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ABSTRACT

Supernet training, a prevalent and important paradigm in Neural

Architecture Search, embeds the whole DNN architecture search

space into one monolithic supernet, iteratively activates a subset

of the supernet (i.e., a subnet) for fitting each batch of data, and

searches a high-quality subnet which meets specific requirements.

Although training subnets in parallel on multiple GPUs is desirable

for acceleration, there inherently exists a race hazard that concur-

rent subnets may access the same DNN layers. Existing systems

support neither efficiently parallelizing subnets’ training execu-

tions, nor resolving the race hazard deterministically, leading to

unreproducible training procedures and potentiallly non-trivial

accuracy loss.

We present NASPipe, the first high-performance and repro-

ducible distributed supernet training system via causal synchronous

parallel (CSP) pipeline scheduling abstraction: NASPipe partitions

a supernet across GPUs and concurrently executes multiple gen-

erated sub-tasks (subnets) in a pipelined manner; meanwhile, it

oversees the correlations between the subnets and deterministically

resolves any causal dependency caused by subnets’ layer sharing.

To obtain high performance, NASPipe’s CSP scheduler exploits

the fact that the larger a supernet spans, the fewer dependencies

manifest between chronologically close subnets; therefore, it aggres-

sively schedules the subnets with larger chronological orders into

execution, only if they are not causally dependent on unfinished
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precedent subnets. Moreover, to relieve the excessive GPU mem-

ory burden for holding the whole supernet’s parameters, NASPipe

uses a context switch technique that stashes the whole supernet

in CPU memory, precisely predicts the subnets’ schedule, and pre-

fetches/evicts a subnet before/after its execution. The evaluation

shows that NASPipe is the only system that retains supernet train-

ing reproducibility, while achieving a comparable and even higher

performance (up to 7.8X) compared to three recent pipeline training

systems (e.g., GPipe).
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1 INTRODUCTION

Neural Architecture Search (NAS) has achieved transformational

impact on building high-quality Deep Neural Networks (DNNs)

for various applications [9, 18, 51] and devices [35, 36], and the

supernet paradigm is the most widely adopted NAS paradigm due to

its low computation cost and high quality. The supernet paradigm

composes the whole search space as a monolithic supernet and

trains the supernet in rounds. In each round, the paradigm activates

a subset of the supernet (i.e., a subnet) directed by an exploration

algorithm (e.g., SPOS [9]); then, the paradigm trains the subnet
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with a moderate batch (e.g., 256 [9]) of data samples as a sub-task

for training the supernet.

Compared to traditional NAS paradigms that train each explored

DNN to convergence [28, 34], the supernet paradigm [9, 18, 35, 36,

51] vastly reduces the NAS computational cost (e.g., by 500X [9])

from training tens of thousands of standalone DNNs to training a

monolithic one, and at the same time, retains the quality of searched

DNNs. The success of this paradigm has not only accelerated the

adoption of NAS in the industry [4, 42, 45, 49], but also expedited

the adoption of supernet in relevant fields such as dynamic mod-

els [15] and mixture-of-experts models [43]. A key determinant

to the quality of a NAS-discovered DNN is the size of the search

space, because a larger search space embeds more candidate ar-

chitectures to search from. Therefore, data scientists are actively

developing larger and larger search spaces; the largest search space

(i.e., Evolved Transformer [34]) used by existing NAS algorithms

has already included 15B parameters.

Unfortunately, although the industry and academia have devel-

oped systems for easily defining NAS supernets (i.e., Retiarii [45])

and training large standalone models (e.g., GPipe [12], Deepspeed

[27], and Pipedream [21]), none of these systems are designed to

efficiently train very large supernets. This is due to two major

challenges that stem from the frequent switching of subnets.

First, as training each subnet is usually fast, a promising direc-

tion for accelerating supernet training is to train subnets in parallel.

However, a major challenge stems from deterministically resolving

the dependencies between subnets activated in parallel. Specifically,

the exploration algorithms assume that the subnets are trained

according to their order in an isolated and sequential way: if two

subnets active the same layer, the later subnet has a causal depen-

dency on the former subnet on this shared layer, thus the later

subnet should use the updated layer parameters after the former

one’s training finishes. For adequate training accuracy and result

reproducibility (defined in ğ2.1), it is crucial to retain the causal

order provided by exploration algorithms during parallelization.

However, existing systems for large-scale DNN training are in-

herently designed for parallelizing the training of multiple batches

within the sameDNNmodel, so they are not designed to capture and

enforce this causal dependency. For instance, Retiarii [45] adopts

the bulk synchronous parallel (BSP) pattern that processes bulks of

subnet training in parallel, each on a GPU, and performs parameter

updates in bulk. This BSP pattern does not maintain the causal

dependencies between subnets within a bulk (Figure 1) and cannot

guarantee the training reproducibility as evaluated in ğ5.2.

The second challenge is to efficiently manage the extra-large

supernet context among GPUs. To leavemore cache space for larger-

batch training (thus achieving higher GPU utilization), one has to

keep only the activated subnets in GPUs. However, precisely pre-

fetching subnets from CPU to GPU is very challenging because sub-

nets are usually generated by the exploration algorithm at runtime;

and the scheduling of parallel subnet executions is also unknown

prior to run.

Although existing systems carry efficient DNN operator switch-

ing features [3, 11, 48], all these algorithms are designed for training

a static DNN. Therefore, existing DNN operator switching designs

often assume a pre-known DNN execution so that they [3] can

predetermine a schedule that pipelines the DNN context switch

Figure 1: Comparison of ASP, BSP, and CSP pipeline on exe-

cuting an ordered list of subnets with causal dependencies. A

subnet’s pipeline partition is causally dependent on a prece-

dent subnet’s partition, if they share the same layers. CSP

pipeline (i.e., NASPipe) is the only method to retain all de-

pendencies with an adequate pipeline efficiency (reasonable

bubble rate).

and the DNN execution to overlap the switch cost. In contrast, in

supernet training, the parallelized subnets involve different layers,

and they are dynamically switched according to an order generated

at runtime.

In this work, we build NASPipe, the first parallel supernet train-

ing system that efficiently tackles the aforementioned challenges,

via causal synchronous parallel (CSP) pipelining, inspired by con-

ventional CPU instruction pipeline problems [6]. As depicted in

Figure 1, NASPipe concurrently executes the subnets generated by

supernet-based exploration algorithms, oversees the correlation

between subnets, and maintains any causal dependencies caused

by layer sharing to enforce high-quality and reproducible supernet

training.

To parallelize subnet executions, instead of placing each subnet

task on one GPU (like Retiarii [45]), we partition each subnet into

stages (i.e., a subset of layers), let each GPU process one stage,

and form the subnet executions into a pipeline. This design choice

brings two notable benefits. First, pipeline parallelism allows us to

efficiently resolve causal dependencies and perform synchroniza-

tions in supernet training, locally on each GPU in a decentralized

way. In comparison, Retiarii leverages an external global synchro-

nization server, which is neither scalable nor efficient. Second, as

DNNs are getting larger and larger, a subnet itself has already ex-

ceeded a single GPU’s capacity, and pipeline parallelism is one of

the most efficient approaches for training large models [12, 21, 41].
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To improve pipeline efficiency, our insight is that, the larger the

supernet spans, the fewer dependencies manifest between chrono-

logically close subnet tasks; this allows us to design a pipeline

scheduler that advances the subnet tasks with larger chronolog-

ical order into execution, if they are not causally dependent on

unfinished executions of precedent subnets.

To efficiently manage GPU memory and precisely swap in the

context of subnets to be executed, we leverage the common insight

that DNN computation time on GPUs is roughly deterministic.

NASPipe forecasts the upcoming subnets with the highest chance

to be scheduled in the next several steps by leveraging the status of

the current stage and the status passed from other stages.NASPipe’s

forecast mechanism, most of the time (∼ 90%, see Table 2), avoids

an enforced idling to synchronously swap in a layer when the layer

residing in CPU memory is requested by execution, with moderate

GPU memory overhead.

We have prototyped NASPipe on PyTorch, one of the most well-

accepted DNN execution frameworks. NASPipe serves as a training

system behind a supernet-based NAS algorithm, which can be de-

scribed by Retiarii [45] or any other NAS programming frameworks.

We compared NASPipe to three recent pipeline training systems:

Pipedream [21], GPipe [12], and VPipe [48]. The evaluation shows

that:

• NASPipe is reproducible. NASPipe was able to produce the

same training process and results, independent of the num-

ber of GPUs involved in training, while existing baseline

systems cannot achieve this property.

