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Abstract—In coordinated robotic learning, multiple robots
share the same wireless channel for communication, and bring to-
gether latency-sensitive network flows for control and bandwidth-
hungry flows for distributed learning. Unfortunately, existing
wireless network supporting systems cannot coordinate these two
network flows to meet their own requirements: prioritized con-
tention systems (e.g., EDCA) prevent latency-sensitive messages
from timely acquiring the wireless channel because multiple
wireless network interface cards (WNICs) with bandwidth-
hungry messages are contending for the channel; global planning
systems (e.g., SchedWiFi) have to reserve a notable time window
in the shared channel for each latency-sensitive flow, suffering
from severe bandwidth degradation (up to 42%).

We present the coordinated preemption method to meet
both requirements for latency-sensitive flows and bandwidth-
hungry flows. Globally (among multiple robots), coordinated
preemption eliminates unnecessary contention of bandwidth-
hungry flows by making them transmit in a round-robin manner,
such that latency-sensitive flows have the highest chance to
win the contention against bandwidth-hungry flows, without
sacrificing overall bandwidth from the perspective of coordi-
nated robotic learning applications. Locally (within the same
robot), coordinated preemption in real-time predicts the periodic
transmission of latency-sensitive flows from the upper application
and conservatively limits packets of bandwidth-hungry flows
buffered in the WNIC only before latency-sensitive packets
arriving, reducing the bandwidth devoted to preemption. COORP,
our implementation of coordinated preemption, reduced the
violation of latency requirements from 53.9% (EDCA) to 8.8%
(comparable to SchedWiFi). Regarding learning quality, COORP
achieved a comparable (at times the same) learning reward with
EDCA, which grew up to 76% faster than SchedWiFi.

Index Terms—Cyber-Physical Systems, Efficient Communi-
cations and Networking, Machine-to-Machine Communications,
Real-Time Systems

I. INTRODUCTION

Coordinated robotic learning enables a group of robots to
closely coordinate with each other and adapt to new environ-
ments, and is increasingly important to mission-critical multi-
robot applications in field, including rescue [1], navigation [2],
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(a) The workflow of MPC and why fast reaction is important. ‘P’ stands for
‘perception’. ‘C’ stands for ‘control’. DRLC is simplified to emphasize its
network usage. Bandwidth-hungry flows for training block latency-sensitive
flows (red lines) and cause violation of the reaction time boundary (loop 2),
leading to lag and collision (loop 4).
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(b) The workflow of DRLC.
Fig. 1: Workflows of MPC and DRLC.

and surveillance [3], [4]. Despite each robot’s local functional-
ities (e.g., collision avoidance) and traditional latency-sensitive
communications (e.g., cooperative localization [5]), we sum-
marize that a typical coordinated robotic learning workflow
comprises two global coordinations: a multi-view perception-
control coordination (MPC) that continuously exchanges in-
formation among robots and makes coordinated decisions, and
a distributed reinforcement learning coordination (DRLC) that
exploits the distributed computation power of all robots to
adapt to new environments.

The MPC of a robot group loops over perception exchange,
inference, and control dissemination, as shown in Figure 1la.
During perception exchange, a leader robot collects and com-
bines perceptions (e.g., images) captured by the sensors (e.g.,
cameras) of all the robots via wireless network for multi-
view awareness of the environment. During inference, the
leader robot processes and feeds the combined perception to a
deep neural network control model which takes environmental
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information as input and produces control messages (e.g.,
velocities) as output. After that, the leader robot disseminates
the control messages to each robot for the next move.

The DRLC is usually spawned when a robot group enters
a new environment and would last for hours [6], [7]. As
the hardware resources per robot are limited, data parallelism
(DP, see §II-A) is usually adopted to exploit the distributed
computation power of the robots [8]. A data parallel DRLC
consists of data dissemination, parallel training, and parame-
ter synchronization, as shown in Figure 1b. Note that, in each
iteration of the MPC loop, the leader robot collects a composed
data item of a combined perception, control messages that
contain actions, and a corresponding reward that reflects the
effect of the actions. When a batch of data is accumulated,
the leader robot partitions the data batch and disseminates
each robot a partition. Then each robot trains the control
model in parallel. The leader robot gathers the parameter
updates computed by each robot to synchronize the control
model. DRLC runs until the robot group adapts to the new
environment. In this paper, we focus on coordinated robotic
learning with one MPC and one DRLC.

We identify two stringent requirements for mission-critical
coordinated robotic learning applications. First, the MPC loop
requires fast reaction (R1): the reaction time (i.e., the time
spent in each iteration of MPC loop) should be within a tight
boundary to maintain a high frequency (e.g., 33ms boundary
for 30Hz [9]) and avoid severe flaws like robot collisions
demonstrated in Figure la. Second, the DRLC requires fast
model convergence (R2): the control model should adapt to a
new environment (i.e., converge) as fast as possible.

However, the two coordinations (MPC and DRLC) generate
network traffic flows with different characteristics, making it
cumbersome for the underlying network supporting systems
to meet these two stringent requirements simultaneously. In
terms of traffic volume, the messages of MPC (i.e., perception
and control messages) are often in small scale (e.g., several
KB); while the messages of DRLC (i.e., data dissemination
and parameter updates) are often in much larger scale (e.g.,
tens to hundreds of MB). Still, in terms of traffic pattern, the
messages of MPC are generated periodically (e.g., 30Hz) and
are latency-sensitive: a high latency would result in violation
of reaction time boundary and cause flaws (i.e., violate R1);
while the messages of DRLC are generated less frequently
but are bandwidth-hungry: a limited available bandwidth will
slow down the speed that a distributed learned control model
adapts to a new environment (i.e., violate R2).

Unfortunately, no existing wireless network supporting sys-
tem meets R1 and R2 simultaneously when serving these two
aforementioned traffic flows in coordinated robotic learning.
In general, existing systems [10]-[20] can be classified into
two categories, and we will discuss each individual system
in §II-B. The first category is prioritized contention systems:
each wireless network interface card (WNIC) on each robot
occupies the shared wireless channel on demand; WNICs that
have high priority packets are given higher chances to occupy
the channel than other WNICs. Prioritized contention enables
robots to communicate without central control and achieves
high bandwidth utilization. However, it fails to achieve R1
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Fig. 2: Comparison of different systems. COORP achieved a
low percentage of violation of the reaction time boundary
(vertical black line) while converging almost as fast as EDCA.

in coordinated robotic learning because multiple WNICs with
bandwidth-hungry messages to transmit contend for the chan-
nel simultaneously, lower the chance for WNICs with latency-
sensitive messages to timely acquire the channel, and still
cause latency increase.

The second category is global planning systems: a global
scheduler divides the time into time windows and arranges
the transmission of latency-sensitive messages and bandwidth-
hungry messages into exclusive time windows. Global plan-
ning is suitable for cases that a limited available bandwidth
does not affect the service quality of the application.

However, in dividing and assigning the time window, global
planning has to consider uncertainties from two sources:
first, the packet transmission time is not stable [21]; second,
dividing a time axis across multiple devices requires a global
clock but faces clock skewness [15]. In the presence of these
uncertainties, global planning faces a paradox to meet both
R1 and R2 in coordinated robotic learning: on the one hand,
as the scheduler cannot collect the uncertainty on each robot
in real-time, it has to reserve a large enough time window
for each latency-sensitive message transmission, taking up too
much of the bandwidth and violating R2; on the other hand,
reducing the size of each time window to meet R2 would make
latency-sensitive transmissions more likely to miss their own
windows, violating R1.

