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Fast Gossiping in Square Meshes/Tori
with Bounded-Size Packets
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Abstract—Gossiping is the communication problem in which each node has a unique message (token) to be transmitted to every
other node. The nodes exchange their tokens by packets. A solution to the problem is judged by how many rounds of packet sending it
requires. In this paper, we consider the version of the problem in which small-size packets (each carrying exactly one token) are used,
the links (edges) of the network are half-duplex (only one packet can flow through a link at a time), and the nodes are all-port (a node’s
incident edges can all be active at the same time). This is also known as the H* model. We study the 2D square mesh and the 2D square
torus. An improved, asymptotically optimal algorithm for the mesh and an optimal algorithm for the torus are presented.

Index Terms—Gossiping, all-to-all broadcast, total exchange, collective communication, parallel algorithms, interconnection networks,

communication optimization, scheduling.

1 INTRODUCTION

IN parallel and distributed computing, communication
among processors is an important issue. Gossiping, also
known as total exchange and all-to-all (nonpersonalized)
broadcast, is the communication problem in which each
processor (or node) has a unique message (or token) to be
transmitted to every other processor. Because of its rich
communication pattern, gossiping is a useful benchmark for
evaluating the communication capability of an interconnec-
tion structure. The gossiping problem has been studied
extensively during the last two decades; a summary of
the results can be found in [12], [10], [13]. Gossiping as
an embedded operation is needed in many real computa-
tions, such as matrix multiplication, LU-factorization,
Householder transformation, direct N-body computation,
global processor synchronization, and load balancing.
Juurlink et al. [14] cited two specific applications that
require gossiping as a subroutine: splitter-based sorting
[17] and parallel block predictor-corrector methods to
solving ordinary differential equations [21].

Krumme et al. have suggested that the gossiping

problem can be studied under four different communica-
tion models, which have different restrictions on the use of
the links, as well as the ability of a node in handling its

incident links [16]. The four models are:

the full-duplex, all-port model,

the full-duplex, one-port model,

the half-duplex, all-port model, and

the half-duplex, one-port model, which can be
identified by the labels F*, F1, H* and HI,
respectively.
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A full-duplex link allows both ends to send/receive a
message at the same time; a half-duplex link allows only
one end to do so at a time. In the one-port mode, only one of
the incident links of a node may be active at a time; all the
incident links may be active at the same time in the all-port
mode. The four models, therefore, form a spectrum, with F*
being the strongest in communication capability and H1 the
weakest. Krumme et al. studied the problem for a number
of well-known topologies under the H1 model [16] and for
the hypercube under both the H* and the H1 model [15].

Bermond et al. [3] have added another dimension to the
problem. They suggested that a packet carrying tokens
cannot be of infinite size, which a great majority of previous
work had assumed. In reality, indeed, a packet’s delay is
somewhat dependent on its contents, especially in tightly
coupled multiprocessors. They studied the gossiping
problem under this hypothesis and under the F1 model,
deriving results for the complete graph, hypercube, cycle,
and path [2]. Bagchi et al. have considered the same, but
under the H1 model [4], [5].

In this paper, we adopt the bounded packet size
restriction. We can use the parameter p to denote the size
of a packet: p = 1 means that a packet can carry up to one
token, p = 2 two tokens, etc. In this paper, we consider only
the case of p = 1.

The gossiping process advances by rounds (or timesteps)
in a lock-step fashion. In each round, a packet can only
travel across one edge. We refer to the sending of a packet
across an edge a packet move. A packet move translates into
a unit of communication load that the gossiping algorithm
introduces into the network. In general, there are two
measures by which a gossiping algorithm may be
evaluated: the number of timesteps to complete the
gossip and the communication load in terms of packet
moves the gossip generates, also referred to as calls in
some studies (e.g., [1]). In the domain of parallel and
distributed computing, the former is by far the more
dominant, which is also the measure we are interested in

1045-9219/02/$17.00 © 2002 IEEE



350 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 4, APRIL 2002

here. Czumaj et al. have studied the time and communica-
tion load trade-offs in gossiping under the F1 model [6].

