where X N⊆ , we

just need to test every subset \S N X⊆ to see if S is in F, which takes

time * | |(2)n XO − . For given X and Y, according to Equation 4.2, the time for

computing (,)b X Y can be calculated from the formula *

0

(2)
r

i n i m r

r
i

C O − − +

=
⋅∑ . By using

the Binomial theorem, we have Equation 4.3.

 *

0

(2)
r

i n i m r

r
i

C O − − +

=
⋅∑ = * (2 3)n m rO − ⋅ (4.3)

 Now for allY X⊆ , the time for computing (,)b X Y can be calculated through

the formula *

0

(2 3)
m

r n m r

m
r

C O −

=
⋅ ⋅∑ . Similarly, by using the Binomial theorem, we have

Equation 4.4.

 *

0

(2 3)
m

r n m r

m
r

C O −

=
⋅ ⋅∑ = * (2)n mO + (4.4)

 Finally, for all X N⊆ , the time for computing (,)b X Y can be calculated through

the formula *

0

(2)
n

m n m

n
m

C O +

=
∑ . Again by the Binomial theorem, we have Equation 4.5.

 *

0

(2)
n

m n m

n
m

C O +

=
∑ = * (6)nO (4.5)

 According to the computation steps of Equations 4.3, 4.4 and 4.5, since we did

not use any look-up table to store the exponential number of ()a X values to

speed up the calculation of (,)b X Y , the space used is only polynomial. This

completes the proof.

 Now we give another way to compute all (,)b X Y by using exponential space.

Its time and space complexities are given in Lemma 4.2.

 11

 Lemma 4.2: For all Y X⊆ and for all X N⊆ , (,)b X Y can be obtained

in (4)nO time and * (2)nO space.

 PROOF: As before, by using the fast zeta transform technique introduced in

[2], all ()a X values can be computed in * (2)nO time and * (2)nO space. Then for

some given X and Y, according to Equation 4.2, since all ()a X values are

known, (,)b X Y can be computed in time 2r where | |r Y= . The time for

computing (,)b X Y for allY X⊆ equals
0

2 3
m

r r m

m
r

C
=

⋅ =∑ . Similarly, the time for

computing (,)b X Y for all X N⊆ equals
0

3 4
n

m m n

n
m

C
=

⋅ =∑ . This finishes the proof.

4.4 Four algorithms for computing all ()X

k X
p n

As mentioned in Section 4.1, we need to compute
1

m

ii
t

=
∏

1 2
() (, ,...,)X X

k X k m
p n p n n n=

values, where0 1
i i

n t≤ ≤ − and1 i m≤ ≤ . Without loss of generality, we assume

the positive integers in
1 2

{ , ,..., }
m

n n n form a set
1

{ ,..., }
Y r

n n n= , where

{1,2,..., }Y r= and0 r m≤ ≤ . Then from the definitions of ()a X and (,)b X Y , we

have
1 1 2

(, ,...,) (,{1,2,..., })X

m
p n n n b X r= and

1
(0,0,...,0) ()Xp a X= . Now for brevity of

notation, for any subset
1

{ ,..., }
i

Z r r Y= ⊆ , we use(1)Z

X
n − to denote the

set
11 1

{ ,..., 1,..., 1, ,..., }
i ir r r m

n n n n n
+

− − , i.e., for all j Z∈ , the corresponding
j

n values

are decremented by 1, and for all j Z∉ , we keep the corresponding
j

n values.

Then for 2 q k≤ ≤ , we use the following recursive function to obtain ()X

q X
p n .

1

() (,) (1)X X Z

q X q X
Z Y

p n b X Z p n
−

⊆
= ⋅ −∑ (4.6)

 12

 Basically, this equation tells us how to calculate the ()X

q X
p n value when

given
1
(1)X Z

q X
p n

−
− values for all Z Y⊆ . For example, when Z = ∅ , (,) ()b X a X∅ =

and
1 1
(1) ()X Z X

q X q X
p n p n

− −
− = . We already know ()a X means the number of sets in F

that avoid X, and
1
()X

q X
p n

−
 means the number of (q-1)-tuples from F where for

each j X∈ the number of the element j in the union of every (q-1)-tuple is
j

n ;

thus the product of ()a X and
1
()X

q X
p n

−
 is the total number of ways to add a set to

each of the
1
()X

q X
p n

−
 (q-1)-tuples to make it a q-tuple while keeping

X
n unchanged.

Similarly, for each nonempty Z Y⊆ , we know (,)b X Z means the number of sets

in F that cover Z but avoid \X Z , where Z Y X⊆ ⊆ , and
1
(1)X Z

q X
p n

−
− means the

number of (q-1)-tuples from F where for each j X∈ the number of the element j

in the union of every (q-1)-tuple equals the updated
j

n value in the set (1)Z

X
n − ;

thus the product of (,)b X Z and
1
(1)X Z

q X
p n

−
− is the total number of ways to add a

set to each of the
1
(1)X Z

q X
p n

−
− (q-1)-tuples to make it a q-tuple while satisfying all

the
j

n values in the set
X

n . Finally, the summation of all these products yields the

number of q-tuples from F such that for each j X∈ the number of the element j in

the union of every q-tuple equals
j

n , which is ()X

q X
p n .