For instance, we ran a multi-robot navigation coordinated
robotic learning application [2] on five robots with Sched-
WiFi [17], the most relevant global planning system that is
designed for low latency control in industrial automation. De-
spite a low percentage (3.5%) of violation of the reaction time
boundary (Figure 2a), SchedWiFi suffered a 49% slowdown
of the training process (Figure 2b) due to a 42% reduction of
available bandwidth (§VI-A Table II).

Overall, a system meeting both R1 and R2 simultaneously
for coordinated robotic learning is highly desired but missing.
In this paper, we present COORP, the first network support-
ing system for cooperating the two types of coordinations
(MPC and DRLC) and meeting both R1 and R2 for coor-
dinated robotic learning. Lying in the core of COORP is our
new method: coordinated preemption. Coordinated preemption
should ensure that whenever a latency-sensitive message from
any of the robots is to be transmitted: locally, the WNIC
on the robot should immediately serve the latency-sensitive
message for transmission (local preemption); globally, the
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WNIC which serves the latency-sensitive message should
immediately acquire the wireless channel shared by all the
WNICs of the robot group (global preemption). COORP meets
R1 by enforcing the coordinated preemption. Still, COORP
maintains a reasonably high available bandwidth to meet R2.

Enforcing global preemption is challenging: as multiple
WNICs are contending the same wireless channel, when a
latency-sensitive message is to be transmitted by a WNIC,
the wireless channel might already be contended by multiple
WNICs that are serving a high volume traffic; this lowers
the chance that the WNIC with a latency-sensitive message
acquires the channel even with EDCA [14], a technique since
WiFi 4 that makes a contention incline to transmissions as-
signed with higher priority; thus, the latency-sensitive message
is blocked (violate R1). To ensure global preemption for coor-
dinated robotic learning, we leverage a key observation that, in
the data dissemination and parameter synchronization of the
DRLC, the critical path is dominated by the transmission time
of all the bandwidth-hungry messages via a single wireless
channel. Leveraging this observation, COORP mitigates the
contention by only allowing a constant and small number of
bandwidth-hungry flows to be transmitted simultaneously. By
doing so, at any time, there is only a constant number of
WNICs with bandwidth-hungry messages contending for the
channel regardless of the number of robots, and when any
latency-sensitive message is to be transmitted, it can easily
win the contention with a high chance (meet R1). Moreover,
COORP lets bandwidth-hungry messages saturate the wireless
channel in a round-robin manner for a high overall bandwidth
utilization (meet R2).

Enforcing local preemption on commodity wireless network
interface controllers (WNICs) is confronted with a unique
challenge that, in modern WiFi protocol [22], when a large
number of packets are being served, newly arrived packets
have to wait until the WNIC finishes the transmission of a
number of previous packets due to frame aggregation [23],
a key technique in modern WiFi for high bandwidth. Our
key observation for this challenge is that, in the MPC of
coordinated robotic learning, the latency-sensitive messages
are often generated at a constant frequency which is pre-
dictable by COORP. Leveraging this observation, we propose
a novel virtual-preemption layer that predicts when a latency-
sensitive message will arrive and limits the number of packets
of bandwidth-hungry messages the OS passes to the WNIC,
such that when a latency-sensitive message arrives, previous
packets buffered by the WNIC have been finished. By doing
so, a latency-sensitive message can be served immediately
by the WNIC whenever it is generated (meet R1). COORP
dynamically estimates the maximum number of packets that
could be transmitted before the arrival of the next latency-
sensitive message to meet R2. The virtual-preemption layer
leverages common operations of the WNIC driver, thus it is
portable to different commodity WNICs.

We implemented COORP with around 1000 lines of code
in Linux 5.4.84 and ROS2. We compared COORP with two
representative methods, EDCA [14] and SchedWiFi [17], on
a typical multi-robot navigation application [2]. Evaluation
shows that:

e« COORP achieves fast model convergence. COORP
achieved a comparable (at times the same) learning
reward with EDCA, which grew up to 76% faster than
SchedWiFi due to 1.45x more available bandwidth.

o COORP achieves fast reaction. COORP reduced the vio-
lation of reaction time boundary from 53.9% (EDCA) to
8.8% (comparable to SchedWiFi).

« COORP is easy to use. It took moderate effort to integrate
CoORP with the above-mentioned multi-robot navigation
application.

Our major contribution is the new coordinated preemp-
tion method, the first work fulfilling both fast reaction (R1)
and fast model convergence (R2) for mission-critical coordi-
nated robotic learning applications consisting of both latency-
sensitive flows and bandwidth-hungry flows. Our analytical
analysis and experimental results show that, coordinated pre-
emption greatly reduces violation of timing constraints with
little bandwidth degradation, while having good scalability
in terms of the number of robots. This makes COORP the
first unique platform to support diverse coordinated robotic
learning applications consisting of both latency-sensitive flows
and bandwidth-hungry flows, including robot soccer [24],
multi-view object tracking [25], and large-scale disaster re-
sponse [26]. COORP’s code is released on github.com/hku-
systems/Coorp.

In the rest of this paper: §II discusses related work; §III
presents the system model and overview of COORP; §IV
describes the design of COORP; §V describes the implemen-
tation; §VI shows our evaluation; §VII concludes.

II. BACKGROUND AND MOTIVATION
A. Coordinated Robotic Learning

Multi-view Perception-Control Coordination. Traditional
robot control algorithms mainly leverage local perceptions
collected with sensors on each robot [27], [28]. While these
algorithms perform well in single-robot tasks, when multiple
robots work together, they are unable to leverage perceptions
of other robots (e.g., image of an obstacle from different
angles) and may lead to suboptimal decisions.

Increasing research efforts [2], [4], [29] in multi-robot appli-
cations have led to a multi-view paradigm: multiple robots in a
group combine their perceptions of the environment and make
coordinated decisions based on the combined perception. For
example, in [2], the authors proposed a multi-robot navigation
algorithm that combines perceptions of all the robots to get
the state of all the obstacles and generates coordinated actions.
Without the multi-view paradigm, each robot would only
know the position of its nearby obstacles and take suboptimal
actions. In real-world deployments, multi-view algorithms
may coexist with traditional single-view algorithms for the
flexibility of the entire robot group [27].

Distributed Reinforcement Learning Coordination. Deep
reinforcement learning trains a deep neural network control
model by interacting with the environment, accumulating
experiences, and training the control model with the expe-
riences, and is especially effective for robot control involving
interaction with complex environments [30], [31]. Despite its
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flexibility and learning capability, even a well-trained control
model requires fine-tuning in new environments [32], [33],
which is computation-intensive and memory-consuming.

Data parallelism is widely adopted in training deep neural
networks to alleviate the computation and memory require-
ments on each single worker. In data parallelism, the training
data is partitioned and scattered to multiple workers. These
workers train the same control model using their own partition
of the data in parallel and synchronize the model parameters
with others. There are different paradigms for synchronizing
the parameters across workers [34], namely Bulk Synchronous
Parallel (BSP), Asynchronous Parallel (ASP), and Stale Syn-
chronous Parallel (SSP). These paradigms differ in when to
synchronize the parameters, but they all transmit training
data and parameter updates over the network and incur large
volume traffic.

