
Kakute: A Precise, Unified Information Flow Analysis System
for Big-data Security

Jianyu Jiang
The University of Hong Kong

jyjiang@cs.hku.hk

Shixiong Zhao
The University of Hong Kong

sxzhao@connect.hku.hk

Danish Alsayed
The University of Hong Kong
dibrahim@connect.hku.hk

Yuexuan Wang
Zhejiang University

The University of Hong Kong
amywang@hku.hk

Heming Cui
The University of Hong Kong

heming@cs.hku.hk

Feng Liang
The University of Hong Kong

loengf@connect.hku.hk

Zhaoquan Gu
Guangzhou University

The University of Hong Kong
guzhaoquan@126.com

ABSTRACT

Big-data frameworks (e.g., Spark) enable computations on tremen-
dous data records generated by third parties, causing various se-
curity and reliability problems such as information leakage and
programming bugs. Existing systems for big-data security (e.g.,
Titian) track data transformations in a record level, so they are
imprecise and too coarse-grained for these problems. For instance,
when we ran Titian to drill down input records that produced a
buggy output record, Titian reported 3 to 9 orders of magnitude
more input records than the actual ones. Information Flow Tracking
(IFT) is a conventional approach for precise information control.
However, extant IFT systems are neither efficient nor complete for
big-data frameworks, because theses frameworks are data-intensive,
and data flowing across hosts is often ignored by IFT.

This paper presents Kakute, the first precise, fine-grained in-
formation flow analysis system for big-data. Our insight on mak-
ing IFT efficient is that most fields in a data record often have
the same IFT tags, and we present two new efficient techniques
called Reference Propagation and Tag Sharing. In addition, we
design an efficient, complete cross-host information flow propa-
gation approach. Evaluation on seven diverse big-data programs
(e.g., WordCount) shows that Kakute had merely 32.3% overhead
on average even when fine-grained information control was en-
abled. Compared with Titian, Kakute precisely drilled down the
actual bug inducing input records, a huge reduction of 3 to 9 or-
ders of magnitude. Kakute’s performance overhead is compara-
ble with Titian. Furthermore, Kakute effectively detected 13 real-
world security and reliability bugs in 4 diverse problems, including
information leakage, data provenance, programming and perfor-
mance bugs. Kakute’s source code and results are available on
https://github.com/hku-systems/kakute.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACSAC 2017, December 4–8, 2017, San Juan, PR, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5345-8/17/12. . . $15.00
https://doi.org/10.1145/3134600.3134607

CCS CONCEPTS

• Security and privacy; • Software and its engineering→ Soft-
ware testing and debugging;

KEYWORDS

Information Flow Tracking, Data-intensive Scalable Computing
System, Big-data
ACM Reference Format:

Jianyu Jiang, Shixiong Zhao, Danish Alsayed, Yuexuan Wang, Heming Cui,
Feng Liang, and Zhaoquan Gu. 2017.Kakute: A Precise, Unified Information
Flow Analysis System for Big-data Security. In Proceedings of ACSAC 2017.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3134600.3134607

1 INTRODUCTION

Data-Intensive Scalable Computation (DISC) frameworks (e.g., Spark
[43]) enable computation on enormous data records in various do-
mains, including e-business, finance, medical analysis and military.
These frameworks allow people to write user-defined-functions
(UDFs) to process data from third parties, which can cause seri-
ous problems such as sensitive information leakage and program-
ming bugs. Tackling these problems needs fine-grained tracking of
data. For example, in an eBay order record ⟨time, creditCardId,
productID⟩, the creditCardId field is sensitive and it must not
be leaked in UDFs.

To address these problems, extant systems (e.g., Titian [19]) adopt
a record-level tracking approach. This approach stores mappings
of input and output records in each transformation (e.g., map and
groupByKey). Transformations of records (or lineage) are obtained
with a simple recursive traversal of the mapping tables. By do-
ing so, given a buggy output record, input records that produce
the output can be identified, the so-called data provenance prob-
lem [19]. Data provenance with high precision (i.e., identifying
only bug-inducing inputs) is crucial for many security problems,
including post-incident investigation [2], integrity verification [27]
and privacy control [26].

Unfortunately, this record-level tracking approach has two major
issues. First, it is imprecise for provenance, as it will return many ir-
relevant records, especially for programs with many-to-many trans-
formations (e.g., groupByKey). DISC systems treat many-to-many
transformations as black boxes as these transformations usually
contain UDFs. As a result, all inputs that go through a transforma-
tion will be returned when back-tracing one output (§3.3). Second,

https://github.com/hku-systems/kakute
https://doi.org/10.1145/3134600.3134607
https://doi.org/10.1145/3134600.3134607

ACSAC 2017, December 4–8, 2017, San Juan, PR, USA Jiang et al.

record-level tracking is too coarse-grained. For example, a small
portion of fields in a record may have sensitive tags, and tracing at
field-level granularity is necessary for information control [1].

Conventionally, Information Flow Tracking (IFT) [33] is a fine-
grained approach to address security and reliability problems, in-
cluding preventing sensitive information leakage [14], detecting
SQL injections [41] and debugging [15, 24]. Security tags are at-
tached to variables in a program, and these tags will propagate
through computations. By propagating and checking tags (e.g.,
checking tag in I/O functions), fine-grained information control
policies are enforced. DyTan [9] shows that IFT can be used to
build a unified framework for various security problems. Moreover,
various IFT systems have been built for mobile apps [14, 40], cloud
services[35] and server programs [21].

However, no IFT system exists for big-data, and we attribute
it to two major challenges. First, existing IFT systems incur high
performance overhead, especially for data-intensive computations.
We ran a recent IFT system Phosphor [3] in Sparkwith aWordCount
algorithm on a dataset that is merely 200MB, and observed 128X
longer computation time compared with the native Spark execution
(§8.3).

The second challenge is on the architecture of DISC frameworks.
DISC frameworks usually contain shuffle procedures which redis-
tribute data across hosts (DISC frameworks’ worker nodes). How-
ever, most existing IFT systems ignore dataflows across hosts. For
the few [35] who support cross-host dataflows, transferring all
tags in shuffles consumes excessive network bandwidth. Therefore,
efficient cross-host tag propagation is crucial but missing in DISC.

This paper presents Kakute1, the first precise and fine-grained
information flow analysis system in DISC frameworks. Our key
insight to address the IFT efficiency challenge is that multiple fields
of a record often have the same tags. Leveraging this insight, we
present two new techniques, Reference Propagation and Tag Shar-
ing. Reference Propagation avoids unnecessary tag combinations
by only keeping the lineage of tags in the same UDF, while Tag
Sharing reduces memory usage by sharing tags among multiple
fields in each record. To tackle the architecture challenge, Kakute
completely captures dataflows in shuffles, and it efficiently reduces
the amount of transferred IFT tags using Tag Sharing.

We implemented Kakute in Spark. We leverage Phosphor [3],
an efficient IFT system working in the Java byte-code level. Kakute
instruments computations of a Spark worker process to capture
dataflow inside user-defined-functions (UDFs). Dataflow informa-
tion is kept in a worker process and Kakute propagates it to other
processes while shuffling. Therefore, IFT is completely captured
across hosts and processes. In this paper, DISC frameworks and
Kakute are trusted; UDFs are untrusted and they may be malicious
or buggy. Kakute provides different granularities of tracking with
two types of tags: Integer and Object tags. Integer provides 32
distinct tags, which is suitable for detecting information leakage
and performance bugs. Object provides an arbitrary number of
tags, which is suitable for data provenance and programming de-
bugging. Kakute provides a unified API to tackle diverse problems.
Based on this unified API, we implemented 4 built-in checkers for

1Kakute is a precise, multi-purpose weapon used by Ninja.

4 security and reliability problems: sensitive information leakage,
data provenance, programming and performance bugs.

We evaluated Kakute on seven diverse algorithms, including
three text processing algorithms WordCount [38], WordGrep [25]
and TwitterHot [38], two graph algorithms TentativeClosure [38]
and ConnectComponent [38], and two medical analysis programs
MedicalSort [36] and MedicalGroup [36]. These algorithms cover
all big-data algorithms evaluated in two related papers [17, 19].
We evaluated these algorithms with real-world datasets that are
comparable with related systems [8, 17, 19]. We compared Kakute
with Titian [19], a popular provenance system, on precision and
performance. Our evaluation shows that:
• Kakute is fast. Kakute had merely 32.3% overhead with
Integer tag, suitable for production runs.
• Kakute is precise in data provenance. Compared with Titian
[19], Kakute drilled down the actual bug-inducing input
records by using Object tags, a huge reduction of 3 to 9
orders of magnitude reduction. Meanwhile, Kakute had
167% performance overhead on average, comparable with
Titian and suitable for testing runs.
• Kakute effectively detected 13 real-world security and reli-
ability bugs presented in other papers [11, 17, 37].

Themain contribution of this paper is the first precise and unified
IFT system for big-data. Other contributions include two new tech-
niques that make IFT efficient and complete in DISC. Kakute can
be applied to tackle a broad range of security and privacy problems
in big-data (e.g., integrity verification [27] and privacy-preserving
data mining [31]).

