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Existing permissioned blockchain systems designate a fixed and explicit group of committee nodes to run a
consensus protocol that confirms the same sequence of blocks among all nodes. Unfortunately, when such a
permissioned blockchain runs on a large scale on the Internet, these explicit committee nodes can be easily
turned down by denial-of-service (DoS) or network partition attacks. Although recent studies proposed scalable
BFT protocols that run on a larger number of committee nodes, these protocols’ efficiency drops dramatically
when only a small number of nodes are attacked.

In this paper, we propose a novel protocol named EGEs that leverages Intel SGX to develop a new abstraction
called “stealth committee”, which effectively hides a committee into a large pool of fake committee nodes.
EGEs selects a different stealth committee for each block and confirms the same blocks among all nodes with
overwhelming probability. Evaluation shows that EGEs is the first efficient permissioned blockchain’s consensus
protocol, which simultaneously satisfies two important metrics: (1) EGEs can tolerate tough DoS and network
partition attacks; and (2) EGEs achieves comparable throughput and latency as existing fastest permissioned
blockchains’ consensus protocols. EGES’s source code is available on github.com/performance21-p216/eges.

1 INTRODUCTION

A blockchain is a distributed ledger recording transactions maintained by nodes running on
a peer-to-peer (P2P) network. These nodes run a consensus protocol to ensure consistency: nodes
confirm (i.e., agree on committing [11, 16, 36]) the same sequence of blocks (i.e., no forks). Each
block contains the hash of its previous block, forming an immutable hash chain. A blockchain
can be permissioned or permissionless. A typical permissionless blockchain does not manage
membership for nodes and is usually equipped with a cryptocurrency mechanism (e.g., Bitcoin [63])
to incentivize nodes to follow the blockchain’s protocol [42, 45].

In contrast, a permissioned blockchain runs on a set of authenticated member nodes and can lever-
age the mature Byzantine Fault-Tolerant (BFT) protocols [39, 75, 84] to achieve better efficiency (i.e.,
throughput and latency). This paper focuses on permissioned blockchains because their decoupling
from cryptocurrencies has facilitated the deployment of many general data-sharing applications,
including a UK medical chain [5], IBM supply chains [4], and the Libra payment system [16].

For performance and regulation reasons (e.g., meeting the honesty threshold of BFT proto-
cols [56]), a permissioned blockchain (e.g., Hyperledger Fabric [11]) typically runs its consensus
protocol on a static and explicit committee. This static committee approach is already robust for a
permissioned blockchain among a small scale of enterprises [4].

Unfortunately, as permissioned blockchains are deployed on large scales on the Internet, this static
committee approach is vulnerable [36, 43, 64, 79] to Denial-of-Service and network partition attacks
targeting committee nodes. We discuss these two types of attacks together because any single node
cannot distinguish them (§2), and we call them targeted DoS attacks altogether. Libra [16] also
identifies DoS attacks as a significant threat but provides only partial mitigation (§2.2).

Indeed, great progress has been made in designing scalable BFT protocols (e.g., SBFT [39]) running
on a larger group of committee nodes and tolerating more nodes being attacked. However, these
protocols designate a small number of committee nodes to finish critical tasks (e.g., combing ACKs),
making these protocols’ efficiency drop dramatically if these nodes are under DoS attacks (§2.2).

With recent DoS attacks lasting for days [54, 69], tolerating such attacks is crucial, yet challenging,
for applications deployed on permissioned blockchains.

To address such vulnerabilities of static committees, a promising direction is to adopt the dynamic
committee merit from permissionless blockchain systems [20, 36]. These systems select a different
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committee for each block (mainly for fairness) and confirm a consistent sequence of blocks with a
tailored consensus protocol [36, 68]. As the committee member is rotated, the dynamic committee
merit brings the potential to achieve liveness even if a committee is under targeted DoS attacks.