The collocation of MPC and DRLC is often necessary in
real-world deployments. It is widely reported [33], [35] that
models trained in simulated or known environments often
have unsatisfactory performance in the real world or un-
known environments. Therefore, it is a trending practice [36],
[37] to fine-tune pre-trained models (DRLC) with real-world
newly collected data while the robots are conducting real-
time actions (MPC), so that they can adapt to new data
samples never encountered before. For example, in [36], the
authors proposed an improved training strategy to fine-tune
a deep-reinforcement-learning-based navigation model during
deployment in real environments.

B. Related Work

The widely deployed WiFi usually uses distributed con-
tention to decide which WNIC transmits its packets over the
shared wireless channel: each time a WNIC wants to transmit,
it first sets a counter to a randomly chosen number between
0 and a pre-defined parameter C'W; then it decrements the
counter when the channel is not used by others until zero
before it actually transmits. This requires little coordination
among WNICs and is easy to setup, thus it is widely adopted.
However, the distributed contention is unable to provide low
transmission latency for latency-sensitive traffic. Existing work
can be classified into two categories: prioritized contention and
global planning.

Prioritized Contention. This category improves the con-
tention process such that a WNIC with latency-sensitive pack-
ets to transmit has a higher chance to win in the contention.
QAir [10] dynamically limits the queue length on each host
such that latency-sensitive packets can bypass most of the
packets to be transmitted, but the latency-sensitive packets
still have to wait for packets that are already passed to the
WNIC and also contend with transmission from other WNICs.
Idle Sense [12] and SynchMAC [11] improve the fairness
of contention, but does not optimize for the coexistence of
multiple latency-sensitive flows and bandwidth-hungry flows,
and requires modification of WiFi protocol. EDCA [14], a
part of modern WiFi protocol, sets up four traffic categories
(AC_VI, AC_VO, AC_BE, and AC_BK), and assigns different
initial C'W's for these traffic categories such that higher priority

traffic can gain earlier access to the shared wireless channel.
While these systems are effective in daily use cases, they are
not suitable for coordinated robotic learning, since multiple
robots have bandwidth-hungry flows to transmit simultane-
ously, each trying to saturate the limited bandwidth, causing
intensive contention and significantly lowering the chance for
latency-sensitive packets to be transmitted timely.

Global Planning. This category leverages a global sched-
uler to divide the time into time windows and arrange the
transmission of latency-sensitive messages and bandwidth-
hungry messages into exclusive time windows. A majority
of work [13], [16]-[20] proactively assigns time windows
to different wireless stations. While the contention is fully
avoided, they lack flexibility to accommodate dynamically
generated traffic like those sent by TCP. Also, they require
all the wireless stations to have a globally synchronized
clock, incurring additional synchronization overhead and are
vulnerable to clock skewness [15]. OpenTDMF [15] alleviates
the need for a global clock by polling each wireless station
to transmit. It achieves high efficiency and fairness across
wireless stations. However, the global scheduler needs to know
when a latency-sensitive message is generated to timely poll
the corresponding wireless stations.

C. Motivation

In this work, we propose a new method named coordinated
preemption consisting of local preemption and global preemp-
tion.

Global Preemption. Global preemption should ensure that,
whenever a WNIC has latency-sensitive messages to transmit,
it immediately acquires the wireless channel shared by all
the WNICs of the robot group. We observe that, in the data
dissemination and parameter synchronization of the DRLC, the
critical path is dominated by the transmission time of all the
bandwidth-hungry messages for synchronization via a single
wireless channel. Meanwhile, even a single bandwidth-hungry
flow is able to saturate the available bandwidth due to its large
traffic volume and the limited network capacity. Thus, it is
viable to reduce the contention by only allowing a constant and
small number of bandwidth-hungry flows to be transmitted at
any time, and leverage EDCA to prioritize the transmission of
latency-sensitive flows. In this way, bandwidth-hungry flows
keep saturating the wireless channel in a round-robin fashion
to achieve a high bandwidth utilization (benefitting R2), and
latency-sensitive flows only need to contend with a small
number of bandwidth-hungry flows at any time (benefitting
R1).

Local Preemption. Local preemption should ensure that, on
each robot, whenever a latency-sensitive message is to be
transmitted, the WNIC on the robot immediately serves the
latency-sensitive message for transmission. Although this was
well-studied as a problem of the OS network stack [38], a
pre-condition for existing work to be effective under large
traffic volume no longer holds on modern commodity WNICs:
the OS network stack must be the last component where the
latency-sensitive message can be blocked. Modern commodity
WNICs work asynchronously with the OS to achieve high
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throughput (i.e., bytes transmitted per second) with frame
aggregation [23]. Packets delivered to the WNIC accumulate in
the WNIC’s internal buffer and keep the WNIC busy transmit-
ting. Newly delivered packets have to wait until the ongoing
transmission of previous packets is finished, as conceptually
depicted in Figure 3. We term this as local congestion. Local
congestion exists even if the WNIC has multiple hardware
queues, because the hardware components for transmission
are saturated by bandwidth-hungry flows. Further, when
there are other robots transmitting bandwidth-hungry flows, it
takes more time to finish previously buffered packets, which
exacerbates local congestion.

Figure 4 demonstrates local congestion and its exacerbation.
The experiment was carried out with the same testbed as
described in §VI, and FQ-CoDel [39], a queue management
algorithm that optimizes for latency-sensitive sparse traffic,
was adopted by default such that the latency-sensitive mes-
sages were not blocked in the OS network stack. The latency-
sensitive flow was configured to transmit with the highest pri-
ority (AC_VO), and the bandwidth-hungry flow was configured
to transmit with the default priority (AC_BE).

In COORP, local preemption is achieved with a virtual-
preemption layer which enables latency-sensitive flows to
virtually preempt local bandwidth-hungry flows to avoid the
increase of latency. This layer leverages common driver op-
erations (see §V) and requires software-only modifications to
the OS, thus it supports different commodity WNICs.

COORP has a similar purpose with Frame Preemption (IEEE
802.1Qbu [40]) which was originally introduced in Ethernet
and interrupts both local and remote ongoing transmissions
to handle latency-sensitive packets. However, Frame Preemp-
tion for WiFi is still in early discussion [41], facing open
research obstacles including needing an additional channel
with special access control [42] and backward incompatibil-
ity with existing WiFi devices [42]. Different from Frame
Preemption’s medium access control (MAC) layer solution
which requires an extensive and expensive hardware upgrade,
COORP leverages the features of existing commodity WNICs,

and provides low latency and high bandwidth utilization for
coordinated robotic learning applications at the software level.
We believe COORP is complementary to Frame Preemption,
and COORP’s software-only and easy-to-deploy techniques
can greatly promote the deployment of coordinated robotic
learning applications.

III. SYSTEM OVERVIEW
A. System Model

In the deployment model of COORP, two coordinations,
i.,e., MPC and DRLC as described in §I, are deployed in
a robot group: the MPC makes coordinated decisions for
the robot group, and the DRLC adapts the robot group to
new environments. Each robot is equipped with sensors (e.g.,
cameras) that generate perceptions. A leader robot gathers the
perceptions of all the robots and holds a deep neural network
as the control model to make coordinated decisions. The
control model is pre-trained and needs fine-tuning in a new
environment for better performance. The other robots (worker
robots) are within one-hop distance from the leader robot so
that the communication between the worker robots and the
leader robot does not need any relay. All robots communicate
via a wireless network in a shared channel. RTS/CTS [43] is
enabled in the wireless network to avoid interference caused
by hidden terminal problems [44]: multiple worker robots
transmit packets simultaneously and interfere with each other.
Also, we assume all robots have the same number of antennas
and SU-MIMO is enabled by default which utilizes multiple
antennas to improve the bandwidth between two robots.