• NASPipe achieves high performance even with causal depen-

dencies among subnets enforced. NASPipe achieved compa-

rable and even higher performance (up to 7.8X) compared

to the baselines, while baselines did not enforce causal de-

pendencies.

• NASPipe is scalable. With the number of GPUs increasing,

NASPipe was able to provide a roughly linearly increased

computation power measured by the total ALU utilization

of all GPUs.

Our major contribution is the CSP pipeline scheduling, which

maximally parallelizes a supernet training’s ordered subnet tasks

across GPUs, and deterministically resolves causal dependencies

manifesting between concurrently executed subnets. We proto-

typed NASPipe, a pipeline parallel system geared towards supernet

training with a bunch of system optimization techniques, includ-

ing the CSP pipeline scheduler and the context forecast scheme,

collectively making NASPipe the first parallel supernet training

system that retains both high performance and reproducibility, an

important feature pursued by researchers [42, 44], ML framework

developers [1, 24], and hardware manufacturers [1]. We believe

that leveraging NASPipe, the NAS communities are not only able

to continuously and efficiently explore larger search spaces with

more GPUs, but also can easily debug, reproduce, and analyze

any supernet training procedures with a simple and determinis-

tic training replay, on any number of GPUs according to their

own budget. NASPipe’s code is available to the community via

github.com/hku-systems/naspipe.

2 BACKGROUND AND MOTIVATION

2.1 Supernet and Causal Dependencies

A typical DNN training process consists of iterations of forward

and backward passes on a standalone DNN. Recently, a composed

supernet [9, 18, 26, 35, 45], embedding thousands of DNNs, emerges

as an unprecedented training workload. As depicted in Figure 2,

a supernet embeds a DNN space, with hierarchical choice blocks

of candidate layers (e.g., 1x1 conv, 3x3 conv, or maxpool), into a

monolithic supernet; for each training input, a subnet, sampled

by a list of layers choices, is activated to fit in the input data. Su-

pernet training has two benefits. First, it embeds an exponential

modeling space with its quadratic space complexity for holding

execution context, e.g., a NAS supernet with 5 layers and 4 choices

per layer can embed 45 candidate DNNs. Second, supernet enforces

knowledge transferring across subnets by letting all subnets share

weights, allowing a one-shot parameterization to a huge population

of DNNs.

Leveraging these advantages, supernet is widely adopted and

has vastly reduced the computation cost (e.g., by 500x [9]) in the

field of Neural Architecture Search [5, 9, 18] (NAS). Specifically,

NAS is to search out an optimal DNN architecture, dedicating to a

certain application scenario, from an expert-defined search space;

supernet connects and trains parameters of the whole search space

in a one-shot way. This success in NAS has also expedited the

supernet adoption in other emerging fields of Machine Learning

such as dynamic slimmable models [15] and a mixture of experts

models [43]. In this paper, we take the supernets used in NAS as

our major workload of study, because most existing supernets are

designed for NAS and have already covered all DNN layer types

used in other fields.

However, accelerating a supernet training on parallel GPUs, just

like the traditional DNN training task parallelizing (e.g., Parameter

Server [16]), is challenging for existing systems. Specifically, a per-

formance hazard stems from the causal dependencies between two

subnet executions if they concurrently activate the same layer. NAS

algorithms often assume that the subnets are trained according to

their order in an isolated and sequential way: if two subnets access

the same layer, the latter subnet has a causal dependency on the

former subnet on this shared layer, and the later subnet should read

this layer’s parameters in its forward pass with the update made in

the backward pass (with optimizer step) of the former subset. For re-

producibility, it is crucial to retain all causal dependencies provided

by the exploration algorithm, which sabotages parallelism.

Definition 1 (Reproducibility). A supernet training process is

reproducible if the training result (i.e., parameter weights of all

layers) is bitwise equivalent (e.g., in floating-point 32 precision)

when the training is repeated with the same dataset and the same

random seeds, but potentially on a different cluster.

The reproducibility for supernet training contains two aspects:

intra-subnet reproducibility and inter-subnet reproducibility. Intra-

subnet reproducibility comprehends the deterministic computation

for GPUs and training framework (given floating-point additions

are not commutative), which is easily achievable through exist-

ing deterministic libraries [1]. Inter-subnet reproducibility, on the

other hand, refers to the deterministic interleaving among reads and
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Figure 2: An example of supernet construction and supernet

training with causal dependencies. A rounded rectangle with

dashed lines means a choice block and colored rectangles

mean candidate layers. Bold rectangles in subfigure (b)means

activated subnet layers to be trained on each input batch.

writes of subnets’ layers, especially when running in parallel, these

subnets may read (during forward pass) and write (during back-

ward pass) to intersecting sets of layers. In essence, inter-subnet

reproducibility requires that the read-write interleaving among

subnets is equivalent to training each subnet sequentially, one at a

time, according to the order provided by the exploration algorithm

(e.g., SPOS [9]).

Ensuring reproducibility is essential for three reasons. First, re-

producibility facilitates knowledge transferability: a supernet train-

ing procedure of high quality should be exactly reproduced with

different GPU clusters of various research budgets. Second, in NAS

studies [42, 44], analysis (debugging) of supernet training proce-

dures plays an important role. When an outstanding trial (with

the best hyperparameters and specific random seed) of supernet

training is identified from tremendous experimental trials, post-

training analysis (e.g., training stability check) is often needed to

reason about this trial. For example, the authors of GreedyNAS [42]

needed to re-run the identified most outstanding trial and repeat-

edly inspected the quality-ranking information of subnets. With

the training reproducibility, the re-runs are deterministic, includ-

ing all the collected information (e.g., quality ranking), making

supernet training much easier to inspect, analyze, and debug. Third,

deterministic execution has constantly been a desirable feature for

Machine Learning at different levels. For example, Nvidia launches

an individual project [1] to enforce deterministic GPU execution at

the ML operator level. NASPipe pursues reproducibility at the NAS

supernet training level.

2.2 How to Generate and Parallel the Tasks?

NASPipe parallelizes a supernet’s trainingwith inter-subnet parallel

task generation and pipeline parallelism.

Parallel Task Generation. Both Retiarii [45] (the notable system

designed for supernet programming) and NASPipe advocate an

inter-subnet [21] parallel task generation, which allows a launch

of multiple subnets with each subnet processing one input batch.

An alternative approach is the intra-subnet task generation [12]

(a.k.a., intra-batch parallel in traditional DNN training) which splits

a batch into multiple micro-batches, executes each micro-batch on

the same subnet on each GPU, and synchronously flushes outputs

when all split micro-tasks finish. Intra-subnet task generation is

non-general as it is only efficient for large batch size training [45]

to retain adequate utilization for all GPUs. However, the batch

size used in many existing supernet-based algorithms [9, 18, 35] is

relatively small and not suitable for intra-subnet task generation;

in certain supernet [15, 43], each batch even could only contain one

data item. Therefore, in this work, we assume that both NASPipe

and all relevant systems are configured with inter-subnet parallel

task generation.

Parallelism Selection. Different from Retiarii’s selected paral-

lelism (wrapped data parallelism), which assigns each parallel GPU

one subnet execution and uses an external Parameter Server for

synchronization, we embrace a pipeline parallelism design: we

partition each subnet into stages (i.e., a subset of layers), let each

GPU process one stage, and form parallel subnet executions into a

pipeline. This design has two noteworthy advantages over Retiarii’s

choice. First, pipeline parallelism allows us to efficiently resolve

dependencies and perform synchronizations in supernet training,

locally on each GPU worker in a decentralized way. In contrast,

Retiarii leverages an external global synchronization server, which

is neither scalable nor efficient when the number of parallel GPUs

is large, and subnets synchronize frequently. Second, as DNNs are

getting larger and larger, a subnet itself is already beyond a sin-

gle GPU’s capacity. However, large DNNs and their search space

are the major targeting workload of this paper, which is suitable

for using pipeline parallelism [12, 21, 41]. Therefore, Retiarii’s one

subnet per GPU design does not apply to most workloads (e.g.,

Transformer-based NAS) targeted by this work.

