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Abstract—Just like bugs in single-threaded programs can
lead to vulnerabilities, bugs in multithreaded programs can
also lead to concurrency attacks. We studied 31 real-world
concurrency attacks, including privilege escalations, hijacking
code executions, and bypassing security checks. We found that
compared to concurrency bugs’ traditional consequences (e.g.,
program crashes), concurrency attacks’ consequences are often
implicit, extremely hard to be observed and diagnosed by
program developers. Moreover, in addition to bug-inducing
inputs, extra subtle inputs are often needed to trigger the
attacks. These subtle features make existing tools ineffective
to detect concurrency attacks.

To tackle this problem, we present OWL, the first practical
tool that models general concurrency attacks’ implicit con-
sequences and automatically detects them. We implemented
OWL in Linux and successfully detected five new concurrency
attacks, including three confirmed and fixed by developers , and
two exploited from previously known and well-studied concur-
rency bugs. OWL has also detected seven known concurrency
attacks. Our evaluation shows that OWL eliminates 94.1% of
the reports generated by existing concurrency bug detectors as
false positive, greatly reducing developers’ efforts on diagnosis.
All OWL source code, concurrency attack exploit scripts, and
results are available on github.com/hku-systems/owl.
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I. INTRODUCTION

Driven by the rise of multi-core hardware, multi-threaded
programs are already pervasive. Unfortunately, these pro-
grams are plagued with concurrency bugs (i.e., shared
memory accesses without proper synchronization among
threads) [1]. Harmful concurrency bugs often corrupt critical
global memory and immediately lead to explicit conse-
quences such as wrong outputs and program crashes [2]–[4].

Worse, recent studies [5], [6] reveal that concurrency bugs
can lead to concurrency attacks: by triggering concurrency
bugs, hackers may leverage the corrupted memory to con-
duct much broader types of security consequences, includ-
ing privilege escalations [7], hijacking code execution [8],
bypassing security checks [9], and breaking database in-
tegrity [5]. In this paper, we studied 31 concurrency attacks
across multiple platforms such as Windows and Linux. We
also built scripts to successfully exploit 12 attacks across six
real-world programs in Linux.
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Our study identified two subtle features for concurrency
attacks compared to concurrency bugs and their traditional
consequences. First, the corrupted memory often resides a
long time in programs, and then abruptly triggers severe
consequences which are often implicit: for 14 out of 31 con-
currency attacks we studied, developers were often not aware
of the attacks consequences (e.g., bypassing security checks)
when the attacks succeeded. This feature makes concurrency
attacks extremely hard to be detected, diagnosed, or fixed.

Second, in addition to the inputs for inducing concurrency
bugs, 10 out of the 12 concurrency attacks we reproduced
require extra subtle inputs to conduct the attacks. For in-
stance, in a new Linux OS privilege escalation detected by
us (CVE-2017-7533 [10]), triggering the memory corruption
only required two threads using crafted inputs (calling
inotify() and rename()). Nevertheless, to trigger the
root privilege escalation, a third thread is required to call
a socket() to allocate a SELinux label structure using
kmalloc32(). This structure must be close to the memory
corrupted by the two threads, so that a kernel heap overflow
can be triggered to construct a privilege escalation.

These extra attack-inducing inputs are extremely hard to
be inferred by developers or existing tools. For seven out
of the 12 attacks for which we had source code and that
we were able to reproduce, their concurrency bug triggering
sites and their attack triggering sites are widely spanned
across different functions. Conducting this long bug-to-
attack propagation often needs subtle inputs. Moreover,
this propagation often infects other threads disrelated to
trigger the concurrency bugs, and these threads are often
driven by extra subtle inputs to reach vulnerable sites (e.g.,
setuid()).

These two subtle features make existing concurrency bug
consequence analysis tools ineffective on detecting concur-
rency attacks. Existing tools go along two directions. First,
2AD [5] proposes a specific concurrency attack model for
database programs, but this tool is unable to detect concur-
rency attacks in other programs. The other tools go along
another direction (e.g., CONMEM [4]), which targets general
programs’ concurrency bugs and their explicit consequences
(e.g., program crashes). Unfortunately, most consequences in
the concurrency attacks we studied are implicit and they are
ignored by these tools. Moreover, none of existing tools in
the two directions can infer the extra attack-inducing inputs.
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Overall, despite much effort, a general concurrency attack
analysis tool is highly desirable but missing.

To address this problem, we present a general concurrency
attack inference model (§III-B) which incorporates the two
features. In this model, the lifecycle of a concurrency
attack consists of three phases. First, a concurrency bug
is triggered and it corrupts shared memory. Second, the
corrupted memory propagates along control-flow and data-
flow, spreading across functions (i.e., inter-procedural prop-
agation). Meanwhile, the corrupted memory can go across
memory boundaries (e.g., buffer overflows) and infect other
threads disrelated to trigger the concurrency bugs (i.e., inter-
thread propagation). Finally, corrupted memory leads to
severe security consequences when it flows to vulnerable
sites (e.g., eval() and setuid()).

Leveraging this model, we present OWL, the first general
concurrency attack detection tool (§III-C). A key chal-
lenge is to automatically infer the extra attack-inducing
inputs. Conventional approaches like symbolic execution
(e.g., UC-KLEE [11]) encounter path explosions when inter-
procedural or inter-thread propagation analysis is needed.

Our observation is that most attack inducing inputs for
concurrency attacks already exist in a program’s own or
third-party test suites, and new global memory allocated
by the extra inputs are often close to corrupted memory
infected by concurrency bugs. Leveraging this observation,
we built a new Attack Input Fuzzer (§III-C). It intercepts the
instructions which may cause inter-thread propagations (e.g.,
buffer overflows) to dynamically monitor memory layouts
at runtime and to record which instruction allocates the
overflowed memory. Based on the recorded instructions, the
fuzzer runs the test suites and automatically pinpoints the
attack-inducing inputs from the test suites.

Another challenge is developing a scalable analysis
method that can infer an inter-procedural bug-to-attack prop-
agation. Our study shows that although the consequences
of concurrency attacks are implicit, these consequences are
triggered by five well-formatted types of vulnerable sites,
including memory operations (e.g., strcpy()), NULL
pointer dereferences, privilege operations (e.g., setuid()),
file operations (e.g., access()), and process-forking op-
erations (e.g., eval() in shell scripts). Moreover, a bug
triggering instruction and its attack triggering instructions
often shared a similar call stack. OWL introduces a scal-
able inter-procedural analyzer: it starts from bug triggering
instructions in a report generated by concurrency bug de-
tectors, propagates corrupted memory using data-flow and
control-flow along the bug report’s call stack, and finally
locates potentially vulnerable sites.