In the MPC, for the multi-view coordination, the perceptions
are generated from the sensors on each robot periodically.
Time is divided according to the generation period (e.g., 33ms)
of perceptions. Each period is expected to contain exactly
one MPC loop. A reaction time boundary no longer than the
generation period is configured, and MPC loops are expected
to finish within the reaction time boundary. An MPC loop
initiated in a period can lag and finish in the next period or
later as shown in loop 3 in Figure la, and put off subsequent
MPC loops.

In the DRLC, the leader robot collects a training data
item (i.e., perceptions, control messages, and rewards) per
MPC loop. The rewards are computed according to subsequent
perceptions. When a certain number of training data items are
collected, the leader robot disseminates partitions of training
data among robots and continues the concurrent MPC loop
without collecting training data, because these data items
are generated under the old control model. When parameter
synchronization finishes and the control model is updated, the
leader robot resumes collecting new training data under the
updated control model.

B. Overview of COORP

Figure 5 shows the architecture of COORP. COORP fulfills
the two requirements of coordinated robotic learning, i.e., fast
reaction (R1) and fast model convergence (R2), by enforcing
coordinated preemption while maintaining a high available
bandwidth. The BH controller and global controller enforce
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global preemption, while the preemption controller and the
virtual-preemption layer enforce local preemption. Overall,
COORP adopts a cross-layer design leveraging information
from both the application and the WNIC buffer to effectively
schedule latency-sensitive flows and bandwidth-hungry flows.
Such scheduling cannot be achieved in any of the individual
layers due to the unawareness of wireless channel usage in the
application layer and the unawareness of traffic patterns in the
WNIC driver layer.

a) Enforcing Global Preemption: As discussed in §II,
the concurrently generated bandwidth-hungry flows from dif-
ferent robots in the DRLC contend for the channel inten-
sively and increase the latency of latency-sensitive flows,
violating R1. We observe that reducing contention intensity
is a promising way to enforce R1 and R2 simultaneously
among flows from different robots. A strawman approach is
to leverage a time division multiple access (TDMA) method:
dividing time into time slices and exclusively assigning time
slices to each bandwidth-hungry flow. However, the TDMA
method is unsuitable for coordinated robotic learning because
different bandwidth-hungry flows in the learning process can
start and finish transmission at different times due to the
variation of training speed and network condition. Once a
certain bandwidth-hungry flow finishes transmitting, the future
time slice assigned to it will be wasted (violating R2).

Instead, COORP adopts a request-based semi-TDMA

method. When a robot attempts to transmit bandwidth-hungry
flows, its BH controller will intercept the transmission and
request the global controller for permission to transmit. If
the number of transmitting bandwidth-hungry flow is below
a preconfigured limit (1 by default for lowest contention), the
global controller will grant the transmission with a response
immediately. Otherwise, the global controller will postpone
the response until some transmitting bandwidth-hungry flow
finishes. This process only needs a request message and a
response message (several bytes), which consumes little of
the bandwidth compared to the large size of bandwidth-
hungry messages (tens to hundreds of MB), guaranteeing R2.
Moreover, limiting the number of simultaneously transmitting
bandwidth-hungry flows would not lower bandwidth utiliza-
tion because even a single bandwidth-hungry flow is able to
saturate the bandwidth due to its large traffic volume.

With EDCA (configuring latency-sensitive flows with the
highest priority) and the limited number (e.g., 1 or 2) of
simultaneously transmitting bandwidth-hungry flows (achieved
with global controller and BH controller), latency-sensitive
flows get high probability (§IV-D and §VI-C) of winning
the contention with bandwidth-hungry flows, achieving global
preemption.

b) Enforcing Local Preemption: Due to the closed-
source design of commodity WNICs, the transmission on
the WNIC cannot be manipulated directly. To enforce local
preemption, we design and implement a software-only virtual-
preemption layer surrounding the WNIC driver between the
WNIC and upper kernel layers to virtually enforce preemption
for latency-sensitive flows. The virtual-preemption layer relies
on a preemption controller to anticipate the arrival time
of latency-sensitive packets (i.e., the time when a latency-
sensitive flow would send a message). The virtual-preemption
layer records the time that bandwidth-hungry packets take to
be transmitted by the WNIC (transmission completion time)
and further estimates the future transmission completion time
of new bandwidth-hungry packets to be fed to the WNIC.
If the transmission completion time of a bandwidth-hungry
packet would overlap with the arrival time of latency-sensitive
packets, the virtual-preemption layer will stop feeding the
bandwidth-hungry packet to the WNIC by pausing the kernel
queue until the latency-sensitive packets are sent out. In
this way, preemption on the WNIC is virtually achieved
and latency-sensitive packets would not be blocked by the
bandwidth-hungry packets on the WNIC, minimizing the
transmission latency (R1). Moreover, the transmission com-
pletion time is collected in real-time from the driver locally,
which is close to the WNIC. Thus the time to pause kernel
queue of bandwidth-hungry flows is accurate (benefitting R1)
and minimal (benefitting R2).

IV. DETAILED DESIGN
A. Global Controller and BH Controller

In COORP, a request-based semi-TDMA method as shown
in Algorithm 1 is integrated with EDCA enabled, so that
contention intensity among bandwidth-hungry flows is reduced
and latency-sensitive flows can acquire the channel with the
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Algorithm 1: Request-Based Semi-TDMA

1 Function schedule(): // On global controller
Data: Q): queue of robots requesting for

transmission; S: set of robots transmitting

upon get request from robot r do

| Q.put(r);
upon robot r in .S for more than TIMESLICE

|| get release from robot r do

| S.remove_if_exist(r);
upon r < .get() do
wait until |S| < LIMIT;
send permit to 7;
S.add(r);
Function send(data): // On BH controller

e 0 N R W N

—
= =

12 while data not all sent do

13 request_wait();

14 transmit data for no more than TIMESLICE;
15 release();

16 end

highest probability when contending with bandwidth-hungry
flows. The global controller on the leader robot maintains a
queue () of robots that requested to transmit bandwidth-hungry
flows, and a set .S of robots that are transmitting bandwidth-
hungry flows simultaneously.

Function send () is called each time a worker robot trans-
mits a bandwidth-hungry flow. The BH controller on this robot
sends a request to the global controller on the leader robot
and waits for a response (line 13) before transmission. The
global controller allows the requested transmission by sending
a response when the number of simultaneously transmitting
bandwidth-hungry flows in S has not reached a limit (1
in this paper), so that EDCA can effectively prioritize the
transmission of flows according to their latency requirements
(R1). If the limit is reached, the global controller adds the
request to ) and postpones the response until the number
of simultaneously transmitting bandwidth-hungry flows de-
creases (line 8). On receiving the response, the robot keeps
transmitting bandwidth-hungry flows for a preconfigured time
slice (e.g., 5s), or if the robot finishes transmitting bandwidth-
hungry flows within the preconfigured time, it will notify
the global controller to recycle the unused time for other
bandwidth-hungry flows.