The remaining of the paper is organized as follows. §2 intro-
duces the background of data-intensive scalable computing and
information flow tracking. §3 gives an overview of the whole sys-
tem architecture and workflow. §4 introduces dataflow tracking
runtime in Kakute. §5 provides detailed information of our system
design. §6 introduces our system API for building applications and
how we use that api to resolve 4 reliability problems. §7 gives imple-
mentation details, §8 presents our evaluation results, §9 introduces
related work, and §10 concludes.

2 BACKGROUND

2.1 Data-intensive Scalable Computing

DISC frameworks (e.g., Spark [43], DryadLINQ [42], MapReduce
[12]) are popular for computations on tremendous amounts of data,
to finish tasks like data analysis and machine learning. Computa-
tions are split across hosts and run in parallel, such that computation
resources are efficiently used. Shuffles are frequent and sometimes
are performance bottlenecks in DISC.

Many-to-many transformations (e.g., groupByKey, join and
aggregateByKey) are prevalent inDISC. Eachmany-to-many trans-
formation takes many input records and generates many output
records. Given a buggy output record, extant data provenance sys-
tem [8, 17, 19] will report all input records going through this trans-
formation, including many irrelevant input records that generate
other output records.

To avoid excessive computation, many DISC systems adopt the
lazy transformation approach. [34, 42, 43]. Spark uses lazy transfor-
mations (e.g., map) for efficiency, and calls to these transformations

A Precise, Unified Information Flow Analysis System for Big-data Security ACSAC 2017, December 4–8, 2017, San Juan, PR, USA

!!!!!!!!!!!!"!!#$%&'()*$'+,

-./)012+/3+,
!"#$%

&'()&*+

4)% 5+6&/+

#7(

82&9+

6*:3

;.,3+,

<.6+!=

>0.?)0

12+/3+,

4):'+,

.&'%&'

;.,3+,

<.6+!@ !!!!!!!!!!!!"!!

-./)012+/3+,
!"#$%

&'()&*+ #$%&'()*$'+,

A

!!!!!!!!!!!!"!!B)')C.D!5&$'*E+

B)')C.D!5&$'*E+

#7(

82&9+,

Figure 1: Kakute Architecture.

only create a new data structure called RDD with lineage. The real
transformations are only triggered when collecting operations (e.g.,
collect, count) are called. These collecting operations trigger
transformations along lineages, where unnecessary computations
are avoided. Kakute leverages the lazy transformation feature in
DISC to present its new Reference Propagation technique (§4.2).

2.2 Information Flow Tracking

Information Flow Tracking is initially proposed for preventing sen-
sitive information leakage [33]. IFT attaches a tag to a variable (or
object), and this tag will propagate throughout the computation.
For example, a variable-level dataflow tracking will involve combi-
nations of tags of two variables in each instruction, using an IOR
operation. Different granularities of computation may incur differ-
ent levels of computation overhead. Lower level (e.g., byte-level)
tracking will consume a lot of resources, as each byte of data in an
IFT system has its own tags [21].

Multiple research has been focusing on efficiency and appli-
cations of IFT. Shadowreplica [20] proposed to make use of the
multicore resources while SHIFT [7] suggests accelerating dataflow
tracking with hardware support. Several research [15, 24] adopts
IFT for providing debugging primitives to improve software reli-
ability. IFT has been applied to various areas, such as preventing
sensitive information (e.g., GPS data and contacts) leakage in cell-
phone [14, 40], providing secure cloud services [35] and server
program runtime [21]. To the best of our knowledge, no IFT system
exists for big-data.

3 OVERVIEW

Kakute currently works with Spark, and it can be integrated with
other DISC frameworks [34, 42] as long as these frameworks have
UDFs, work with Java and adopt lazy transformation.

3.1 Threat Model

We consider a data processing service with multiple parties. The
hardware infrastructures, DISC frameworks andKakute are trusted.
An organization owns some sensitive data, and the data is trusted.
The organization allows a third-party analytic to write UDFs as
programs to process data. The third-party analytic may cooperate

with a malicious attacker that tries to get the sensitive information.
Therefore, the programs running in the DISC frameworks are not
trusted, and they may leak data through UDFs or output.

3.2 Architecture

Spark has a master scheduling tasks and collecting final results,
and workers conducting the actual computation. Kakute adds 5
components in Spark to do IFT transparently, so that people who
write UDFs do not need to be aware of Kakute.

Figure 1 shows the architecture of Kakute with 5 key compo-
nents: DataflowRuntime, InputTainter, LocalChecker, GlobalChecker
and Shuffler. We leverage Phosphor (§4.1), a recent IFT implemen-
tation, with variable-level IFT by instrumenting Java bytecode.

In Kakute, input records go through InputTainter which auto-
matically adds tags to the inputs. Throughout the whole computa-
tion procedure, tags of data will be propagated within a worker and
across hosts. In each DISC transformation, Kakute users can decide
if tags of the computation results will be sent to GlobalChecker.
Finally, Kakute users can decide whether tags going to network
and filesystem should be checked by LocalChecker. Kakute users
implement their decisions using checkers (§6).
DataflowRuntime provides the basic dataflow tracking function-
alities in Kakute. It intercepts Java ClassLoader and instruments
Java bytecode to provide tag storage and propagation code. Cross-
host propagation (§4.4) is implemented in this component.
InputTainter automatically attaches tags to the inputs of appli-
cations. InputTainter intercepts input functions (e.g., textfile in
Spark), and uses the APIs provided in Table 1 to automatically add
tags to input records. Programmers can write their own InputTain-
ter by specifying taint policies (§5.2).
LocalChecker enforces per-worker security policies (e.g., a sensi-
tive field must not flow to an I/O function in a UDF). Kakute allows
data providers to specify sensitive fields in data records (§6.2), and
it allows security experts who write the LocalChecker to specify
dangerous functions (§5.3). On a worker node, a LocalChecker in-
tercepts each UDF with an IFT module.
GlobalChecker enforces cross-host policies (e.g., aggregating the
number of suspicious I/O events among all hosts). Kakute allows
security experts to collect reports from the LocalChecker in each
host (§5.4).
Shuffler intercepts shuffle flows to efficiently carry IFT tags across
hosts (§4.4).

3.3 Example

We consider an example used in data provenance system [17, 19].
Suppose a data scientist in a movie live-stream website writes a
program to find out the top-5 ranked movies of each user from a
user-movie rating database. The input of the program is a collection
of rating records in the form of ⟨userId, movieId, rating⟩, describing
a user’s rating for a movie. The program first uses a groupByKey
operation to group rating records for each user, then sorts records
in each group to find out the top-5 rated movies. However, this data
scientist is not well trained and her program crashes on the (John,
MovieC, 5) output record.

Data provenance with high precision is crucial for identifying
bug-inducing input records. Figure 2 shows the precision of Kakute

ACSAC 2017, December 4–8, 2017, San Juan, PR, USA Jiang et al.

 (John, MovieA, 4)

 (Tom, MovieA, 3)

 (John, MovieA, 4)

 (John, MovieC, 5)

groupByKey mapValues(_.sort().top(5))

1

2

1

4

input

John -> [1, 2, 3]

Tom -> [4, 5, 6]

!"#$%#$&'$()$*+,-
[2, 3, 6] -> Tom

Worker A

Worker B

Local mapping storageLocal mapping storage

Kakute

Titian

 (Tom, MovieC, 1)3 (John, MovieB, 3)5

 (John, MovieC, 5)

 (John, MovieA, 4)

4

1

 (John, MovieB, 3)3

 (John, MovieC, 5)

 (John, MovieB, 3)

 (Tom, MovieA, 3)

 (Tom, MovieC, 1)

4

5

2

3

 (Tom, MovieB, 4)6 (Tom, MovieB, 4)6

 (Tom, MovieB, 4)

 (Tom, MovieA, 3)

6

2

 (Tom, MovieC, 1)3

 (John, MovieA, 4)

 (Tom, MovieA, 3)

(John, MovieA, 4)

 (John, MovieC, 5)

1

2Worker A

Worker B

 (Tom, MovieC, 1)3 (John, MovieB, 3)

 (John, MovieC, 5)

 (John, MovieA, 4)

1

2

 (John, MovieB, 3)3

 (John, MovieC, 5)

 (John, MovieB, 3)

 (Tom, MovieA, 3)

 (Tom, MovieC, 1)

4

5

 (Tom, MovieB, 4)6 (Tom, MovieB, 4)

 (Tom, MovieB, 4)

 (Tom, MovieA, 3)

4

5

 (Tom, MovieC, 1)6

backtrace
backtracein -> out

mapping

Figure 2: Precision of Kakute and Titian on tracing back the (John,
MovieC, 5) record. A solid rectangle represents a record. Red records

are Kakute’s back-tracing records and blue records are Titian’s.

and Titian: Kakute drills down the only one bug-inducing in-
put record, while Titian reports all input records going through
the groupByKey transformation that produces (John, MovieC, 5).
Kakute has much higher precision than Titian because Kakute
assigns an input record with a unique ID “4” using Object tag, and
this ID propagates through transformations. Tracing back inputs
from an output record can be achieved by directly retrieving IDs in
the output record with Kakute’s API (§5.1).