We define g,(N) to be the time required to complete a
gossip for the interconnection network N if the packet size
is p. Since only one value of p (p = 1) is being considered in
this paper, we use g(N) for the gossiping time.

In this paper, our focus is on the 2D mesh and the 2D torus
which are important communication fabric for modern
parallel machines. Parallel machines that use 2D meshes
include the MIT J-Machine [7], the Symult 2010 [22], and
the Intel Touchstone [19]. For simplicity, we consider square
meshes and tori. Our algorithms can be easily extended to
cover the nonsquare ones as well, but the results would be
nonoptimal (see discussion in Conclusion). Under the
restriction of bounded packet size, the following are the
existing results for the mesh and the torus.

e For the F* model and p=1, Soch and Tvrdik
obtained the optimal result, [(mn —1)/2], for the
m x n mesh with the restriction that at least one of m
and n must be even [24]; as well as the optimal
result, [(mn — 1)/4], for the torus (for n =2 and m
odd, one extra step is needed) [29]. Their solutions
are also buffer-optimal, requiring auxiliary buffers
for at most three packets for tori and buffers for
O(m + n) packets for meshes [25].

e For the F1 model and p = 1, Bermond et al. gave an
algorithm that can solve the problem for the
nxm mesh in 2mn—3—max{m,n} steps, m
and n odd [3].

e For the H* model and p =1, Fujita and Yamashita
gave an algorithm that can solve the problem for the
n x n (square) mesh in n?/2+2n—3 and n?/2+
2n — 5/2 steps for even and odd n, respectively [11].

e For the H1 model and any value of p, Bagchi et al.
derived the result, 2mn/p+ O(m +n), for the
m x n mesh [5].

In this paper, we assume the H* model and p = 1. Many of
the modern designs of routers use separate controllers to
manage the links, which can operate simultaneously in
parallel. Both the F* and the H* model are realistic models
for router implementation. There are pros and cons to
operating a link in half- or full-duplex mode (see the
discussion in [9]). One well-known example of H* router is
the Network Design Frame [8]. H* can be a special mode of
an F* router, where the full-duplex links are set to operate
by software in half-duplex mode. This can be the preferred
mode of operation if it gives algorithmic advantages while
the links’ capacity can still be fully utilized. Many F* routers
(e.g., the C104 router for the transputer [20]), when
operating in full-duplex mode, offer only a fraction of the
maximum per-link bandwidth in each direction and, so, the
gain in total communication bandwidth versus the half-
duplex mode is minimal.

We present an improved algorithm for the square 2D mesh
and an algorithm for the square 2D torus; the latter is optimal
for the case of even n and two steps away from the optimal
for the case of odd n. This work is meant to serve as a
starting point for the study of all-to-all communications
based on the H* model and under the bounded packet size
restriction and, hence, we have avoided such practical

issues as start-up times and store-and-forward versus
wormhole routing. Start-up times are real and could be
substantial especially when the packets are relatively small
[14], [26]. Wormbhole routing is the preferred routing mode
in modern router designs and its distance-insensitivity has
prompted many interesting solutions to collective commu-
nication problems [23], [27], [28], [30]. These issues need to
be addressed in an extended study for which the algorithms
and results in this paper may serve as a basis.

2 PRELIMINARIES

An n x n square mesh or torus has n rows and n columns,
both indexed from 0 to n — 1. A node is uniquely identified
by (i,j), where ¢ and j are the node’s row and column
positions, respectively. For convenience of discussion, we
use vy, V1, . ..,U,—1 to represent the n nodes in any row or
column, with v, being the center node, ¢ = |n/2] for the
odd-n case, and n/2 for the even-n case. Initially, each
node has a token, which is to be sent to every other node.
The following are two simple lower bounds on the
gossiping time for the mesh and the torus, respectively.

Lemma 1. For a mesh of size n x n, M, the lower bound on
g(M), is n?/2 4+ n/2 [11].

