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Abstract. In many scientific and engineering applications, there are
occasions where points need to be inserted uniformly onto a sphere.
Previous works on uniform point insertion mainly focus on the offline
version, i.e., to compute N positions on the sphere for a given interger
N with the objective to distribute these points as uniformly as possible.
An example application is the Thomson problem where the task is to
find the minimum electrostatic potential energy configuration of N elec-
trons constrained on the surface of a sphere. In this paper, we study the
online version of uniformly inserting points on the sphere. The number
of inserted points is not known in advance, which means the points are
inserted one at a time and the insertion algorithm does not know when
to stop. As before, the objective is achieve a distribution of the points
that is as uniform as possible at each step. The uniformity is measured
by the gap ratio, the ratio between the maximal gap and the minimal
gap of any pair of inserted points. We give a two-phase algorithm by
using the structure of the regular dodecahedron, of which the gap ratio
is upper bounded by 5.99. This is the first result for online uniform point
insertion on the sphere.

1 Introduction

In this paper, we consider the problem of inserting points onto the sphere such
that the inserted points are as uniformly spaced as possible. There are many ap-
plications, e.g., the Thomson problem [13] which was introduced by the physicist
Sir Joseph John Thomson in 1904; the objective is to determine the configuration
of N electrons on the surface of a unit sphere that minimizes the electrostatic
potential energy, which translates directly into the problem of placing N points
on the surface of the sphere as uniformly as possible. The minimum energy con-
figuration of the Thomson problem and other configurations with uniform point
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distribution on the unit sphere play important roles in many scientific and engi-
neering applications [3, 6, 8, 9], e.g., 3D projection reconstruction of Computed
Tomography (CT) or Magnetic Resonance Images (MRI).

From the perspective of computer science, the traditional Thomson problem
is offline, i.e., the number of points is known in advance and the objective is to
place these points on the sphere as uniformly as possible. Inserting points in an
online fashion is also an interesting problem, which might have its application
in real life. An example is to assign an unknown number of volunteers as they
show up to an area where a rescue mission is in progress. In the online version,
the points are inserted over a time span, and the strategy has no idea about the
number of points to be inserted. The position of a point cannot be changed after
it has been inserted.

Any solution to the online problem is to be measured by the uniformity of
the distribution of the points. There are several ways to define the uniformity
of a set of points. Some studies define the uniformity according to the minimal
pairwise distance [7, 11]. In discrepancy theory [5, 10], uniformity is defined as
the ratio between the maximal and minimal number of points in a fixed shape
within the area. In this paper, uniformity is defined to be the gap ratio, which
is the ratio between the maximal gap and the minimal gap between any pair of
points.

Formally, let S be the surface of a 3-dimensional unit sphere. The task is
to insert a sequence of points onto S. Let pi be the i-th point to be inserted
and Si = {p1, . . . , pi} be the configuration in S after inserting the i-th point.

In configuration Si, let the maximal gap be Gi = maxp∈Sminq∈Si
2·

_

d (p, q),

the minimal gap be gi = minp,q∈Si,p6=q
_

d (p, q), where
_

d (p, q) is the spherical
distance between points p and q, i.e., the shortest distance along the surface of the
sphere from p to q. In other words, the maximal gap is the spherical diameter of
the largest empty circle while the minimal gap is the minimal spherical distance
between two inserted points. We call ri = Gi/gi the i-th gap ratio. The objective
is to insert points onto S as uniformly as possible so that the maximal gap ratio
(min maxi ri) during the insertion of the whole set of points is minimized.

The problem of uniformly inserting points in a given area has been stud-
ied before. Teramoto et al [12] and Asano et al [2] showed that the Voronoi
insertion is a good strategy on the plane; moreover, the gap ratio of the the
Voronoi insertion is proved to be at most 2. They also studied insertion onto a
one-dimensional line; if the algorithm knows the number n of the points to be
inserted, an insertion strategy with maximal gap ratio 2bn/2c/(bn/2c+1) can be
derived. If the points must be inserted at the fixed grid points, Asano [1] gave an
insertion strategy with uniformity 2 for the one dimensional case. For insertion
on two-dimensional grid, Zhang et al. [14] proved the lower bound to be at least
2.5 and gave an algorithm with the maximal gap ratio 2.828. Recently, Bishnu
et al. [4] considered some variants and measurements of the insertion on the
Euclidean space.