4 EFFICIENT IFT

In the section, we introduce an efficient and fine-grained IFT sys-
tem for DISC frameworks. We first introduce Phosphor and then
present our techniques to make IFT efficient and complete in DISC
frameworks.
4.1 Phosphor Background

Phosphor [3] is a recent portable and precise IFT system in Java.
Phosphor instruments Java bytecode, by adding tag fields to class
definitions and local variables in functions, and adds propagation
code to function bytecode. Phosphor adds shadow fields for primi-
tive variables (e.g., int and double) and an extra field for an object to
store the tag. As native code execution exceeds scope of JVM, Phos-
phor can not precisely propagate tags in native methods. Therefore,
Phosphor adopts the approach of combining all tags in function
arguments and propagates them to all return variables.

Phosphor provides Integer and Object tags. For Integer tags,
each tag is a 32-bit Integer initialized to 0, so at most 32 distinct
tags are available. For all operations, Phosphor directly does a IOR
(a bit-wise OR) on tags of all operands.

Phosphor handles Object tags in a different way. For assigning
operations in Java, Object tags are copied. Each Object tag (initial-
ized to null) has a list of tag labels. For arithmetic operations such
as + and -, an new Object tag is created for combining Object

!"#$%&'(%)*)"'(

!"#$%+'(!"#$%,'(

21

!"#$!"#$%!$%$&'%(!&'()!)(*+,-./01#

!2#$!)($%$!"#$%!&*,3/1,456,5!-7-#

!8#$!)(&19::,1;!#

!"#$%&'$()

!<0<;<(:#$<;,'"$=(+$;(>$?@$"A$<;,'2$=(+$;(>$?@$2

item1

B(>$*,.,*,01,

CDE,1;$;(>

F<;=$*,19*3$?@$"

*,19*3$G

B(>$9F0,*+=<)

!HI9=0$J9K<,L$MN#$!HI9=0$J9K<,4$8N#$

!I9=0A$M#

!I9=0A$8#

!I9=0A$O#$

'%(+A$&'%(,$=(K,$;(>$"A$2 !"#$%!%&'%(!&'()!)(+,-./01#

!)(%!"#$%!&*,3/1,456,5!-7-# !)(&19::,1;!#

item2

score1

item1
score2

item2

item1

score1

item2

score2

sum

!I9=0A$O#$

item1

score1

item2

score2

sum

1 2
1

2

1 2 1 2

1

x

Figure 3: Tag Propogation process with the given code.

tags from operands of the operations. Details of the propagation
rules can be found in a previous work [3].

To improve Phosphor efficiency, Kakute instruments only the
Java bytecode of UDFs. The byte-code instrument procedures are
done at runtime. When a Java class file is loading into JVM, the
intercepting agent will instrument its byte-code and stores the
instrumented code into a local cache file for latter usage. Kakute
just reads the cached instrumented byte-code when the class is
loaded next time, avoiding excessive instrumentations.

4.2 Reference Propagation

Kakute extends the original tagging system with Integer and
Object tags. Integer tags have better performance in most cases
while the number of distinct tags is unlimited for Object. Object
tags can support an unlimited number of tags, bringing more flexi-
bility for IFT. We keep the original propagation design of Phosphor
for Integer tag, which simply does an IOR for tags of two operands
that take part in a computation.

For Object tag, however, we reconstruct the whole tagging
system. Our evaluation shows that Phosphor’s list-based tagging
design is not suitable for DISC frameworks, because a tremendous
number of tags exist in these frameworks and combinations of two
tags are extremely time-consuming (§8.3). The cost of combining
two tags is proportional to the length of the tag lists in these two
tags.

We present a new technique called Reference Propagation for
making Object tag propagation efficient in DISC. This technique
leverages Spark’s lazy transformation feature (§2.1). Spark firstly
stores the transformation sequences of records as lineage, it then ex-
ecutes the lineage only when collecting operations (e.g., collect)
are called. Similarly, Kakute tracks the lineage of the Object tags
by using references of these Java objects, and it only computes the
actual Object tags on collecting operations.

Figure 3 shows the idea. Initially, two string records, item1 (“John
MovieA 5”) and item2 (“John MovieB 3”), are input records, and

A Precise, Unified Information Flow Analysis System for Big-data Security ACSAC 2017, December 4–8, 2017, San Juan, PR, USA

(Tom, 32, NewYork, 00001, [1, 2,…,3])

Tag A Tag B

…

Record 1

(John, 15, NewEngland, 00002, [5, 1,…,4])

Tag C Tag DRecord 2

(Lee, 50, Texas, 000100, [3, 2,…,10])

Tag E Tag FRecord n

!"##$%&'()*&+)*$,--,./

Figure 4: Tag object sharing between fields in each record.

they have Object tag ID 1 and 2 respectively. After Step (1), the
first and third parts of each rating string are parsed as a tuple, and
record score1 and score2 are generated from item1 and item2.
The reference of record item1’s tag will propagate to score1. As a
result, no extra tags are created. After Step (2), record score1 and
score2 have the same key and are combined to a new record sum.
At this moment, sum’s tag is still a reference to two existing tags.
After Step (3), a new tag for sum is generated, and its labels is the
combination of two existing tags of score1 and score2 (based on
the Spark lineage between scores and sum).

Overall, Phosphor takes four tag computations (arrows in dash)
in total, including two in Step (1) and two in Step (2), because
Phosphor’s tag propagation is not lazy. In contrast,Kakute has only
two tag computations in Step (3), as it only propagates references of
tags in Step (1) and Step (2). Reference Propagation greatly reduces
unnecessary tag propagation (§8.3).

4.3 Tag Sharing

We observed that different fields of a data record often share the
same IFT tags in DISC frameworks. Kakute introduces a Tag Shar-
ing mechanism. Upon adding tags to fields, Kakute first checks
if this tag is in its own per-host cache, and it retrieves the corre-
sponding Object tag directly if it exists. If there are no such tags,
Kakute creates a new Object tag and keeps it in the cache. Tag
Sharing adopts a simple FIFO cache mechanism. Kakute computes
the hash of an Object tag and determines if there is a cache hit or
not.

Figure 4 shows how different fields of a medical record share
tag objects in Kakute. Each record has name, age, city, ID and a
list of numbers that represents one’s medical examination results.
In each record, patients’ personal information can have the same
high sensitivity tags and all examination results have the same low
sensitivity tag. Therefore, Kakutemaintains only two tags for each
medical record, as shown in Figure 4, greatly reducing memory
space and computation overhead compared to conventional IFT
systems (§8.3).

4.4 Tag Propagation Across Hosts

In Kakute, both records and tags are modeled as Spark tuples. For
instance, if a data record is (1, (2, 3)), then the tag tuple can be (tagA,
(tagB, tagB)). Adding, removing and getting tags can be done by
Kakute’s coarse-grained APIs (Table 1) or InputTainter (§5.2).

To make IFT complete in DISC frameworks, Kakute is able to
propagate tags across hosts and to persistent storages like disk

Function Description

Coased-grain API

setTaint(T→ Any) : RDD[T]

→ RDD[T]

set tuple tags for each record in a data collec-
tion

removeTaint() : RDD[T] →

RDD[T]

remove all tags for each record

getTaint() : RDD[T] →

RDD[(T, Any)]

get data tuples along with its tags, to ensem-
ble (data, tag) pairs

InputTainter and TaintChecker

setChecker(IFTChecker) set the checker to specify tracking policies,
inputTainter and so on.

Appllication API

conf.dft.traffic.profiling,

conf.dft.traffic.scheme

start profiling of application performance;
choose partition scheme from profiling

conf.dft.security=confFile set up fine-grained information control
traceBack(record) → inpu-

tRecordSet

trace back to input of producing these records

getErrorRecords → error-

Records

return records that throw exceptions

getErrorRecordsWithUDF return records and UDF that throw exception
→ List[(errorRecord, func)]

coverageAdd(RDD[T]) add the coverage dataset, so that the coverage
checker will track the dataset

coverageTest(out, RDD[T]) test coverage of the input dataset

Table 1: Kakute API

when shuffling or checkpoint happen. As both data and tags are
tuples, Kakute adopts a straightforward approach of wrapping
tags and data into (data, tag) pair and transfers this pair to other
hosts or disks. When other hosts get this pair, they unwrap it and
attach the tags to the data.

When wrapping the (data, tag) pair, extra computations may
be necessary. With Integer tags, Kakute directly retrieves tags
from data and generates the (data, tag) pair. On the other hand,
with Object tags, tags are computed from the lineage in a Taint,
and tags are represented by an array of tag labels. After tags are
computed, the lineage of a Taint is cut (dependency will be set to
null), so that unused Taint objects will be collected by Garbage
Collector (GC).