 So according to Equation 4.6, in order to get all ()X

k X
p n , we need to calculate

all ()X

q X
p n where1 q k≤ < . We now give four algorithms for computing all ()X

k X
p n .

But first we will analyze the special case where the maximum integer t in the

integral coverage requirement set
1

{ ,..., }
n

T t t= equals 1. In this case, set multi-

 13

covering becomes the set covering problem. Then as mentioned in Section 4.1,

we only need to compute
1

1
m

ii
t

=
∏ = number of () (0,...,0)X X

k X k

m

p n p= 123 values. This

means that the number of positive integers in the set
1 2

{ , ,..., }
X m

n n n n= is zero, i.e.,

the set Y in Equation 4.6 is an empty set. Accordingly, Equation 4.6 becomes

1 1
(0,...,0) (,) (0,...,0) () (0,...,0)X X X

k k k
p b X p a X p

− −
= ∅ ⋅ = ⋅ . Since

1
(0,...,0) ()Xp a X= , we

can obtain (0,...,0) (())X k

k
p a X= . Finally from Equations 3.2 and 4.1, we

obtain | |() (1) (())X k

k
X N

c F a X
⊆

= − ⋅∑ , which is the same as the formula given in [2] for

counting the number of k-tuples that satisfy the set covering requirement. As

discussed in [2], based on whether we use exponential space or not (c.f. Section

4.2), ()
k

c F can be computed in * (2)nO time and * (2)nO space, or can be computed

in * (3)nO time and polynomial space.

 For the following, we assume that the maximum integer t in the integral

coverage requirement set
1

{ ,..., }
n

T t t= is greater than or equal to 2.

Algorithm 1 for computing all ()X

k X
p n

Input: The value k wheret k tn≤ ≤ ; the set {1,2,..., }X m= ; the integral coverage

requirement set for X , i.e.,
1 2

{ , ,..., }
X m

T t t t= . Here
X

T is a subset ofT , and we use

min()
X

T and max()
X

T to denote the minimum and the maximum integers

respectively in the set
X

T .

Output: The values for all ()X

k X
p n .

1: For all X N⊆ , by using the fast zeta transform technique given in [2], we

compute all ()a X and store them in a look-up table.

 14

2: Based on the first step, for allY X⊆ and X N⊆ , we compute all (,)b X Y and

store them in another look-up table.

3: For q=2 to k do:

4: By using Equation 4.6, we compute all ()X

q X
p n from (0,...,0)X

q
p to

1
(min(, 1),...,min(, 1),...,min(, 1))X

q i m
p q t q t q t− − − and we store all

these ()X

q X
p n values in a look-up table. Here the function min(, 1)

i
q t − means

choosing the minimum value betweenq and(1)
i

t − .

5: End For.

 Without storing all of the ()X

q X
p n values in a table, we have the second

algorithm for computing all ()X

k X
p n .

Algorithm 2 for computing all ()X

k X
p n

1: Same as the first step in Algorithm 1.

2: Same as the second step in Algorithm 1.

3: For each of the
1

m

ii
t

=
∏ number of ()X

k X
p n , where ()X

k X
p n is

from (0,...,0)X

k
p to

1
(1,..., 1)X

k m
p t t− − , we use Equation 4.6 to compute their values

directly without storing any of these values in a table.

 Then, without storing all of the (,)b X Y values into a table, we have the third

algorithm for computing all ()X

k X
p n .

Algorithm 3 for computing all ()X

k X
p n

1: Same as the first step in Algorithm 1.

2: Same as the third step in Algorithm 2. But since we did not store all

the (,)b X Y values into a look-up table, we need to use Equation 4.2 to calculate

the (,)b X Y value for eachY X⊆ .

 15

 Finally, without storing all of the ()a X values into a table, we have the fourth

algorithm for computing all ()X

k X
p n .

Algorithm 4 for computing all ()X

k X
p n

1: Same as the third step in Algorithm 2. But since we did not store all

the ()a X and (,)b X Y values into the look-up tables, we need to calculate them on

the fly.

 With these algorithms for computing all ()X

k X
p n , we can calculate ()

k
n X and

then ()
k

c F . We analyze in the following the time and space complexities for

calculating ()
k

c F through using these four algorithms for computing all ()X

k X
p n .

4.5 Time and space complexities for calculating ()
k

c F

 Theorem 4.3: By using Algorithm 1 for computing all ()X

k X
p n , ()

k
c F can be

computed in * ((2))nO t time and * ((1))nO t + space.

 PROOF: The first step of Algorithm 1 uses * (2)nO time and * (2)nO space. For

the second step, according to Lemma 4.2, computing all (,)b X Y takes time (4)nO .

Obviously there are
0

2 3
n

m m n

n
m

C
=

=∑ (,)b X Y , so storing all (,)b X Y in a look-up table

takes * (3)nO space.

 In the ‘For’ loop (step 3 to step 5), we calculate

all ()X

q X
p n from 2q = toq k= and store all these ()X

q X
p n values in a look-up table.

So according to Equation 4.6, for each ()X

q X
p n , since all the (,)b X Y values have

been stored and so have all the
1
()X

q X
p n

−
values, the time to

compute ()X

q X
p n is

0
2

r
j r

r
j

C
=

=∑ where r is the number of positive integers in the set
X

n .