Proof. There are n? nodes. Each node’s token has to reach
n? — 1 nodes. Hence, the total number of token moves is
at least n?(n*> —1). M has 2n(n — 1) edges. Therefore,
there exists an edge which has to accommodate at least
n?(n? —1)/(2n(n — 1)) = n?/2 + n/2 moves. O

Note that, for the case of n = 1, no movement of token is
necessary. So, the above is good for n > 1.

Lemma 2. For a torus of size n x n, T, the lower bound on g(T)
is (n? +1)/2 — 1 or n?/2 for even n.

Proof. T has 2n* edges. Hence, the lower bound is equal to
n?x (n®?—1)/2n*=n%/2-1/2, or n?/2 forevenn. O

In the next several sections, we will present our solutions
to the problem. Note that, if we consider an edge to be a
series of “instances” of the edge being at different timesteps,
then the above lower bounds correspond to filling up all the
instances of all the edges over a period of time. Algorithms
that attempt to match these bounds would have to try to
occupy every edge at every timestep. Moreover, there
should not be any duplication of packets—that is, the same
token should not reach the same node more than once.

The two-phase algorithm by Fujita and Yamashita was
the first attempt at solving the problem for the square mesh.
Initially, the nodes are labeled as even or odd according to
their positions: Node (4, j) is even if i 4 j is even and odd
otherwise. Phase 1 then operates as outlined in Fig. 1. Fig. 2
shows the detailed operations of Phase 1 for a single row (or
column) for various mesh cases, where a dot corresponds to
an edge and one row of dots corresponds to the entire row
or column of edges at a particular timestep. A black dot
represents an edge in use (i.e., a packet is being transmitted
through the edge), and a white dot an idle edge instance.
The dissemination of a token from one node to the next and
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Phase 1 along the row/column itsclf.

> Phase 1. All even nodes broadcast their tokens to all the nodes in their respective rows and

all odd nodes broadcast their tokens to all the nodes in their respective columns.

> Phase 2. Every row and every column performs a gossip with the tokens collected during

Fig. 1. Outline of the two phases.
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Fig. 2. Dot-wire diagrams: Examples of Phase-1 execution. (a) n = 11, (b) n = 11, and (c) n = 10.

so on is represented by a “wire” of black dots. We call these
pictures of dots and wires “dot-wire diagrams.”

We can call the Phase-1 algorithm a “half-gossip”
algorithm because only half (n/2, and +1 for odd n) of
the nodes in a row or column broadcast their tokens. And
we call the tokens broadcast by the even nodes during
Phase 1 even tokens and those by odd nodes odd tokens. After
Phase 1, each node in a row will have collected n/2 (£1 for
odd n) column tokens and each node in a column will have
collected the same number of row tokens. Then in Phase 2,
every row and every column performs a (full) gossip with
the tokens collected during Phase 1 along the row/column
itself using a gossip algorithm for path.

The Fujita-Yamashita algorithm turned out to be asymp-
totically optimal (O(n?/2)). We found, however, that this
algorithm has two major problems: First, the execution of
the Phase-1 algorithm would leave a number of edge
instances idle; second, the Phase-2 algorithm, which is a
path gossiping algorithm, is not optimal. As a result, there
is a gap of O(3n/2) between the upper and the lower bound.
Our task is to try to close this gap.

In the following, we adopt the two-phase strategy, but
with the following important changes. For the mesh,

e we use a different Phase-2 algorithm, which is an

optimal gossiping algorithm for the path, and

e we try to overlap the two phases as much as possible

so that the idle edge instances in Phase 1 can be used
by Phase 2.
For the torus, we use the original Phase-1 algorithm for the
even-n case and a modified version for the odd-» case. For
Phase 2, we use a simple but optimal algorithm for
gossiping in a cycle.

Some examples of Phase-1 execution are shown in
Fig. 2. Note that in a dot-wire diagram, a wire can only
go downward and no two wires may cross at a black
dot; if they do, that means there is a clash on the use of
the same edge.