2.3 Motivations

Challenge-1. No existing synchronization methods are designed

to capture causal dependencies in parallel supernet training. Exist-

ing synchronization methods are mainly designed for single DNN

training. The most notable one is the Bulk Synchronous Paral-

lel (BSP) method, which inserts a synchronization barrier (flush)

after finishing a bulk of parallel tasks. BSP methods have been

widely adopted in traditional intra-batch parallel training of single

DNNs (e.g., Parameter Server [24], GPipe [12]) to enforce strong

dependencies (determined by the Stochastic Gradient Descent algo-

rithm [50]) between different training batches. Retiarii also adopts a

BSP method to inter-subnet parallel tasks and perform a parameter

synchronization when a bulk of subnets is finished. However, BSP

for inter-subnet parallel tasks often violates the causal dependen-

cies between subnet within the same bulk, as illustrated in Figure 1.

Other synchronization methods include Asynchronous Parallel [21]

(ASP) and its variants (e.g., Stale Synchronous Parallel [17]) are not

designed to tackle causal dependencies in supernet training.

Challenge-2. It is challenging to efficiently manage the extra-large

supernet context and balance the pipeline load among GPUs. Ex-

isting work [28, 34] shows that a supernet’s context can be much

larger than standalone DNN’s, and the community is actively build-

ing larger supernets for delivering better DNNs. For achieving

reasonable GPU utilization, one has to keep only the activated

subnets in GPUs. However, efficiently switching subnets between

GPU and CPU memory is very challenging because the training

of each subnet is usually very fast (e.g., 256 [9] samples), and the

exploration schedule is generated by the exploration algorithm at
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Figure 3: NASPipe’s Architecture, details described in ğ3.1.

runtime. Existing optimizations [11, 22, 25, 30, 48] towards DNN

training memory reduction or GPU-CPU memory switching are

all not designed for NAS supernet to capture correlations between

subnets.

Moreover, existing pipeline parallel systems all adopt a static

partition, where operators reside on the assigned GPUs throughout

the training. However, considering optimal (balanced) partitions for

all subnet execution, an operator often belongs to different stages

(GPUs). One approach [48] is to on-demand migrate an operator

between stages when it is needed by another subnet’s best parti-

tion. However, as the subnet switching of a NAS supernet training

is often at second-level frequency, this design inevitably incurs

high initialization and synchronization costs. Instead of on-demand

migration, NASPipe mirrors these operators between stages and

eliminates these costs (presented in ğ4.2).

3 NASPIPE DESIGN

In this section, we first deliver preliminaries used in this work, then

formally define CSP, and at last present how NASPipe’s design

resolved the aforementioned challenges.

Preliminaries. In this work, same as [9, 45], we define a supernet

as a sequence of𝑚 choice blocks, 𝑏0, 𝑏1, ..., 𝑏𝑚 , and each choice

block 𝑏𝑥 is composed of a set of 𝑛 candidate layers 𝑙0𝑥 , 𝑙
1
𝑥 , ..., 𝑙

𝑖
𝑥 ,

... 𝑙𝑛𝑥 . We use 𝑆𝑁0, 𝑆𝑁1, ..., 𝑆𝑁𝑦 , where 𝑦 is the subnet sequence

ID, to denote the subnet list, whose sequence order is determined

by the upper NAS supernet exploration algorithm. A subnet is an

𝑚-sized list of layers, with one layer selected from each choice

block. All subnets are generated by a per choice block uniform

sampling approach [9], which is the most representative method

used in existing supernet practices [45].

During training, a subnet is split into 𝐷 partitions, and each

partition serves as a stage of a pipeline, where 𝐷 is the number of

GPUs; we denote a partition 𝑖 of a subnet 𝑥 as 𝑃𝑖𝑥 . Each partition of

a subnet has a forward pass (parameter read) and a backward pass

(parameterwrite). Forward pass and backward pass are separately

scheduled in the pipeline, and are defined as tasks, which are the

minimal units of NASPipe’s execution and scheduling.

Definition 2 (CSP). An inter-subnet parallel training process of a

subnet is Causal Synchronous Parallel if the process satisfies the

following two key properties.

Dependency Preservation. If subnet with sequence ID x (𝑆𝑁𝑥 ) and

subnet with sequence ID y (𝑆𝑁𝑦 ) have the same choice of layer 𝑙 ,

and 𝑥 < 𝑦, the subnet y’s access (read and write) to layer 𝑙 must

wait until subnet x’s write access on this layer finishes.

Concurrent computation and communication. Every parallel worker

(e.g., GPU) may perform local computations, i.e., each worker can

only make use of values stored in the local memory of the worker.

The computations occur asynchronously of all the others but may

overlap with communication. The worker exchange data to facili-

tate remote data storage and transfer.

3.1 Architecture Overview

NASPipe is a distributed pipeline parallel training system that lies

behind a supernet programming frontend (e.g., Retiarii), as depicted

in Figure 3.

Scheduler observes each candidate task in the forward pass queue

and backward pass queue, and checks whether it satisfies the de-

pendency preservation of CSP. If it meets CSP, it will be scheduled

to run. Priorities are given according to the subnet sequence ID of

each task (lower ID first) and its execution property (backward pass

first), as explained in ğ3.2. For instance, at time point 2 of Figure 3,

on stage 0 (𝑃0), the scheduler schedules 𝑆𝑁2 forward (𝑆𝑁2 has the

lowest ID), as its precedent constraint 𝑆𝑁1 backward has finished

(𝑆𝑁2 meets CSP). Scheduler can enforce dependency while trying

best to parallel task executions, making NASPipe achieve adequate

parallelism (at most 61% bubble elimination in ğ5.1).

Predictor forecasts the upcoming tasks (i.e., 2 in our configu-

ration) that have the highest chance to be scheduled in the next

several steps. Predictor leverages the status of the current stage

and the status passed from other stages to simulate the pipeline

run, explained in ğ3.3. For instance, at time point 1 of Figure 3, on

stage 0 (𝑃0), the predictor predicts that 𝑆𝑁2 forward will be sched-

uled as the currently scheduled execution 𝑆𝑁1 backward will clear

its dependency; the predictor predicts that 𝑆𝑁3 backward will be

scheduled leveraging the pipeline status carried with 𝑆𝑁1 backward.

We use the metric cache hit rate to measure the percentage of times

of the event that, when a layer in a choice block is activated, the

layer already resides in the GPU memory. Leveraging NASPipe’s

predictor design, NASPipe is able to achieve a cache hit rate as

high as ∼ 90%, at the cost of a cache size ∼ 3𝑋 of a single subnet’s

context.

Context Executor is the main runtime process that iteratively

fetches context schedule from the CSP scheduler and executes sub-

nets (ğ3.2). Before execution, it checks whether the subnet context

to be executed is ready in GPU for safety. Also, it updates its exe-

cution status, shared with the context manager, before and after a

scheduled execution finishes. This is to make the context manager

aware of the execution status.

Context Manager runs as a separate process that shares the su-

pernet context (i.e., DNN modules) with the context executor, en-

abling totally asynchronous management of the supernet context.

According to the context schedule generated by context predic-

tor, NASPipe’s context manager initializes new context modules,

378



ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Zhao, Li, Chen, Shen, Chen, Wang, Zhang, Li, and Cui

manages context switch, i.e., evicts finished or interrupted subnet

context to CPU memory and pre-fetches the next possible sub-

net back to GPU, and handle the parameter synchronization for

mirrored operators (ğ4.2).

3.2 Pipeline Scheduler with Dependency
Preservation

Scheduling Unit. NASPipe’s runtime involves partitioning the lay-

ers of a subnet into multiple stages. The partition is a𝐷-partition (𝐷

is the number of GPUs) of a subnet’s sequential list of layers, with

each partition having roughly the same execution time, according

to pre-profiled statistics of each layer. Each stage is mapped to a

separate GPU (a runtime worker) that performs the forward pass

(and backward pass) for all layers in that stage. The basic sched-

uling and execution unit in NASPipe’s runtime is a task, which is

defined as either a subnet stage 𝑖’s forward pass or backward pass

on processing one input batch. Each task is identified by a task

property (forward or backward), subnet ID, and stage ID.