Function schedule () runs continuously on the leader
robot. Each time a robot is permitted to transmit bandwidth-
hungry flows, the robot is added to set S (line 10). If a robot
has been transmitting bandwidth-hungry flows for the precon-
figured time, or a robot notifies that it finishes transmitting
bandwidth-hungry flows (release), the robot is removed from
S (line 6).

B. Preemption Controller

Each time a latency-sensitive flow sends a message, the
preemption controller records the time point as a sample.
Suppose a latency-sensitive flow started from time ¢ and its
period is p, the ideal arrival time (i.e., when it is generated
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Fig. 6: The prediction error roughly follows normal distribu-
tion.

by the application) of the kth (k =0, 1,2, ...) message can be
modeled as Tk = pk+q. However, due to random fluctuations,
there is a difference between the actual time 7}, and the ideal
time 7}, As shown in Figure 6, the fluctuation roughly follows
a normal distribution N(0,0%): Ty ~ N(pk + q,02),k =
0,1,2... The parameters p, ¢ and o constitute a time model
{p,q,c} of a latency-sensitive flow.

With enough samples of a latency-sensitive flow, the pre-
emption controller runs linear regression on these samples to
estimate the corresponding time model of a latency-sensitive
flow. Since the inferred parameters may become inaccurate
over time, the preemption controller recomputes the model in
two conditions: 1) the difference between the predicted time
and the actual time of a message exceeds 207; 2) a statically
configured time interval has passed since last recomputing.
With the time model {p, ¢, ¢}, the future arrival time T} of a
latency-sensitive flow can be easily inferred as [Tk —A, Ty, +A]
according to normal distribution under a given accuracy re-
quirement denoted as C. We set C to 95% for which the A
can be approximated with 20.

The design of the preemption controller has to cope with
two challenges: first, the future arrival time of each latency-
sensitive flow may overlap with each other; second, the future
arrival time should be reported to the virtual-preemption layer
timely, otherwise there will not be enough time for the WNIC
to finish its ongoing transmission. To tackle these challenges,
we use a protection window (PW) that covers the future arrival
time of multiple latency-sensitive flows. Suppose the current
future arrival time of all latency-sensitive flows constitutes a
set T' and the earliest one is ¢ = [t1,t2], we set the PW to
t, remove ¢ from T and look up the new earliest one t' in
T.If ¢ = [t),ty] overlaps with PW (ie., t1 < t] < o),
t' is combined into PW (i.e., PW= [t1, max(t2,t5)]) and
removed from T. The process repeats until a new t' does
not overlap with PW, so that PW starting from ¢ covers all
future arrival time that needs to be protected as a whole.
Upon the ending of a PW, the preemption controller will
update the future arrival time of each time model and calculate
a new PW, then it notifies the virtual-preemption layer to
resume the paused bandwidth-hungry flows and update the
new PW simultaneously. In this way, the virtual-preemption
layer always controls the feeding of bandwidth-hungry packets
according to the latest PW.
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C. Virtual-Preemption Layer

A WNIC driver mainly contains three major operations: de-
queuing packets from upper kernel queues; enqueuing packets
to the WNIC; receiving the transmission completion callback
of a packet. The virtual-preemption layer wraps these three
operations as shown in Algorithm 2.

The virtual-preemption layer maintains a completion time
table (CTT) for predicting the required time to transmit
specific numbers of packets buffered in the WNIC. CTT'[n]
records times it took to complete the transmission of n + 1
bandwidth-hungry packets on the WNIC, and keeps a number
of the most recent samples for estimation later. To maintain
the CTT, the virtual-preemption layer intercepts into both
the enqueue and the transmission completion callback of the
WNIC driver (line 11-15 and line 16-20). Each time the driver
is enqueueing a bandwidth-hungry packet into the WNIC’s
bandwidth-hungry queue, the enqueue time t.,, of the packet
is recorded, along with the current number of packets n in
the WNIC’s bandwidth-hungry queue. Suppose the packet
transmission is completed at time .o, We learn that the
bandwidth-hungry queue needs (tcomp—tenq) time to complete
the transmission of a packet together with n packets previously
queued in the WNIC queue (line 20).

Algorithm 2: Virtual-Preemption Layer

Data: CTT: completion time table; [t1,t2]: current
PW; Ngqmp: number of samples to keep in the
CTT; pkt: bandwidth-hungry packet

1 upon dequeue pkt of kerenl queue do

2 n < current number of packets in hardware queue;

3 tn < percentile(CTT[n], pprot);

4 T « now();

s | (T <ty &&t1—T <ty || t1 <T <ty then

6 cancel dequeue;

7 pause kernel bandwidth-hungry queue;

8 else

9 ‘ let the driver dequeue pkt;

10 end

11 upon enqueue pkt of bandwidth-hungry flow do

12 n < current number of packets in hardware queue;
13 teng < now();

14 pkt.t < tengs
15 pkt.n < n;
16 upon complete pkt of bandwidth-hungry flow do

17 teomp < now();

18 | if |[CTT[pkt.n]| > Nsamyp then

19 | remove oldest sample from CTT[pkt.n];
20 end

21 CTT[pkt.n] < CTT pkt.n] | U{tcomp — Pkt.t};
22 upon receive PW [t],t}] do

23 t, — th;

24 tg < th;

25 resume kernel bandwidth-hungry queue;

Given a PW denoted as [t1,t2] and current time T, if t; >
T, the virtual-preemption layer protects the latency-sensitive
flows that are supposed to arrive within the PW by intercepting

the dequeue operation of the driver (line 1-10). When the
driver attempts to dequeue a bandwidth-hungry packet from
the upper kernel queues, the virtual-preemption layer queries
the number of packets currently queued in the WNIC n, and
queries the corresponding transmission completion time ¢,, by
finding py,o percentile of the recorded times in CTT'[n] (line
2-3). If t,, > t; — T or to > T > t1, the transmission of this
bandwidth-hungry packet is not likely to be finished before the
arrival of the next latency-sensitive message and would block
the transmission of the latency-sensitive message (line 5). Thus
the virtual-preemption layer aborts the dequeuing operation of
this packet and further pauses the kernel queue of bandwidth-
hungry flows (line 6-7).

However, if the PW arrives late (e.g., t,—1 > t; — T when
PW is updated), there could be too many bandwidth-hungry
packets already queued on the WNIC, blocking the incoming
latency-sensitive packets. To avoid this problem, we design
the synergy between the preemption controller and the virtual-
preemption layer as follows (line 22-25): the controller updates
the PW whenever a PW ends (i.e., to < T) and notifies
the virtual-preemption layer upon the update; the virtual-
preemption layer first updates its PW to the latest and then
resumes the dequeue operation of the bandwidth-hungry flows
on the driver. In this way, when the driver attempts to dequeue
a bandwidth-hungry packet, the virtual-preemption layer will
always estimate whether the bandwidth-hungry packet will
block the latency-sensitive flows on the WNIC according to
the latest PW. Further, each computed PW was extended with
a constant (empirically set to 2ms) to mitigate the impact of
the late arrival of latency-sensitive messages.

The CTT maintained in the virtual-preemption layer guar-
antees an accurate estimation of transmission completion
time. Based on the accurate estimation, the virtual-preemption
layer minimizes the time for which the driver stops trans-
mitting bandwidth-hungry packets (R2) while guaranteeing
that bandwidth-hungry packets queued on the WNIC will be
finished transmitting before latency-sensitive packets arrive
(RY).