We implemented OWL using LLVM [12] in Linux.
OWL incorporates a set of concurrency bug detectors,
including TSAN [13], VALGRIND [14] for user space and
KTSAN [15], SKI [16] for kernel space. We evaluated
OWL on six diverse, widely used programs, including

Apache, Chrome, Libsafe, Linux, MySQL, and SSDB.
OWL eliminated 94.1% of concurrency bug reports as
false positives. With the greatly reduced reports, OWL
effectively detected five new severe concurrency attacks,
including three new attacks (CVE-2017-7533 [10], CVE-
2016-1000324 [17], and CVE-2017-12193 [18]) confirmed
and fixed by developers, and two new attacks exploited
previously known and well-studied bugs in Apache. In
addition, OWL detected seven known concurrency attacks
without missing any one. The time cost of OWL was
reasonable for testing.

The main contribution of this paper is OWL, the first
practical, general concurrency attack detection tool. OWL
incorporates a general model for understanding concurrency
attacks and a new, practical attack input fuzzer. OWL has
successfully detected five new concurrency attacks, and three
of them have been confirmed and immediately fixed by the
developers of RedHat, Android, and SSDB. The other two
new attacks OWL detected were exploited on previously
known and well studied concurrency bugs on Apache,
which shows that existing enormous set of concurrency bugs
deserve an extensive re-investigation for their concurrency
attack consequences. We envision that OWL will attract
further attention not only on detecting concurrency attacks,
but also on diagnosing, fixing and defending against them.

The rest of this paper is structured as follows. §II intro-
duces the background of concurrency attacks. §III gives an
overview of the concurrency attack model and architecture
of OWL. §IV and §V state the implementation of OWL. We
evaluate OWL in §VI. We discuss and conclude in §VII.

II. BACKGROUND

A. Concurrency Bugs

Multi-threaded programs are prone to concurrency bugs,
causing great loss in the real world [19]. Concurrency
bugs are usually caused by shared memory access without
proper synchronization among threads. Data race is the most
common type of concurrency bugs, defined as two threads
accessing the same memory byte concurrently and at least
one access is write [20], [21]. Data race detecting is already
mature in academia and industry [13], [14], [16]. In this
paper, we augment current data race detectors to build OWL,
the first practical and general concurrency attack detector.

CONMEM [4] focuses on explicit consequences of con-
currency bugs. Its evaluation shows that 26 out of 70 real-
world concurrency bugs only cause minor function issues, 7
of them cause program hangs and 37 of them cause program
crashes. These findings have driven researchers making
tremendous progress on detecting severe concurrency bugs.
CONMEM [4] has successfully targeted concurrency bugs
that result in program crashes and introduced a model
explaining how concurrency bugs cause explicit memory
crash. CONSEQ [22] augments this model, taking advantage
of the explicit crash reports and implementing a backward



approach to help improve the accuracy of concurrency bugs
detection.

These tools [4], [22] assume that bug inducing instructions
and their consequence inducing instruction are within the
same function and they provide intra-procedural propagation
analysis. However, our study reveals that, concurrency attack
inducing instructions and their bug inducing instructions are
widely spanned across different functions. For instance, Fig.
1 illustrates a stack overflow attack caused by data race
in Libsafe. The variable corrupted in stack_check
afterward causes a violation of stack overflow protection
in libsafe_strcpy. This makes existing tools [4], [22]
ineffective to pinpoint concurrency attacks.

Figure 1: A concurrency attack in the Libsafe security
library. Dotted arrows mean the bug-triggering thread interleaving.

B. Concurrency Attacks

A prior study [6] browses the bug databases of 46 real-
world concurrency bugs and presents three major findings
on concurrency attacks. First, concurrency attacks are severe
threats: 35 of the bugs can corrupt critical memory and cause
three types of violations, including privilege escalation, ma-
licious code injection, and bypassing security authentication.
Second, with crafted bug-inducing inputs, concurrency bugs
that lead to attacks can be often triggered with high prob-
ability (less than 20 repeated program executions). Third,
compared to traditional TOCTOU attacks, which stem from
corrupted file accesses, pinpointing concurrency attacks is
much more difficult because they stem from corrupted and
miscellaneous memory accesses.

These three findings reveal that concurrency attacks can
weaken or even bypass existing sequential defense tools,
because these tools are mainly designed for sequential at-
tacks. This prior study raises an open research question: what
should an effective tool be for detecting concurrency attacks?
Specifically, can existing concurrency bugs detection tools
effectively detect these bugs and their attacks? The answer
is probably NO because literature has overlooked these
attacks [6].

A recent work 2AD [5] focused on detecting concurrency
attacks in database programs. It introduces a new attack
model called ACIDRain attack for databases. However, this
tool is designed for special programs.

We conducted the first quantitative study on 31 concur-
rency attacks across four OS platforms (shown in Table
I). To gain a deep understanding, we built scripts for 12
concurrency attacks among six real-world programs. We
identified the two aforementioned features (§I).

Table I: A summary of consequences for the 31 concurrency
attacks we studied across four platforms.

Linux Windows Darwin FreeBSD
Privilege Escalation 4 3 1 2
Inject Malicious Code 2 0 0 0
Bypass Security Check 1 0 0 1
Violate Integrity 1 1 1 0
DoS/Crash 9 2 2 1
Total 17 6 4 4

First, among 14 of 31 concurrency attacks, the cor-
rupted memory often resides a long time in the pro-
grams, abruptly triggering severe consequences and re-
maining implicit to software developers. For instance, in
the Libsafe attack we mentioned before (Fig. 1), the
raced variable in stack_check() affects behaviors of
libsafe_strcpy, and hence the stack overflow protec-
tion is silently bypassed. Moreover, for the five new attacks
we detected (§VI-A), four of them incur implicit conse-
quences (Linux root privilege escalation, file corruption,
and use-after-free) without crashing the programs, and only
one is explicit (DoS).

