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Motivation

➢ The limited computation resource on robots motivates more cooperative robotic tasks deployed over a robot team.
○ Machine learning (ML) models in complex environments.

■ e.g., objective recognition models, action control models

➢ ML models typically require real-time training to adapt to changing environments. 
○ e.g., from sunny to foggy

➢ Lack stable Internet access to a cloud data center.
○ The robots connect via the Internet of Things of robots (robotic IoT networks), which are wireless.

➢ Cooperative robotic tasks require distributed training among the robot team in the robotic IoT networks to 
accelerate the real-time training.

rescue disaster response field exploration
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Real-time bandwidth capacity on Worker 4

Challenges of Distributed Training for Robotic IoT

➢ Bandwidth capacity of Robotic IoT networks (e.g., Wi-Fi, 5G, 
WiMAX) is typically unstable.

○ Random, frequent and sharp degradation
○ Movement of the devices; occlusion from obstacles (e.g., 

crowds, walls) 
➢ Straggler effect in distributed training in robotic IoT

○ Distributed Training requires periodical synchronizations.

○ Stall significantly wastes energy (e.g., 35%).

○ Such bandwidth capacity degradation in wireless 
networks causes frequent stall (e.g., idle for 50% time of 
the training time).
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Rethinking Distributed Training for Robotic IoT

➢ Existing distributed training paradigms can not handle straggler effect.
○ Stale Synchronous Parallel (SSP)：

■ Only high staleness threshold can handle random, frequent and sharp bandwidth fluctuations.
■ Downgrade the statistical efficiency. 

● i.e., the training accuracy gain per training iteration
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○ Scheduling-based SSP (e.g., FLOWN [TWC ‘21]):
■ Bandwidth fluctuations make the pre-scheduled transmission mismatch with the actual bandwidth.
■ Downgrade the training throughput. 

● i.e., the training iterations in unit time

➢ An ideal distributed training system for robotic IoT should optimize towards the following 2 trade-off goals (2Gs):
○ High training throughput (G1)：The training process should avoid stall caused by the straggler effect.
○ High statistical efficiency (G2)：The training system should not sacrifice the statistical efficiency during 

handling the straggler effect.

➢ Better trade off between 2Gs can help distributed training to achieve high training accuracy and avoid wasting energy.



○ Model granularity causes imbalanced transmission 
time under such bandwidth fluctuation.

Why Existing Work Can Not Achieve the Best Trade-off between 2Gs

➢ Key reason: Existing coarse-grained training synchronization in the granularity of a whole model 
(model granularity) cannot adapt to random, frequent and sharp bandwidth fluctuation in robotic IoT.

Indoors （office） Outdoors (garden)

○ The recorded bandwidth fluctuation in wireless 
networks caused by movement and obstacles
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➢ We propose a new row granularity synchronization method: break up the synchronization granularity 
of gradients into matrix rows.

○ Element granularity incurs high management cost; layer granularity (matrixes) still suffers from 
low transmission flexibility.

○ Row granularity enables more flexibility in scheduling: 
■ Adaptively adjust the transmission volume to balance transmission time
■ Transmit more important gradient rows first to accelerate model convergence

From Model Granularity to Row Granularity
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ROG: ROw-Granulated, High Performance and Robust

➢ In this paper, we present ROG, a ROw-Granulated, high performance and robust wireless distributed 
training system optimized for real-world robotic IoT networks. 

○ How to guarantee convergence when synchronizing gradients on row granularity? 

■ Row Synchronous Parallel (RSP)

■ Same convergence guarantee as SSP 

○ How to schedule the transmission of rows to achieve 2Gs？

■ Schedule the transmission of each row adaptively to the fluctuating bandwidth (G1)

■ Let the straggler transmit fewer rows than others to avoid straggler effect  

■ Transmit gradient rows with more contribution to training accuracy first (G2)
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Implementation and Evaluation

➢ Implementation Details:
○ Implemented as a PyTorch optimizer, easy to use and extensible to any imperative Deep Learning 

frameworks.
➢ Baseline Distributed Training System: BSP, SSP with high staleness threshold (SSP 20), SSP with low 

staleness threshold (SSP 4), FLOWN.

➢ Evaluation settings
○ Real-world robots: four-wheel robots with NVIDIA 

Jetson Xavier NX. 
○ Cooperative online learning robotic applications:  

domain adaptation and implicit mapping  
○ Real-world wireless networks and environments: 

indoors (laboratory with desks and separators); 
outdoors (campus garden with trees and bushes).

○ Minimize the communication volume with gradient 
compression [NIPS ‘19]
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Evaluation Questions

➢ How does ROG benefit real-world robotic applications in terms of training accuracy and 
power consumption?

➢ How does ROG handle the instability of wireless networks?

➢ How sensitive is ROG to different batch sizes, different numbers of devices, and 
different thresholds?

➢  What are the limitations and potentials of ROG?
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End-to-End Performance

➢ After training for 60 minutes, compared with 
baselines, ROG achieved:

○ High training throughput (25.2%~80.4% 
higher than baselines, G1)

Domain Adaptation in Outdoors Scenario

○ Non-degraded statistical efficiency (G2)

➢ ROG is energy-efficient. When the training 
model reached a same high accuracy, compared 
with the baselines, ROG reduced battery energy 
consumption by 20.4%~50.7%. 

Source Image Target Image

Domain 
Adaptation
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➢ ROG achieves high training accuracy. ROG 
achieved a 4.9%~6.5% accuracy gain over the 
baselines after training for 60 minutes.



②

How ROG Handles the straggler effect

①

③

③ Bandwidth rises: this robot quickly catches up 
with others because it is allowed to transmit fewer 
number of rows than other robots.

② Bandwidth degrades: this robot becomes a 
straggler and is required to transmit the minimal 
number of rows to lower the speed of falling behind.

① Bandwidth fluctuating: ROG adaptively adjusts 
the number of rows to be transmitted to avoid this 
robot from falling behind.
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ROG’s Performance on Various Applications and Environments

For various real-world online learning robotic applications and real-world environments, ROG’s 
advantages in high training accuracy and high energy efficiency remain.

Domain Adaptation in Indoors ScenarioImplicit Mapping
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Conclusion

➢ In this paper, we present ROG, a ROw-Granulated distributed training system optimized for robotic IoT networks.
○ ROG breaks up the granularity of model synchronization into rows and applies adaptive scheduling to the 

transmission of each row, fulfilling 3Rs. 
○ ROG is easy to use. It took only tens of lines of code to apply ROG to existing ML applications.

➢ By better trade off 2 goals for bandwidth fluctuation in wireless networks, ROG will nurture diverse ML applications 
deployed on mobile robots in the field.

➢ ROG’s future work:
○ Integrate ROG with existing methods for accelerating distributed training such as pipelining communication 

and computation (Pipe-SGD [NIPS ‘18]).

➢ ROG’s artifact is available at https://github.com/hku-systems/ROG

Thank you for listening. Questions are welcome!
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