3 THE GossIP ALGORITHM FOR A SQUARE MESH

The algorithm we propose here for the mesh uses the first
phase of the Fujita-Yamashita algorithm as its first phase.
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> R; = L; = {tokens from Phase 1} for 0 <1 <n —1;
Ry = {tokens from Phasc 1}; L,_; = {tokens from Phasc 1};

repeat

e if R, #0

else

append it to R;;

until done;

repeat

until done;

> center node v,:

e repeat

until no more token;

repeat

until R, = §;

> node ; (on the left of the center node):

(* the following arc in parallel *)

cxtract the first token from R; and send it to v;4q

receive a token from vy (Lig1) and append it to L; (if i > 0);

o if there is a token from »;

> node v; (on the right of the center node):

(* similarly, except all the directions arc reversed *)

(* the following are in parallel *)

receive a token from the left and append it to IR

extract the first token from R, and send it to ves);

e (* similarly for the other side *)

Fig. 3. The Phase-2 algorithm.

For the second phase, we adopt the path gossiping
algorithm introduced in [18], with the modification that
each node can hold multiple tokens initially. By proving a
lower bound on the gossiping time, we show that this path
algorithm is optimal for the second phase. An important
feature of the combined algorithm is that it starts both phases
at the same time, which allows the second phase to make use
of the idle edge instances of the first phase. The resulting
algorithm is faster than the Fujita-Yamashita algorithm by
approximately n steps.

3.1 Phase 1

We examine the half-gossip algorithm (Fig. 1) which is
Phase 1 of the combined algorithm. Our goal is to identify
idle edge instances (corresponding to white dots in the dot-
wire diagram) arising during the execution of this algo-
rithm. The Phase-2 algorithm will try to fill up these idle
instances. There are three cases, two for the case of odd n
and one for the case of even n, as shown in Fig. 2. Because
only every other node is active, there is no conflict over the
use of the edges and, hence, all all the wires are straight
lines. We define a white wire to be one that comprises an idle
instance (or white dot) of every one of the n — 1 edges. For
each of the three cases in Fig. 2, there are exactly [n/2] —1
(for odd n) or n/2 — 1 (for even n) such white wires, as

indicated by the dashed lines in the figure. These white
wires are “concave” when viewed from the top and their
“bottom” touches the center node. For the odd-# case, the first
white wire occurs at either t = 2 (Fig. 2a) ort = 3 (Fig.2b) and,
for the even-n case, it occurs at t = 2 (Fig. 2c). The time at
which the first white wire occurs is crucial: The second phase
must be ready by then in order to make use of all the white
wires.

3.2 Phase 2—0dd »

Consider, without loss of generality, a row of the mesh. For
the odd-n case, because the number of even nodes and the
number of odd nodes in a column are not the same, the
result of Phase 1 would be that the row has an uneven load
for Phase 2 to distribute: Either an even node has one
token more than that of an odd node or the other way
around. Let’s assume the former (the other case is
similar), where an even node has [n/2] tokens and an
odd node has |n/2]| tokens.

We use the path algorithm introduced in [18] here, which
divides the row into two equal halves, with a center node,
v., in the middle, where ¢ = |n/2]. The algorithm is as
shown in Fig. 3. Instead of one token per node, it now
handles multiple tokens per node. Each node is equipped
with two queue variables, L; and R;, which are used to hold
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Fig. 4. Phase-2 execution for n = 11 (showing only the left half).

tokens to be sent to the left and right hand side,
respectively. Initially, these two variables would each have
the set of tokens generated from Phase 1.