Second, in addition to the inputs for triggering con-
currency bugs, 10 out of 12 required extra subtle in-
puts to conduct concurrency attacks. For instance, in the
CVE-2017-7533 attack (Fig. 2), the data race caused by
inotify_handle_event() and rename() can cause
a kernel heap overflow when the second parameter of rename
exceeds the memory allocated before. Since kernel processes
share the same kernel heap, a third system call socket()
allocates a netlbl_lsm_secattr structure on the same
heap close to the corrupted memory. Hence, the first field
of netlbl_lsm_secattr will be overwritten once the
overflow succeeds. We leveraged this procedure to achieve
a privilege escalation. Another known concurrency attack,
CVE-2004-1235 [7], also requires extra threads to call extra
system calls in addition to the bug triggering system calls.

Overall, no existing tool has incorporated either of these
two features and we owe this as the key reason that existing
tools are in-effective on detecting concurrency attacks.

C. Related works

Concurrency reliability tools. Various prior systems work
on concurrency bug detection [3], [4], [21]–[27], diagnosis
[27]–[32], and correction [33], [34]. They focus on con-
currency bugs themselves, while OWL focuses on security
related consequences of concurrency bugs. Therefore, these
systems are complementary to OWL.

CONMEM [4] is the most relevant tool to OWL, but
it is not open source. CONMEM is not able to detect
some concurrency attacks (e.g.CVE-2017-7533) because of



Figure 2: A new data race bug and privilege escalation attack
detected by OWL in Linux Kernel. Both the bug and attack
have been confirmed by RedHat, Android, and Kernel group, and
assigned CVE-2017-7533.

two main reasons. First, CONMEM mainly handles explicit
consequences such as program crashes, and it does not
describe how to detect buffer overflows. Second, CONMEM
is not designed to infer the extra attack-inducing inputs.
Static & Dynamic vulnerability detection tools. There
are already a variety of static and dynamic vulnerability
detection approaches [35]–[38]. Benjamin et al. [39] lever-
age pointer analysis to detect data flow from unchecked
inputs to sensitive sites. This approach ignores control flow
and thus it is not suitable to track concurrency attacks
like the Libsafe one [40]. Yamaguchi et al. [35] did not
incorporate inter-procedural analysis and thus is not suitable
to track concurrency attacks either. Moreover, these general
approaches are not designed to reason about concurrent
behaviors (e.g., [35] cannot detect data races).
Symbolic execution. Scheduler control is a way to exploit-
ing synchronization bugs by using interrupting and schedul-
ing threads. Scheduler control can be utilized by OWL
to find thread execution order of triggering concurrency
attacks. Symbolic execution is an advanced program anal-
ysis technique that can systematically explore a programs
execution paths to find bugs. Researchers have built scalable
and effective symbolic execution systems to detect software
bugs [41]–[44], block malicious inputs [45], preserve pri-
vacy in error reports [46], and detect programming rule
violations [47]. Specifically, UCKLEE [44] has been shown
to effectively detect hundreds of security vulnerabilities in
widely used programs. Symbolic execution is orthogonal to
OWL; it can augment OWL’s input hints by automatically
generating concrete vulnerable inputs.

III. OVERVIEW

A. Preliminaries

Patterns of concurrency bugs and attacks are diverse and
complicated. We design the model to be general so that it
can cover all the real-world concurrency attacks we studied.
Therefore, we give some preliminaries and simplification
first in order to make our discussion clear.

Figure 3: Concurrency Attack Model

Inputs are defined as the data a program reads from its
execution environment, including not only the data read from
files and sockets, but also command line arguments, return
values of external functions such as gettimeofday(),
and any external data that can affect program execution.
Bug-inducing Inputs (BI) are the series of inputs that
trigger a concurrency bug. Attack-Inducing Inputs (AI) are
the inputs that trigger a concurrency attack. Each Input is
fed to one Thread (T ), and we express each composition of
inputs and threads with (Ti, Ii). Triggering a concurrency bug
requires: (T1, BI1), (T2, BI2), ..., (Tn, BIn), n≥2. Triggering
a concurrency attack requires: (T1, BI1), (T2, BI2), ..., (Tn,
BIn), (Tn+1, AI1), (Tn+2, AI2), ..., (Tn+m, AIm), n≥2, m≥0. In
most concurrency attacks we studied, n = 2 and m = 0 or 1.
Specifically, when m = 0, the attack site is within a bug
inducing thread (T1 or T2). Therefore, the rest of this paper
considers n = 2 and m = 0 or 1.

Global memory contains two kinds of memory space,
the shared memory among threads within a program and
the global kernel space. Corrupted memory is the memory
corrupted by a concurrency bug, and the following memory
pieces infected by the firstly corrupted memory. Corrupted
memory propagates along data-flow and control-flow with
Corrupted Instructions (instructions that operate on cor-
rupted memory). We refer Attack Sites to corrupted instruc-
tions that may cause attacks, including memory operations
(e.g., strcpy()), NULL pointer deferences, privilege opera-
tions (e.g., setuid()), file operations (e.g., access()), and
process-forking operations (e.g., eval() in shell scripts).
Moreover, we refer Corrupted Memory Operations to
memory operations (e.g., memcpy() or direct writes to
memory) that manipulate corrupted memory or are infected
by corrupted memory. alloc() represents all the memory
allocation functions across programs (e.g., malloc() in
C program) and platforms (e.g., kmalloc() in Linux
Kernel).

B. Concurrency Attack Model

We present a general concurrency attack model (Fig. 3)
with three phases: bug triggering, bug-to-attack propagation,



Figure 4: OWL’s Architecture with two phases

and attack triggering.
Bug Triggering. In this model, a concurrency bug is trig-

gered by (T1,BI1),(T2,BI2) with certain thread interleaving.
For instance, in Fig. 3, BI1 and BI2 trigger a data race on
the same byte in global memory.

Bug-to-attack Propagation. Corrupted memory propa-
gates along control-flow and data-flow through program
execution. When corrupted memory propagates to an attack
site (e.g., setuid()), a concurrency attack succeeds. For
instance, if corrupted memory affects any parameter in
memcpy(), an overflow can happen and infect other threads
(Tx). If Tx is fed with AIx which drives Tx to read some
overflowed memory, Tx will become vulnerable and trigger
a concurrency attack.

Attack Triggering. When the bug triggering thread (T1)
or the vulnerable thread (Tx) executes an attack site and the
parameters of the attack site refer to corrupted memory,
a concurrency attack can succeed. Currently our model
contains five types of attack sites (§III-A), and more types
can be added in the future.