Kakute further adopts a key-value representation of tag tuple
to reduce network bandwidth. For example, a tag tuple (tagA, (tagB,
tagB)) can be translated to Map(1→ tagA, 2→ tagB , 3→ tagB).
Then, when tags are 0 or null, this Map can be compressed. In the
previous case, if tagA, tagB are both null, the key-value repre-
sentation is Map(). Therefore, shuffle network bandwidth is greatly
reduced when only some data in the system have tags.

Kakute also provides fine-grained supports for objects, array,
Map and iterable objects. when generating the tag tuple, Kakute
retrieves tags from each element of an iterable object, and put
them to an ArrayTag which models a list of tags in an iterable
object. For support of user-defined objects (e.g., Student), Kakute
retrieves instrumented fields in ObjectTainter (§5.1) and propa-
gates only those tags to other hosts or disks. For objects without
ObjectTainter, Kakute get tags from all their fields, and com-
bines them into a single tag, then this single tag will propagate
to other hosts or persistent storage. At the time when other hosts
receive this tag, Kakute attaches this tag to this object itself and
all its fields.

5 KAKUTE RUNTIME

This section introduces Kakute’s runtime. We first explain us-
age of Kakute’s APIs and then give the design of each runtime
component.

ACSAC 2017, December 4–8, 2017, San Juan, PR, USA Jiang et al.

5.1 Kakute API

Table 1 shows Kakute’s APIs for manipulating tags (e.g., set
and get). Adding tags to a collection of data is straightforward
in Kakute. Figure 5 illustrates how to use Kakute’s API to set or
get tags for a shopping order dataset (each record contains time,
creditCardId, productId).

Kakute supports fine-grained tagging for objects (e.g., user-
defined Student). To add tags to a user-defined class, programmers
need to implement an ObjectTainter, which tells the framework
the fields in an object that should be tagged. In fact, ObjectTainter
is a wrapper of a list of field names in a class. Kakute will read
these field names and add tags to the fields of a object through
Reflection in Java. If no ObjectTainter is provided for a object,
tags will be added to all fields of the object.

For tag retrieval, programmers can use getTaint() to get data
along with its tag as (data, tag) pair. With getTaint, programmers
are able to get tags of a specific data record. Other APIs including
removeTaint, which will get rid of tags in specific records. Full
list of APIs is in Table 1.

1 // add tags 0, 1, 0 to time, creditCardId and productId
2 order_tag = order.setTaint(t => (0, 1, 0))
3
4 // add tags only when the order use credit card
5 order.setTaint(t => if (t.creditCardId != 0) (0, 1, 0) else 0)
6
7 // return tag of orders as (order, tag) pair
8 orderWithTag = order_tag.getTaint()

Figure 5: Code for manually adding/getting tags of data.

5.2 InputTainter

InputTainter is used to provide configurable APIs for automati-
cally adding tags to input data. In most information flow analysis
programs, only input data needs to be tagged. Programmer can
specify their own implementation of InputTainter which takes in-
put type and input detailed information (e.g., filename) as function
parameters and it returns the tagged input. InputTainter intercepts
input data functions (e.g., textfile and parallel in Spark), so
each data record is tagged. We implemented a SringInputTainter
that provides char-level tagging for string input. It first reads a
metadata file (see the format in Figure 6), splits the string, add tags
according to the meta file and combines into the original string.

5.3 LocalChecker

LocalChecker is to provide a user-defined interface for checking
tags in some particular points (e.g., I/O functions). Programmers
can provide a checker function in LocalChecker for some danger-
ous functions. For example, writeInt(int)→ checkFuncmeans
that checkFunc will be invoked before writeInt is invoked. For
information flow tracking, a instrumented writeInt(int) is mod-
ified to writeInt(int, Taint[]), and the extra parameters (of
type Taint) are tags of the original parameters. All tags of the inter-
cepted functions will be passed to the checkFunc which is defined
as checkFunc(Taint). In information control (Figure 6), checkFunc
checks if there are security tags of the function parameters, notifies
GlobalChecker and terminates the program if the tag is not 0 (sensi-
tive). This instrument process is done by the intercepting agent that

input.txt.meta

1 // only the second column of input records (creditCardId) is tagged
2 SecurityLevel=0, 1, 0

PrivacyLeakageChecker.scala

1 class PrivacyLeakageChecker extends IFTChecker {
2 override val inputTainter = (in: Iterator[Any], file: String) => {
3 val levels = parse(file + ".meta")
4 setTaint(in, levels)
5 }
6 // tags of parameters in intercepted functions (I/O function)
7 // are passed to checkerFunc (tag of i in function writeInt(int i))
8 override val localCheckerFunc = (tag: Int) => {
9 if (tag != 0) {
10 notifyGlobalChecker(IllegalAccess(getStackTrace))
11 throw new IllegalAccessError("output contains tags")
12 }
13 }
14 override val globalChecker = (msg: Message) => {
15 case e:IlleagalAccess => // write e to log
16 }
17 }

Figure 6: Meta file format and the checker for information control.

Tags are automatically attached to input records by InputTainter.

instruments Java byte-code. The LocalChecker can also collect
other information such as exceptions to the GlobalChecker.

5.4 GlobalChecker

GlobalChecker is for cross-host information collections in Kakute.
GlobalChecker is a component in master that collects information
from the LocalChecker in every worker. On a particular event
of UDF execution, data shuffling and exceptions, per-host event
information is sent from all LocalCheckers to the GlobalChecker.
For example, the GlobalChecker of a information control checker
gets all violations of security policies from local checkers (Figure 6).

6 KAKUTE CHECKERS

This section first introduces a guideline for developing checkers,
then presents checkers for 4 security and reliability problems, in-
cluding fine-grained information control, data provenance, pro-
gramming bugs and performance bugs.

6.1 General Pattern of Developing Checkers

To develop a checker, programmers need to implement 3 elements:
InputTainter, LocalChecker and GlobalChecker. First, an In-
putTainter is to specify how input records should be tagged. Sec-
ond, the role of LocalChecker is intercepting specific functions,
and return result to GlobalChecker. Third, the GlobalChecker
defines the behaviors after receiving checking results from Lo-
calChecker. In total, each checker took only 52 to 101 LoC to imple-
ment in Kakute.

6.2 Fine-grained Information Control

IFT is used for providing fine-grained information control to prevent
leakage of sensitive information for years [14, 33]. Each variable
is attached with a tag and propagated throughout all computation.
And information control policies are enforced in some functions
(e.g., I/O and system call). We built fine-grained information control
in big-data semantics, preventing information leakage through
computation or result output in DISC frameworks.

A Precise, Unified Information Flow Analysis System for Big-data Security ACSAC 2017, December 4–8, 2017, San Juan, PR, USA

We adopted a similar tag design as TaintDroid [14]. 32 distinct
tags are used to define different security levels which are enough
for most programs [40]. When two variables are involed in an
operation, tags are also combined using an IOR operation. We
implemented an InputTainter that read an extra file that contains
security levels for every fields in inputs. If input file is in.txt, then
the tag configuration file should be in.txt.tag. We implemented
a LocalChecker that intercepts every I/O functions, and it checks
whether data through I/O functions has security tags. If tags are
found, a message with details of tags and data will be sent to the
GlobalChecker. LocalChecker also checks if there are tags in output
functions (e.g., collect). We made a GlobalChecker that asks the
LocalChecker to stop workers as long as there are security tags in
I/O or output functions.

6.3 Data Provenance

Data provenance is crucial for many security problems, includ-
ing post-incident investigation [2], integrity verification [27] and
privacy control [26] There are two kinds of tasks in data prove-
nance: finding inputs that produce specific output records (back-
tracing) and finding outputs that specific input records will produce
(forward-tracing). Back-tracing is for finding inputs that produce
specific outputs, while forward-tracing is for finding outputs that
some input records produce. Precision is crucial for both forward
and backward tracing. For example, extra efforts should be make
to identify the actual input records in a back-tracing if the num-
ber of back-tracing records is too many. We wrote an InputTainter
that adds unique tags to all records in a data collection. These tags
are unique to identify input records, and will propagate through
computations. To trace an output record to its input, programmers
retrieve tags from the record and get the input records accordingly.
We implemented a trace function (Table 1), and it automatically
retrieves tags from the traced records and returns the related input
records.

Kakute’s approach for data provenance is precise in DISC frame-
works. Many-to-many operators with UDFs in DISC frameworks
make a black box of transformation, making it difficult to get pre-
cise tracing result. Traditional data provenance systems also have
similar problems [10]. However, IFT opens the black box of trans-
formation. Propagation of the tag with IFT is fine-grained and more
precise data provenance support is achieved.

6.4 Programming Bugs

Debugging programs is tricky and time-consuming [17] in DISC
frameworks. A bug may be caused by multiple transformations
with UDFs. We built a debugger that preserves fine-grained lineage
information, which helps programmer to identify and fix bugs eas-
ily.
Kakute provides the following debugging methods:
Record Backtracing returns the input records that produce an
exception or problematic outputs. After running the program again
with these few input records, programmers identify the problems
in a step by step debugging (with JDB).
Local Replay collects the UDF and inputs when there are errors
or exceptions. After running the program locally with these input,
programmers may find out the programming bugs.