D. Scalability Analysis

Here we build an analytical model for the performance of
CRL applications running with COORP. We focus on two
aspects, the reaction time, and the achievable throughput (i.e.,
bytes transmitted per second) of bandwidth-hungry flows,
given N + 1 robots with one of them chosen as the leader
robot.

The reaction time mainly consists of three parts: perception
exchange, inference, and control dissemination. For a given
number of robots, the perception exchange and control dis-
semination require transmitting a fixed amount of data. For
simplicity, we assume the same bandwidth across different
robots, denoted as B, and omit the variation of transmission
time caused by contention. Then the time required for trans-
mission is T}, = w, where Ly, is the size of
perception messages, and L, is the size of action messages.

Meanwhile, the transmitting bandwidth-hungry flows keep
trying to inject into this whole process and increase the
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reaction time, denoted as Tpz. To simplify the analysis, we
set LIMIT in Algorithm 1 to 1 in the remaining of this
section. To breakdown Tz, first note that, given the bulk
data to transmit, it is viable to assume each transmission
to be the maximum size of an AMPDU Lg,pqu, thus the
major variation comes from how many times such transmission
could happen, denoted as a random variable Npgr. Still, it is
difficult to find an accurate distribution of Nppy given the
highly dynamic nature of the CSMA/CA contention process.
We choose to build a rough model only to estimate the sup-
ported number of robots. We first look at a single contention
between a latency-sensitive transmission and a bandwidth-
hungry transmission. Given initial CW parameters of EDCA (3
for AC_VO, 15 for AC_BE [14]), the possibility for bandwidth-
hungry to transmit before latency-sensitive can be derived
as pp = 11*2123 + 4*416 W ~ 0.1 by counting the
cases for bandwidth-hungry to get lower backoff value and
considering at most one collision. Then we treat the IV times
transmission of perception messages and N times transmission
of action messages as 2N times independent contention with
bandwidth-hungry to simplify the analysis, which tends to
over-estimate Ngg and lead to conservative estimation of the
supported number of robots. Then, the possibility for Ngg to
take each value ranging from 0 to 2V follows

2N
k

P(Npy =k) = < )plg(l —po)? N F (k=0,1,...,2N).

1
The time for inference comes from executing specific com-
putations on the leader robot, and could vary for different
DNN architectures and different hardware (CPU, GPU, etc.),
but is generally constant once the DNN architecture and the
hardware are fixed, denoted as T}, y. For each possible number
of bandwidth-hungry transmissions k, the reaction time is

Ty =Tiny + Ty +TeH
N x Lpere + N * Lot k* Lompdu 2
B B '

With Equation 1 and Equation 2, we can estimate the distri-
bution of the reaction time given N + 1 robots.

For the achievable throughput of bandwidth-hungry flows,
the coordination overhead is negligible, thus the major drop
comes from the more and more latency-sensitive messages
for transmission. Besides, COORP’s local preemption sacrifices
some bandwidth, but it is independent of the number of robots,
thus it can be omitted for the scalability analysis. For N + 1
robots including the leader robot, the achievable throughput
for bandwidth-hungry flows can be estimated with

BBH:B—N*F*(Lperc+Lact) (3)

where F' is the required frequency of the MPC loop. The above
model will be used in §VI-C along with simulation using NS3
for the evaluation of the scalability of COORP.

V. IMPLEMENTATION

The virtual-preemption layer was implemented as a kernel
device module with about 600 lines of code based on

Linux 5.4.84 with PREEMP_RT patch [45], and interfaced
with the preemption controller through ioctl (). Three
operations of the WNIC driver were hooked. The operation
to enqueue a packet to the WNIC queue was hooked to
record the current number of enqueued packets in the
WNIC queue and the timestamp. The operation to handle
packet completion from the WNIC queue was hooked to
compute the transmission completion time, and update the
CTT as was described in Algorithm2. Further, the virtual-
preemption layer was hooked into the driver operation of
dequeueing packets from mac80211 queues to prevent it
from enqueueing too many packets into the WNIC queue.
Although the exact code of WNIC drivers differs, these three
operations are general and necessary. For evaluation, the
hooks were added into the MT76 driver in the kernel source
tree, and the functions corresponding to the above three
operations were mt76_queue_ops.tx_queue_skb (),
mt76_queue_ops.tx_complete_skb () and
mt76_txg_dequeue (). The preemption controller
was decoupled as two modules, a proxy in the ROS2 rcl
(ROS client library) [46] to compute the time model for
latency-sensitive flow, and a controller as a stand-alone ROS2
application. These involved around 400 lines of code in the
ROS2 rcl.

Ideally, the BH controller should also be implemented in
ROS2. However, ROS2 does not currently provide direct TCP
support, and the default UDP support limits the size of the
message (64KB) and suffers bandwidth problems in unreliable
networks like WiFi [47]. Thus we chose to temporarily
implement a message streaming interface with TCP socket,
integrated with the BH controller.

VI. EVALUATION

Testbed. The evaluation was performed using 5 hosts running
Ubuntu 20.04 with Linux 5.4.84 kernel patched with Preempt-
RT [48], shown in Figure 7. Two of the hosts were desktops
with Intel Core i7-8700 CPU@3.20GHz, and the other three
were laptops with different models of CPUs, namely Intel Core
i7-10510 CPU@1.80GHz, i5-7200U CPU@2.50GHz, and i7-
8565U CPU@1.80GHz respectively. Robots were simulated
with these five hosts, and we refer to these hosts as robots
for convenience in this section. One of them (the leader) was
equipped with MediaTek MT7612E WNIC and configured an
access point on channel 44 (5GHz) which was found clear in
our environment. The other four were equipped with Medi-
aTek MT7612U USB WNICs and connected to the leader’s
access point. To measure transmission latency, the hosts were
connected to a TP-LINK TL-SG108 desktop Ethernet switch
and their system clocks were synchronized with PTP [49].
The synchronization accuracy was reported to be below 10us
by ptp4l, sufficient for measuring wireless transmission
latency. Note that the accurate time synchronization is only for
measuring the latency and reaction time, and is not required
by COORP to work in real deployments. In the evaluation, the
LIMIT in Algorithm 1 was set to 1 for the lowest contention.

Baselines. We compared COORP with two baselines chosen
from existing work: EDCA [14] from the prioritized con-
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Fig. 7: Hosts (leader in yellow box, others in red box) and
Ethernet switch (green box) used in the evaluation.

tention category and SchedWiFi [17] from the global planning
category. Specifically, EDCA is a part of WiFi standard that
prioritizes latency-sensitive flows over others during wireless
channel contention. SchedWiFi is the latest work optimized
for both latency-sensitive flows and bandwidth-hungry flows in
the global planning category. Subsequent studies [19], [20] in
the global planning category aim at fully resolving wireless
channel contention, but not for the coexistence of latency-
sensitive flows and bandwidth-hungry flows, oblivious of our
scenario. Further, our evaluation in §VI-A shows that, both
SchedWiFi and COORP are close to the ideal latency (within
a 12% difference). Therefore, we believe SchedWiFi is the
tightest baseline for our goal of optimizing both latency-
sensitive flows and bandwidth-hungry flows for coordinated
robotic learning applications.