So in order to calculate the total time for calculating all ()X

q X
p n , we just need to

count how many ()X

q X
p n we need to compute.

 16

 Since we know the number of positive integers in the set
X

n is r, for each q

where 2 q k≤ ≤ , the number of ()X

q X
p n we need to compute equals

1
min(, 1)

r

ii
q t

=
∏ − ,

i.e., those ()X

q X
p n from {(1,...,1,0,...,0)X

q

r m r

p
−

123 to
1

(min(, 1),...,min(, 1),0,...,0)X

q r

m rr

p q t q t
−

− − 1231444442444443
.

 So if min() 1 1
X

q T t≤ − ≤ − , the number of ()X

q X
p n we need to compute is rq , i.e.,

all ()X

q X
p n from {(1,...,1,0,...,0)X

q

r m r

p
−

123 to (,..., ,0,...,0)X

q

m rr

p q q
−

123123 . Similarly, if 1t q k− < ≤ , the

number of ()X

q X
p n we need to compute equals

1
(1)

r

ii
t

=
∏ − which is less than(1)rt − ,

i.e., all ()X

q X
p n from {(1,...,1,0,...,0)X

q

r m r

p
−

123 to
1

(1,..., 1,0,...,0)X

q r

m rr

p t t
−

− − 1231442443
. Finally, if

min() max() 1 1
X X

T q T t≤ ≤ − ≤ − , the number of ()X

q X
p n we need to compute is at

most rq .

 From the above analyses, for a given
X

n where the number of positive integers

equals r and for all 2 q k≤ ≤ , the total number of ()X

q X
p n we have computed is at

most:

1

2
(1) (1)

t
r r

q
q k t t

−

=
+ − + ⋅ −∑ (4.7)

 As mentioned earlier in this proof, since the time for computing each

()X

q X
p n is 2r , the total time for computing all these ()X

q X
p n is at most

1

2
2 ((1) (1))

t
r r r

q
q k t t

−

=
⋅ + − + ⋅ −∑

 17

 Then for all
X

n where r, the number of positive integers in each of them, varies

from 0 to m, the total time for computing all ()X

q X
p n is at most:

1 1

0 2 2
(2 ((1) (1))) (2 1) (1) (2 1)

m t t
r r r r m m

m
r q q

C q k t t q k t t
− −

= = =
⋅ + − + ⋅ − = + + − + ⋅ −∑ ∑ ∑

 Now according to Equation 4.1 which is for computing ()
k

n X , the total time for

computing ()
k

n X is less than
1

2
(2 1) (1) (2 1)

t
m m m

q
q k t t t

−

=
+ + − + ⋅ − +∑ , where the last

term mt accounts for the at most mt number of additions of ()X

k X
p n to obtain ()

k
n X .

 Finally, according to Equation 3.2 which is for calculating ()
k

c F , the time for

computing ()
k

c F is at most:

1

0 2
((2 1) (1) (2 1))

n t
m m m m

n
m q

C q k t t t
−

= =
+ + − + ⋅ − +∑ ∑

=
2

2
(2 2) (2) (2) (1)

t
n n n

q
q k t t t

−

=
+ + − + ⋅ + +∑

 Now according to the following helping lemma, Lemma 4.4,

2

2
(2 2) (2) (2) (1)

t
n n n

q
q k t t t

−

=
+ + − + ⋅ + +∑

= ((1) (2 2)) (2) (2) (1)n n nO t t k t t t− ⋅ − + − + ⋅ + + = * ((2))nO t .

Lemma 4.4: For any positive integer s, we have

1
(1) (/ 2) (1) / 2

s
n n n

i
s s i s s

=
+ ⋅ ≤ ≤ + ⋅∑ .

 18

PROOF: First we define a function () ()n nf x x s x= + − , where 0 x s≤ ≤ . By

computing the second derivative of ()f x , we know ()f x is a convex function. Thus

it achieves the largest value at the boundaries of the x values, which are

either 0x = or x s= . By computing the first derivate of ()f x , we find that it

achieves its smallest value at / 2x s= . So we have 12 ()n n ns f x s− ≤ ≤ for

all 0 x s≤ ≤ . Then by replacing x with all its integer values from 0 to s, and

summing these inequalities together, we obtain the result. This finishes the proof.

 After proving the time complexity for calculating ()
k

c F , we now turn to the

space complexity. This is equivalent to finding out the total interim values we

have stored in the look-up tables. We know already the total spaces for storing

all ()a X and (,)b X Y values are * (3)nO , and now we only need to know the total

number of ()X

q X
p n we have stored in the table. As given in Equation 4.7, for a

given
X

n and for all 2 q k≤ ≤ , the total number of ()X

q X
p n we have computed is at

most
1

2
(1) (1)

t
r r

q
q k t t

−

=
+ − + ⋅ −∑ . Then for all

X
n , the total number of ()X

q X
p n we have

stored is at most:

1 2

0 2 2
((1) (1)) (1) (2)

m t t
r r r m m

m
r q q

C q k t t q k t t
− −

= = =
+ − + ⋅ − = + + − + ⋅∑ ∑ ∑

 Finally, for all X N⊆ , the total number of ()X

q X
p n we have stored is at most:

2 2

0 2 2
((1) (2)) (2) (2) (1)

n t t
m m m n n

n
m q q

C q k t t q k t t
− −

= = =
+ + − + ⋅ = + + − + ⋅ +∑ ∑ ∑

 Again, according to Lemma 4.4, we have:

 19

2
1 *

2
(2) (2) (1) ((2) (1)) ((1))

t
n n n n n

q
q k t t O t k t t O t

−
+

=
+ + − + ⋅ + = + − + ⋅ + = +∑

Since 2t ≥ , all the time and spaces consumed in the first and the second step of

Algorithm 1 can be subsumed in * ((2))nO t and * ((1))nO t + , respectively. This

finishes the proof of Theorem 4.3.

 Next, we analyze the time and space complexities for calculating ()
k

c F by

using Algorithm 2.

Theorem 4.5: By using the Algorithm 2 for computing all ()X

k X
p n , ()

k
c F can be

computed in * ((2 1))k nO + time and * (3)nO space.

PROOF: First, for computing all ()X

k X
p n , Algorithm 2 chooses to compute

each ()X

k X
p n using the recursive function in Equation 4.6. According to this

Equation, for some X N⊆ where | |X m= , we know that

each ()X

q X
p n where1 q k≤ < can be called by at most 2m number of

1
()X

q X
p n

+
. From

this observation we conclude that after each ()X

q X
p n has been called by at

most2m number of
1
()X

q X
p n

+
, all the

1
()X

q X
p n

+
values have been calculated. So in order

to calculate the total time for calculating all
1
()X

q X
p n

+
(represented as

1
(())

X

X

q X
n

T p n
+∑),

we have the following two steps. First, we need to compute the time for

each ()X

q X
p n being called by at most 2m number of

1
()X

q X
p n

+
(the calculating time

for ()X

q X
p n is denoted as (())X

q X
T p n). According to Equation 4.6, this needs to

include the total time for computing (,)b X Z for all Z Y X⊆ ⊆ (represented

as ((,))
Z
T b X Z∑) and the 2m number of product times

between (,)b X Z and (1)X Z

q X
p n + . Second, by summing the calculating times in

 20

the first step for all ()X

q X
p n we can obtain the upper bound for

1
(())

X

X

q X
n

T p n
+∑ . Thus

we have the following inequality.

1

(())
X

X

q X
n

T p n
+

≤∑ (2 (()) ((,)) 2)
X

m X m

q X
n Z

T p n T b X Z⋅ + +∑ ∑ (4.8)

 We first calculate ((,))
Z
T b X Z∑ . Since all (,)b X Y values have been stored in

the look-up tables, each look-up takes constant time. So we

have ((,)) (2)m

Z
T b X Z O=∑ . And since all

1
()X

X
p n values are equivalent to the

corresponding (,)b X Y values, we have
1

(()) ((,))
X

X

X
n Z

T p n T b X Z=∑ ∑ = (2)mO . Note

that, similar to the proof for Theorem 4.3, when1 q t≤ < , there are(1)mq + ()X

q X
p n ;

whent q k≤ ≤ , there are mt ()X

q X
p n . From this observation, by repeatedly using

Inequality 4.8, we can obtain the upper bound for the total time for computing

all ()X

k X
p n in terms of the following inequality.

1 1

() () *

2
(()) 3 2 2 (2 (1)) 2 (2) (2)

X

t k
X km k i m m m k i m km

k X
n i i t

T p n i t O
− −

− −

= =
≤ ⋅ + ⋅ + + ⋅ =∑ ∑ ∑ (4.9)

 Now similar to the proof for Theorem 4.3, according to Equation 4.1 which is

for computing ()
k

n X , the total time for computing ()
k

n X equals * (2)kmO . Then

finally, according to Equation 3.2 which is for computing ()
k

c F , the time for

computing ()
k

c F equals * *

0

((2)) ((2 1))
n

m km k n

n
m

C O O
=

= +∑ .

 For the space complexity, as have been shown in the beginning of the proof

of Theorem 4.3, the spaces we need to store all the ()a X values

 21

and (,)b X Y values are * (2)nO and * (3)nO , respectively. So the total space

complexity is * (3)nO . This ends the proof of Theorem 4.5.

Remark 2: The time complexity given in Theorem 4.5 is a loose upper bound

especially fort k tn≤� . The reason is that, in our time complexity analysis, we

have assumed that each ()X

q X
p n is called by 2m number of

1
()X

q X
p n

+
. However, this

is not true for every ()X

q X
p n . For example, for some 1q t≥ − , (1,..., 1)X

q
p t t− − can

only be called by one
1
()X

q X
p n

+
which is

1
(1,..., 1)X

q
p t t

+
− − . For all 1t q k− ≤ < , this

counting error is present in each call of ()X

q X
p n for calculating

1
()X

q X
p n

+
. So the time

complexity analysis given in the proof for Theorem 4.5 is tighter for smaller k

values than for larger k values. Currently we can not come up with a tighter time

upper bound analysis for Algorithm 2. Since we will also use Inequality 4.8 for

analyzing the time complexities of Algorithms 3 and 4, this remark can also be

applied to Theorems 4.6 and 4.7.