FlowVerification verifies program flows defined by programmers.
For example, when multiplying Matrix A2∗2 and Matrix B2∗2, the
result Matrix R1,1 must be computed from A1,1, A1,2, B1,1 and B2,1.
Programmers can provide this rule for verifying the MatrixMul-
tiplication programs. The debugger uses some default rules for
verifications: all input data should be covered in the computation
result, and a field in the output should not come from nowhere. The
debugger will show warnings when there are such problems.

We wrote an InputTainter that attaches unique tags for each
field in records. Each record is identified by an id, and fields in a
record are identified by an index. Tags are in the form of (recordId,
fieldId) for each field. For instance, (John, 32, Ken) can have tag
((1, 1), (1, 2), (1, 3)). We implemented a LocalChecker that collects
error records and their UDFs. This LocalChecker sends exception
information to GlobalChecker. GlobalChecker gets these records
and traces these records to input. Then, Record Backtracing and
Local Replay are achieved. GlobalChecker also translates flow rules
like (out entry 1→ in entry 2) to rules of checking tag 2 in output.

6.5 Performance Bugs

Shuffle operations in DISC frameworks can consume excessive I/O
resources with naive partition of data. An efficient partition scheme
can greatly reduce shuffle traffic and speed up computation by par-
titioning only some fields of records [45]. Consider this transforma-
tion: rating.map(t→(t._1._1, t._2)) .reduceByKey(_+_).
One record ((John, MovieC), 5) in rating has the transforma-
tion of ((John, MovieC), 5) → (John, 5) → (John, 8). Shuffles in
reduceByKey will partition data on “John”. If an efficient partition
scheme that only partitions data records based on the user name
field can be inferred automatically, then shuffle traffic will be 0
compared with a random partition scheme on all fields.

We built a checker for automatically inferring an efficient par-
tition scheme. We implemented an InputTainter that adds unique
tags to each field in a record, upon each UDF input. Then, we im-
plemented a LocalChecker to collect tags from each field in records
of each UDF output. Thus, the field dependencies of each trans-
formation are collected by simply retrieving tags from each field.
The GlobalChecker collects this information from all LocalChecker
and combines them together. With the inferred field dependency of
UDFs, we adopted a simple backtrace algorithm that computes the
efficient partition scheme (similar to [5, 45]). Kakute’s partition
scheme is inferred in profile run with small set of data, so Kakute
will not bring any overhead to production runs, making its inferred
partition scheme a free gift to improve production run performance.

7 IMPLEMENTATION

We implemented Kakute in Spark [43] using Scala with 3500 LoC.
We also modified Phosphor for our Reference Propagation and
Tag Sharing with several bugs fixed. Most of our implementation
is independent of Spark except for the performance bug checker,
because this checker needs to modify Spark in order to get UDF
source code debug information (§6.5).

7.1 Adding, Getting and Removing tags

Wewrapped APIs provided by Phosphor to provide general APIs for
tagmanipulation. To provide the high-level APIs in §5.1, we extend 3

ACSAC 2017, December 4–8, 2017, San Juan, PR, USA Jiang et al.

types of RDD objects in Spark, namely TaintedRDD,WithTaintRDD
and TaintLabelRDD.

A TupleTainter uses pattern matching to match multiple fields
in a data record with tag objects. Tags matching can be many-to-
many or many-to-one. One tag object might be referenced by many
fields of a data record. In this case, only one tag object tracking
multiple fields is transferred to other hosts during cross-host prop-
agations. This decreases much propagation traffic across hosts.

A ObjectTainter adds tags to a general object. It first reads
field names and use Reflection in Java to set taints for fields
contained in the object. If no ObjectTainter is defined for the
object, the whole object is matched with one taint object.

7.2 Non-synchronization Tag Cache

In previous section (§4.3), we show how Tag Sharing reduces tag
numbers in the system. With Tag Sharing, Kakute tries to avoid
redundant tags as much as possible. Kakute avoids the cost of
synchronization and use ThreadLocal for Tag Sharing. Each cache
of tag is isolated among threads, and incurs no synchronization.
Kakutewill create a array of cache that store Taint, and this cache
will be updated if a new tag comes with duplicated hashcode.

7.3 Handling Implicit Information Flow

Kakute tracks data flows accurately, but it may lose implicit data
flows. In a WordCount program, if a record ⟨word⟩ is transformed
to ⟨word, 1⟩, the field 1 contains no tag. We handle this problem
by developing a inheritance approach as below. When a new field
is generated from tagged parent records, the field is attached with
tags from parent fields. This conforms to our observations that
newly generated fields inherit information from parent fields in
most DISC algorithms.

7.4 Fault Tolerance

Kakute’s implementation only modifies a worker’s computation
code, so fault tolerance property of Spark is preserved. In spark,
failed tasks will be submitted and computed again according to
their lineage. In Kakute, input data is tagged automatically by
InputTainter, and tags are checkpointed along with data, so tags
can be recomputed when data computation is done again. Therefore,
tag computations are fault-tolerant in Kakute.

Collector and Checker should also be able to handle failure in
Kakute. When a worker process fails, the Collector will lose com-
munications with the master. Then, a new worker will be created
and the checker can work again. When a task fails with the worker
working properly, the Collector will not collect Checker informa-
tion for this task, and then sends a failure message to the master.
Therefore, collected information in the failed tasks will not affect
the final IFT analysis result.

8 EVALUATION

We evaluated Kakute on its (1) tracking precision (2) computation
overhead, (3) bandwidth overhead (4) vulnerabilities detection. We
showed that Kakute has a low overhead while keeping the fine-
grained information flow tracking property. We used a cluster with
9 machines, each is equipped with Intel Xeon 2.6GHz CPU with 24
hyper-threading cores, 64GB memory, and 1TB SSD.

We evaluated seven programs on Kakute and Titian for their
precision and general runtime overhead. We chose Titian as it is
the only open-source data provenance system for big-data. These
programs include three text processing algorithms WordCount,
WordGrep and TwitterHot, two graph algorithms TentativeClosure
and PageRank, and two medical analysis programs MedicalSort and
MedicalGroup. These algorithms cover all big-data algorithms eval-
uated in two related papers [17, 19]. We evaluated all these seven
algorithms with several real-world dataset, which are comparable
with existing systems [8, 17]. Datasets and programs are showed
in Table 2.

App Name Dataset Size/Records

ConnectedComponent TwitterSocial [23] 1.5B edges
TentativeClosure TwitterSocial [23] 1.5B edges
MedicalGroupBy MedicalDB 100M records
MedicalGroupSort MedicalDB 100M records
TwitterHot TwitterStream 50GB
WordCount Wikipedia 100GB
WordGrep Wikipedia 300GB

Table 2: Evaluation applications and datasets. All datasets are

comparable with previous research.

Our evaluation focuses on these questions:
§8.1: What is Kakute’s precision compared with Titian?
§8.2: What is Kakute’s performance overhead ?
§8.3: How can Reference Propagation and Tag Sharing reduce

runtime overhead of Kakute?
§8.4: Is Kakute scalable to large datasets?
§8.5: Can Kakute effectively detect security and reliability bugs?

8.1 Kakute v.s. Titian

In order to evaluate Kakute’s precision in terms of dataflow track-
ing, we evaluatedKakute on seven algorithms (or programs). These
seven applications are TwitterHot, ConnectedComponent, Medical-
Group, MedicalSort, TentativeClosure, WordCount and WordGrep.
TwitterHot finds popular words in a period of time. It puts all
Twitter posts into different groups with different time, and then
counts the words in each group. The time interval for each group is
1 minute. The algorithm first uses groupByKey to divide data into
groups and counts words in each group.
ConnectedComponent is to compute connected component in
a graph. We used the label propagation algorithm that assigns a
label to each node, and each node exchange their labels with all
neighbours and only keeps the smallest label. In practice, join
is used for exchanging ones’ label with neighbours. union and
reduceByKey are used for combining labels.
MedicalGroupBy samples patients according to their age. Patients
are divided into five groups, and then, 50 patients will be chosen
randomly from each group. A program that uses groupByKey and
filter will solve the problem. MedicalSort, on the other hand,
will find top-10 patients with the most serious disease in each group.
TentativeClosure computes a collection of nodes that one node
can access. Each node maintains a list of accessible nodes, which is
initialized as itself. In each iteration, a node will join the accessi-
ble list and all edges to get the new accessible list. Repeating this
procedure, until the number of accessible nodes of a node is not
changing anymore.

Table 3 and Table 4 show backward and forward tracing results
of Kakute and Titian, the state-of-art data provenance system
of Spark. Compared with Titian, Kakute shows much better (at

A Precise, Unified Information Flow Analysis System for Big-data Security ACSAC 2017, December 4–8, 2017, San Juan, PR, USA

Twitter
Hot

Word
Count

Word
Grep

Medical
Sort

Medical
Group

0

1

2

3

4

5

No
rm

al
liz

ed
 E

xe
cu

tio
n

Ti
m

e

native Spark
Kakute-int
Titian
Kakute-obj

Figure 7: Overhead of Kakute and Titian

Twitter
Hot

Word
Count

Word
Grep

Component TC Medical
Sort

Medical
Group

0

1

2

3

4

5

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

native Spark
Kakute-int
Kakute-null
Kakute-obj

Figure 8: Kakute Computation Breakdown.