In the remainder of this paper, we present a strategy for online inserting
points uniformly onto the surface of a sphere with a maximal gap ratio of no
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more than 5.99. This is the first result for the problem of online insertion of
points on sphere.

2 Point Insertion Strategy

A simple intuitive idea is to greedily insert the incoming point at the “center”
of the largest empty spherical surface area. The early steps of such a greedy
approach are simple; however, when many points have been inserted, the shapes
of different local structures may vary significantly and the configuration may
become very complicated. As a result, the computational cost of finding the
largest empty spherical surface area and then computing its center may become
prohibitive.

Observe that once some points have been inserted, the sphere is partitioned
into local structures and the next point insertion within the area of some local
structure will only affect the local configuration, i.e., the spherical distances
(including the max gap and min gap) outside this area do not change. Based on
this observation, a two-phase strategy can be devised. In the first phase, we use
a polyhedron to approximate the sphere and points are inserted at the vertices
of the polyhedron. After all vertices of the polyhedron are occupied, the second
phase starts. In the second phase, we recursively compute the point positions
in all faces of the polyhedron, and the inserted points on the sphere are the
projections of these positions onto the sphere.

As mentioned before, the computation cost of the simple greedy approach
is large due to the complicated local structures on the sphere when the a large
number of points have been inserted. In this paper, a regular dodecahedron
is used to simulate the shape of the sphere. A regular dodecahedron has twelve
identical regular pentagonal faces and twenty vertices. In the first phase, handling
the insertion of twenty points on the sphere is quite straightforward and the
gap ratio is not large. The main advantage of the regular dodecahedron lies
in the processing of the second phase. Since all faces of the decahedron are
identical, we only need to consider how to insert points onto the sphere with
respect to a regular pentagon. When the number of points inserted increases,
the refinement of the regular pentagon contains local structures which can be
categorized as three types (see Section 2.2). Then according to these three types
of local shapes, we can impose a recursive procedure to compute the next point
insertion positions.

Since changing the radius of the sphere does not affect the gap ratio, for the
convenience of computation, we assume that the radius of the sphere is

√
3. Thus,

the length of each edge of the corresponding regular dodecahedron is 4√
5+1

. In

the following, we give the details of the two phases of our algorithm.

2.1 The First Phase

In our strategy, the sphere can be divided into 12 sections by projecting the 20
vertices and all edges of the regular dodecahedron onto the sphere, as shown
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in Figure 1. On the dodecahedron, eight orange vertices with coordinates (±1,
±1, ±1) form a cube (dotted lines). Let O be the center of the cube and let
φ = (1 +

√
5)/2 ≈ 1.618 be the golden ratio. Four green vertices lying at (0,

±1/φ, ±φ) form a rectangle on the yz-plane. Four blue vertices lying at ( ±1/φ,
±φ, 0) form a rectangle on the xy-plane. Four pink vertices lying at (±φ, 0,
±1/φ) form a rectangle on the xz-plane.

Fig. 1. vertex distribution of the regular dodecahedron

The insertion strategy of the twenty points is as follows.

1. First insert eight points at orange vertices with coordinates (±1, ±1, ±1),
i.e., the vertices of the cube (A,B,C,D,A1, B1, C1, D1). The order of the
inserted points is A, C1, followed by an arbitrary order of the remaining 6
points.

2. Then insert the remaining twelve points in any arbitrary order.

Lemma 1. During the insertion at the first eight vertex points of the dodecahe-
dron, the gap ratio is no more than 2.55.

Proof. After the insertion of two points at A and C1, the maximal gap and the
minimal gap are both the spherical distance between these two points, i.e.,

G2 = g2 =
_

d (A,C1).