Simply applying the dynamic committee approach, however, is not enough for a permissioned
blockchain to be resistant to targeted DoS attacks. To achieve DoS-resistance, it is crucial that the
commiittee selection is unpredictable: the identities of nodes in a committee must be unpredictable to
the attacker before the committee tries to achieve consensus on a block. Otherwise, the attacker can
adaptively attack the ready-to-be committee and cause the system stuck. For instance, ByzCoin [53]
lets the proof-of-work winners of recent blocks be the committee, but these explicit nodes are
easily targeted by a DoS attacker, causing ByzCoin to lose liveness permanently [47].

To the best of our knowledge, Algorand is the only work that can tolerate targeted DoS attacks.
Algorand adopts the dynamic committee approach and lets each node independently determine
its committee membership based on the confirmed part of the blockchain. However, as Algo-
rand is designed for permissionless blockchains, it confirms a block with up to 15 rounds and
minute-level latency (discussed in §2.2), making it unsuitable for general data-sharing applications
on permissioned blockchains (e.g., Libra [16]).

This paper aims to explore the new design point of building a permissioned blockchain’s consen-
sus protocol that adopts the unpredictable dynamic committee merit to defend against targeted DoS
or targeted partition attacks, and at the same time, achieves comparable efficiency as existing BFT
protocols (e.g., SBFT [39] has second-level latency).

To achieve this goal, a main obstacle is to ensure that any selected committee meets the honesty
requirement for byzantine problems: for consistency, each committee must have at most one-
third of nodes being malicious [56]. Permissionless blockchains meet this requirement by selecting
committees based on nodes’ wealth in the cryptocurrency (i.e., proof-of-stake), but cryptocurrencies
are usually unavailable in permissioned blockchains. Consequently, to meet such a requirement, one
has to unrealistically assume that almost all member nodes (>90%) are honest (see §2).

Fortunately, the recent pervasive usage of SGX [26] in blockchain systems (e.g., Microsoft
CCF [6], REM [87], Ekiden [23], Intel PoET [66]) shows that the code integrity feature of SGX
can surmount this obstacle. For instance, a recent implementation [2] of MinBFT leverages SGX
to ensure that a node cannot send different messages to different nodes and is incorporated
into Hyperledger [11]. However, these systems still run their consensus protocols on a group
of fixed and explicit committee nodes, making them susceptible to targeted DoS attacks.

We present EGEs?, the first efficient consensus protocol that can tackle targeted DoS or targeted
partition attacks for a permissioned blockchain. EGEs adopts the dynamic committee merit to
select a different committee for confirming each block. To defend against DoS or partition attacks
targeting the committees, we leverage the integrity and confidentiality features of SGX to present
a new abstraction called stealth committee.

EGES’s stealth committee has two new features. First, EGEs selects a stealth committee in SGX: the
selection progress has no communication among committee nodes, and the selection result cannot be
predicted from outside SGX. This ensures that a committee node stays stealth (cannot be targeted by
the attacker) before sending out its protocol messages. Second, when nodes in a committee are trying
to confirm a block, EGes hides them into a large pool of fake committee nodes that behave identically
as the real ones observed from outside SGX, so that an attacker cannot identify the real committees.

However, even equipped with SGX and stealth committee, it is still challenging to efficiently
ensure both consistency (i.e., no two member nodes confirm conflicting blocks) and reasonable
liveness (i.e., allow non-empty blocks to get confirmed) in the asynchronous Internet due to the FLP

1EGEs stands for Efficient, GEneral, and Scalable consensus.
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Protocol DoS and partition resistance|With SGX?|Number of nodes|Tput (txn/s)|Confirm latency (s)
. 300 3226 0.91
Eces high Yes 10K 2654 113
Algorand high No 10K ~727 ~22
PoET medium* Yes 100 149 45.2
Ethereum medium® No 100 178 82.3
SBFT low No 62 1523 1.13
MinBFT low Yes 64 2478 0.80
BFT-SMaRt low No 10 4512 0.67
Tendermint low No 64 2462 1.31
HotStuff low No 64 2686 2.63
HoneyBadger low No 32 1078 9.39