Twitter
Hot

Word
Count

Component TC Medical
Sort

Medical
Group

0.0

0.5

1.0

1.5

2.0

2.5

No
rm

al
ize

d
Sh

uf
fle

 B
an

dw
id

th

native Spark
Kakute-int
Kakute-null
Kakute-obj

Figure 9: Kakute Shuffle Bandwidth

Breakdown.

App Name Traced Record Titian Kakute
TwitterHot “strike” 2.75 × 105 520
ConnectedComponent random 1.4 × 109 4
MedicalGroupBy one elderly 1.99 × 107 1
MedicalGroupSort one patient 2.56 × 107 1
TentativeClosure random 1.31 × 103 1
WordCount “religion” 6.03 × 104 6.03 × 104
WordGrep “science” 1.37 × 105 1.37 × 105

Table 3: Kakute’s backward tracing result.

App Name Traced Record Titian Kakute
TwitterHot “#FAKENEWS” 1.50 × 106 1609
ConnectedComponent random node 1.58 × 106 126
MedicalGroupBy one elderly 2.0 × 107 1
MedicalGroupSort one patient 1.41 × 107 1
TentativeClosure random node 1.31 × 103 1
WordCount “religion” 6.03 × 104 6.03 × 104
WordGrep “science” 1.37 × 105 1.37 × 105

Table 4: Kakute’s forward tracing result.

System Name
iteration

1 2 3 4 5

Titian 69 1.3 × 106 2.9 × 108 1.1 × 109 1.4 × 109
Kakute 1 2 2 3 4

Table 5: Kakute’s backward tracking with different

iterations (ConnectedComponent).

most 7-9 orders of magnitude) precision for five algorithms except
WordCount and WordGrep, because these five algorithms contain
many-to-many transformations (e.g., groupByKey, join). There-
fore, back-tracing or forward-tracing will return all input/output
records that go through a transformation.

We observed that Titian gets more imprecise for iterative algo-
rithms. Table 5 shows the backward tracing results of running 5
iterations with ConnectedComponent. The length of label propa-
gation path of a connected component increase by 1 per iteration.
Back-tracing result for Kakute precisely finds which edge propa-
gates the label and hence increases by less than 1 per iteration. In
contrast, Titian’s back-tracing result grows exponentially. Titian
considers all edges connected with the traced node as sources of
label, due to the imprecise tracking level on many-to-one opera-
tion reduceByKey in label combination of ConnectedComponent.
Titian returns almost all input records (1.4B) at 5 iterations.

8.2 Performance Overhead

Figure 7 shows Kakute’s performance overhead compared with
Titian on computing all output records and tracing back from these

output records. We use the same dataset as in the prior subsection.
“Kakute-int” denotes Kakute with Integer tags. “Kakute-obj”
denotes running Kakute with an Object tag for each input record.
Titian stores mapping of each operation, so costs of back-tracing
are proportional to the computation time and dataset size, as it
will need join on a large dataset. Kakute shows similar overhead
compared with Titian, while Kakute has a much higher precision
of tracing.

Figure 8 shows Kakute’s runtime computation overhead. To
break down Kakute’s overhead, “Kakute-null” denotes running
Kakute using Object tag with all tags null. Kakute has an over-
head of 32.3% on average when using Integer tags. “Kakute-int”
and “Kakute-null” show similar performance. For “Kakute-obj”,
WordCount suffers from a higher overhead of 425% , as its lineage
of WordCount were long, causing the long tracing-back time.

Figure 9 shows Kakute’s network overhead. We ran the 7 al-
gorithms and save the final result with their tags using getTaint.
For most of the algorithms, an output record may only come from
some portions of input records, so the number of tags in shuffle
is negligible, comparing with the original data. For WordCount, a
frequent word (e.g., the “the” word) can be computed from a large
number of input records, causing a large set of tags in shuffle.

8.3 Effectiveness of Reference Propagation and

Tag Sharing

Table 6 shows performance improvement with Reference Propaga-
tion and Tag Sharing. We ran seven programs with smaller datasets,
because the standard datasets used in previous subsections caused
a long execution time in Phosphor for most programs. We com-
pared computation time with 3 configurations: Phosphor, Refer-
ence Propagation only and Kakute (Reference Propagation and
Tag Sharing). With Reference Propagation, execution time decrease
by about 20% for WordGrep, TC, MedicalSort and MedicalGroup

Program Phosphor Reference Propagation only Kakute
WordCount inf 398s 297s
WordGrep 15min 12.8min 8.1min
Component inf inf 1992s
TC 80s 60s 51s
MedicalSort 45s 43s 42s
MedicalGroup 27s 18s 14s
TwitterHot inf inf 17s

Table 6: Computation time with two optimization techniques. “inf”

means computation time is longer than 1h or throwing exceptions.

ACSAC 2017, December 4–8, 2017, San Juan, PR, USA Jiang et al.

0 100 200 300
WordCount(a)

1

2

3

4

No
rm

al
ize

d
Ti

m
e

0 20 40 60 80 100
WordGrep(b)

1.2

1.4

1.6

1.8
int tag object without tag object tag

0 10 20 30 40 50
Dataset Size
TwitterHot(c)

1.4

1.6

1.8

2.0

No
rm

al
ize

d
Ti

m
e

100k 1m 10m 100m 1b
Dataset Size

ConnectedComponent(d)

1.5

2.0

2.5

Figure 10: Kakute’s scalability to datasets size.

Program Native Spark Naive Wrapping Kakute
Component 32.9GB 42.1GB 34.2G
WordCount 2.6G 3.4G 2.9G

Table 7: Shuffle Traffic reduction of Key-Value Compression

Three other programs (e.g., WordCount) can not even finish execu-
tion in Phosphor. Reference Propagation only calculate tags upon
collection (§4.2), so it greatly reduce computation time for Word-
Count from infinite to 398s. We found that running WordCount
with Phosphor had 20.6 billion tag combining operations and most
of its time was spent in combing these tags. WordCount running
with Kakute had only 9.2 million combining operations. However,
with Reference Propagation only, the Component and TwitterHot
programs still had infinite execution time in Kakute due to the
enormous amount of tags. TwitterHot running with Phosphor had a
GCOverheadLimitExceeded Exception because the program had
too many tags, while Kakute’s Tag Sharing greatly reduced mem-
ory usage and brought TwitterHot’s execution time down to 17s.

With both Reference Propagation and Tag Sharing enabled, all
seven programs were able to finish within about 30min. For the
MedicalSort program, Kakute and Phosphor had similar perfor-
mance because the number of tags in this program is small. Table
7 explains why Kakute is much faster than Phosphor because its
cross-host tag compression (§4.4) save much network bandwidth
compared with uncompress (naive) tag propagation.

8.4 Scalability of Computation Overhead

Figure 10 shows that Kakute’s computation overhead with datasets
with different size in 4 programs. Among all applications, Kakute’s
computation overhead is 1X with Object Tags, while int and ob-
ject with null tag have smaller overhead ranging from 50% to 1X.
Overhead of these 4 applications increases slowly with increasing
datasets size, because the number of input records that produce an
output record is few. We observed that some algorithms have an
overhead dropwhile increasing dataset size. The reason is that small
dataset take a short time for executions, and starting a new executor
might be slowed for the extra code instruments time. Therefore,
this cost can be amortized, with increasing computation time.

8.5 Detecting Security and Reliability Bugs

This subsection evaluated 13 programs with security or reliability
bugs presented in 3 papers [11, 17, 37]. Similar to existing IFT
systems [3, 9], Kakute did not extensively look for new bugs. All
13 programs were written by us as they are not open-source.

8.5.1 Fine-grained Information Control. We evaluated our
fine-grained Information Control system with 2 programs.
Leakage Through I/O channel An attacker may submit a task
that writes records with sensitive information (e.g., creditCardId) to
disks or remote hosts. With Kakute, each output stream is checked
to ensure that there are no security tags. We evaluated a malicious
program MedicalAnalysis which is similar to a previous work [37].
It writes sensitive information to disk and network in a map. In
evaluation, patients’ personal information was tagged with security
tags. When we ran this malicious program, a notification of I/O
violation was sent to users and the worker terminateed. We also
wrote non-sensitive information in this UDF to network, yet these
operations were allowed as it did not contain any tags.
Leakage Through Output An attacker may submit a task that
directly or indirectly outputs records with sensitive data. Kakute
checks output of each task to ensure that every output records do
not have any security tags. We evaluated a WalmartAnalysis pro-
gram [1] that leaks some specific records. The input were shopping
records of customers, and customer names had security tags. Our
checker showed warning and forbid the output when running the
program.