C. OWL’s Architecture

Fig. 4 shows OWL’s architecture, which contains two ma-
jor phases. The first phase is to reduce false positive reports,
including a concurrency bug detector and a schedule reducer.
The second phase is to infer actual attacks, including an
inter-procedural static analyzer, an attack input fuzzer, and
an attack verifier. The inputs of OWL are a program’s source
code and test suites.

OWL takes a bug report from the concurrency bug detec-
tors and searches for a thread interleaving that can actually
trigger the bug, greatly reducing false positive reports. OWL
then passes the actual bug reports to its inter-procedural
analyzer, which generates bug-to-attack propagation reports.
Finally, OWL’s attack input fuzzer takes the propagation
reports, runs the test suites, and pinpoints attack-inducing
inputs which can trigger attack sites.

Concurrency bug detector (§IV-A) uses existing concur-
rency bug detection tools. It receives program executables
and test suites and produces concurrency bug reports at
runtime.

Schedule Reducer (§IV-C) identifies actual concurrency
bugs from the bug reports and eliminates false positive
reports. It receives concurrency bug reports and a program’s

LLVM bitcode, and tries to search for a thread interleaving
for T1 and T2 so that they can actually trigger a data race
on the same memory byte.

Inter-procedural Static Analyzer (§V-A) does inter-
procedural static analysis to see whether corrupted memory
may propagate to any attack sites through data-flow or
control-flow. Also, it gives hints for potential inter-thread
propagation (e.g., heap overflows). It receives the leftover
concurrency bug reports from our Schedule Reducer and the
LLVM bitcode, and produces vulnerability reports.

Attack Input Fuzzer (§V-B) takes the bug-to-attack
propagation reports and runs a program’s self-carrying or
third-party test suites. It pinpoints attack-inducing inputs
(e.g., AIx for Tx) which can trigger potentially vulnerable
instructions, if so, it records Tx.

Concurrency Attack Verifier (§V-C) takes the inserted
breakpoints from the Schedule Reducer, the bug-inducing
inputs from concurrency bug reports, and the attack-inducing
inputs from the Fuzzer. It replays these taken inputs and sees
whether an attack site can be executed. If so, it generates a
concurrency attack report.

D. Detecting Example

We take CVE-2017-7533 (Fig. 2), a new concurrency
attack detected by OWL as an example. When we ran
Trinity [48], a Linux system call benchmark tool, SKI (a
kernel data race detector) generated 24.6K data race reports
in total. One of them was a data race between the two system
calls inotify_handle_event() and rename() on
the same file. The former system call was invoked by a
thread to monitor file modifications, while the latter was
invoked by another thread to rename the file to a longer
name. Because Linux did not properly synchronize the two
system calls, a data race occurred and triggered this attack.

OWL’s Schedule Reducer found a thread interleaving
that triggered a race on a global file_name variable
shared by both threads. Then, OWL’s inter-procedural static
analyzer reported that a propagation from the variable
to the src parameter of the attack site strcpy() in
inotify_handle_event(). OWL viewed this as a
potential buffer overflow and invoked attack input fuzzer
to search for the extra inputs that can lead to attack.

Firstly, the fuzzer ran the system call
inotify_handle_event() again and dynamically



collected the parameters of strcpy(). Meanwhile,
memory allocation information was collected and the
fuzzer located the dst parameter, which was pointed to a
memory piece allocated by kmalloc32(). Secondly, the
fuzzer ran Trinity to generate system calls and recorded
the system calls which also used kmalloc32() to
manage its memory. Leveraging the recorded system calls,
we found that only when the socket() system call
allocated a netlbl_lsm_secattr structure repeatedly
and resided next to the corrupted dst memory address,
an overflow happened to overwrite a function pointer in
the netlbl_lsm_secattr structure. Leveraging the
corrupted function pointer, we injected malicious code and
successfully got the OS root privilege.

IV. REDUCING SCHEDULES

This section presents OWL’s schedule reducer compo-
nent, including automatically annotating adhoc synchro-
nizations (§IV-B) and pruning benign schedules (§IV-C).
This component in total greatly reduced 94.1% of the total
reports (see §VI-B). Moreover, this section presents OWL’s
integration with extant concurrency bug detectors (§IV-A).

A. Integration with Concurrency Bug Detectors

OWL has integrated four popular race detectors: SKI,
KTSAN for Linux kernels and TSAN, VALGRIND for ap-
plication programs. To integrate OWL’s algorithm (§V-A)
with concurrency bug detectors, two elements are necessary
for the detectors: the load instruction that reads the bug’s
corrupted memory and the instruction’s call stack. We built
parsers for each detector to provide uniformed bug reports
for OWL. An issue for OWL to work with kernels is that
SKI lacks call stack information. We configure Linux ker-
nel with the CONFIG FRAME POINTER option enabled.
Given a dump of the kernel stack and the values of the
program counter and frame pointer, we were able to iterate
the stack frames and constructed call stacks.

B. Annotating Adhoc Synchronization

Developers use semaphore-like adhoc synchronizations,
where one thread is waiting for a shared variable until
another thread sets this variable to be “true”. This type of
adhoc synchronizations couldn’t be recognized by TSAN or
SKI and caused many false positives.

OWL uses static analysis to detect these synchronizations
in two steps. First, by taking the race reports from detectors,
it sees if the “read” instruction is in a loop. Then, it conducts
an intra-procedural forward data and control dependency
analysis to find the propagation of the corrupted variable.
If OWL encounters a branch instruction in the propagation
chain, it checks if this branch instruction can break the loop.
Last, it checks if the “write” instruction assigns a constant
to the variable. If so, OWL tags this report as an “adhoc
sync”.

Compared to the prior static adhoc sync identification
method SyncFinder [49], which finds the matching “read”
and “write” instruction by statically searching program code,
our approach leverages the actual runtime information from
the race reports, so ours is much simpler and more precise.

C. Verifying Real Data Races

OWL’s schedule reducer also contains a dynamic race
verifier to check whether the reduced race reports are indeed
real races. The verifier is lightweight because it is built on
top of the LLDB debugger. We found that a good way to
trigger a data race is to catch it “in the racing moment”. The
verifier sets thread-specific breakpoints indicated by TSAN
race reports. “Thread specific” means when the breakpoint
is triggered, we only halt that specific thread instead of the
whole program. The rest of the threads are still able to
run. In this way, we can catch the race when both of the
racing instructions are reached by different threads and are
accessing the same address.