Table 1. Comparison of EGEs to baseline protocols. DoS resistance is analyzed in §2; evaluation setup is in
§7. Eces is the only protocol that is both DoS-resistant and is among the fastest consensus protocols for
permissioned blockchains. * PoET and Ethereum cannot ensure consistency on network partition attacks [64].

impossibility [34]. Specifically, suppose a committee node x for the n** block fails to receive the
(n — 1)*" block after a timeout, x cannot distinguish whether it is because the committee for the
(n—1)*" block failed to confirm the (n—1)" block, or because x itself does not receive the confirmed
(n—1)*" block due to network problems. As the committee nodes for the (n—1)*" block may be under
DoS attacks and be unreachable, x must have a mechanism to distinguish these two scenarios in order
to maintain both consistency and reasonable liveness in EGEs.

EGes tackles this challenge by leveraging simple probability theory. EGEs’s committee for each
block contains one proposer and n4 (e.g., 300) acceptors, randomly and uniformly selected from all
nodes. The proposer broadcasts its block proposal to all nodes by P2P broadcasts and seeks quorum
ACKs from the acceptors. EGes models the randomly selected acceptors as a sampling of the delivery
rate of the proposal in the P2P overlay network [36]. In the previous example, EGEs confirms the
proposal for the (n—1)*" block only if the proposal is delivered to a large portion of member nodes; if
multiple rounds (D = 4 by default) of the sampling show that very few nodes have received that
proposal for the (n — 1) block, nodes in EGEs consistently confirm the (n — 1) block as an empty
block (with an overwhelming probability).

In sum, EGEs efficiently enforces consistency and can defend against targeted DoS or partition
attacks. Specifically, EGes defends against such attacks by (1) letting committee nodes stay stealth
before they start achieving consensus for a block, (2) using fake committee nodes to conceal real
committee nodes while they are achieving consensus for a block, and (3) switching to a different
committee and consistently confirming a block even if the attacker luckily guesses most real
committee nodes for this block.

In essence, EGES’s stealth commiittee is a moving target defense approach [24, 81] that unpre-
dictably replaces the committee to make a DoS attacker cannot launch effective targeted attacks.
EGgs is efficient because confirming a block in a gracious run (e.g., the proposer can reach most
acceptors) only involves two P2P broadcasts and a UDP one-way delay (§4). We provide a rigorous
analysis of EGEs’s DoS-resistance and proof of EGES’s consistency guarantee in §5.

We implemented EGEs using the codebase from Ethereum [21] and compared EGEs with nine con-
sensus protocols for blockchain systems, including five state-of-the-art efficient BFT protocols for
permissioned blockchains (BFT-SMaRt [75], SBFT [39], HoneyBadger [62], and HotStuff [84]), two
SGX-powered consensus protocols for permissioned blockchains (Intel-PoET [66] and MinBFT [82]),
the default consensus protocol in our codebase (Ethereum-PoW [21]), and two permissionless
blockchains’ protocols that run on dynamic committees (Algorand [36] and Tendermint [20]).
We ran EGEs on both our cluster and AWS. The extensive evaluation results (Table 1) show that:
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e EGEs is robust. Among all consensus protocols for permissioned blockchains, EGEs is the only
protocol that can defend against targeted DoS and network partition attacks, by both a theoretical
analysis (§5) and evaluation (§7.2).

o EGEs is efficient. EGEs confirms a block with 3000 transactions in less than two seconds in typical
geo-distributed settings, comparable to evaluated consensus protocols that cannot tolerate
targeted DoS attacks.

o EGEs’s throughput and latency are scalable to the number of nodes. When running 10k nodes, EGEs
showed 2.3X higher throughput and 16.8X lower latency than Algorand with 10k nodes.

Compared to existing BFT protocols [39, 62, 75, 84] and SGX-powered consensus protocols [66, 82]
for permissioned blockchains, EGEs is the only protocol that can tolerate targeted DoS attacks,
and EGEs’s efficiency is comparable to the fastest of these protocols. Compared to Algorand,
the only known DoS-resistant consensus protocol for permissionless blockchains, EGes has much
higher throughput and lower latency.