In this case, the gap ratio r2 = 1.
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Note that the radius of the sphere is
√

3. Arbitrarily choose any one of the
remaining six points, w.l.o.g., say B. After the insertion at B, the maximal gap

is still G3 =
_

d (A,C1) =
√

3π while the minimal gap decreases to g3 =
_

d (A,B),
which is the value of

√
36 AOB. Since |OA| = |OB| =

√
3 and |AB| = 2,

6 AOB = 2 · arcsin(
√
3
3 ) = 1.231 and g3 = 2.132. Thus, the gap ratio r3 =

G3/g3 = 2.55.
After inserting any other points in this sub-phase, the value of the minimal

gap does not change while the value of the maximal gap may decrease. After all
the eight points have been inserted, the maximal gap

G8 =
√

3 · 6 AOB1 = 3.309

while the minimal gap g8 = g3. Thus at this stage, the gap ratio is G8/g8 = 1.55.
Hence, the maximal gap ratio for inserting the first eight points is 2.55. ut

Now we analyze the gap ratio for inserting the remaining twelve points at
the vertices of the dodecahedron.

Lemma 2. During the process of inserting the remaining twelve vertex points
of the dodecahedron, the maximal gap ratio for the sphere is at most 2.615.

Proof. W.l.o.g., assume that the first point inserted in this sub-phase is E, and

thus the minimal gap g9 =
_

d (A,E). At this stage, since all eight points on the

cube have been inserted, the maximal gap G9 =
_

d (A,B1) = 3.309.

g9 =
√

3 · 2 · arcsin
|AE|/2
R

=
√

3 · 2 · arcsin
2

(
√

5 + 1)
√

3
= 1.264.

Thus, the gap ratio

r9 =
G9

g9
= 2.618.

For the remaining eleven points in this sub-phase, the minimal gap will not
decrease while the maximal gap will not increase. Hence, the maximal gap in
this sub-phase is at most 2.615. ut

Lemma 3. The maximal gap ratio in the first phase is 2.618.

2.2 The Second Phase

After all the vertices on the dodecahedron have been inserted, the second phase
begins. As mentioned before, the regular dodecahedron has some good property
and consequently, further point insertions can be done recursively on the sphere
with respect to the corresponding structures of the faces of the dodecahedron
after some points have been inserted onto them. Moreover, in our strategy, we
first compute positions on the faces of the regular dodecahedron, and the true
insertions will be done at the projected positions of these computed points on
the sphere.
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By such an implementation, point insertion on the sphere is reduced to the
point insertion on the plane faces of the dodecahedron, which is much easier
to handle. However, the gap ratio on the plane (pentagon) is smaller than that
on the sphere. In the remaining part of this subsection, we first show that the
difference of the gap ratios on sphere and on plane is quite small, and then we
give the strategy of how to insert points on a pentagon.

The difference of the gap ratio W.l.o.g., we consider point insertion on the
pentagon AJBFE. First, we consider the situation where two inserted points
are both on the sphere and on the pentagon. Since only five vertices of the
pentagon satisfy such condition, there are two cases to be examined. Let the
edge of the pentagon be `, i.e., |AJ | = `. Let O′ be the center of the pentagon
AJBFE. Since |AJ |2 = |AO′|2 + |JO′|2 − 2|AO′| · |JO′| cos(2π/5), we have
|AO′| = |JO′| = 0.85`, and |OO′| =

√
R2 − |AO′|2 = 1.11`.

– First, we consider the subsituation that the two inserted points are not adja-
cent vertices of the pentagon. W.l.o.g., let A and B denote these two inserted
points. Since the angle 6 AJB = 3π/5, we can see that |AB| = 1.618`. By
the property of the regular dodecahedron, the radius of the sphere R = 1.4`.
We then have

_

d (A,B) = R · 6 AOB = R · 2 · arcsin
|AB|
2R

= 1.231R.

Thus,
_

d (A,B)

|AB|
= 1.066.

– Then we consider the subsituation that the two inserted points are adjacent
vertices of the pentagon. W.l.o.g., let A and J denote these two inserted
points. By a similar analysis, we have

_

d (A, J) = R · 6 AOJ = R · 2 · arcsin
|AJ |
2R

= 0.73R.

Thus,
_

d (A, J)

|AJ |
= 1.023.