Theorem 4.6: By using Algorithm 3 for computing all ()X

k X
p n , ()

k
c F can be

computed in * 1((3 2 1))k nO −⋅ + time and * (2)nO space.

PROOF: The only difference between Algorithm 2 and Algorithm 3 is that we do

not store all the (,)b X Y values in a look-up table in the latter. This will affect the

time for computing (())
X

X

q X
n

T p n∑ including the initial
1

(())
X

X

X
n

T p n∑ and the time for

computing ((,))
Z
T b X Z∑ . Now according to Equation 4.2 which is for

computing (,)b X Z , since all ()a X values have been stored in the look-up table

(c.f. step 1 of Algorithm 3), we know the time for computing (,)b X Z is equal to | |2 Z .

 22

From this we know the total time for computing all (,)b X Z where Z X⊆ is equal

to
0

(2) (3)
m

i i m

m
i

O C O
=

=∑ . In addition, as mentioned in the proof for Theorem 4.5, we

have
1

(()) ((,)) (3)
X

X m

X
n Z

T p n T b X Z O= =∑ ∑ . Now by repeatedly using Inequality 4.8,

we know that the total time for computing all ()X

k X
p n which is represented

as (())
X

X

k X
n

T p n∑ can be calculated from the following inequality.

1 1
() () () ()

1 1 1
(()) (3 2) (3 2) (2 (1)) (2)

X

t k t k
X m k i m m m k i m m k i m m k i m m

k X
n i i t i i t

T p n i t i t
− −

− − − −

= = + = =
≤ ⋅ ⋅ + ⋅ ⋅ + ⋅ + + ⋅∑ ∑ ∑ ∑ ∑

 = * 1((3 2))k mO −⋅ (4.10)

 According to Inequality 4.10, we know the total time for computing ()
k

n X is less

than * 1((3 2))k mO −⋅ . Then according to Equation 3.2, we know the time for

computing ()
k

c F is at most * 1 * 1

0

(((3 2))) ((3 2 1))
n

m k m k n

n
m

C O O− −

=
⋅ = ⋅ +∑ .

 For the space complexity, since we only store all the ()a X values in the look-

up table, the total space used is also * (2)nO . This ends the proof of Theorem 4.6.

Theorem 4.7: By using Algorithm 4 for computing all ()X

k X
p n , ()

k
c F can be

computed in * 1((2 2))k nO + + time and polynomial space.

PROOF: The only difference between Algorithm 3 and Algorithm 4 is that we did

not store all the ()a X values in a look-up table in the latter. Similarly, this will

affect the time for computing (())
X

X

q X
n

T p n∑ and the time for computing ((,))
Z
T b X Z∑ .

Now according to Equation 4.2 which is for computing (,)b X Z , we know the time

for computing (,)b X Z is equal to * | |(3 2)Z n mO −⋅ (c.f. Equation 4.3). So for all Z X⊆ ,

 23

((,))
Z
T b X Z∑ = * *

0

((3 2)) (2)
m

i i n m n m

m
i

O C O− +

=
⋅ =∑ . Similar to the proof of Theorem 4.5,

we have
1

(())
X

X

X
n

T p n∑ = ((,))
Z
T b X Z∑ = * (2)n mO + .

 From the above analysis, by repeatedly using Inequality 4.8, we can

compute the total time for calculating all ()X

k X
p n through the following inequality.

* () * ()

1 1
(()) ((2) 2) ((2) 2)

X

t k
X n m k i m m n m k i m m

k X
n i i t

T p n O i O t+ − + −

= = +
≤ ⋅ ⋅ + ⋅ ⋅∑ ∑ ∑

1 1

() ()

1

(2 (1)) (2)
t k

k i m m k i m m

i i t
i t

− −
− −

= =
+ ⋅ + + ⋅∑ ∑

 = * (1)(2 2)n m k mO + −⋅ (4.11)

 Now according to Inequality 4.11, the total time for computing ()
k

n X is less

than * (1)(2 2)n m k mO + −⋅ . Then finally the time for computing ()
k

c F is less than

* (1) * 1

0

((2 2)) ((2 2))
n

m n m k m k n

n
m

C O O+ − +

=
⋅ = +∑ .

 For the space complexity, since we did not store all

the ()a X , (,)b X Y and ()X

q X
p n values in the look-up tables, the total space used is

polynomial. This completes the proof of Theorem 4.7.

5. A Constructive Algorithm for the Set Multi-covering

Problem

Although we have computed the minimum number of sets that satisfy the

coverage requirement, we have not really constructed these sets. In this section,

 24

we present an algorithm called ESMC for picking the minimum number of sets

such that each element in the universe is covered by at least the required number

of times as specified in the integral coverage requirement set. Before giving this

constructive algorithm, we need to define two basic elements pair operations.

5.1 Two basic elements pair operations

We define two kinds of elements pair operations over a series of sets. One is

called elements pair separation, which is to divide a set into two sets such that

any pair of elements in the original set will fall into two different sets; the other is

called elements pair coalition, which is to merge a pair of elements in the same

set into a single element. Their formal definitions are given below.