For each run, OWL verifies one race. Once a data race
is verified, the verifier goes one step further. It prints the
following dynamic information as security hints including,
the racing instructions from source code, the value they’re
about to read and write and the type of the variable that
these instructions are about to read or write. These hints
show whether a NULL pointer difference can be triggered
or an uninitialized data can be read because of the race.

RaceFuzzer [28] adopts the same core idea of “thread
specific breakpoints” and data race verification. OWL’s
dynamic race verifier provides a lightweight, general, easy to
use way (integrated with the existing debuggers) in verifying
potentially harmful data races and their consequences.

There are two cases that could cause OWL’s race verifier
to miss real races. First, if the race detector does not
detect the race upfront, the verifier will not report the
race either. Second, depending on runtime effects (e.g.,
schedules), some races can’t be reliably reproduced with
100% success rate [50]. Because all implementations of
OWL’s dynamic verifiers are based on LLDB. For the Linux
kernel, our dynamic verifiers can be in practice implemented
in QEMU [51].

V. CONCURRENCY ATTACK INFERENCE

A. Inter-procedural Analysis

Algorithm 1 shows OWL’s static inter-procedural ana-
lyzer’s algorithm. It takes a program’s LLVM bitcode in
SSA form, an LLVM load instruction that reads from the
corrupted memory of a concurrency bug report, and the
call stack of this instruction. The algorithm then does inter-
procedural static analysis to see whether corrupted memory
may propagate to any attack site (§III-B) through data or
control flows. If so, the algorithm outputs the propagation
chain in LLVM IR format as the bug-to-attack hint for
developers.



Algorithm 1: Scalable inter-procedural analysis
Input : program prog, start instruction si, si call stack cs
Global: corrupted instruction set crptIns, vulnerability set vuls
DetectAttack(prog, si, cs)

crptIns.add si
while cs is not empty do

f unction ← cs.pop
ctrlDep ← false
DoDetect(prog, si, f unction, ctrlDep)

DoDetect(prog, si, f unction, ctrlDep)
set localCrptBrs ← empty
foreach succeeded instruction i do

bool ctrlDepFlag ← false
foreach branch instruction cbr in localCrptBrs do

if i is control dependent on cbr then
ctrlDepFlag ← true

if ctrlDep or ctrlDepFlag then
if i.type() ∈ vuls then

ReportExploit(i, CTRL DEP)
if i.type() ∈ corruptedMemOp then

ReportOverflow(i, DATA DEP)
if i.isCall() then

foreach actual argument arg in i do
if arg ∈ crptIns then

crptIns.add i
if i.type() ∈ vuls then

ReportExploit(i, DATA DEP)
if i.type() ∈ corruptedMemOp then

ReportOverflow(i, DATA DEP)
if f .isInternal() then

cs.push f
DoDetect(prog, f .first(), f , ctrlDep or ctrlDepFlag)
cs.pop

else
foreach operand op in i do

if op ∈ crptIns then
if i.type() ∈ vuls then

ReportExploit(i, DATA DEP)
if i.type() ∈ corruptedMemOp then

ReportOverflow(i, DATA DEP)
crptIns.add i
if i.isBranch() then

localCrptBrs.add i
ReportExploit(i, type)

if i is never reported on type then
ReportToDeveloper()

The algorithm works as follows. It first adds the corrupted
read instruction into a global corrupted instruction set, it then
traverses all following instructions in the current function
and if any instruction is affected by this corrupted instruction
set (“affected” means any operand of current instruction is
in this set), it adds the instruction into this corrupted set. The
algorithm looks into all successors of branch instructions as
well as callees to propagate this set. It reports a potential
concurrency attack when an attack site (§III-B) is affected
by this set. Moreover, it reports a potential buffer overflow
when a memory operation is affected by this set.

To achieve reasonable accuracy and scalability, we made
three design decisions. First, based on our finding that
bugs and attacks often share similar call stack prefixes,
the algorithm traverses the bug’s call stack (§II-B). If the
algorithm does not find an attack site on the current call
stack and its callees, it pops the latest caller in the current
call stack and checks the propagation through the return
value of this call, until the call stack becomes empty and the
traversal of current function finishes. This targeted traversal
makes the algorithm scale to large programs with greatly

reduced false reports (Table IV).
Second, the algorithm tracks propagation through LLVM

virtual registers [12]. Similar to relevant systems [22], [32],
our design did not incorporate pointer analysis [52], [53]
because one main issue of such analysis is that it typically
reports too many false positives on shared memory access
in large programs.

Our analyzer compensates the lack of pointer analysis by:
(1) tracking read instructions in the detectors at runtime
(§IV-A), and (2) leveraging the call stacks to precisely
resolve the actually invoked function pointers (another main
issue in pointer analysis).

Third, some detectors do not have read instructions in
the reports (e.g., write-write races), and we modified the
detectors to add the first load instruction for these reports
during the detection runs (§IV-A).

All five types of vulnerability sites we found (§III-B) have
been incorporated in this algorithm. The generated attack
site reaching branches from this algorithm serves as bug-to-
attack propagation hints and helped us identify subtle inputs
to detect five new attacks and seven known ones (§VI-A).

B. Attack Input Fuzzing

A main challenge for OWL’s attack input fuzzer is how
to check whether the memory corrupted by the bug trig-
gering threads can infect other threads and lead to attacks.
For instance, in our model (§III-B), given that T1 and T2
have corrupted global memory with a concurrency bug, our
fuzzer’s goal is to find (Tx, AIx), which can leverage the
corrupted memory to hit an attack site. However, checking
whether two threads can violate a certain property is NP-
hard [54] and unpractical to academia and industry attack
detection. To the best of our knowledge, no existing fuzzer
is designed to tackle this challenge due to two reasons
(§II-C): (1) no existing fuzzer (e.g., Driller [55] and UC-
KLEE [11]) considers a memory corruption model with
concurrent threads, and (2) their symbolic execution tech-
niques often scale poorly on the inter-procedural bug-to-
attack propagation paths.

To mitigate this challenge, OWL’s attack input fuzzer
takes the bug-to-attack propagation hints from its analyzer
(§V-A), and infers potential memory areas that may be
overflowed by memory corruption operations. Then, the
fuzzer runs a program’s own or third-party test suites to
pinpoint extra threads and their attack inputs, which can
allocate memory blocks near the corrupted memory blocks.

In an implementation level, OWL’s fuzzer consists of
three steps for each program. First, given the bug-to-attack
reports (LLVM instructions) generated from OWL’s inter-
procedural analyzer, the fuzzer collects the list of static
corrupted memory instructions that manipulate corrupted
memory or are infected by corrupted memory.