We focus on the left half; what goes on in the right half is
identical. The operation of the algorithm can be seen as
being composed of two gather suboperations, followed by a
scatter suboperation. In the first gather suboperation, tokens
of nodes vy, v1, . ..,v.1 all go to the center node (and all the
intermediate nodes); in the second gather suboperation,
tokens of nodes v._1,...,v; go to node vy (and all the
intermediate nodes); in the scatter suboperation, tokens
belonging to nodes v, vci1,...,v,—1, Which have been
gathered at node v,, are scattered to nodes vy, v, ..., ve1.
Fig. 4 shows the execution of Phase-2 algorithm for n = 11;
only the left half is shown. Instead of wires of dots, we now
have wires of ovals. The bigger oval contains [n/2] tokens
that an even node has collected from Phase 1; the smaller
oval contains |n/2| tokens from Phase 1.

It is interesting to see that, if we treat an oval as a dot, the
pattern in Fig. 4 is exactly the same as the case where each
node has exactly one token to start with, as shown in Fig. 5.
In particular, the number of idle edge instances is the same."
In fact, the path algorithm, which is optimal for the one-
token-per-node case, is also optimal for the case here.
Specifically, the number of steps for the case here is equal to
(refer to the edge (vy,v1))

[n/21* + [n/2)" + (In/2] = 1) = (* +n = 2)/2 = S}y,

1. This number, as can be inferred from the example in Fig. 4 or Fig. 5, is
equal to 4 x MG = (n2 — 4n 4 3)/2.

6
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Fig. 5. The Phase-2 algorithm for a path of length » if every node has
one token to distribute.

where the first term comes from the big ovals, the second
term from the small ovals, and the third term from the
white dots. S5/, matches the lower bound which is given
below.

Lemma 3. Given odd integer n and a path of n nodes, the lower
bound on the gossiping time is (n® + n — 2)/2, where each
even node initially has [n/2] tokens and each odd node has
|n/2] tokens.

Proof. Consider the edge (v._1,v.), where c¢= |n/2]. To
gossip, there are ((¢c—1)/2+1)x [n/2] + (c—1)/2 %
|n/2| tokens, belonging to nodes vy, uvi,...,v. 1, that
have to go through the edge in question from left to right,
and there are ((¢c—1)/2+1) x ([n/2] + |n/2]) tokens
that have to go through this edge from right to left.
Therefore, to transport all these tokens through the edge
requires at least (¢ + 1)n — ¢ steps. The last token that
goes through this edge requires at least ¢ — 1 steps to
reach the last node in the path. Hence, the minimum
number of steps to complete the gossip is

(c+Dn—c+(c—1)=(n*+n-2)/2.
O

For the other odd-n case, where an odd node in the row
has one token more than an even node at the beginning of
Phase 2, the number of steps would be equal to

2([n/2] x |n/2]) + [n/2] =1 = (n* +n—4)/2 = S}y,

Using similar arguments as in Lemma 3, we can prove
that the Phase-2 algorithm is optimal for this case as well
and for the even-n case below. Obviously, S/, > S/,
hence, the number of steps for the execution of the Phase-2
algorithm over all the rows and columns is equal to
(n® +n—2)/2= S,
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Fig. 6. Phase-2 execution for n = 10.

3.3 Phase 2—Even n

For this case, the ovals are all of the same size (n/2). An
example of the execution of the Phase-2 algorithm is shown
in Fig. 6, where the center node is v, ¢ =n/2. The two
halves are not exactly symmetrical. The number of steps for
the execution of the algorithm is equal to

nxn/2+1n/2—1)=(n*+n—2)/2 = Seven-

3.4 Combining Phase 1 and Phase 2

Instead of starting Phase 2 after Phase 1 is completely over,
we let Phase 2 “cut into” Phase 1. As has been shown in
Section 3.1, there are |n/2] —1 (respectively, n/2 —1)
white wires (a series of n idle edges) in the execution of
the Phase-1 algorithm for the odd-n (respectively, even-n)
case. The goal is to have the Phase-2 algorithm make use
of all these white wires. The strategy is simple: to map the
first step of the execution of the Phase-2 algorithm to the
first white wire, the second step to the second white wire,
etc. The following lemma guarantees that Phase 2 can make
use of all the white wires in Phase 1.

Lemma 4. By the time the kth white wire occurs, the tokens needed
by the kth step of Phase 2 would all be ready, k = 1,2, ...