Our contribution is three-fold. First, EGes leverages SGX to explore the new design point of tack-
ling DoS attacks while enforcing both consistency and reasonable liveness (including efficiency) for a
permissioned blockchain in the asynchronous Internet. Second, we designed the new stealth commit-
tee abstraction and implemented EGES’s consensus protocol. Our third contribution includes an im-
plementation of the EGEs prototype and the extensive experiments of EGEs and existing blockchain
consensus protocols on diverse adversarial network conditions, including targeted DoS attacks,
ubiquitous DoS attacks, and network partitions. Our paper reveals that, in addition to safety and per-
formance, DoS resistance is also an essential evaluation metric for practical Internet-scale blockchain
applications (e.g., e-voting [70] and payment [16]). For instance, SGX-ToR [51], a blockchain client
anonymity service, is shown [73] to be susceptible to DoS attacks targeting its directory service; de-
ploying SGX-ToR on EGEs can make SGX-ToR DoS-resistant (§7.5).

In the rest of the paper, §2 introduces EGes’s background and motivation; §3 gives an overview
of EGEs; §4 introduces EGES’s consensus protocol; §5 analyzes the safety and liveness of EGEs;
§6 covers our implementation; §7 shows our evaluation, and §8 concludes.

2 BACKGROUND AND RELATED WORK

We discuss targeted DoS and network partition attacks together because these two attacks cannot be
effectively distinguished in an asynchronous network. When a node cannot reach a remote node,
the node cannot determine whether it is because the remote node is under DoS attacks or because the
network is partitioned. Therefore, EGEs maintains consistency by handling both cases together.

Although there exist many influential systems [61, 83] addressing DDoS attacks on specific nodes,
EGEs is complementary to them because EGEs handles diverse attack scenarios (e.g., an attacker
controls nodes’ P2P modules to cause network partition [64, 79], see §3.2) from the consensus layer.

We assume that the attacker has an attack budget B (e.g., B = 300): the attacker can mount
DoS attacks targeting B nodes at a time. We will formally define the threat model in §3.2.

2.1 Intel SGX

Intel Software Guard eXtension (SGX) [26] is a hardware feature on commodity CPUs. SGX
provides a secure execution environment called an enclave, where data and code execution cannot
be seen or tampered with from outside. Code outside enclaves can enter an enclave by ECalls, and
SGX uses remote attestations [26] to prove that a particular piece of code is running in an enclave on
a genuine SGX-enabled CPU. SGX provides a trustworthy random source (sgx_read_rand), which
calls the hardware pseudo-random generator through the RDRAND CPU instruction seeded by
on-chip entropy sources [26]. Previous studies show that this random source complies with security
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197 and cryptographic standards and cannot be seen or tampered with from outside enclaves [14, 41].
198 Recent work leverages SGX to improve diverse aspects of blockchain systems. Intel’s PoET [66]
199 replaces the PoW puzzles with a trusted timer in SGX; EGEs is more efficient than PoET (§7.1).
200  REM [87] uses SGX to replace the useless PoW puzzles with useful computation (e.g., big data),
201 orthogonal to EGes. Microsoft CCF [6] is a permissioned blockchain platform using SGX to achieve
202 transaction privacy, but it does not include a DoS-resistance approach. Scifer [9] uses SGX to
203 maintain reliable node identities on the blockchain, which is adopted in EGes (Appendix D).

204 Ekiden [23] and ShadowEth [85] offload the execution of smart contracts to SGX-powered
205 nodes to avoid redundant execution and to preserve privacy; TEEChain [57] uses SGX to build an
206 efficient and secure off-chain payment channel; Town Crier [86] uses SGX to build a trustworthy data
207 source for smart contracts; Tesseract [17] uses SGX to build a cross-chain coin exchange framework;
208 Obscuro [80] uses SGX to improve bitcoin’s privacy; these systems do not focus on consensus
200 protocols and are orthogonal to EGEs.