Elements Pair Separation: For any set
1

{ , , ,..., }
m

s a b x x= in F which covers a pair

of elements a and b, we replace the set s by separating the two elements into two

different sets
1

{ , ,..., }
a m

s a x x= and
1

{ , ,..., }
b m

s b x x= .

Elements Pair Coalition: For any set
1

{ , , ,..., }
m

s a b x x= in F which covers a pair of

elements a and b, we replace the set s with the set
1

{ , ,..., }
ab m

s ab x x= where the

two elements a and b are merged into a new single elementab .

5.2 The constructive algorithm for the set multi-covering problem

We now give a constructive algorithm for finding the minimum number of sets in F

that satisfy the integral coverage requirement set T. This algorithm is based on

finding the minimum k value such that the value of ()
k

c F is greater than zero.

ESMC: Exact Set Multi-Cover Algorithm

 25

Input: A family F of subsets over the universe N ; a coverage requirement set T

which states the integral coverage requirement for each element in N .

Output: The minimum number of sets from F to satisfy the requirement T.

1: Set
bak

F F= .

2: Calculate the minimum value of k such that () 0
k

c F > .

3: Pick any element a in the universe N.

4: Find all the elements
1

{ ,..., }
m

x x in N that appear with a in some set in F.

5: Set
0

F F= .

6: For i=1 to m do:

7:
0

F F= .

8: For the pair of elements (,)
i

a x , we apply the Elements Pair Separation

operation over the setF to generate a new set called
i

F .

9: Calculate the value of ()
k i

c F .

10: End For

11: If all of the ()
k i

c F values where0 i m≤ ≤ are greater than zero, we can deduce

that there exists a set in the optimal covering which only covers the element a

since otherwise there must exist some
i

x whose separation with the element a

can make () 0
k i

c F ≤ . So we just pick this set inF which covers a and contains the

least number of elements. We then decrement the value of k by 1 and update the

coverage requirement set T, i.e., for all elements
i

x in the picked set we

decrement each of the corresponding
i

t values by 1. Also if any 0
i

t ≤ we remove

the element i in the universe set N.

12: Else we pick any i such that () 0
k i

c F ≤ . Then for the pair of elements { , }
i

a x ,

we apply the Elements Pair Coalition operation over the setF . Note that the

element a has become a new single element ()
i

ax .

13: Repeat step 4 to step 12 until we have picked a set fromF .

14: Set
bak

F F= and we repeat step 3 to step 13 until 0k = .

 26

5.3 Correctness analysis

First, according to step 2, we know that the value of k we choose guarantees that

we only use the minimum number of sets to satisfy the coverage requirement.

Second, according to step 11, we know that, when we pick a set from F in each

step, we can guarantee that the picked set must exist in some optimal legal (,)k T

covering sets. From this we also know that, when we pick this set, there must

exist a legal '(1,)k T− cover where 'T is the updated coverage requirement set after

picking a subset from F. From the above analysis, we can conclude that we do

pick the minimum number of sets from F that satisfies the coverage requirement

set T.

5.4 Time and space complexities analyses

The time of the ESMC algorithm can be divided into two parts. The first part is

due to step 2, which is to calculate the minimum k value for a legal(,)k T cover. By

using binary search, since t k tn≤ ≤ , its time corresponds

to (log())O tn calculations of ()
k

c F (c.f. Section 3.2). The second part is due to

steps 4 to 12 of the algorithm which is to pick a subset from F. We can easily see

that it takes 2()O n calculations of ()
k

c F . Since we need to pick k subsets, we

need 2()O kn evaluations of ()
k

c F in total. So the overall time complexity is

dependent on the time complexity for computing ()
k

c F . Now according to

Theorem 4.3, we have the following corollary.

 27

COROLLARY 5.1: By using Algorithm 1 for computing all ()X

k X
p n , the ESMC

algorithm takes * ((2))nO t time and * ((1))nO t + space where t is the maximum

integer in the coverage requirement set T.

 Similarly, according to Theorems 4.5, 4.6 and 4.7, we can get the

corresponding time and space complexities for the ESMC algorithm. But since

the first part of the ESMC algorithm needs to test different k values for finding the

minimum k value to make a legal (,)k T cover, the time consumed in this part

could be very large depending on which k values we have tested. But

since t k tn≤ ≤ , we have the following Corollary 5.2 which corresponds to

Theorem 4.7. By employing Theorems 4.5 and 4.6 we can obtain similar results

as Corollary 5.2 which we omit here.

COROLLARY 5.2: By using Algorithms 4 for computing all ()X

k X
p n , the ESMC

algorithm takes
2* ()(2)O tnO time and polynomial space.

6. Conclusion

In this paper, we have generalized the inclusion-exclusion based exact algorithm

for the set covering problem to the set multi-covering problem. We have

presented a family of exact algorithms to solve the set multi-covering problem

through different tradeoffs between the time and space complexities. We have

shown that by using more space, the time complexity can be significantly reduced.

 Although the simple greedy strategy applied to the set covering problem can

be applied to the set multi-covering problem to yield the same approximation

ratio (log)O n , our fastest exact algorithm which takes *((2))nO t time

 28

and *((1))nO t + space consumes much more time and space than the currently

fastest exact algorithm for the set covering problem which takes *(2)nO time

and *(2)nO space [2]. In addition, if we restrict to polynomial space, the time

consumed for the set multi-covering problem is much longer than its set covering

counterpart which takes *(3)nO time [2].