8.5.2 Data Provenance. We evaluated provenance on two pro-
grams: Query capturing and output Explaining.
Query Lineage Capture A data provenance system should be
able to track down the input records used in a query. To eval-
uate Kakute in capturing query lineage, we wrote a program
MovieQuery, which queries on a movie database (IMDB) and anal-
yses movie data. When we got statistics of movies, we also got the
lineage of each result record and people who watched the movie.
Output Explain To explain the output of a algorithm for some
specific input, it is essential to show which input is used to produce
a output. We used the ConnectedComponent (§8) as example for
explaining output [8]. To explain the output, it is necessary to tell
why two nodes are connected. we added tag to edges, and this
tag only propagated to other nodes when their labels had been
propagated to other nodes. Thus, the back-tracing edges for an
output label ensembled a path to the original node with the label.
On the other hand, forward tracing an input record were used for
evaluating how important an edge was for composing a connected
component in a graph.

8.5.3 Program Bugs. We evaluated our system’s applicability
in debugging by 4 cases.
Illegal Input In a big-data program, some data may be in an illegal
format, and the program may fail to process these data. We gener-
ated some illegal inputs (in an illegal format) for our log analysis
program, according to an example in a previous work [17]. This
program showed parsing error as this Illegal Input was not what
the system intended. Kakute identified problematic inputs by back-
tracing problematic records.
Task Failure Big-data programs may contain bugs in a UDF, and
these bugs may only show for some inputs. We added some code in

A Precise, Unified Information Flow Analysis System for Big-data Security ACSAC 2017, December 4–8, 2017, San Juan, PR, USA

a WikipediaPageRank program like a previous paper [11], which
parses a Wikipedia dataset, and gets edges and nodes from the
dataset. With these problematic code, some tasks stopped uninten-
tionally with XMLParsingError. Our debugger got the records and
the UDFs, then re-ran the UDFs with these records. As a result, we
found out that some codes used \n to represent an empty article.
Coverage Checking Big-data programs may fail to make use of all
or most input to produce the final output. To identify this problem,
we need to check the percentage of input used to produce all output
(i.e., input coverage). We used a KMeans algorithm that clusters
flower regarding their features. After coverage tests, we found out
that only half of the data was used in computation, showing po-
tential programming bugs. Therefore, we ran the program with
only the non-covered result, and we found out that a record was
ignored when their axises of the first dimension were 0. We ran
the program after fixing the bug, and we were able to get all data
covered.
Flow Verification A programmer can verify if a program is writ-
ten correctly by verifying the relation between output and input
(e.g., a output filed needs a specific input field). We wrote a Matrix-
Mutiplication that accidentally multiples a row with another row.
We defined our own rule for verifications and the verifier showed
the program was wrong. After that, we modified the program and
got the right program.

8.5.4 Performance Bugs. A program with naive partition
scheme can result in muchmore shuffle traffics than a well-designed
one [45], causing a much higher computation time. To generate
a better partition scheme, we ran 4 programs with a small subset
of data. The 4 programs were Matrix Multiplication, AdjcantList,
SparkPageRank and ConnectedComponent. Among all applications,
shuffle size have been reduced on average by 11%. We checked the
dependency of each UDF, and we found out that AdjcentList had
dynamic functional dependencies, while other three kept a static
functional dependency. SparkPageRank and ConnectedComponent
partition data on the whole edge tuple (in, out) instead of only “in”,
causing more shuffle traffic in distinct.

8.6 Limitation

Like previous information flow tracking systems [3, 14], Kakute
only tracks data flows and ignores control flows with the concerns
of the high overhead of control flow tracking incurred in previous
systems [6, 9]. Previous work [1] makes use of static analysis [32]
to prevent attacks through control flow. This technique can be a
compliment to our dynamic flow tracking system.

There are other side channel attacks such as timing channel
attacks that Kakute can not handle currently. These attacks are
out of our design goal and previous work [4] has addressed these
problems. Kakute does not support tracking of broadcast variables
in Spark, as it exceeds the scope of UDFs, we plan to intercept
the broadcast procedure and track broadcast variables in future
implementations.

9 RELATEDWORK

DISC Provenance Provenance has shown wide range of appli-
cations including debugging [17] and network management [48].
RAMP [18], Newt [25], Pig [16] and Titian [19] adopt a record-
level tracking approach for data provenance in DISC frameworks.

Chothia [8] introduces a novel framework for output explaining
in iterative programs with differential dataflow abstraction. These
systems also adopt the record-level tracking approach, so they have
low precision in programs containing many-to-many transforma-
tions. Kakute, however, provides fine-grained IFT in terms of field
level, and is precise and general for data provenance.
Information Flow Tracking IFT has been proposed to tackle
security problems [33, 41], debugging [24], and program analysis.
Cloudfence [35], Pileus [39] and Taint-Exchange [44] propose doing
IFT across processes and hosts to secure cloud services. SilverLin-
ing [22] introduces IFT in a job level in Mapreduce. Neon [47] tries
to migrate IFT to virtual machines. However, no IFT system exists
for DISC frameworks. Kakute applies IFT to DISC frameworks,
providing useful primitives for improving reliability of programs.
DISC Program Debugging Data-intensive Computation program
is difficult to debug [17, 25], Arthur [11] introduces a framework
with features like breakpoint, backward and forward tracking for
Spark. BigDebug [17] leverages Titian to provide debugging primi-
tives for Spark. Kakute takes field-level tracking, which provides
fine-grained information for debugging. Kakute can be a comple-
ment to these system, yet it can also be applied to auto-testing of
the distributed programs.
DISC Security DISC security is an emerging issue as more and
more user sensitive data is captured and processed by distributed
systems. Airavat[37], PINQ [28] and GUPT [30] propose to apply
differential privacy [13, 29] in Mapreduce, to prevent leakage from
user query, but differential privacy can result in incorrect results.
Sedic [46] proposes to offload sensitive computations to private
clouds. MrLazy [1] proposes a framework of combining data prove-
nance and Static IFT of UDF, to provide fine-grained information
flow for security. However, static IFT is not precise and may suffer
from false positive. Kakute provides fine-grained information con-
trol of sensitive data, with no need to modify the original program.

10 CONCLUSION

We have presented Kakute, the first precise and fine-grained IFT
system for security and reliability problems in DISC frameworks.
Kakute provides field-level dataflow with unified APIs, which is
useful for various applications. We have proposed two techniques,
Reference Propagation and Tag Sharing, to get efficient IFT in big
data. Kakute is fast and precise with different granularities of
IFT, and evaluation has been done on a wide range of algorithms,
datasets and bugs. Kakute can greatly improve the security and
reliability of big-data.

ACKNOWLEDGMENTS

The authors thank all anonymous reviewers for their valuable com-
ments and feedbacks. The work is funded in part by grants from
the Research Grants Council of the Hong Kong Special Adminis-
trative Region, China (HK RGC ECS No.27200916, HK RGC GRF
No.17207117) and a Croucher innovation award.

REFERENCES

[1] S. Akoush, L. Carata, R. Sohan, and A. Hopper. Mrlazy: Lazy runtime label
propagation for mapreduce. In Proceedings of the 6th USENIX Conference on Hot
Topics in Cloud Computing, HotCloud’14, pages 17–17, Berkeley, CA, USA, 2014.
USENIX Association.

ACSAC 2017, December 4–8, 2017, San Juan, PR, USA Jiang et al.

[2] M. R. Asghar, M. Ion, G. Russello, and B. Crispo. Securing data provenance in
the cloud. In Open problems in network security, pages 145–160. Springer, 2012.

[3] J. Bell and G. Kaiser. Phosphor: Illuminating dynamic data flow in commodity
jvms. In Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA ’14, pages 83–101, New
York, NY, USA, 2014. ACM.

[4] D. Brumley and D. Boneh. Remote timing attacks are practical. Computer
Networks, 48(5):701–716, 2005.

[5] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S. Weaver, and J. Zhou.
Scope: Easy and efficient parallel processing of massive data sets. Proc. VLDB
Endow., 1(2):1265–1276, Aug. 2008.

[6] D. Chandra and M. Franz. Fine-grained information flow analysis and enforce-
ment in a java virtual machine. In Computer Security Applications Conference,
2007. ACSAC 2007. Twenty-Third Annual, pages 463–475. IEEE, 2007.

[7] H. Chen, X. Wu, L. Yuan, B. Zang, P.-c. Yew, and F. T. Chong. From speculation
to security: Practical and efficient information flow tracking using speculative
hardware. In Computer Architecture, 2008. ISCA’08. 35th International Symposium
on, pages 401–412. IEEE, 2008.

[8] Z. Chothia, J. Liagouris, F. McSherry, and T. Roscoe. Explaining outputs in modern
data analytics. Proceedings of the VLDB Endowment, 9(12):1137–1148, 2016.

[9] J. Clause, W. Li, and A. Orso. Dytan: A generic dynamic taint analysis frame-
work. In Proceedings of the 2007 International Symposium on Software Testing and
Analysis, ISSTA ’07, pages 196–206, New York, NY, USA, 2007. ACM.

[10] Y. Cui and J. Widom. Lineage tracing for general data warehouse transformations.
The International Journal on Very Large Data Bases, 12(1):41–58, 2003.

[11] A. Dave and M. Zaharia. Arthur: Rich post-facto debugging for production
analytics applications.

[12] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.
In OSDI’04: Proceedings of the 6th conference on Symposium on Opearting Systems
Design & Implementation, pages 10–10, 2004.