210

211 2.2 Consensus for Permissioned Blockchains

212 We briefly introduce recent notable consensus protocols for permissioned blockchains, which are
213 also EGES’s evaluation baselines. Overall, all these protocols run on a static committee. To ensure
214 liveness under a DoS attacker with an attack budget of B, these protocols must scale to 3xXB+1 nodes
215 (for BFT protocols) or 2 X B+ 1 nodes (for SGX-powered protocols). However, to our best knowledge,
216 no existing protocol can achieve such scalability.

217 BFT-SMaRt [75] is an optimized implementation of PBFT [22]. As each node broadcasts consensus
218 messages to all other nodes, BFT-SMaRt has O(n?) message complexity to the number of committee
219 nodes, resulting in poor scalability. Its paper [75] only evaluated up to 10 nodes. SBFT [39] is a
220 scalable BFT protocol that uses a new type of committee nodes called collectors. A node sends its
221 consensus messages to only ¢ (usually ¢ < 8) explicit collectors who will then broadcast a combined
222 message using the threshold signature. SBFT’s fast path can commit a block if fewer than ¢ nodes fail;
223 however, SBFT’s performance drops dramatically if an attacker targets the ¢ collectors (§7.4).

224 HotStuff [84] is a BFT protocol optimized for frequent leader changes, and Libra [16] leverages
225 Hotstuff to tolerate targeted DoS attacks on leaders. However, since Hotstuff reports a near-linear
226 increment of latency with an increasing number of nodes, it only evaluated up to 128 nodes,
227 where an attacker can DoS attack or partition one-third of all nodes rather than finding the
228 leader. HoneyBadger [62] uses randomization to remove the partial synchrony assumption of PBFT.
220 However, both its paper and our evaluation show that HoneyBadger achieves high latency due to
230 many rounds of broadcasts in its asynchronous byzantine agreements.

231 MinBFT [82] is an SGX-powered BFT protocol with the same fault model as EGes. MinBFT
232 reduces the number of rounds in PBFT and can tolerate more faulty node failures, but MinBFT
233 still has O(n?) message complexities, so its performance is not scalable to the number of nodes.
234

4,35 2.3 Consensus for Permissionless Blockchains

236 Existing permissionless blockchains can be divided into two categories based on how they confirm
237 blocks. The first category confirms block with variants of the longest-chain rule (i.e., Nakamoto con-
238 sensus [63]), including BitCoin [63], Ethereum [21], BitCoin-NG [32], Snow-White [18], Ouroboros [50],
239 Paros [27], Genesis [15], and GHOST [74]. Specifically, each node asynchronously selects the longest
240 chain it received and confirms a block when there are k blocks succeeding it. However, waiting for k
241 more blocks leads to a long confirm latency, and previous work [35] shows that this k must be
242 large enough to ensure consistency. Moreover, the longest-chain rule cannot ensure consistency
243 under partition attacks [12, 36, 43]. Intuitively, during a network partition, each partition will
244 independently grow a chain; if these chains diverge for more than k blocks, nodes in different
245
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partitions will confirm conflicting blocks.

The second category of permissionless blockchains confirms blocks using the committee-based
BFT approach, which can confirm a block as soon as the BFT consensus is achieved. This category
includes Algorand [36], ByzCoin [53], Tendermint [20], and PeerCensus [28]. These systems select
distinct (dynamic) committees for different blocks based on the content (e.g., nodes’ wealth) on the
blockchain for fairness and for handling nodes joining or leaving. Similar to EGEs, these systems
run a tailored consensus protocol (BA* in Algorand [36], Tendermint [20], Tenderbake [13], and
Tenderand [68]) on dynamic committees to confirm blocks.