Scheduling Policy. Algorithm 1 and Algorithm 2 illustrate how

to use the above scheduling unit to implement a scheduling policy

to form a pipeline execution of subnets and enforce CSP in super-

net learning. This policy maintains a Queue list (𝐿𝑞 ), which stores

the forward tasks to be executed, and a Finished list (𝐿𝑓 ), which

stores the finished task, and each runtime worker maintains a list

of subnets (𝐿𝑆𝑁 ), with each subnet represented by a list of operator

choices (ğ3) and asynchronously retrieved from the algorithm pro-

gramming frontend in a producer-consumer manner (𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒 ()

Algorithm 1: NASPipe Runtime

1 Train (𝐾 )
inputs :𝑡𝑜𝑡𝑎𝑙 , total steps; 𝐾 , stage ID

2 𝐿𝑆𝑁 , 𝐿𝑞, 𝐿𝑓 ← [], [ ], [ ] ;

3 foreach 𝑖 ∈ [0, 𝑡𝑜𝑡𝑎𝑙 − 1] do

4 if receiveBwd(𝑟𝑒𝑐𝑣) then

5 𝑏𝑤𝑑_𝑖𝑑 ← 𝑟𝑒𝑐𝑣.𝑖𝑑 ;

6 predictor(𝐿𝑞 ,𝐿𝑓 , 𝐿𝑆𝑁 , 𝐾 , 𝑟𝑒𝑐𝑣, 𝑁𝑜𝑛𝑒);

7 runBackward(𝑏𝑤𝑑_𝑖𝑑);

8 sendBackward(𝑏𝑤𝑑_𝑖𝑑);

9 flush(𝑏𝑤𝑑_𝑖𝑑);

10 𝐿𝑓 .append(𝑏𝑤𝑑_𝑖𝑑);

11 ctxt_manager(𝑓 𝑤𝑑_𝑖𝑑 , 𝐸𝑉 𝐼𝐶𝑇 );

12 𝑞𝑖𝑑𝑥 ← −1 ;

13 𝑓 𝑤𝑑_𝑖𝑑 ← −1 ;

14 𝐿𝑆𝑁 .append(retrieve());

15 𝑞𝑖𝑑𝑥, 𝑓 𝑤𝑑_𝑖𝑑 ← schedule(𝐿𝑞 ,𝐿𝑓 , 𝐿𝑆𝑁 , 𝐾 );

16 while 𝑓 𝑤𝑑_𝑖𝑑 < 0 and receiveFwd(𝑟𝑒𝑐𝑣) do

17 𝐿𝑞 .append(𝑟𝑒𝑐𝑣.𝑖𝑑);

18 𝑞𝑖𝑑𝑥, 𝑓 𝑤𝑑_𝑖𝑑 ← schedule(𝐿𝑞 ,𝐿𝑓 , 𝐿𝑆𝑁 , 𝐾 );

19 if 𝑓 𝑤𝑑_𝑖𝑑 ≥ 0 then

20 𝐿𝑞 .pop(𝑞𝑖𝑑𝑥 );

21 predictor(𝐿𝑞 ,𝐿𝑓 , 𝐿𝑆𝑁 , 𝐾 , 𝑁𝑜𝑛𝑒 , 𝑓 𝑤𝑑_𝑖𝑑);

22 runForward(𝑓 𝑤𝑑_𝑖𝑑);

23 sendForward(𝑓 𝑤𝑑_𝑖𝑑);

24 ctxt_manager(𝑓 𝑤𝑑_𝑖𝑑 , 𝐸𝑉 𝐼𝐶𝑇 );

Algorithm 2: NASPipe Scheduler

1 Schedule (𝐿𝑞, 𝐿𝑓 , 𝐿𝑆𝑁 , 𝐾 )
inputs :𝐿𝑞 , queue list of subnet IDs ; 𝐿𝑓 , finished list of

subnet IDs; 𝐿𝑆𝑁 , subnet list with layer IDs; 𝐾 , stage

ID

output :𝑞𝑖𝑑𝑥,𝑞𝑣𝑎𝑙

2 foreach 𝑞𝑖𝑑𝑥,𝑞𝑣𝑎𝑙 ∈ 𝐿𝑞 do

3 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 ← 𝑇𝑟𝑢𝑒 ;

4 foreach 𝑤𝑣𝑎𝑙 ∈ [0, 𝑞𝑣𝑎𝑙 − 1] do

5 if 𝑤𝑣𝑎𝑙 ∈ 𝐿𝑓 then

6 continue

7 foreach 𝑙 ∈ 𝐿𝑆𝑁 [𝑞𝑣𝑎𝑙 ] [𝐾 ] do

8 if 𝑙 ∈ 𝐿𝑆𝑁 [𝑤𝑣𝑎𝑙 ] then

9 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 ← 𝐹𝑎𝑙𝑠𝑒 ;

10 break

11 if 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 then

12 return 𝑞𝑖𝑑𝑥,𝑞𝑣𝑎𝑙

13 return −1, −1;

in line 16 in Algorithm 1). In all algorithms, 𝑞𝑖𝑑𝑥 means the next

scheduled index in the subnet queue, and 𝑞𝑣𝑎𝑙 means the subnet

ID, the subnet’s exact sequence ID in the total execution order.

The scheduling policy iteratively waits and selects the next task

to run with the following heuristics. (1) Backward tasks are always

preferred with the highest priority (lines 6-13 in Algorithm 1). The

rationale is that backward tasks can remove the precedence con-

straints on the following tasks, making a larger scheduling search

space. (2) Forward tasks in the queue are scheduled with Schedule()

(Algorithm 2), which checks each forward task’s causal dependency

by comparing its layer choices with each layer in each subnet (line

7-10) that has a lower sequence ID (line 4) and does not show in

the finished list (line 5-6). This ensures that the causal dependency

preservation property of CSP (definition-2) is guaranteed.

Complexity Analysis. The time complexity of Algorithm 2 is

𝑂 ( |𝐿𝑞 | ( |𝐿𝑓 | + 𝑚
2), where |𝐿𝑞 | is the queue list size, |𝐿𝑓 | is the

finished list size, and 𝑚 is the number of layers in a subnet (i.e.,

number of choice blocks in a supernet). |𝐿𝑞 | is usually not large

(less than 30), restricted by causal dependencies. The number of

simultaneously launched subnets is limited. 𝐿𝑓 often has the same

size with |𝐿𝑞 |, as we have an elimination scheme for the finished

list that when subnets before a seq ID are all finished, we remove

them both from the finished list and the dependencies check in line

4 of Algorithm 2. Overall, the time cost of our scheduler policy call

is small (<0.01s) compared with a subnet execution (second level),

which incurs a little penalty on NASPipe’s performance.

3.3 Context Prediction

Context management on GPUs is key for both single DNN train-

ing [11, 12, 25, 48] and multiple DNN inference services multiplexed

on the same group of GPUs [3] to reserve only necessary execution

context to relieve the GPU memory burden, without notable perfor-

mance penalty. Existing systems all assume a pre-known execution

timeline of DNN operators, so that these systems can perform a
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pipeline context switch that asynchronously copies a DNN oper-

ator’s parameters between CPU and GPU and overlaps the copy

with DNN operator execution. However, in supernet training, the

subnet generation is unknown prior to run. Worse, in CSP, the sub-

net executions are often reordered to reserve causal dependencies

and high performance. These obstacles make a context prediction

that forecasts the upcoming executed tasks is highly desirable but

missing.

Opportunities. Fortunately, we reveal that the execution time of

DNN operators on modern GPUs is roughly deterministic, so that

given the status of the current stage and the whole pipeline, we

are able to forecast the next few scheduled tasks in the near future

with high prediction accuracy.

Prediction Policy. Algorithm 3 illustrates how NASPipe predicts

the next few scheduled tasks. The Predictor() is called before a

backward pass (line 23 in Algorithm 1) and before a forward pass

(line 8 in Algorithm 1). The heuristics used for these two types

of calls are different. As the backward pass will finish a subnet’s

write access, it will resolve the dependencies between itself and

the following subnets in the queue list (𝐿𝑞). Therefore, in line 5-6,

we pre-add the backward pass to the finished list (𝐿𝑓 ) re-run the

Schedule(). The produced forward pass task has a high chance to

be the next scheduled (line 7-9).

Moreover, in NASPipe, the received backward tasks are trans-

ferred from the latter stages of a pipeline, carrying the information

of pending backward tasks from the last stage. The pending back-

ward tasks are blocked as a forward pass has not arrived at the

last stage in the presence of precedent dependencies. Therefore,

during the backward data transfer between stage, each stage checks

whether a forward pass’s dependencies that block a backward pass

is resolvable in this stage; if yes, it passes the pending backward

pass to the precedent stages. Before a forward pass, if this forward

pass will release a pending backward pass, NASPipe adds this back-

ward pass task to the context fetch schedule (line 13-15). Meanwhile,

the prediction before forward passes also re-run the Schedule() to

predict the next scheduled forward pass (line 16-18). Predictor()

re-runs Schedule and takes similar time cost complexity. Although

negligible, this time cost can still be eliminated by asynchronous

execution.