Proof. We refer to Fig. 2 and Fig. 7 without loss of
generality. In Fig. 2, we see that the first white wires for
the various cases occur at t; > 2 and the other white
wires at every other time step—i.e., ¢ +2,¢ +4,...

Fig. 7. Phase-1 tokens reaching their destined nodes at every other
timestep.

Now consider Fig. 7, where we focus on the first row of
the mesh. Since the Phase-1 algorithm is all nonblocking
throughout, the tokens needed by Phase 2 will arrive at
their destined nodes exactly one every two timesteps and
the first one of these tokens arrives at to < 2. Since t > ¢
and there are less than n/2 white wires in Phase 1, all the
tokens needed to fill any of the white wires would reach
their destined nodes before that white wire occurs. O

By letting Phase 2 cut into Phase 1, the number of steps to
execute Phase 2 is reduced by [n/2] — 1 and n/2 — 1 for the
odd-n case and the even-n case, respectively. We therefore
have the following results for the combined algorithm.

Theorem 1. The number of timesteps required to finish gossiping
for the n x n mesh is n* +n — 1/2 for odd n and n*> +n — 1
for even n.

Proof. Refer to Fig. 2 without loss of generality. For the odd
n case, Phase 1 will be dominated by the case in Fig. 2b,
and, hence, the time to execute Phase 1 is n — 1 and,
that, for the even case, is also n —1 (Fig. 2c). Hence,
for the odd-n case, we have the total time equal to
(n—1)+5S,,—(n/2] —1)=n?/2+n—-1/2 and, for
the even-n case,

(n—1) + Sepen — (n/2 — 1) =n*/2+n — 1.

O

Our algorithm is better than the Fujita-Yamashita algorithm
by n step, and is about n/2 steps away from the lower
bound.

Finally, we need to point out the modifications that
should be made to the Phase-2 algorithm so that the
Phase-2 algorithm would not misuse some of the edges
which should be used by the Phase-1 algorithm during
the overlapped period. The modifications are as follows:

e The Phase-2 algorithm starts at the same time as the
Phase-1 algorithm.

o The Phase-2 algorithm would give priority to
Phase-1 tokens. It will send out a Phase-2 token
only when there is no Phase-1 token on hand to be
sent. A single bit is enough to mark a token as
belonging to Phase 1 or Phase 2.



LAU AND ZHANG: FAST GOSSIPING IN SQUARE MESHES/TORI WITH BOUNDED-SIZE PACKETS 355

(@) (b)

Fig. 8. (a) Movement of a token in a 2 x 2 mesh. (b) The two half-gossip patterns for Phase 1 of the 3 x 3 mesh. (c) Optimal gossiping for the 3 x 3

mesh.

3.5 Optimal Solutions for n <3

There exists a gap of n/2 between the lower and the upper
bound. The trivial proof for the lower bound would prompt
us to doubt the tightness of the lower bound. This section
shows that, for n < 3, the lower bound is indeed tight. For
n = 2, the mesh is a cycle with four nodes, as shown in Fig. 8a.
All the nodes need to do is simply send their tokens along the
same agreed direction; the gossip would finish in three
steps, which is optimal. For n = 3, the situation is trickier; a
modification is needed for our mesh algorithm.

In the following, we assume that initially each node
holds a token which has the same identity (an integer) as
the node; (a) denotes a token and (a,b,...) a collection of
tokens (from Phase 1) held in a node, where a,b, etc. are
token identities; v; denotes the node with identity <.