However, these protocols cannot be ported to a permissioned blockchain because of the tight
coupling with cryptocurrency. For instance, although Tendermint [10] and Tenderbake [13] are
described as stand-alone BFT protocols, they assume that in any committee, fewer than one-third
of nodes are malicious. In a permissioned blockchain without cryptocurrency, if we want to ensure
that any randomly selected committee (say 100 nodes) from a large number of (say 10k) nodes
meets this requirement with overwhelming probability (> 1 — 1071), we need to assume over 91%
of all nodes being honest (by the hypergeometric distribution), which is an overly-strong assumption
for a practical large-scale blockchain system (e.g., a global payment system [16]) on the Internet.

Moreover, these systems (except Algorand) cannot ensure liveness under targeted DoS attacks
because they select committees in a predictable way so that all nodes can verify the identities
of committees. For instance, ByzCoin [53] lets the proof-of-work winners of recent blocks be
the committee. However, these nodes with explicit identities are easily targeted by a DoS attacker,
and ByzCoin may lose liveness permanently [47] if more than one-third of these nodes are attacked.
Algorand defends against targeted DoS attacks by letting each node use verifiable random functions
to determine its committee membership. We provide a detailed comparison showing why EGEs
is more efficient than Algorand in §4.3.

3 OVERVIEW

An EGES Node

3.1 Architecture Blockchain Applications

Smart contracts [21] Payment System [17]  Medical Chain [6] ...
EGEs is a consensus protocol for a permissioned | 4
blockchain running on M member nodes (nodes |Transaction Generation and Query Library (e.g., web3.js [9])|

. lransactions¢
for short) connected with an asynchronous network. | EsesEnciave

Eces adopts the hybrid fault model used in exist-

Comnmittee | | Proposer's || Acceptor's || Arbiter's

salanb
nSa1

ing SGX-powered consensus protocols [25, 82, 88], Selan || Lege Ecgic Logic

where each node has a trusted module (i.e., the SGX | consensus msgs} confirmed blocks | |
enclave) that will only fail by crashing, and all other | | P2P Network | [ Blockchain Storage |
components can behave arbitrarily. [ Operating System and Network Stack |

Figure 1 shows the architecture of an EGEs node.
Each node is equipped with an attested SGX en-
clave running only EGEs’s consensus protocol. The
blockchain application layer, the transaction gener-
ation and query libraries (e.g., web3.js [8]), and the
blockchain storage module are outside the enclave because they are already cryptographically
protected. The P2P network and operating system are outside the enclave and untrusted.

For each block index n, EGEs determines one committee among all nodes (uniqueness proved in
§5.1), and a node’s committee selection module (§4.2) knows whether the node is a committee member
only within its enclave. Each committee has one proposer (denoted as P,), a group of acceptors
(denoted as A,) with the count of n4, and a group of arbiters with the count of n,. A committee node’s
enclave activates corresponding committee logic modules for this n*? block according to its committee

Fig. 1. An EcGEs node’s architecture. EGES’s con-
sensus protocol has four components running in
the enclave. Block proposals are included in con-
sensus messages.
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roles if the node is a committee member, and the committee logic modules will generate or respond to
consensus messages following EGEs’s consensus protocol (§4.3).

The proposer P, takes a batch of transactions from outside the enclave, generates a unique block
proposal (denoted as proposal,) within its enclave, and tries to finalize it by collecting quorum
ACKs from the acceptors (§4.3). EGEs ensures that P,,’s identity is unknown to any node’s modules
outside the node’s enclave (even if the node is controlled by an attacker) before P,, broadcasts its
proposal,, while all acceptors A,,’s identities are unknown to the outside throughout the whole
consensus process (§4.3). To handle DoS attacks targeting P,,, EGEs uses the arbiters to help P, finalize
proposal, if P, is under attack, but the arbiters do not generate new block proposals (§4.4).

SGX is essential for EGEs due to three main reasons. First, EGEs uses SGX to regulate the behaviors
of randomly selected committee nodes (§4.3); otherwise the blockchain may fork if committee nodes
equivocate (i.e., sending conflicting messages to different nodes). In EGEs, each node has a private key
that is only visible within the node’s SGX enclave, and the corresponding public key works as
the node account saved in all other nodes’ SGX enclaves (§4.1). A valid consensus message must
carry a valid signature, proving that the message is generated in the sender node’s enclave with code
integrity. By doing so, a node cannot equivocate or forge protocol messages (e.g., a proposer sending
out a finalize message without receiving quorum ACKs).