4 SYSTEM IMPLEMENTATION

NASPipe is implemented as a standalone Python library with about

4000 LoC. NASPipe uses PyTorch [24] for DNN computation and

auto-differentiation because NASPipe’s design leverages the imper-

ative features from PyTorch: the supernet training needs dynamic

DNN computation graph generation. Still, NASPipe’s design is gen-

eral for all imperative training frameworks (e.g., TensorFlow and

MxNet). We leave NASPipe’s implementation on these frameworks

in future work.

4.1 Runtime Construction

NASPipe inherits the fashion of Retiarii’s supernet construction

with the PyTorch Module. Specifically, each supernet choice block

with a set of candidate layers is constructed as a Module List, and

each candidate layer is indexed by a block-wise choice id. Each su-

pernet’s choice block Module contains a unique forward(inputs,

Algorithm 3: NASPipe Predictor

1 Predictor (𝐿𝑞, 𝐿𝑓 , 𝐿𝑆𝑁 , 𝐾, 𝑟𝑒𝑐𝑣, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 )
inputs :𝐿𝑞 , queue list of subnet IDs; 𝐿𝑓 , finished list of

subnet IDs; 𝐿𝑆𝑁 , subnet list with layer IDs; 𝐾 , stage

ID; 𝑟𝑒𝑐𝑣 backward recv object

2 𝐿𝑏𝑙𝑜𝑐𝑘𝑒𝑑 ← [] //global variable ;

3 𝐿𝑓 𝑒𝑡𝑐ℎ ← [];

4 if 𝑟𝑒𝑐𝑣 not 𝑁𝑜𝑛𝑒 then //backward

5 𝐿′ ← 𝐿𝑓 ;

6 𝐿′ .append(𝑟𝑒𝑐𝑣.𝑖𝑑) ;

7 _, 𝑓 𝑤𝑑_𝑖𝑑 ← schedule(𝐿𝑞 ,𝐿
′ , 𝐿𝑆𝑁 , 𝐾 );

8 if 𝑓 𝑤𝑑_𝑖𝑑 > 0 then

9 ctxt_manager(𝑓 𝑤𝑑_𝑖𝑑 , 𝐹𝐸𝑇𝐶𝐻 );

10 foreach 𝑏𝑤𝑑 ∈ 𝑟𝑒𝑐𝑣.𝑛𝑒𝑥𝑡_𝑏𝑤𝑑𝑠 do

11 𝐿𝑏𝑙𝑜𝑐𝑘𝑒𝑑 .append(𝑏𝑤𝑑);

12 return

13 foreach 𝑏𝑤𝑑 ∈ 𝐿𝑏𝑙𝑜𝑐𝑘𝑒𝑑 do

14 if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 == 𝑏𝑤𝑑.𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑛𝑐𝑒 then

15 ctxt_manager(𝑏𝑤𝑑.𝑖𝑑 , 𝐹𝐸𝑇𝐶𝐻 );

16 _, 𝑓 𝑤𝑑_𝑖𝑑 ← schedule(𝐿𝑞 ,𝐿𝑓 , 𝐿𝑆𝑁 , 𝐾 );

17 if 𝑓 𝑤𝑑_𝑖𝑑 > 0 then

18 ctxt_manager(𝑓 𝑤𝑑_𝑖𝑑 , 𝐹𝐸𝑇𝐶𝐻 );

19 return

choices) function. In addition to training inputs, the forward func-

tion receives a list of choices that specifies which operators in the

Module List should be activated for processing the inputs.

Wemodified Retiarii to generate subnets in a producer-consumer

way, where NASPipe is the consumer. As each subnet has a unique

balanced partition, NASPipe at runtime translates each subnet’s

𝐾 partitions (𝐾 is GPU number) into 𝐾 statements in string

objects. Each GPU is managed by a hot PyTorch context executor

process. Each subnet’s forward() function only contains a Python

exec_stmt() utility call that executes the generated statement.

NASPipe spawns a separate worker for each stage (i.e., GPU) and

uses PyTorch distributed primitives to communicate between

stages. NASPipe’s runtime eliminates all factors that may break the

deterministic execution properties (i.e., reproducibility) by fixing

random seeds for PyTorch, Python, and DataLoader, and setting

CUDA library deterministic configuration to true.

4.2 Context Management

NASPipe adopts activation recomputing techniques [12, 25] to

eliminate the heavy activation memory context using PyTorch’s

checkpoint utility, thus further relieving the GPU memory burden.

Note that all baseline systems (except for Pipedream) we evalu-

ated are also enabled with this optimization. NASPipe takes CPU

as secondary storage, and by default, the supernet’s operators all

reside in CPU storage. To handle asynchronous operator copy (i.e.,

copy the parameter tensors of an operator) between GPU world

and CPU world, NASPipe uses PyTorch’s native utility of tensor

copy_()with non_blocking = True. Specifically, NASPipe’s CPU

storage is by default in pinned CPU memory. The reason is that in

PyTorch, memory copies to devices can be asynchronous when they

380



ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Zhao, Li, Chen, Shen, Chen, Wang, Zhang, Li, and Cui

Table 1: Default evaluation setup of seven search spaces. Each

search space is configured by the number of choice blocks

and the number of layers per choice block. A subnet is con-

structed by selecting a layer from each choice block.

Search Space # Choice Blocks # Layer/Block Dataset

NLP.c0 48 96 WNMT

NLP.c1 48 72 WNMT

NLP.c2 48 48 WNMT

NLP.c3 48 24 WNMT

CV.c1 32 48 ImageNet

CV.c2 32 24 ImageNet

CV.c3 32 12 ImageNet

originate from pinned CPU (i.e., page-locked) memory. NASPipe

invokes a GPU memory limit checking before it copies an operator

to GPU (to wait for operators being evicted). If the limit is reached,

NASPipe delays the operator copy. NASPipe catches runtime ex-

ception per stage execution and re-executes a stage in case that

out-of-memory error happens.

Layer Mirroring. NASPipe by default initializes supernet layers

with a partition based on their choice block hierarchy, with each

partition initialized in each stage’s pinned CPU storage. When a

layer needs to bemirrored to another stage,NASPipe uses PyTorch’s

add_module() to mirror this layer. If a mirrored layer’s parameters

are updated, the new parameters are actively pushed to all the

other mirrored ones via PyTorch distributed communication

library and the corresponding parameter update is applied by the

load_dict() member function of the layer’s Module object.

5 EVALUATION

Testbed. Our evaluation was conducted on a GPU farm with 8

hosts. Each host had 4 Nvidia 2080Ti GPUs, 20 CPU cores, and

64 GB RAM. Each GPU had 11 GB of physical memory and was

connected to the host with PCIe 3.0 X16 that provided a total data

transfer bandwidth of 15760 MB/s. Hosts were connected with 40

Gbps Ethernet, and the average ping latency was 0.17ms. In all

our evaluations, the maximized network bandwidth across hosts

used for both NASPipe and our baseline systems was 867MB/s,

indicating that the network hardware was not the bottleneck of

our experiments.

Baseline Systems. To evaluate the performance of NASPipe, we

comparedNASPipewithGPipe [12], PipeDream [21], andVPipe [48].

GPipe can achieve the most compact GPU memory utilization for

pipeline parallelism with activation tensor rematerialization (ğ4).

PipeDream interleaves the forward and backward computation on

each GPUwith asynchronous parameter update (i.e., ASP) to reduce

the GPU idle time. VPipe further reduces the GPU memory con-

sumption in the pipeline parallel training system by swapping the

model parameters to CPU memory. GPipe and VPipe are all config-

ured with BSP, sharing the same reproducibility with Retiarii’s. We

did not select Retiarii’s performance as a baseline, because Retiarii’s

parallel execution cannot support training the large supernets as

we evaluated. However, Retiarii [45]’s programming interface is

essential for all these supernets to support NAS training. Therefore,

NASPipe and all baseline systems are integrated with Retiarii (ğ4).
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Figure 4: The end-to-end training convergence comparison

of NASPipe, GPipe, PipeDream, and VPipe. In all six search

spaces, NASPipe can converge to a higher BLEU score (for

NLP tasks) or higher top-5 accuracy (for CV tasks) than

GPipe.