For EDCA, the latency-sensitive messages were configured
to go through AC_VO, the highest priority, and the training
data and parameter updates were configured to go through
AC_BE, lower priority than the latency-sensitive messages.

For SchedWiFi, since the original paper only evaluated with
simulation, to compare its actual performance with COORP,
all its features were implemented on our testbed. ST-Window
(STW) is the time window reserved for each latency-sensitive
flow; it was calculated with Equation 4 following the original
paper, where L is the size of each message in a latency-
sensitive flow, STF'S is 16us according to the standards of
IEEE 802.11 [50], and the maximum retransmission time R
was set to 7 [51]. T X,.r was empirically set to 30us. The
Time-Aware Shaper of SchedWiFi required modification to
the physical layer of the WNICs, which is impractical on
commodity WNICs. To achieve the same effect, COORP’s
virtual-preemption layer was adapted as SchedWiFi’s Time-
Aware Shaper which proactively stops the kernel queue before
required time point.

STW = 2x25us+( +2xSTFS+T Xck) X (14 R)

“)
Workload. The multi-robot navigation task in [2] was adopted

as the workload, since this task requires multiple robots to
gather their real-time sensor data for cooperative control, and

L
bandwidth

is an important building block of mission-critical multi-robot
applications such as surveillance and rescue [2], [52], [53].
The multi-robot navigation task was set up in the Stage simula-
tor [54] with 5 moving obstacles and 5 robots. The deep neural
network model and the reward function were the same as that
in [2]. Since the parameter size of real-world reinforcement
learning models for robotics has exceeded 100 million [55]
and existing methods can reduce the number of parameters by
10x-50x [56], the number of parameters was extended to 10
million with dummy data during parameter synchronization
to approximate the size of reinforcement learning models in
real-world tasks.

To bridge the simulated robots with real-world wireless
network, the perceptions of the robots were retrieved from
the simulator and sent to the corresponding host through the
wired network. Each robot reported the perception it received
to the leader robot at a frequency of 30Hz via the wireless
network as if the perception was collected from local sensors.
The perception messages were padded to 12KB (64x64 RGB
images) according to RoboNet dataset [32] to approximate the
size of real-world perceptions. The leader robot sent control
messages back to each robot via the wireless network. The
control messages were padded to 1KB as were typically
considered in existing work [5], [17]. Overall, we believe
our evaluation setup represents diverse latency-sensitive flows
(e.g., camera image, laser scan, position, and control com-
mand) and bandwidth-hungry flows (e.g., distributed learning
parameter synchronization and high-resolution video stream-
ing) appeared in real-world robotic applications.

The evaluation focused on these questions:

« RQI1: How is COORP compared to baseline systems in
terms of fast reaction and fast model convergence?

o RQ2: What is the effectiveness of different components
of COORP?

e RQ3: How does COORP scale with the number of robots?

¢ RQ4: What are the limitations of COORP?

A. End-to-end Performance

For end-to-end comparison between COORP and the base-
line systems, the reaction time (i.e., the time to finish each
MPC loop), the reward of the control model, and the power
consumption were recorded during fine-tuning a pre-trained
model. Figure 2a shows the CDF of reaction time of different
systems. The vertical line marks the typical reaction time
boundary (33ms [9], [57], [58]).

Among all the three systems, EDCA had the highest vi-
olation rate (53.9%) of the reaction time boundary, since
it did not resolve local congestion in the WNIC, and the
simultaneous transmission of multiple (1 to 5) bandwidth-
hungry flows resulted in heavy congestion. SchedWiFi best
guaranteed fast reaction with a 3.5% violation rate, because
latency-sensitive messages were assigned exclusive and long
transmission time slots according to Equation 4, so as to
cope with various uncertainty and avoid interference of any
bandwidth-hungry messages. COORP also achieved a low vi-
olation rate (8.8%) of the reaction time boundary, comparable
to SchedWiFi and much lower than EDCA. These results
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TABLE I: Time per epoch. Normalized to EDCA's.
[ [ EDCA [ SchedWiFi | COORP |

BSP 1.00 1.49 1.15
SSP 1.00 1.56 1.13
ASP 1.00 1.56 1.16

correspond to the recorded CDF of latency of latency-sensitive
messages achieved by different systems in Figure 8. It is worth
noting that, both SchedWiFi and COORP achieved comparable
latency to the ideal baseline (within a 12% difference), while
SchedWiFi outperformed COORP by eliminating nearly all
contention in the wireless channel with the cost of much
slower convergence as follows.

The convergence of the control model is shown in Figure 2b
(BSP) and Figure 9 (SSP, the limit of version difference
of the model between the fastest worker and the slowest
worker was set to 1). ASP was not converging in this task
using all three systems, thus its figure is omitted. The non-
convergence of ASP would be due to outdated updates from
slow workers [34]. All three systems started from the same
pre-trained model. Despite the jitters caused by the inherent
uncertainty of reinforcement learning, overall, COORP was
slightly slower than EDCA but much faster than SchedWiFi.
Such a difference was a result of time required per epoch
shown in Table I: SchedWiFi required 49%~56% more time
per epoch, while COORP required 13%~16% more.

Table II shows the bandwidth utilization of different systems
which further explains the difference of time per epoch. The
throughput of the ideal baseline (i.e., bytes transmitted per
second when MPC was disabled) was 198.3Mbps. EDCA
was the closest to the ideal baseline (98%). SchedWiFi was
only 58% since all the robots had to pause bandwidth-hungry
flows for all the time slots for latency-sensitive messages, and
the sizes of the time slots were often oversized to handle
clock skewness, limiting the overall time for bandwidth-
hungry flows to transmit. In COORP, although only one
robot was allowed to transmit bandwidth-hungry flow at any
time, the only transmitting bandwidth-hungry flow was able
to saturate the bandwidth, and each robot only needed to
pause bandwidth-hungry flows for its own latency-sensitive
messages. Besides, the coordination between global controller
and BH controller incurred little overhead. Thus there was a

TABLE II: Comparison of bandwidth utilization.
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Fig. 11: Effectiveness of the
virtual-preemption layer. Y-
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ets in the WNIC queue when
latency-sensitive packets en-
queue, which is zero most of
the time in COORP.

minor sacrifice (13%) of the bandwidth utilization, leading to
shorter time per epoch and faster model convergence compared
with SchedWiFi.

The power consumption of the laptops was measured with
Gnome Power Statistics and exhibited no significant difference
(16.4+0.3W) for different systems, because the computation
overhead of scheduling the network traffic was negligible
compared to that of the applications.

B. Effectiveness of Components

To understand the effectiveness of COORP’s components,
the following two cases were studied: the BH controller was
disabled such that only local preemption was enforced; the pre-
emption controller was disabled such that only global preemp-
tion was enforced. The corresponding reaction time is shown
in Figure 10. When only global preemption was enabled,
there was at most one bandwidth-hungry flow contending
with latency-sensitive flows at any time, and local congestion
was no longer exacerbated by bandwidth-hungry flows from
other WNICs. When only local preemption was enabled, local
congestion was eliminated, but latency-sensitive flows still
contend with multiple bandwidth-hungry flows. Further, since
the timing of control messages sent from the leader robot
depends on the latency of perception messages and has a
large variance (several milliseconds), control messages were
not handled by local preemption. Thus global preemption was
more effective when enabled alone, but the combination of
them led to an even lower reaction time.