The second step is a replay. The fuzzer re-runs the test
suites, including the inputs that trigger the concurrency bug.



It records the lifecycles of all memory blocks managed
by alloc() and de-alloc() operations for all threads
of the program. During the replay, for the memory blocks
which are infected (written) by the corrupted instructions
collected from the first step, the fuzzer marks these blocks
as “corrupted”.

Third, the fuzzer traverses all the memory blocks B
without the “corrupted” mark. If B is next to a “corrupted”
block and a thread Tx reads from B, the fuzzer reports
this thread Tx and its input AIx as vulnerable. Finally, (T1,
BI1), (T2, BI2) and (Tx, AIx) will be fed to OWL’s attack
verifier (§V-C) to search for a thread interleaving to conduct
a concurrency attack.

OWL’s fuzzer supports both userspace programs and
Linux kernel. We leveraged two Linux tools, Kprobe
for kernel and Uprobe for userspace, to achieve dynamic
tracing of functions. Our evaluation (§VI-C) shows that the
fuzzer is effective in finding potential attack-inducing inputs
from a large number of test cases generated by test suites.

C. Concurrency Attack Verifier

OWL’s verifier is built on LLDB so it is lightweight.
It takes the bug-inducing inputs and attack-inducing inputs
from the fuzzer (§V-B), replays the inserted breakpoints from
the schedule reducers (§IV-C), and then checks whether an
attack site is hit. If so, it outputs a concurrency attack report.

VI. EVALUATION

We evaluated OWL on six widely used C/C++ programs
and used common test suites of these programs as workloads
(Table II). Our evaluation was done on a machine with a
2.60 GHz 24 hyper-threading cores Intel Xeon CPU, 64 GB
memory, and 1TB SSD, running Linux-4.10.0-35-generic.

Table II: Test suites for the six programs. The test suites we used
for generating race reports and testing efficiency and performance
of OWL. In addition to test suites, we also involve all the 12
exploitation scripts as test cases.

Name Test Suites
Linux Trinity (Syscall bench)
SSDB SSDB-bench
Libsafe Attack exploit script
MySQL DBT2 Benchmark Tool
Chrome Octane 2.0
Apache Ab (Apache bench)

We focused our evaluation on four key questions:

• Can OWL detect new and known concurrency attacks
in real-world programs? (§VI-A)

• How many false-positive reports from concurrency bug
detection tools can OWL reduce? (§VI-B)

• Can OWL infer the extra attack inputs? (§VI-C)
• How much time does OWL cost? (§VI-D)

A. Detecting New and Known Concurrency Attacks
OWL detected five new concurrency attacks listed in

Table III. For three out of five new attacks, both the
concurrency bugs and the concurrency attack consequences
are new. One attack is CVE-2017-7533 [10], which caused
a Linux OS root privilege escalation. This attack has been
confirmed and fixed by RedHat developers immediately after
we reported it. Android also gave us a $2500 reward
for reporting this severe attack. The other two attacks (
CVE-2017-12193 [18] and CVE-2016-1000324 [17]) have
been confirmed and fixed by RedHat and SSDB developers
respectively. Surprisingly, although the two old concurrency
bugs Apache-25520 and Apache-46215 have been re-
ported over years and well studied, OWL still detected two
new concurrency attack consequences on these bugs: one
attack is HTML integrity violation and the other is an integer
overflow with a DoS attack.

Currently, OWL focuses on practical and scalable detec-
tion for concurrency attacks, and its inter-procedural analysis
(§1) may miss real attacks. To evaluate whether OWL may
miss attacks, we applied OWL on 7 known concurrency
attacks listed in Table III. OWL detected all these known
attacks.

The first new concurrency attack (CVE-2017-7533 [10],
shown in Fig. 2) detected by OWL is caused by a
new data race between inotify_handle_event() and
rename(). Our static analyzer (§V-A) reported that the
data race may cause a buffer overflow. We used Attack
Input Fuzzer, which gave nine potential victim system calls
and their allocated memory could be overflowed. After
manually analyzing the nine victim inputs, we found a
specific bind() system call can generate a SELinux struc-
ture netlbl_lsm_secattr, which has a function pointer
void (*free) in the front. Destroying the socket leads
to dereference of the function pointer void (*free).
We overwrote this function pointer to point to a piece of
malicious code mmap() in kernel space and successfully
got an OS root privilege.

Figure 5: A NULL pointer dereference and DoS attack detected
by OWL in Linux kernel, confirmed as CVE-2017-12193 [18].

The second new concurrency attack (shown in Fig.5)
was reported by OWL as a potential NULL pointer
dereference attack, caused by two threads both run-
ning request_key() system calls. OWL first re-
ceived a data race report on the node->back_pointer



Table III: OWL’s detection results on concurrency attacks. With the listed subtle inputs, all these attacks were often triggered within
20 repeated queries or loops except for the Apache one and Linux 4.11.9 one. The three new attacks detected by OWL in Linux
4.11.9, Linux 4.12.1 and SSDB 1.9.2 have been confirmed as CVE-2017-7533, CVE-2017-12193, and CVE-2016-1000324.

Attack Name Software Version Vulnerability Type Need Subtle Attack Input? New Bug? New Attack?
CVE-2017-7533 Linux-4.11.9 Privilege escalation Three syscalls New New

CVE-2017-12193 Linux-4.12.1 NULL pointer deref Repeated add_key() New New
CVE-2016-1000324 SSDB-1.9.2 Use after free No need New New

Apache-25520 Apache-2.0.48 Integrity violation Loop with two log requests Known New
Apache-46215 Apache-2.2.10 Integer overflow Decreasing worker threads Known New

CVE-2004-1235 Linux-2.6.10 NULL pointer deref Syscall parameters Known Known
CVE-2009-1527 Linux-2.6.29 Privilege escalation Syscall parameters Known Known
CVE-2010-3412 Chrome-6.0.472.58 Use after free No need Known Known
CVE-2015-1125 Libsafe-2.0-16 Buffer overflow Loops with strcpy() Known Known
MySQL-24988 MySQL-5.0.27 Access permission FLUSH PRIVILEGES Known Known
MySQL-35589 MySQL-5.1.35 Double free SET PASSWORD Known Known

Apache-21287 Apache-2.0.48 Double free PhP queries Known Known

and OWL’s inter-procedural analyzer reported a poten-
tial pointer dereference on the node->back_pointer.
With the report provided by OWL, we found that the
node->back_pointer can be set to NULL without
checking. Hence we conducted a DoS attack based on
this NULL pointer dereference. This attack is confirmed as
CVE-2017-12193 [18] by RedHat and immediately fixed by
Linux Kernel team.