For n = 3, our mesh algorithm finishes in 7 steps, which
is one step more than the lower bound. We now show how
we could reduce the seven timesteps to 6 by modifying the
algorithm slightly. Fig. 8c shows a 3 x 3 mesh after Phase 1.
During Phase 1, two different half-gossip patterns would
occur, as shown in Fig. 8b, one taking one timestep and the
other taking two timesteps. Then, for Phase 2, for the
rows, the gossip will take four timesteps because there
are four tokens ((3) — (1,7) — (5)) from Phase 1 that need
to be broadcast, and five timesteps for the columns
((0,2) — (4) — (6,8)). Combining the two phases, we have
the total timesteps for each row and column as indicated
in the Fig. 8c. All except one row and one column would

Fig. 9. Phase 1 and 2 for even-ntorus. (a) Phase 1; n = 10. (b) Phase 2;
n =4.

spend six timesteps: the middle row needs only five
timesteps, while the middle column needs seven. Our
modification to the algorithm is to cut short the Phase 2
execution for the middle column by one step, but use the
unused timestep in the middle row to make up for it, as
follows:

For the middle column, for Phase 2, instead of
(0,2) — (4) — (6, 8), we do the gossip for just (0) — (4) — (6).
This takes three timesteps instead of the original five, but
the result would be that v; will not receive (8), v4 will not
receive (2) and (8), and v; will not receive (2). Now, we
have both the middle row as well as the middle column that
have one unused timestep (they take 1+4 and 2+3
timesteps, respectively). We can make use of these unused
timesteps to deliver (2) and (8) to vy, v4, and v7, as shown in
the figure. (8) is available in v3 as early as ¢ = 3 (the second
step of Phase 2) and, so, v3 can send (8) to v, any time before
t =6, using the unused timestep. The situation for (2) is
similar. Node vy can wait until as late as ¢t = 6 to send (2)
and (8) to v; and wv;, respectively, using the unused
timestep.

With the above modification, the gossip for the 3 x 3 mesh
can finish in six timesteps, matching the lower bound.

4 THE GosSIP ALGORITHM FOR A SQUARE TORUS

With additional wrap-around edges, an n x n torus is
expected to have better performance in terms of gossiping
time than its nontoroidal counterpart of the same size. In
the following, we show that, using a two-phase strategy
similar to the one we used for the mesh, we can achieve
optimality for the even-n case and very nearly so for the
odd-n case.

41 Evenn

As in the mesh algorithm, we label the nodes as even or
odd. Consider a row, where there are n/2 even and n/2 odd
nodes. An even node of the row needs to broadcast its token
to the other n — 1 nodes. Since n — 1 is an odd number, we
impose on the token so that it would go to n/2 nodes on the
right and n/2 — 1 nodes on the left.> Note that v, is v’s

2. The left-right orientation is with respect to the “Linear view” of a row,
as shown in Fig. 9a.
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Fig. 10. Phase-1 execution for n = 9.

left-hand neighbor and vy is v,—1’s right-hand neighbor. To
implement this rule, every token will need to carry a
counter, which is set to either n/2 or n/2 —1 initially,
depending on its orientation; after every move, the counter
is decremented and a token with a zero counter value will
not be propagated any further. Alternatively, if tokens carry
the identity of their source, the distance that a token has
traveled can be easily derived, which can be used to
terminate the propagation of a token.

Fig.9a gives the dot-wire diagram of the Phase-1 algorithm
for n = 10. The number of idle edge instances is equal to n/2
because the wires that stretch towards the left are one step
shorter than those that stretch toward the right. This
number of idle instances, however, is not enough to form
a white wire for Phase 2 to take advantage of. Nonetheless,
as we will soon see, if Phase 2 can fill up all its edge
instances (or leave no more than n/2 — 1 of them idle), the
combined algorithm would still be optimal. In fact, Phase 2
can, using the following simple algorithm.

e A counter is attached to every token generated from
Phase 1 and initialized to the value n — 1.

e Every node maintains a single queue of tokens,
which contains the n/2 tokens from Phase 1 initially.

e Each node extracts and sends the tokens in its queue
to the right-hand neighbor one by one until the
queue becomes empty.

e  When a token comes to a node from the node’s left-
hand neighbor, the counter of the token is decre-
mented; the token will not propagate any further if
the counter value reaches zero; otherwise, the token
joins the queue.