Datasets. We conducted our study on the two most representative

datasets, ImageNet [7], and WNMT [31], targeting both computer

vision and language processing tasks. ImageNet is a full-scale im-

age dataset that contains 600k images from 1k classes. WNMT is

the major translation dataset that has been used in recent natural

language processing (NLP) studies.

Search Space and Search Strategy. We evaluated NASPipe on

both language processing (e.g., NLP) and computer vision (e.g.,

CV) tasks. We adopted search space defined by Evolved Trans-

former [34] for the NLP task and search space defined by Amoe-

baNet [37] for the CV task. We derived a set of search spaces (4 for

NLP tasks and 3 for CV tasks) by altering the number of candidate

layers for choice blocks in the search space. The setup of the 7

search spaces is listed in Table 1.

Specifically, we migrated the initial open-source supernet im-

plementation [37] to Retiarii for AmoebaNet. For Evolved Trans-

former, we extended their official implementation to Retiarii’s su-

pernet search space implementation. For all self-implemented and

migrated supernet we evaluated, we achieved comparable search

quality (i.e., the validation score of the final searched DNNs) com-

pared with the reported results in their papers. For all NAS search

spaces we evaluated, we used evolution [29] as the default search

strategy.

Default Setting andMetrics. By default, we used 8 GPUs for each

experiment with the default settings in Table 1. For training each

search space’s supernet, every sampled subnet was trained by one

training step. Each training step means the training of one input

batch. We measured the throughput by data samples per second.

We used the GPU ALU to represent each GPU’s average utilization,

collected from Nvidia’s GPU profiling tools. We used factors like

7.8X in Table 2 to make the total memory/ALU usage normalized
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to a single GPU’s memory limit (e.g., 11GB) and ALU limit (100%)

for easy comparison.

Our evaluation focuses on the following questions:

ğ5.1: How is NASPipe’s end-to-end performance compared to base-

lines?

ğ5.2: How is NASPipe’s reproducibility compared to baselines?

ğ5.3: How effective are NASPipe’s components?

ğ5.4: How scalable is NASPipe’s design to the number of GPUs?

ğ5.5: What are the lessons we learned?

5.1 NAS Supernet Training Performance

Figure 4 shows the resulting training convergence curve of six su-

pernets (i.e., search space) and Figure 5 shows the normalized train-

ing throughput. Overall, NASPipe achieved 1.1𝑋 ∼ 7.8𝑋 through-

put compared to GPipe and 0.87𝑋 ∼ 6.5𝑋 throughput compared to

PipeDream on training the same supernets. Meanwhile, NASPipe

has 0.77𝑋 ∼ 1.5𝑋 throughput compared to VPipe. Both GPipe and

PipeDream failed to run search space NLP.c0 because the super-

net parameter size exceed the GPU memory capacity. Note that

NASPipe is the only system that retains reproducibility, and we

will further evaluate this in ğ5.2.

To further break down the performance gains that we collected,

Table 2 shows the runtime statistics of each comparison. NASPipe’s

performance improvement over GPipe, PipeDream, andVPipe comes

from three factors. First, as shown in the batch size (B.S.) column

of Table 2, NASPipe supported 1.3𝑋 ∼ 6𝑋 larger batch size than

GPipe and 2.7𝑋 ∼ 12𝑋 batch size than PipeDream. This is because

NASPipe incurred less GPU memory burden for only stashing the

layers of subnets being executed at the cost of extra CPU storage

(the CPU memory column in Table 2). Note that, we measured the

efficacy of our context prediction by the Cache Hit (rate) column,

which was collected by checking whether an ML layer’s parameter

was in GPU memory before its execution. NASPipe’s cache size

was roughly 3X of a subnet’s parameter memory (see Para. column

in Table 2; NASPipe’s cached parameter size was about 3X VPipe’s;

VPipe cached one subnet in GPU). The cache is composed of three

parts: the current subnet being executed, the previous subnet to be

evicted to CPU memory, and the next subnet to be pre-fetched into

GPU memory.

Second,NASPipe enforced that each subnet was always executed

with a balanced partition. Although the batch size support by VPipe

is the same as NASPipe, the NASPipe’s average execution time
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Figure 5: Normalized throughput of four systems on seven

search spaces. The value on each red bar indicates NASPipe’s

average number of traversed (trained) subnets per hour.

(bubble eliminated) of a subnet (Exec. column of Table 2) for search

space NLP.c1 is 1.13s, and the time of VPipe is 1.21s. A subnet’s

execution time of NASPipe is 9.6% less than VPipe on average. This

indicates that NASPipe achieved a much more balanced and stable

pipeline training than VPipe.

Third, NASPipe incurs a bubble time comparable to GPipe. The

bubble time ratio (Bubble column of Table 2) of the BSP system

GPipe is constantly 0.57 for all the search spaces. NASPipe achieved

a bubble time ratio approximately the same as GPipe for search

space NLP.c2 and CV.c2. For larger search spaces NLP.c1 and CV.c1,

the bubble time ratio of NASPipe reached 0.39 and 0.43. The ASP

system PipeDream interleaved the forward and backward compu-

tation and incurred a bubble time ratio of 0.1.

NASPipe’s performance improvement over GPipe, PipeDream,

and VPipe increases with the growth of search space size. From

Table 2, NASPipe achieves merely 0.1𝑋 throughput improvement

compared to GPipe for search space NLP.c3, while the improvement

increases to 6.8𝑋 for a larger search space NLP.c1. With the growth

of search space size, the bubble time ratio of NASPipe decreases

and NASPipe’s batch size enlargement over GPipe and PipeDream

increases.

Note that, for NLP.c3 and CV.c3 (in Figure 5), we relieved the

excessive supernet context burden in baselines by limiting the super-

net’s parameter size. In these cases,NASPipe’s context management

gained little advantage over the baselines. Meantime, we believe

that, in such small search spaces, Retiarii’s default parallel strat-

egy (i.e., wrapped data parallelism with parameter server, see ğ2.2)

could achieve comparable parallel efficiency with the baselines and

NASPipe. Nevertheless, on large search spaces, NASPipe is the only

system that achieves both high performance and reproducibility.

5.2 Reproducibility

We ran each of NASPipe, GPipe and PipeDream on 4, 8 and 16

GPUs to evaluate their reproducibility. Note that, all these systems

were configured with deterministic execution (ğ4.1). We kept the

random seed, batch size, and other hyperparameters (e.g., steps)

the same when running a system on different numbers of GPUs.

The results for six search spaces are listed in Table 3. NASPipe

generated supernets with the same losses across 3 runs, and the

scores (BLEU scores for NLP task and Top-5 accuracies for CV task)

of the subnets derived from the supernet were also the same. As

for GPipe and PipeDream, the generated supernets had different

losses across the 3 runs, and a different subnet was derived in each

run. To conclude, only the search result of the system adopted CSP

was reproducible.

We then explain how the synchronization methods of NASPipe

(CSP), GPipe (BSP), and PipeDream (ASP) affect the final NAS re-

sults. A layer’s parameter is read in the forward pass and updated

(write) in the backward pass. Table 4 demonstrates how the pa-

rameter of a randomly chosen layer in a supernet was accessed

when using NASPipe, GPipe, and PipeDream on 4 and 8 GPUs. The

chosen layer was sampled by the 2nd, 5th, and 7th subnets. The

layer was then accessed and updated by the batch corresponding

to each subnet. For NASPipe adopted CSP, the order a layer was

accessed and updated remained the same when running on 4 and 8

GPUs, while the order differed for both GPipe and PipeDream. By
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Table 2: Resource consumption and micro events. "P.S." indicates either the parameter size of a subnet in NASPipe/VPipe or the

whole supernet in GPipe/PipeDream; "Score" measures the quality of a converged supernet; "B.S." is the batch size of input to a

pipeline; "GPU Mem (GPU ALU)" is the total used GPU memory (ALU utilization) across 8 GPUs; "CPU Mem" is the utilized

CPU memory. Note that we do not incur CPU memory overhead in ShuffleNet because the size of ShuffleNet search space is

small enough to fit into a single GPU’s memory; "Exec." is the average execution time (bubble eliminated) of a subnet; "Bubble"

is the bubble time ratio in the pipeline; "Cache Hit" is the hit rate of accessing a layer from GPU memory.