Figure 6: A new concurrency bug and use-after-free attack
detected by OWL in SSDB-1.9.2, confirmed as CVE-2016-
1000324 by SSDB developers in their emails [17].

The third new concurrency attack (CVE-2016-
1000324 [17]) detected by OWL is caused by a new
data race and a new use-after-free attack in SSDB.
Fig. 6 shows the details of this vulnerability. During a
server shut-down, SSDB uses adhoc synchronization to
synchronize among threads. However, it is possible that
line 359 is executed before line 200. This race causes
log_clean_thread_fun failing to break out from the
while loop. Moreover, log_clean_thread_fun could
execute del_range which could use db and cause a
use-after-free. Furthermore, line 347 contains a function
pointer dereference which could cause log corruption or
program crash if the memory area was shared and reused
by other threads.

OWL’s static analyzer (§V-A) identified the vulnerability
site at line 347 because it contains a pointer dereference.
This site is control-dependent on the corrupted branch at line
359. OWL’s dynamic vulnerability verifier (§V-C) further

verified that another thread would free the memory area and
set the pointer to NULL before the dereference within this
thread. We reported the race and its consequential attack to
SSDB developers and got confirmed.

  

1327 ap_buffered_log_writer(void *handle, ...)
...                                   
1334 {    
1335   char *str;                          
1336   char *s;                                    
1337   int i;                                       
1338   apr_status_t rv;                              
1339   buffered_log *buf = (buffered_log*)handle;            
...                                  
1342   if (len + buf->outcnt > LOG_BUFSIZE) {             
1343       flush_log(buf);                              
1344   }                                           
...         
1357   else {                                      
1358    for(i=0,s=&buf->outbuf[buf->outcnt];i<nelts;++i) {       
1359      memcpy(s,strs[i], trl[i]);  vulnerable site←
1360      s += strl[i];                      
1361    }                                        
1362    buf->outcnt += len;                      
1363    rv = APR_SUCCESS;                         
1364   }                                           
...                                      
1366 }                                                             
                  Figure 7: A new HTML integrity violation attack exploited

by OWL based on known bugs in Apache-2.0.48.Although the
bug has been reported and studied over years, we are the first to
exploit an attack based on this bug.

The fourth new attack stems from a known data race in
Apache. This attack could write Apache’s own request
logs into other users’ HTML files stored in Apache, causing
a HTML integrity violation and information leak. Fig. 7
shows the code of this vulnerability from the Apache-
25520 bug [56]. buf->outcnt is shared among threads
and serves as an index of a buffer array. Lacking proper
synchronization when modifying this variable at line 1362,
a data race occurred and caused the server to write wrong
contents to buf->outbuf.

Worse, the wrong contents could also overflow
buf->outbuf and cause a buffer overflow. Even
worse, Apache stores the file descriptor of its HTTP
request log next to buf->outbuf. We constructed a one-
byte overflow of buf->outbuf, successfully corrupted
this file descriptor, and made Apache’s own HTTP request
logs written to an HTML file with the corrupted value of
this file descriptor.

Although this data race has been well studied by re-



searchers [57], people thought the worst consequence of this
bug might just be corrupting Apache’s own request log. We
are the first to detect this HTML integrity violation attack
with OWL and the first to construct the actual exploit scripts.

OWL’s vulnerability analysis (§V-A) pinpointed the vul-
nerable site at line 1359 and inferred that this line is data-
dependent on the corrupted variable at line 1358. OWL’s
dynamic race verifier (§IV-C) triggered the race and showed
how many bytes in buf->outbuf were overflowed.

  

size_t busy;  /* busyness factor */

// Thread 1
588 static int proxy_balancer_post_request(…)
...
616 if (worker && worker->s->busy)          
617   worker->s->busy--;                                   
                                          

// Thread 3
1138 static proxy_worker *find_best_bybusyness(...)
...
1144     proxy_worker *mycandidate = NULL;
...
1192 if (!mycandidate                                     
1193    || worker->s->busy < mycandidate->s->busy  
1194    || ...
1195   mycandidate = worker;  vulnerable site←             
                       
                                                          
                       

// Thread 2
616 if (worker && worker->s->busy)          
617   worker->s->busy--;                                  
                                               

Figure 8: A new integer overflow and DoS attack exploited by
OWL based on a known bug Apache-46215.The bug is reported
over years but OWL first found it could be utilized to trigger
attacks.

The last new concurrency attack is an integer overflow
DoS attack based on a known Apache-46215 data race.
Fig. 8 shows the Apache-46215 bug [58]. Each Apache
worker thread contains a field worker->s->busy indi-
cating its status (busy or not). An Apache load balancer
component contains threads to concurrently increment or
decrement these flags for worker threads when they start
or finish serving requests. However, as shown at line 616,
this is a data race because developers forgot to use a lock
during the counter increment and decrement.

Over years, this status counter has been viewed as statistic
information and its data race does not matter much extent.
Unfortunately, this counter is an unsigned integer, and an
integer overflow could be triggered during the decrement. In
some cases, the counter could be overflowed and become the
largest unsigned integer (i.e., marking a thread the “busiest”
one). The check at line 617 can be easily bypassed because
of the race. Since load balancer assigns future requests based
on the worker threads’ counters, arbitrary worker threads
in Apache can be viewed as the busiest ones and be
completely ignored, causing a DoS attack on these threads
and a significant downgrade of Apache’s throughput.

OWL detected this concurrency attack as follows. OWL’s
race detector detected a race between line 617 and line
1192. OWL’s dynamic race verifier reported a detailed
dynamic race information including the racing instructions,
the value they could read or write to the variable, and the
types of the variables. We then found worker->s->busy
in some worker threads had an overflowed value: 018,

446, 744, 073, 709, 551, 614. OWL’s vulnera-
bility analysis (§V-A) reported that a pointer assignment
could be control-flow dependent on the corrupted branch
at line 1192. OWL’s vulnerability verifier verified that the
branch was indeed corrupted and line 1195 was reachable.