 The following are some possible directions for designing exact algorithms for

the set multi-covering problem. First, as mentioned in Remark 2, the time

complexity analyses for the Algorithms 2, 3 and 4 for computing all

the ()X

k X
p n values are not tight, so much tighter time complexity analyses for the

three algorithms will be needed. Second, it is possible to extend our algorithms to

other generalized covering problems, such as multi-set multi-cover [10]. Third, as

shown in [4] and [9], some techniques in information theory can help analyze

exact algorithms that need counting steps. So it will be interesting to apply this

kind of technique to those generalized set covering scenarios. Finally, like what

was done by the authors in [6], it might be possible to apply our algorithm to

wireless scheduling problems which have drawn increasing attention in the

wireless networking community in recent years.

Acknowledgements

This research is supported in part by a Hong Kong RGC-GRF grant (7136/07E),

the national 863 high-tech R&D program of the Ministry of Science and

Technology of China under grant No. 2006AA10Z216, the National Science

Foundation of China under grant No. 60604033, and the National Basic Research

 29

Program of China Grant 2007CB807900, 2007CB807901.

References

[1] E.T. Bax. Inclusion and exclusion algorithms for the Hamiltonian path

problem. Information Processing Letters, 47(4):203-207,1993.

[2] A. Björklund, T. Husfeldt, and M. Koivisto. Set partitioning via Inclusion--

Exclusion. SIAM Journal on Computing, Special Issue for FOCS 2006, to

appear.

[3] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Fourier meets Möbius:

fast subset convolution. In Proc. 39th Annual ACM Symposium on Theory of

Computing (STOC), San Diego, California, US, June 2007.

[4] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. The travelling salesman

problem in bounded degree graphs. In Proc. 35th ICALP , Iceland, 2008.

[5] U. Feige. A threshold of lnn for approximating set cover. Journal of the ACM,

45(4):634-652, 1998.

[6] Q.-S. Hua and F.C.M. Lau. Exact and approximate link scheduling algorithms

under the physical interference model. In Proc. 5th SIGACT-SIGOPS

International Workshop on Foundation of Mobile computing (DIALM-POMC),

Toronto, Canada, Aug. 2008.

[7] R.M. Karp. Dynamic programming meets the principle of inclusion-exclusion.

Operations Research Letters, 1(2):49-51,1982.

[8] J. Nederlof. Fast polynomial-space algorithms using Möbius inversion:

Improving on Steiner Tree and related problems, to appear in Proc. ICALP

2009.

[9] J. Radhakrishnan. Entropy and counting. In: Mishra, J.C. (ed.) IIT Kharagpur

Golden Jubilee Volume on Computational Mathematics, Modelling and

Algorithms, Narosa Publishers,New Delhi, 2001.

 30

[10] V.V. Vazirani. Approximation Algorithms. Berlin: Springer, 2003.

[11] S. Rajagopalan and V.V. Vazirani. Primal-dual RNC approximation algorithms

for set cover and covering integer programs. SIAM Journal on Computing,

28(2):525-540, 1998.

Appendix

In this appendix, we give a very simple example to show how we calculate the

value of ()kc F and how the ESMC algorithm works for the given example.

 Suppose the universe {1,2,3}N = , the family of subsets over N

is {{1,2},{1,3},{2,3}}F = and the coverage requirement set {2,1,1}T = . Now we first

find the minimum k value to make a legal (,)k T cover. This is equivalent to

calculating the minimum k value such that () 0kc F > . Suppose we first test the

case where 2k = .

 According to Equation 3.2, we have | |

2 2
() (1) ()X

X N
c F n X

⊆
= − ⋅∑ . Now due to

Equation 4.1, we have
2 2 1 | |

0 1
1 | |

() (,...,)
i i

X

X
n t
i X

n X p n n
≤ ≤ −
≤ ≤

= ∑ . Then based on these equations

we have Table A.1 which is to calculate
2
()n X values for all X N⊆ .

Table A.1: Calculating
2
()n X for all X N⊆

X
2
()n X

∅
2 ()p ∅ ∅

{1} {1}

2 (0)p + {1}

2 (1)p

{2} {2}

2 (0)p

{3} {3}

2 (0)p

{1,2} {1,2}

2 (0,0)p + {1,2}

2 (1,0)p

{1,3} {1,3}

2 (0,0)p + {1,3}

2 (1,0)p

{2,3} {2,3}

2 (0,0)p

{1,2,3} {1,2,3}

2 (0,0,0)p + {1,2,3}

2 (1,0,0)p

 31

 The next step is to compute all the
2 1 | |

(,...,)X

X
p n n values on the right side of

Table A.1. By combining Equation 4.6 which computes
1 | |

(,...,)X

q X
p n n and Equation

4.2 which computes (,)b X Y , we have Table A.2.

Table A.2: Calculating
2 1 | |

(,...,)X

X
p n n for all X N⊆

X
2
()n X

∅
2 1() (,) () () ()p b p a a∅ ∅∅ = ∅ ∅ ⋅ ∅ = ∅ ⋅ ∅ =3*3=9.