Space System Para. Score Batch GPU Mem. GPU ALU CPU Mem. Exec.(s) Bub. Cache Hit

NLP.c1

NASPipe 1327M 22.17 192 7.8x 3.9x 57.8G 1.13 0.39 86.4%

PipeDream 14.8B 21.97 16 7.8x 0.6x 0 0.49 0.1 N/A

GPipe 14.8B 22.09 32 7.7x 0.5x 0 0.54 0.57 N/A

VPipe 474M 22.03 192 7.6x 2.6x 58.7G 1.21 0.57 1.1%

NLP.c2

NASPipe 1350M 21.58 192 7.8x 2.8x 40.0G 1.09 0.57 91.6%

PipeDream 10.8B 20.43 24 7.9x 0.8x 0 0.51 0.1 N/A

GPipe 10.8B 21.39 64 7.7x 0.9x 0 0.68 0.57 N/A

VPipe 460M 20.74 192 7.5x 2.6x 40.9G 1.24 0.57 2.0%

NLP.c3

NASPipe 1327M 20.46 192 7.8x 2.0x 20.3G 1.12 0.68 94.3%

PipeDream 5.8B 19.28 48 7.9x 1.6x 0 0.59 0.1 N/A

GPipe 5.8B 20.17 128 7.8x 1.8x 0 0.96 0.57 N/A

VPipe 440M 19.42 192 7.5x 2.6x 21.2G 1.20 0.57 4.1%

CV.c1

NASPipe 940M 82.4% 64 7.8x 3.5x 29.1G 0.87 0.43 92.6%

PipeDream 7.4B 79.5% 12 7.7x 1.1x 0 0.51 0.1 N/A

GPipe 7.4B 81.4% 24 7.9x 1.0x 0 0.63 0.57 N/A

VPipe 337M 80.7% 64 7.6x 2.4x 29.6G 0.96 0.57 2.0%

CV.c2

NASPipe 983M 81.8% 64 7.9x 2.6x 14.6G 0.86 0.58 94.8%

PipeDream 3.8B 78.3% 16 7.7x 1.5x 0 0.54 0.1 N/A

GPipe 3.8B 81.0% 32 7.8x 1.3x 0 0.65 0.57 N/A

VPipe 325M 79.1% 64 7.5x 2.4x 15.2G 0.95 0.57 4.1%

CV.c3

NASPipe 1021M 81.5% 64 7.6x 2.0x 6.1G 0.89 0.68 97.1%

Pipedream 1.7B 77.8% 24 7.7x 2.3x 0 0.63 0.1 N/A

GPipe 1.7B 81.2% 48 7.8x 1.9x 0 0.76 0.57 N/A

VPipe 342M 78.6% 64 7.5x 2.4x 6.8G 0.96 0.57 7.9%

retaining this access order, NASPipe achieved the reproducibility

property on an arbitrary number of parallel GPUs.

5.3 Ablation Study of NASPipe’s Components

NASPipe’s performance gain primarily comes from its three key

components: scheduler (ğ3.2) that deterministically resolves causal

dependencies without harming much parallel efficiency, predic-

tor (ğ3.3) that precisely switches subnets with little penalties and

makes our supported batch size larger (higher GPU utilization), and

layer mirroring (ğ4.2) that enforces each subnet to be executed at a

more balanced partition (more efficient pipeline). In this subsection,

we conducted an ablation study to evaluate the effectiveness of

these three components by disabling each component, respectively.

Overall, we evaluated four systems in this subsection: NASPipe,

NASPipe w/o scheduler that disabled the scheduler of NASPipe,

NASPipe w/o predictor that disabled the predictor of NASPipe,

and NASPipe w/o mirroring that disabled the context manager of

NASPipe. Figure 6 shows the normalized throughput of the four sys-

tems. Overall, NASPipe achieved higher throughput than the other

three systems. This indicates that all the three key components of

NASPipe contribute to NASPipe’s improved performance.

When NASPipe’s predictor was disabled, the whole supernet

was stored inside GPU memory. This made NASPipe w/o predictor

NLP.c0 NLP.c1 NLP.c2 NLP.c3 CV.c1 CV.c2 CV.c3
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Figure 6: Normalized throughput of four systems on seven

search spaces. The value on each red bar indicates NASPipe’s

average number of traversed (trained) subnets per hour.

support a smaller batch size (same as GPipe, see Table 2). Still,

NASPipe w/o predictor incurred a higher throughput than GPipe,

as the context manager made the execution of a pipeline on GPUs

more balanced, and the scheduler reduced the bubble time ratio of

NASPipe.

When NASPipe’s context manager was disabled, it can be ob-

served that the throughput of NASPipe w/o mirroring slightly

dropped. This was because the execution time of a subnet’s parti-

tions was no longer balanced without NASPipe’s context manager.
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Table 3: Reproducibility. Search accuracy is converged accu-

racy of the DNN with the highest quality searched out from

the trained supernet.

Sync.
Supernet Loss Search Accuracy

4GPU 8GPU 16GPU 4GPU 8GPU 16GPU

NLP.c1

CSP 5.9663 5.9663 5.9663 22.17 22.17 22.17

BSP 6.0026 5.9772 5.9974 22.09 21.32 21.75

ASP 6.7765 6.7835 6.8262 21.97 21.03 21.83

NLP.c2

CSP 5.7911 5.7911 5.7911 21.58 21.58 21.58

BSP 5.9882 6.0825 6.0049 21.39 21.15 20.93

ASP 6.5434 6.6661 6.5975 20.43 20.36 20.75

NLP.c3

CSP 5.4315 5.4315 5.4315 20.46 20.46 20.46

BSP 5.7690 5.4091 5.5561 20.17 20.37 20.29

ASP 6.2453 6.0856 6.4483 19.28 19.05 18.73

CV.c1

CSP 5.3086 5.3086 5.3086 82.4 82.4 82.4

BSP 5.4136 5.6453 5.4674 81.4 82.1 82.3

ASP 5.9086 6.1061 5.8269 79.5 80.7 80.1

CV.c2

CSP 5.2841 5.2841 5.2841 81.8 81.8 81.8

BSP 5.4497 5.3986 5.5239 81.0 81.5 80.7

ASP 5.8401 5.9625 5.6104 78.3 79.6 78.1

CV.c3

CSP 5.1193 5.1193 5.1193 81.5 81.5 81.5

BSP 5.1358 5.2957 5.2829 81.2 80.9 81.2

ASP 5.4509 5.5121 5.2788 77.8 78.5 78.8

Table 4: Access and update order of a layer in the supernet.

𝑛F means accessed by the 𝑛-th batch’s forward pass and 𝑛B

means updated by the 𝑛-th batch’s backward pass.

Access & Update Order

4 GPUs 8 GPUs

NASPipe 2F-2B-5F-5B-7F-7B 2F-2B-5F-5B-7F-7B

GPipe 2F-2B-5F-5B-7F-7B 2F-5F-7F-2B-5B-7B

PipeDream 2F-2B-5F-7F-5B-7B 2F-5F-7F-2B-5B-7B

Table 5: Comparison of computation and swap time for eight

representative layers. Column Comp. shows a layer’s for-

ward/backward computation time in milliseconds. Column

Swap shows time in milliseconds to swap a layer’s parame-

ters from CPU memory to GPU memory.

Input Size Layer Comp. Swap

NLP (192, 1024)

Conv 3x1 5.0/10.0 1.76

Sep Conv 7x1 4.2/5.7 0.56

Light Conv 5x1 0.68/1.4 0.03

8 Head Attention 7.9/13.8 2.07

CV (64, 112, 112)

Conv 3x3 7.9/13.8 4.6

Sep Conv 3x3 2.8/4.0 0.68

Sep Conv 5x5 6.7/9.9 2.04

Dil Conv 3x3 2.5/3.4 0.58

As a result, the partition with the longest execution time bottle-

necked the subnet’s whole execution.

When NASPipe’s scheduler was disabled, the throughput of

NASPipe w/o scheduler became 0.2𝑋 to 0.7𝑋 lower than NASPipe.

This was because NASPipe w/o scheduler had to finish the execu-

tion of a pipeline before injecting the next pipeline. As a result,

NASPipe w/o scheduler incurred a bubble time ratio of 0.75, which

degraded the final throughput. In sum, Figure 6 indicates all three

components of NASPipe are essential to make NASPipe’s training

performance high and stable.

5.4 Scalability

To evaluate whether NASPipe is scalable to larger search space

(thus requires more GPUs), we ran NASPipe, GPipe, PipeDream,

and VPipe on 4 to 16 GPUs for search space NLP.c1, which is the

largest search space that all the four systems support.