The above five new concurrency attacks were overlooked
by prior reliability and security tools mainly due to three
reasons. First, compared to OWL’s reduced vulnerable re-
ports, existing concurrency bug detector generate at least
71X more data race reports in Apache and 14X more
reports in Linux. Developers’ burden is heavy using ex-
isting concurrency bug detection tools, because diagnosing
all these reports is just like finding needles in a haystack.

Second, for both the new and known concurrency attacks
we evaluated, OWL’s inter-procedural analysis (§V-A) pre-
cisely pinpoints bug-to-attack propagation across different
functions and threads. In contrast, existing concurrency bug
consequence analysis tools only provide intra-procedural
analysis and they only analyze the explicit consequences,
thus they have not reported any concurrency attack we
evaluated in this paper.

Third, to the best of our knowledge, none of the existing
tools is designed to infer the extra attack-inducing inputs.
Therefore, even if a concurrency bug and its concurrency
attack is within the same function, it is still hard for existing
tools to get the attack inducing inputs.

B. Reducing False-positive Race Reports

Table IV shows OWL’s results. The third column in-
dicates the number of raw reports generated by our race
detectors. The fourth and fifth columns show the number
of the remaining reports after static analysis and further
after dynamic verification respectively. Overall, OWL is able
to prune 93.0% schedule cases of false positives in Linux
kernel and 97.7% for the other applications. This significant
reduction will help developers save much diagnostic time.
Except for Linux, the total number of actual bug reports
(the “# reduced r.” column in Table IV) is up to 126, which
saves much time for OWL’s analysis (confirmed in Fig. 9).
Two programs Libsafe and SSDB did not generate many
race reports because their multi-threading model is simple.

C. Find Extra Attack Inputs

As shown in Table V, OWL’s Attack Input Fuzzer is
effective in finding potential attack-inducing inputs from a
large number of test cases generated by test suites. Specifi-
cally, Attack Input Fuzzer works the best for Linux kernel,
which greatly reduces the number of test cases from 1153
to 29. The reason is that Linux diverges its kmalloc()
to kmalloc32(), kmalloc64(), etc, and memory allo-
cated by the same type of kmalloc() resides on the same
kernel heap slab. Moreover, the concurrency bugs reported
by SKI only require kmalloc32() to conduct the attack
and other memory allocation sites (e.g., kmalloc64()) are



Table IV: OWL race report reduction results. We selected 12
attacks whose bugs have been triggered on our machine. OWL
detects all these attacks. In this table, LoC represents the number
of lines of code in each program; # race r. represents the number of
raw race reports generated; # reduced r. represents the number of
reduced reports after Schedule Reducer (VI-B); # final r. represents
number of final reports given by OWL; # atks stands for the
number of actual concurrency attacks we have found so far.

Name LoC # race r. # reduced r. # final r. # atks
Apache 290K 715 10 10 3
Linux 2.8M 24645 1722 36 4
Chrome 3.4M 1715 126 115 1
Libsafe 3.4K 3 3 3 1
MySQL 1.5M 1123 18 16 2
SSDB 67K 12 2 2 1
Total 5.36M 31874 1885 182 12

filtered by the fuzzer. Finally, the fuzzer found an socket call
with an SELinux label contributed to the new Linux OS
root privilege escalation attack (§VI-A).

Table V: OWL’s Attack Input Fuzzer and its fuzzing results.
Type means the type of memory allocation functions which allocate
the overflowed global memory. # Test Cases is the number of the
inputs of Attack Input Fuzzer. # Extra Inputs is the number of the
outputs of OWL’s fuzzer. # Atks is the number of actual attacks
that requires subtle attack inputs (10 out of 12).

Name Type # Test cases # Attack inputs # Atks
Apache apr palloc 243 58 3
Linux kmalloc 1153 29 4
Chrome partalloc 432 123 0
Libsafe malloc 4 4 1
MySQL sql alloc 814 409 2
SSDB malloc 2 2 0
Total n/a 2648 625 10

D. OWL’s Performance

OWL contains two major phases: concurrency bug report
reduction is to reduce the false positive reports and identify
the actual bug reports; attack input inference is to infer
all the attack inducing inputs. This section evaluates the
effectiveness of the first phase on reducing diagnosis time
cost and overall time cost of OWL, with two plans: (1) direct
feeding all raw data race reports to the concurrency attack
inference phase of OWL and measuring its time cost; (2)
measuring the end-to-end time cost of OWL (Fig. 9).

Overall, plan 2 spends 24.5X less time cost than plan 1.
This implies that the concurrency bug reduction phase in
OWL can greatly reduce the false positive reports and save
much time for program developers. Moreover, let’s consider
only the time cost of plan 2, which is OWL’s time cost.
OWL consumes the largest amount of time for Linux (2548
minutes). This time cost is reasonable for in-housing testing
because OWL processed a large Linux test suite generated
by Trinity. For the other five programs, OWL’s time cost is
even smaller.

VII. DISCUSSION AND CONCLUSION

OWL’s main design choice is to find new concurrency
attacks with reasonable accuracy and scalability, and it trades
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Figure 9: OWL’s reduction on race reports saves further
diagnosis time. We measured and compared the time cost of
feeding all raw data race reports and the reduced reports into
OWL’s second phase. The y-axis is in log scale.

off soundness (i.e., do not miss any attacks). Also, due to
the lack of domain knowledge and semantic, as well as the
huge analysis efforts needed, it is hard to verify any false
negatives in all produced reports. Other concurrency bug
detection systems (e.g., ConMem [4], RaceMob [25] and
RacerX [23]) also made the same design choice. Typical
way to ensure soundness is to plug in a sound alias analysis
tool [52], [53] to identify all LLVM load and store
instructions that may access the same memory. However,
typical alias analyses are known to be inaccurate (e.g., too
many false positives).

OWL’s inter procedural analysis tool integrates the call
stack of a concurrency bug to direct static analysis toward
vulnerable program paths, but OWL’s vulnerable propaga-
tion path reports (§V-A) may contain false positives (e.g.,
the reports may contain non-vulnerable instructions). In our
evaluation, we found that these propagation reports are quite
precise because OWL reported only a small number of final
hints (Table IV) and they are informative as they helped us
identify subtle inputs for real attacks (§VI-A).

In conclusion, we have presented the first quantitative
study on real-world concurrency attacks and OWL, the first
detection tool to effectively detect them. OWL accurately
detects a number of new concurrency attacks in large, widely
used programs. We believe that OWL will attract more
attention for detecting, diagnosing, fixing, and defending
against concurrency attacks.
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