By the above analysis, we can see that for two positions that are on the
sphere, the ratio between the spherical distance and the direct distance is mono-
tonically increasing with respect to the corresponding subtended angle.

Next we consider the situation that both of the two inserted points lie inside
the pentagon.

As shown in Figure 2, C and D are two points lying inside the pentagon,
and C ′ and D′ are their projections on the sphere respectively. Let |C ′D′| be
the direct distance between C ′ and D′; thus,

|C ′D′|
|CD|

≤ R

|OO′|
= 1.26.
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Fig. 2. Points on the plane and the corresponding projections on the sphere.

According to the previous description,
_

d (C ′, D′)/|C ′D′| ≤
_

d (A,B)/|AB|
since with respect to the sphere, the subtended angle is maximized for A and B.

Thus,
_

d (C ′, D′)

|CD|
=

_

d (C ′, D′)

|C ′D′|
· |C

′D′|
|CD|

≤ 1.34.

For any two spherical distances
_

d (A,B) and
_

d (C,D), its ratio is upper
bounded by

_

d (A,B)
_

d (C,D)
≤ 1.34 · |AB|

|CD|
.

Therefore, the comparison between two spherical distances can be reduced
to the comparison between two direct distances and the ratio would not change
much.

Insertion on the pentagon In this part, we describe how to compute the
point insertion positions on the pentagon.

The pentagon can be recursively partitioned into smaller polygons of one of
three shapes, as shown in Figure 3. For the pentagon AJBFE, by connecting
non-adjacent vertices, we can see that the pentagon is partitioned into eleven
parts, one smaller pentagon ajbfe, five isosceles triangles with vertex angle π

5
(Aae, Jja, Bbj, Ffb and Eef), and five isosceles triangles with vertex angle 3π

5
(AJa, JBj, BFb, FEf and EAe).

The isosceles triangles can be further partitioned into smaller isosceles tri-
angles of the above two shapes, as shown in Figure 4. For example, in isosceles
triangle AJj, by adding the point p1, two isosceles triangles, say Jjp1 and AJp1
emerge, which are still of the above two shapes. For isosceles triangle AeE, by
adding a point h1, AeE is partitioned into two isosceles triangles Aeh1 and
Ah1E, both of which are again of the above two shapes.

In the above description, we can see that the pentagon can be recursively
partitioned into three types of polygons. Such property can be used in the in-
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Fig. 3. The insertion in the pentagon.

(a) isosceles acute triangle (b) isosceles obtuse triangle

Fig. 4. The insertion in isosceles triangle.

sertion strategy in order to reduce the complexity of the computation.

Insertion Strategy In the insertion strategy, three queues Q1, Q2 and Q3 are
used to store these three types of shapes; for each type, the sizes of the objects in
the corresponding queue are non-increasing, where the size of a polygonal shape
is defined to be the length of its longest edge.

When a new point comes in, the following procedure applies.

– Compare the insertions on the heads of these three queues and select the
one with the largest minimal gap if the point is inserted at an appropriate
position. As shown in Figure 3, the inserted points in pentagon AJBFE
can be a, j, b, f or e, respectively; as shown in Figure 4(a), the inserted
point in the isosceles acute triangle AJj is p1; as shown in Figure 4(b), the
inserted point in the isosceles obtuse triangle AeE is h1 or h2. Assume that
the selected polygon is P .
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– Determine the point insertion position x on the corresponding polygon P .
– Note that P is partitioned into some smaller polygons. Remove P from the

head of the queue and then add these smaller polygons at the tail of the
corresponding queues.

– Find the point insertion position X which is the projection of x onto the
sphere.

Note that when we are processing a triangle, the inserted point is on an edge
of the triangle, which is also on the edge of another triangle with the same size
and of the same type or the other type. In this case, both of these two triangles
will be partitioned and removed from the queue, and the newly created smaller
triangles will be added at the tails of the corresponding queues.

Lemma 4. After a point is inserted in the above operation, in each of the three
queues, the sizes of the objects are still in non-increasing order.

Proof. This lemma can be proved as follows.

– First, we consider the pentagon. Initially, there are twelve pentagons with
the same size. When each of them is processed, a smaller one will appear and
the larger one will be removed from the queue. Since the queue is ordered in
the initial stage, the order property will hold at any time.