Fig. 9b shows an example of the execution of this algorithm
for one row, where n = 4. After Phase 1, each node in the
row has n/2 = 2 tokens to distribute. It is easy to see that
this is the best one can do for Phase 2.

Theorem 2. Given a torus R of size n x n, where n is even. The
combined algorithm—Phase 1 followed by Phase 2 with no
overlapping—can finish the gossip in time g(R)=n?/2,
which is optimal.

Proof. Referring to Fig. 9a without loss of generality,
Phase 1 takes n/2 steps and Phase 2 takes n/2 x (n —
1) =n?/2 —n/2 steps. Hence, g(T)=n?/2, which is
optimal according to Lemma 3. ]

\
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42 0Oddn

Consider a row. With an odd number of nodes, the
Phase-1 algorithm, which we have used before, cannot be
applied directly. This is clear by looking at Fig. 10a where
two even nodes, vy and vs, become each other’s neighbor.
Note that we have rotated the row for easier viewing. If we
use the previous Phase-1 algorithm as it is, vy’s packet and
vg’s packet would collide at ¢ = 1. To solve the problem, we
pretend that there is an odd node between vg and vy and,
hence, every token that goes through the edge (vs, vy) will
take two steps instead of one. This can be achieved by
designating one of vy and vg to be a “delayer” node. The
delayer node would execute the algorithm with the
following modification.

e  For every token (either the node’s own token or one
just received from a neighbor) to be forwarded to the
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Fig. 11. Phase-2 execution for n = 9.
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TABLE 1
Summary of Results

‘ Lower bound ‘ Upper bound (this paper) ‘ Upper bound ([11]) ’

Mesh | oddn | n2/2+4+n/2 n?/2+n—1/2 n?/2 4+ 2n —5/2
evenn | n?/2+n/2 n?/2+n—1 n?/2+2n -3
n—=23 3,6 3,6 N.A.

Torus | oddn | n?/2-1/2 n?/2 +3/2 N.A.
even 7 n?/2 n?/2 N.A.

next node, delay the token by one timestep before

forwarding it.
All other nodes execute the Phase-1 algorithm as it is,
without the modification. A row has either [n/2] (Fig. 10a)
or [n/2| (Fig. 10b) even nodes. For the latter case, we assign
one of the two consecutive odd nodes to be the delayer. As
shown in Fig. 10, both cases take the same number of
timesteps—|n/2] + 1.

For Phase 2, the same algorithm as which was used in the
even case can be used. For odd n, however, the load is not
even across a row or column at the start of Phase 2. We
consider the dominating case, where there are [n/2] nodes
having one token more than the other nodes. An example of
the execution of the Phase-2 algorithm is given in Fig. 11 for
n = 9. The even nodes have [n/2] tokens and the odd nodes
have [n/2]| tokens initially. Referring to the figure, the
height of the dot-wire diagram is equal to

(n=1)/2+1) x [n/2] + ((n—1)/2 1) x |n/2]
=n?/2—n/2+1.

By adding this to Phase 1's time, we have the following:

Theorem 3. Given a torus, T, of size n x n, where n is even.
Using the combined algorithm (Phase 1 followed by Phase 2)
as described above, g(T) = (n® +1)/2 + 1.

5 CONCLUSION

Table 1 summarizes the results derived in this paper. Based
on the results, we consider the problem for the case of the
2D square torus to be settled. For the mesh, the performance
of our algorithm is better than that of the Fujita-Yamashita
algorithm by n steps. There exists a gap of n/2 between the
lower and the upper bounds derived. The case of n =3
seems to hint that any attempt to close the gap should be
targeted at the upper bound. It should also be interesting to
try to solve the problem for any value of p, as well as for
higher-dimensional meshes/ tori.

The two-phase strategy works best for square meshes/
tori because of the division of work between rows and
columns and their parallel operations. For m x n meshes/
tori, where m # n, the strategy will end up with nonoptimal
results as the time will be dominated by operations along
the longer dimension and there would be much idleness in

the the other dimension. For these structures, we should

look for a different strategy.
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