[13] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity
in private data analysis. In Proceedings of the Third Conference on Theory of
Cryptography, TCC’06, pages 265–284, Berlin, Heidelberg, 2006. Springer-Verlag.

[14] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth.
TaintDroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. In Proceedings of the Ninth Symposium on Operating Systems
Design and Implementation (OSDI ’10), pages 1–6, 2010.

[15] M. Ganai, D. Lee, and A. Gupta. Dtam: dynamic taint analysis of multi-threaded
programs for relevancy. In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, page 46. ACM, 2012.

[16] A. F. Gates, O. Natkovich, S. Chopra, P. Kamath, S. M. Narayanamurthy, C. Olston,
B. Reed, S. Srinivasan, and U. Srivastava. Building a high-level dataflow system
on top of map-reduce: The pig experience. Proc. VLDB Endow., 2(2):1414–1425,
Aug. 2009.

[17] M. A. Gulzar, M. Interlandi, S. Yoo, S. D. Tetali, T. Condie, T. Millstein, and M. Kim.
Bigdebug: Debugging primitives for interactive big data processing in spark. In
Proceedings of the 38th International Conference on Software Engineering, ICSE
’16, pages 784–795, New York, NY, USA, 2016. ACM.

[18] R. Ikeda, H. Park, and J. Widom. Provenance for generalized map and reduce
workflows. In CIDR 2011. Stanford InfoLab.

[19] M. Interlandi, K. Shah, S. D. Tetali, M. A. Gulzar, S. Yoo, M. Kim, T. Millstein,
and T. Condie. Titian: Data provenance support in spark. Proc. VLDB Endow.,
9(3):216–227, Nov. 2015.

[20] K. Jee, V. P. Kemerlis, A. D. Keromytis, and G. Portokalidis. Shadowreplica:
Efficient parallelization of dynamic data flow tracking. In Proceedings of the 9th
ACM conference on Computer and communications security, 2013.

[21] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis. Libdft: Practical
dynamic data flow tracking for commodity systems. In Proceedings of the 8th
ACM SIGPLAN/SIGOPS Conference on Virtual Execution Environments, VEE ’12,
pages 121–132, New York, NY, USA, 2012. ACM.

[22] S. M. Khan, K. W. Hamlen, and M. Kantarcioglu. Silver lining: Enforcing secure
information flow at the cloud edge. In Cloud Engineering (IC2E), 2014 IEEE
International Conference on, pages 37–46. IEEE, 2014.

[23] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a social network or a
news media? In WWW ’10: Proceedings of the 19th international conference on
World wide web, pages 591–600, New York, NY, USA, 2010. ACM.

[24] T. R. Leek, G. Z. Baker, R. E. Brown, M. A. Zhivich, and R. Lippmann. Coverage
maximization using dynamic taint tracing. Technical report, DTIC Document,
2007.

[25] D. Logothetis, S. De, and K. Yocum. Scalable lineage capture for debugging
disc analytics. In Proceedings of the 4th annual Symposium on Cloud Computing,
page 17. ACM, 2013.

[26] A. P. Martin, J. Lyle, and C. Namiluko. Provenance as a security control. In TaPP,
2012.

[27] P. McDaniel. Data provenance and security. IEEE Security & Privacy, 9(2):83–85,
2011.

[28] F. McSherry. Privacy integrated queries. In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data (SIGMOD). Association for

Computing Machinery, Inc., June 2009.
[29] F. McSherry and K. Talwar. Mechanism design via differential privacy. In

Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer
Science, FOCS ’07, pages 94–103, Washington, DC, USA, 2007. IEEE Computer
Society.

[30] P. Mohan, A. Thakurta, E. Shi, D. Song, and D. Culler. Gupt: Privacy preserving
data analysis made easy. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’12, pages 349–360, New York, NY,
USA, 2012. ACM.

[31] P. K. Murthy. Top ten challenges in big data security and privacy. In Test
Conference (ITC), 2014 IEEE International, pages 1–1. IEEE, 2014.

[32] A. C.Myers. Jflow: Practical mostly-static information flow control. In Proceedings
of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’99, pages 228–241, New York, NY, USA, 1999. ACM.

[33] J. Newsome and D. Song. Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software. 2005.

[34] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: a not-so-
foreign language for data processing. In Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, pages 1099–1110. ACM, 2008.

[35] V. Pappas, V. P. Kemerlis, A. Zavou, M. Polychronakis, and A. D. Keromytis.
Cloudfence: Data flow tracking as a cloud service. In Proceedings of the 16th
International Symposium on Research in Attacks, Intrusions, and Defenses - Volume
8145, RAID 2013, pages 411–431, New York, NY, USA, 2013. Springer-Verlag New
York, Inc.

[36] https://cwiki.apache.org/confluence/display/PIG/PigMix.
[37] I. Roy, S. T. V. Setty, A. Kilzer, V. Shmatikov, and E. Witchel. Airavat: Security and

privacy for mapreduce. In Proceedings of the 7th USENIX Conference on Networked
Systems Design and Implementation, NSDI’10, pages 20–20, Berkeley, CA, USA,
2010. USENIX Association.

[38] https://spark.apache.org/examples.html.
[39] Y. Sun, G. Petracca, X. Ge, and T. Jaeger. Pileus: Protecting user resources from

vulnerable cloud services. In Proceedings of the 32Nd Annual Conference on
Computer Security Applications, ACSAC ’16, pages 52–64, New York, NY, USA,
2016. ACM.

[40] Y. Tang, P. Ames, S. Bhamidipati, A. Bijlani, R. Geambasu, and N. Sarda. CleanOS:
limiting mobile data exposure with idle eviction. In Proceedings of the Tenth
Symposium on Operating Systems Design and Implementation (OSDI ’12), pages
77–91, 2012.

[41] A. Yip, X.Wang, N. Zeldovich, andM. F. Kaashoek. Improving application security
with data flow assertions. In Proceedings of the ACM SIGOPS 22Nd Symposium on
Operating Systems Principles, SOSP ’09, pages 291–304, New York, NY, USA, 2009.
ACM.

[42] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K. Gunda, and J. Currey.
Dryadlinq: A system for general-purpose distributed data-parallel computing
using a high-level language.

[43] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,
S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation, pages 2–2. USENIX Association,
2012.

[44] A. Zavou, G. Portokalidis, and A. D. Keromytis. Taint-exchange: A generic
system for cross-process and cross-host taint tracking. In Proceedings of the
6th International Conference on Advances in Information and Computer Security,
IWSEC’11, pages 113–128, Berlin, Heidelberg, 2011. Springer-Verlag.

[45] J. Zhang, H. Zhou, R. Chen, X. Fan, Z. Guo, H. Lin, J. Y. Li, W. Lin, J. Zhou, and
L. Zhou. Optimizing data shuffling in data-parallel computation by understanding
user-defined functions.

[46] K. Zhang, X. Zhou, Y. Chen, X. Wang, and Y. Ruan. Sedic: privacy-aware data
intensive computing on hybrid clouds. In Proceedings of the 18th ACM conference
on Computer and communications security, pages 515–526. ACM, 2011.

[47] Q. Zhang, J. McCullough, J. Ma, N. Schear, M. Vrable, A. Vahdat, A. C. Snoeren,
G. M. Voelker, and S. Savage. Neon: System support for derived data management.
In Proceedings of the 6th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, VEE ’10, pages 63–74, New York, NY, USA, 2010. ACM.

[48] W. Zhou, S. Mapara, Y. Ren, Y. Li, A. Haeberlen, Z. Ives, B. T. Loo, and M. Sherr.
Distributed time-aware provenance. In Proceedings of the VLDB Endowment,
volume 6, pages 49–60. VLDB Endowment, 2012.

https://cwiki.apache.org/confluence/display/PIG/PigMix
https://spark.apache.org/examples.html

	Abstract
	1 Introduction
	2 Background
	2.1 Data-intensive Scalable Computing
	2.2 Information Flow Tracking

	3 Overview
	3.1 Threat Model
	3.2 Architecture
	3.3 Example

	4 Efficient IFT
	4.1 Phosphor Background
	4.2 Reference Propagation
	4.3 Tag Sharing
	4.4 Tag Propagation Across Hosts

	5 Kakute Runtime
	5.1 Kakute API
	5.2 InputTainter
	5.3 LocalChecker
	5.4 GlobalChecker

	6 Kakute Checkers
	6.1 General Pattern of Developing Checkers
	6.2 Fine-grained Information Control
	6.3 Data Provenance
	6.4 Programming Bugs
	6.5 Performance Bugs

	7 Implementation
	7.1 Adding, Getting and Removing tags
	7.2 Non-synchronization Tag Cache
	7.3 Handling Implicit Information Flow
	7.4 Fault Tolerance

	8 Evaluation
	8.1 Kakute v.s. Titian
	8.2 Performance Overhead
	8.3 Effectiveness of Reference Propagation and Tag Sharing
	8.4 Scalability of Computation Overhead
	8.5 Detecting Security and Reliability Bugs
	8.6 Limitation

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