In Figure 7, we used the total GPU ALU utilization to evaluate

the scalability. Overall, NASPipe was able to scale sub-linearly. As

we can see, NASPipe’s scalability curve dropped when the GPU

number became larger. This slowdown attributes to two factors.

First, the communication time increases in a pipeline for a larger

GPU number. As a GPU stays idle when awaiting inputs from other

GPUs, the GPU utilization decreases with the increase of commu-

nication time ratio in a pipeline. Second, the causal dependency

caused a larger bubble time ratio. We observed that the bubble time

ratio is 0.39 for 8 GPUs, and the value increased to 0.42 for 16 GPUs.

GPipe, PipeDream, and VPipe achieved poorer scalability with

the increase of GPU numbers. Although the bubble time ratio of

BSP systems GPipe and VPipe stays the same for different numbers

of GPUs, the problem of unbalanced GPU ALU utilization became

more severe and degraded the performance. NASPipe maintained

a balanced partition for the subnets when running on different

numbers of GPUs. PipeDream incurred only a small portion of

bubble time, but it still suffered from the unbalanced partition.
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Figure 7: The total ALU utilization of different systems run-

ning with a scaled number of GPUs.

5.5 Lessons Learned

Limitations.NASPipe’s design has two limitations. First,NASPipe’s

implementation requires the imperative feature of a training frame-

work. Thus, training frameworks with static execution cannot

be integrated with NASPipe. Still, most of the existing popular

training frameworks, including Tensorflow [2], PyTorch [24], and

MxNet [24], all support imperative programming. Second,NASPipe’s

major system optimizations are designed for the latest and popular

NAS paradigms [9, 18, 26]. However, NAS is a hot and extensive

research area containing many other heterogenous search methods.

Thus, NASPipe’s design is only limited to the supernet-based NAS

algorithms that are programmable via Retiarii [45]’s abstractions.
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Future Applications. We envision that NASPipe can facilitate

two new training strategies for NAS supernet training, which can

enable DNN architecture engineers to explore more valuable DNNs.

First, NASPipe allows the hybrid traverse of multiple search spaces

simultaneously as NASPipe’s runtime design is flexible to hold

any number of causal dependency relations. Second, NASPipe has

the potential to be extended for supporting all supernet adoptions,

including the dynamic networks [15] and a mixture of experts

model [43]. We leave this for future work.

6 RELATED WORK

Prior GPUmemory reduction systems [3, 11, 25, 30, 38] only capture

layer dependencies inside a static DNN’s forward and backward

pass. These systems are not designed for NAS supernet training

because NAS involves causal dependencies among subnets’ layers.

Unified Memory [22] enables a unified virtual memory space across

CPUs and GPUs, but it is a black-box approach and unaware of the

DNN training context at runtime.

Existing deep learning frameworks (e.g., Pytorch [24], Tensor-

flow [2]) are designed to describe and train a single DNN model.

While some Automated Machine Learning (AutoML) systems (e.g.,

AutoGluon [8], AutoKeras [13]) can automate the model search-

ing process, these systems are limited to domain-specific search

space. Retiarii [45] introduces the mutator abstraction, which can

describe any search space and facilitate model exploration. Our

system NASPipe can be easily integrated with Retiarii.

There are Deep Learning scheduling systems [10, 14, 19, 20, 39,

40] that provide model-wise scheduling across a GPU cluster. Still,

NASPipe solves domain-specific challenges stemming from NAS

supernet training. There are tremendous studies [23, 32, 47] that

explored the race hazard in various programs, NASPipe’s is the first

work to study the race hazard in parallelizing supernet training.

There are studies [1, 24, 46] studying the deterministic ML training

at hardware level or DNN operator level, and we study the deter-

ministic ML training at the NAS supernet level. For parallel training

of a static DNN, there are three parallel dimensions including data

parallelism [17, 27], tensor model parallelism [33], and pipeline

model parallelism [12, 21, 41]. NASPipe is a practical exercise that

parallelizes a multi-subnet and dynamic training procedure across

GPUs, which can be considered as a fourth parallel dimension

(supernet/subnet parallelism); supernet/subnet parallelism can be

integrated with other parallel dimensions.

7 CONCLUSION

We propose NASPipe, a full-fledged high-performance, and repro-

ducible parallel training system via the CSP pipelining for sup-

porting supernet training. NASPipe serves as a backend beneath a

NAS programming frontend (e.g., Retiarii). Extensive results show

NASPipe’s design can provide a crucial property reproducibility

for supernet training, with high training performance. NASPipe

envisions a wide application scope for DNN experts to explore more

valuable DNNs.

ACKNOWLEDGMENTS

We thank our shepherd, Chris Rossbach, and all anonymous re-

viewers for their helpful comments. This work is supported in

part by a Huawei Flagship Research Grant in 2021, a HKU-SCF

FinTech Academy R&D Funding Scheme in 2021, HK RGC GRF

(17202318, 17207117), the National Natural Science Foundation of

China (61802358), the Shanghai AI Lab, the HKU and IS-CAS Joint

Lab for Intelligent System Software, and a Croucher Innovation

Award.

A ARTIFACT APPENDIX

A.1 Abstract

This appendix describe the availability and functionality of the

paper’s artifact: a causal parallel training execution framework. The

artifact requires a host with at least 100GB CPU RAM and 4 Nvidia

GPUs, and each GPU requires at least 11GB memory. The runtime

environment is installed by docker with a few command lines. The

experiments contain a throughput evaluation and reproducible

training evaluation. The artifact provides one-click shell scripts to

conduct the experiments.

A.2 Artifact Check-list (Meta-information)
• Program: Shell scripts; Python program.

• Model: Transformer-based Neural Architecture Search model.

• Data Set: WMT 2014 English-German dataset.

• Run-timeEnvironment: python 3.6.9, GCC 7.3.0, torch 1.9.0+cu102,

torchvision 0.10.0+cu102, fairseq commit 0dfd6b6, cuda >= 10.2,

nvidia driver 455.38, 18.04.3 LTS (Bionic Beaver).

• Hardware: 1 host with 4 Nvidia RTX 2080ti GPUs (or any Nvidia

GPUs with >= 11GB memory) and 100GB CPU RAM

• Execution: Several command lines to run shell scripts.

• Experiments: Training throughput comparison betweenNLP.c0-c3

in Table 1 in four GPUs setting. Training reproducibility experiment

between single GPU and four GPUs settings.

• How Much Disk Space Required (Approximately)?: 200GB

• How Much Time is Needed to Prepare Workflow (Approxi-

mately)?: 90 minutes.

• How Much Time is Needed to Complete Experiments (Ap-

proximately)?: 30 minutes.

• Publicly Available?: Yes.

• Code Licenses?: MIT license

• Archived?: https://doi.org/10.5281/zenodo.5739442

A.3 Description

A.3.1 How to Access. The artifact is accessible via the persistent

DOI link. It is optionally accessible via the public Github repository

link.

Persistent Link: https://doi.org/10.5281/zenodo.5739442

Optional Link: https://github.com/hku-systems/naspipe

A.4 Installation

You can also refer to README.md in the artifact with more detailed

documentation.

Pull and run PyTorch official image:

docker pull pytorch/pytorch:1.9.0-cuda10.2-cudnn7-devel

cd naspipe

nvidia-docker run -it -v $PWD:/workspace śnet=host śipc=host

śname=naspipe pytorch/pytorch: 1.9.0-cuda10.2-cudnn7-devel

Inside docker, install dependencies:

apt-get update
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apt-get install -y git

cd /

git clone https://github.com/pytorch/fairseq

cd fairseq

pip install śeditable ./

Fix fairseq compatibility issues:

git am < /workspace/0001-compatible.patch

cd /workspace

Fix deterministic execution issues:

export CUBLAS_WORKSPACE_CONFIG=:4096:8

A.5 Evaluation and Expected Results

Experiment 1: Reproducible parallel training on single GPU and

four GPUS settings. Search space NLP.c0. Comparing 500 training

step outputs in full precision floating point.

Command: ./run_compare.sh

Output: All 500 training steps outputs in full precision floating

point matches between settings.

Experiment 2: Training throughput comparison between NLP.c0-c3

in Table 1 in four GPUs setting.

Command: ./run_throughput.sh

Output: Training throughput of all settings with T(NLP.c0) >

T(NLP.c1) > T(NLP.c2) > T(NLP.c3).
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