The corresponding bandwidth utilization is shown in Ta-
ble III. Global preemption sacrificed little bandwidth because
each single bandwidth-hungry flow was able to saturate the
bandwidth. Local preemption accounted for most of the sac-
rifice of the bandwidth because it had to pause ongoing
bandwidth-hungry flow in each protection window.

TABLE III: Impact of COORP’s components on the bandwidth
utilization. In ‘local’ (‘global’), only local (global) preemption
was enabled. Normalized to EDCA’s (194.7Mbps).

[ [ EDCA [ SchedWiFi [ COORP

| [ local [

global [ COORP

[ utilization | 0.98 (194.7Mbps) [ 0.58 (115.1Mbps) | 0.85 (168.2Mbps) | [ utilization | 0.87 (169.4Mbps) [ 0.98 (192.IMbps) [ 0.86 (168.2Mbps) |
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Fig. 12: Scalability of COORP.

To further validate the -effectiveness of the virtual-
preemption layer, the number of bandwidth-hungry packets
queued in the WNIC when latency-sensitive packets were
passed to the WNIC was inspected, shown in Figure 11. In
EDCA, bandwidth-hungry packets accumulated in the WNIC
queue and would block the transmission of latency-sensitive
packets. In COORP, the virtual-preemption layer avoided
passing too many bandwidth-hungry packets to the WNIC
before latency-sensitive packets. Thus, the WNIC was able to
finish transmitting bandwidth-hungry packets before latency-
sensitive packets were passed and transmit latency-sensitive
packets as soon as possible. However, the CTT of the virtual-
preemption layer was not always accurate, thus it was not able
to ensure the WNIC queue was always clean.

C. Scalability to the Number of Robots

The scalability of COORP to the number of robots was
studied with both real experiments and simulations. In the real
experiments, the number of robots was scaled from 2 to 7. In
the simulations, an application that generates the same network
traffic pattern as the CRL application in the real experiments
running with COORP was implemented in NS3. The WiFi
standard and the number of antennas were set to the same as
our testbed (IEEE 802.11ac, two antennas for each wireless
node). In each run of the simulations, the leader robot was
placed at the origin, and the other robots were randomly placed
in a disc centered at the origin with 10m radius.

Figure 12a shows the scalability of COORP in terms of
reaction time in real experiments. With more robots, the
contention caused by the transmission of latency-sensitive
messages from different robots increases, and it takes more
time to gather all the perceptions from all the robots, thus
there was a slight increase in the overall reaction time with
the number of robots. Meanwhile, the CDF at the reaction time
boundary (33ms) exhibited little change, because the tail was
mainly influenced by contention from bandwidth-hungry flows
which had been mitigated and was independent of the number
of robots when using COORP. Figure 12b shows the scalability
of the throughput of bandwidth-hungry flows in the real experi-
ments. In COORP, the sacrifice of throughput comes from two
aspects. First, enforcing global preemption requires requests
and responses between BH controller and global controller,
incurring a small traffic volume compared to that of actually
transmitting bandwidth-hungry flows. Second, enforcing local

100
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CDF (%)
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20

0 g
0 10 20 30 40 50 60 10 20 30 40
reaction time (ms) number of robots

(a) Reaction time. The number of
robots are 10, 20, 30, and 40 from
left to right respectively.

(b) Throughput of bandwidth-hungry
flows.

Fig. 13: Scalability of COORP, model (dotted lines) and
simulation (solid lines).

preemption requires each robot only to pause transmission
of bandwidth-hungry messages for its own latency-sensitive
messages, which is independent of the number of robots.
Thus, the decrease of the achieved throughput of bandwidth-
hungry flows was mainly due to the increasing traffic volume
of latency-sensitive flows in the whole robot group.

The results of simulations are shown in Figure 13a and
Figure 13b along with the results derived from the analytical
model in §IV-D. Taking 33ms as the reaction time boundary,
both simulations and the analytical model imply a limit of
around 40 robots. Meanwhile, the throughput of bandwidth-
hungry flows dropped linearly with respect to the number
of robots. Further, the simulations exhibited generally lower
reaction time than real experiments. This would be due to
the difference between simulated environments and real en-
vironments. Indeed, the analytical model has a gap with the
simulations due to coarse approximations, but it suffices for
the purpose to estimate the supported number of robots.

D. Performance under Low Available Bandwidth

In coordinated robotic learning, robots move around and
may result in significant drop of available bandwidth. To
understand the performance of COORP under such scenarios,
two individual cases were set up, and the results were shown
in Figure 14 and Table IV.

In the first case, denoted as ‘one low’, one of the robots
was configured to use the lowest transmission rate (or bi-
trate) vht-mcs—5 1:0 using iw tool. Compared to COORP,

100 —
—— COORP one low

-~ 75 COORP all low
2\0, 50 ——- EDCA one low
a EDCA all low

o

25 o
0 .
0 100 200 300 400 500

reaction time (ms)

Fig. 14: Reaction time under low available bandwidth. In
‘one(all) low’, one(all) of the robots used the lowest trans-
mission rate.
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TABLE IV: Throughput under low available bandwidth. In
‘one(all) low’, one(all) of the robots used the lowest transmis-
sion rate.

[ [ EDCA | COORP |
one low | 99.8Mbps | 148.1Mbps
all low 19.6Mbps 16.3Mbps

EDCA achieved around 30% lower throughput. This would
be related to the performance anomaly of 802.11 previously
discussed by [38], [59] that the stations in a wireless network
would achieve similar throughput even when their network
conditions differ. By only allowing one robot to transmit
simultaneously, COORP enabled each robot to achieve the
highest throughput allowed by its network condition, resulting
in higher aggregate throughput (averaged over time). This
indicates that COORP provides faster training than EDCA
when the available bandwidth of a small number of robots
is low.

In the second case, denoted as ‘all low’, all the robots were
configured to use the lowest transmission rate. Both EDCA
and COORP suffered a significant increase of reaction time
and a low throughput due to the restricted bandwidth, which
would render the DRL application unavailable. In real deploy-
ments, robots may pause the task and restore the connectivity
proactively [60], or continue the task suboptimally with little
coordination until the connectivity recovers.

E. Future Applications

Diverse applications can benefit from COORP. For ex-
ample, in robot soccer [24], a team of robots exchange
teammates’ poses, ball’s position, and opponents’ poses in
real-time (latency-sensitive flows) while learning to adapt to
new opponents (bandwidth-hungry flows). Multi-view object
tracking [61] collects and matches images from different
cameras in real-time (latency-sensitive flows) while learn-
ing to adapt to the change of varying factors like weather
condition (bandwidth-hungry flows). In large-scale disaster
response [26], multiple robots can coordinate their angles
and sensors in the disaster environment in real-time (latency-
sensitive flows) while learning to optimize their actions in
unseen environments (bandwidth-hungry flows). We leave the
realization of these applications as future work.

VII. CONCLUSION

In this paper, we identify two technical requirements of
the network supporting system for mission-critical coordinated
robotic learning, namely fast reaction and fast model conver-
gence, and present COORP, the first network supporting system
that achieves both of the requirements through a software-
only cross-layer design. COORP facilitates diverse coordinated
robotic learning applications, including multi-robot navigation,
robot soccer, multi-view object tracking, and large-scale dis-
aster response. COORP’s code is released on github.com/hku-
systems/Coorp.
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