– Then we consider the isosceles triangle. Initially, the queue is empty and
thus it is ordered. After the partition of a pentagon or an isosceles triangle,
if the order does not hold, i.e., the size of the newly created polygon is larger
than the size of the tail polygon in the same queue. This means that the
selection criteria is violated. Contradiction!

Hence, this lemma follows. ut

Gap ratio analysis In this part, we analyze the gap ratio of the above strategy.
Since there are three different shapes, we will study all these three cases one by
one.

– First, we consider point insertion in a pentagon; the inserted points are
shown in Figure 3. Let O1 be the center of the pentagon AJBFE, as shown
in Figure 3. In this case, the maximal gap is twice of |O1A|, which is the
radius of the circumcircle of the pentagon. Thus, at this stage, the maximal
gap

G = 2 · |O1A| = 2 · 0.85` = 1.7`

where ` is the length of the pentagon.
During the point insertion operation, the minimal gap is lower bounded by
the length of the smaller pentagon. Thus, the minimal gap g is at least

|BE| − |Ba| − |eE| = |BE| − 2 · |Ba|.

Note that the length of an edge x of a triangle XY Z can be computed by
x =

√
y2 + z2 − 2yz cos 6 X. After computation, we have |BE| = 1.617`,
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|Ba| = 0.618`. Thus, g ≥ 0.38`. Therefore, the gap ratio just after point
insertion on the pentagon is at most

G

g
· 1.34 = 5.99.

– Then we consider point insertion in an isosceles acute triangle. Since all such
isosceles acute triangles are of the same shape, after insertion, the gap ratio
will be the same too. This case can be analyzed as shown in Figure 4(a), i.e.,
by considering the insertion in the acute triangle AJj. Due to the selection
criteria, the maximal gap is the spherical diameter. Thus,

G =
2 · |AJ | · |Jj| · |jA|√

(|AJ |+ |Jj|+ |jA|)(−|AJ |+ |Jj|+ |jA|)(|AJ | − |Jj|+ |jA|)(|AJ |+ |Jj| − |jA|)
.

Since |AJ | = |jA| = ` and |Jj| =
√
|AJ |2 + |jA|2 − 2 · |AJ | · |jA| cos 6 JAj =

0.618`, we have G = 1.05`.
After insertion, the minimal gap is the distance between p1 and j, Thus,

g =
√
|Jj|2 + |Jp1|2 − 2 · |Jj| · |Jp1| cos 6 jJp1.

Note that the triangle Jjp1 is still an isosceles acute triangle with the angle
6 jJp1 = π/5, and we have g = 0.382`. Therefore, the gap ratio is at most

G

g
· 1.34 = 3.68.

– Lastly, we consider point insertion in an isosceles obtuse triangle. Similar
to the previous case, we only need to consider the insertion on the triangle
AeE, which is shown in Figure 4(b). Since it is an isosceles obtuse triangle,
the maximal gap is at most twice the distance |eh1|. After insertion, the
triangle is partitioned into an isosceles obtuse triangle Aeh1 and an isosceles
acute triangle Ah1E. In this case, the minimal gap is the distance between
e and h1, i.e., |eh1|. Thus, the gap ratio at this stage is at most

G

g
· 1.34 ≤ 2.68.

Combining all the above cases, we have the following concluding theorem.

Theorem 1. The maximal gap ratio of the insertion strategy is at most 5.99.

3 Conclusion and Discussion

Uniform insertion of points is an interesting problem in computer science. With
the help of the dodecahedron and the pentagon, we give a two-phase insertion
strategy with gap ratio of no more than 5.99 in the paper.
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Is it possible to further reduce the gap ratio by using other structures? How
about some regular simpler structure, e.g., isocahedron? If we split the isocahe-
dron into four congruent sub-triangles regularly, the gap ratio will be larger since
the newly inserted points are on the side of the isocahedron. From the definition,
the maximal gap is the spherical diameter of the largest empty circle while the
minimal gap is the minimal spherical distance between two inserted points. So,
if points are inserted on the side of some configuration, the ratio might be not
good.
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