{1} (1): {1}

2 (0)p = {1}

1({1},) (0)b p∅ ⋅

 = ({1}) ({1},)a b⋅ ∅
 = ({1}) ({1})a a⋅
 =1*1=1;
(2): {1}

2 (1)p = {1} {1}

1 1({1},) (1) ({1},{1}) (0)b p b p∅ ⋅ + ⋅

 = ({1}) ({1},{1}) ({1},{1}) ({1},)a b b b⋅ + ⋅ ∅
 = ({1}) [() ({1})] [() ({1})] ({1})a a a a a a⋅ ∅ − + ∅ − ⋅
 =1*(3-1)+(3-1)*1=4;
(3): {1}

2 (0)p + {1}

2 (1)p =1+4=5.

{2} {2}

2 (0)p = {2}

1({2},) (0)b p∅ ⋅

 = ({2}) ({2},)a b⋅ ∅
 = ({2}) ({2})a a⋅
 =1*1=1.

{3} {3}

2 (0)p = {3}

1({3},) (0)b p∅ ⋅

 = ({3}) ({3},)a b⋅ ∅
 = ({3}) ({3})a a⋅
 =1*1=1.

{1,2} (1): {1,2}

2 (0,0)p = {1,2}

1({1,2},) (0,0)b p∅ ⋅

 = ({1,2}) ({1,2},)a b⋅ ∅
 = ({1,2}) ({1,2})a a⋅
 =0*0=0;
(2): {1,2}

2 (1,0)p = {1,2} {1,2}

1 1({1,2},) (1,0) ({1,2},{1}) (0,0)b p b p∅ ⋅ + ⋅

 = ({1,2}) ({1,2},{1}) ({1,2},{1}) ({1,2},)a b b b⋅ + ⋅ ∅
= ({1,2}) [({2}) ({1} {2})] [({2}) ({1} {2})] ({1,2})a a a a a a⋅ − + − ⋅U U
=0*(1-0)+(1-0)*0=0;
(3): {1,2}

2 (0,0)p + {1,2}

2 (1,0)p =0+0=0.

{1,3} (1): {1,3}

2 (0,0)p = ({1,3}) ({1,3})a a⋅ =0*0=0;

 32

(2): {1,3}

2 (1,0)p = {1,3} {1,3}

1 1({1,3},) (1,0) ({1,3},{1}) (0,0)b p b p∅ ⋅ + ⋅

 = ({1,3}) ({1,3},{1}) ({1,3},{1}) ({1,3},)a b b b⋅ + ⋅ ∅
 =0*1+1*0=0;
(3): {1,3}

2 (0,0)p + {1,3}

2 (1,0)p =0+0=0.

{2,3} {2,3}

2 (0,0)p = ({2,3}) ({2,3})a a⋅ =0*0=0.

{1,2,3} (1): {1,2,3}

2 (0,0,0)p = ({1,2,3}) ({1,2,3})a a⋅ =0*0=0;

(2): {1,2,3}

2 (1,0,0)p

 = {1,2,3} {1,2,3}

1 1({1,2,3},) (1,0,0) ({1,2,3},{1}) (0,0,0)b p b p∅ ⋅ + ⋅

 = ({1,2,3}) ({1,2,3},{1}) ({1,2,3},{1}) ({1,2,3})a b b a⋅ + ⋅
 =0*0+0*0=0;
(3): {1,2,3}

2 (0,0,0)p + {1,2,3}

2 (1,0,0)p =0+0=0.

 Having calculated all the
2
()n X values which are shown on the right side of

Table A.2, we can obtain | |

2 2
() (1) () 9 5 1 1 0 0 0 0 2 0X

X N
c F n X

⊆
= − ⋅ = − − − + + + − = >∑ ,

which means that there are two 2-tuples that can satisfy the coverage

requirement. Since the maximum integer in the coverage requirement set T is 2,

we know the minimum k value we need to pick is 2. Actually, by calculating the

1
()c F value, which is | |

1 1
() (1) () 3 3 1 1 0 0 0 0 2 0X

X N
c F n X

⊆
= − ⋅ = − − − + + + − = − <∑ ,

we can also conclude that the minimum k value is 2 since picking one set from F

does not meet the coverage requirement.

 Now according to the ESMC algorithm, we briefly show in the following how to

pick the two sets that can satisfy the coverage requirement T.

 First, according to step 3, we pick the element 1 in the universe N. Then we

can find the elements
1 2

{ 2, 3}x x= = that can appear with 1 in some subsets in F.

Now according to step 6 to step 10, we obtain
1

{{1},{2},{1,3},{2,3}}F =

and
2

{{1,2},{1},{3},{2,3}}F = . From this we can calculate
2 1
() 0c F ≤ and

2 2
() 0c F ≤ .

Then according to step 12, we choose to merge the elements pair (1,2) . Now

since the new single element(12) does not appear with any other elements in the

set F, we have 0m = . Then since
2 0 2
() () 2 0c F c F= = > , according to step 11, we

 33

just pick the first subset in F which is {1,2} . Similarly, we can pick the second

subset in F which is {2,3} . This finishes the execution of the ESMC algorithm.