Second, EGEs leverages SGX to make its committee’s identities stealth: only a node’s enclave
knows whether itself is a committee member for the current block (§4.2). This not only enables EGEs
to maintain practical liveness under DoS attacks, but more importantly, makes EGES’s consistency
model resistant to targeted attacks. Specifically, EGes leverages probability theory to model randomly
selected acceptors as a uniform sampling of the delivery rate of a block proposal in the P2P network
(same as Algorand [36], see §4.3). If acceptors’ identities are public, an attacker can selectively
transfer or drop packets towards them, breaking EGEs’s safety.

Third, the usage of SGX enables EGEs to select a stealth committee with a known count. As
illustrated later in §4.3, this helps EGEs to be more efficient than Algorand.

EGEs has the following design goals:

e Safety (consistency). EGEs ensures safety in an asynchronous network. Formally, if a node
confirms a block b as the n*" block on the blockchain, the probability that another node confirms
b’ # b as the n*" block is overwhelmingly low (< 1071),

e DoS-resistance (liveness). In addition to safety, EGEs can make progress (i.e., allow non-empty
blocks to be confirmed) with the assumptions about DoS attackers’ capability as described below.

Let us reconsider the subtle challenge we mentioned in §1 with a concrete example in Figure 2.
This challenge is unique in EGEs because EGEs uses different committees for different blocks to
resist DoS attacks targeting the committee. When a node cannot receive a block after a timeout,
for liveness, the node cannot wait forever, but for safety, the node must figure out whether this block
may have been confirmed by some nodes. Existing consensus protocols on static committees use a
view change protocol that queries how many nodes have sent out ACKs and leverages quorum
intersections [22, 60, 65] to address this problem. However, in EGEs, this method is not viable because
EGEs must ensure liveness even if most nodes in A, are DoS attacked after sending out their ACKs.

Figure 2 shows two subtle cases illustrating the challenge. Note that these two cases are delib-
erately simple for a clear exposition of EGEs’s idea, and EGEs can ensure safety in all scenarios
in the asynchronous network (§5.1). In case (1), the proposer for the n" block (P,) failed before
broadcasting its proposal,. Therefore, proposal, is not confirmed on any node, and all nodes can
safely confirm an empty block at the n* position. In case (2), nodes are divided into two partitions
right after the n — 1% block is confirmed. P, and most nodes of A, are in partition 1, so nodes in
partition 1 can confirm the porposal, successfully. In this case, although nodes in partition 2 cannot
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Fig. 2. A key challenge of EGEs is to determine whether a block (the nth block in this example) has ever been
confirmed when a node cannot receive the block after a timeout. ‘P’ means the proposer; ‘A’ means an acceptor;
arbiters are omitted in this figure for brevity.

receive porposaly,, they should not confirm an empty block. From any single node points of view,
these two cases cannot be effectively distinguished.

To address this challenge, EGEs introduces a new consensus protocol based on probability
theory (§4.3). Specifically, if proposal,, is confirmed on some nodes, proposal,, should have been
delivered to a large-enough portion of nodes in the P2P network because (1) confirming proposal,,
needs quorum ACKs from nodes in A, and (2) A, is uniformly selected from all nodes. Therefore, if
we repetitively sample many nodes from all nodes, and no node has received proposal,, we can
predicate only a small portion of (or no) nodes have received proposal,, and thus the probability of
proposal, having been confirmed is overwhelmingly low. To be DoS-resistant, these multiple
rounds of checking must be initiated by different nodes, so EGEs lets the proposers for subsequent
blocks (i.e., Ppi1, Pni2, etc.) do such samplings while seeking ACKs for their own proposals (§4.3).

3.2 Threat Model

SGX’s threat model. EGEs has the same threat model for SGX as typical SGX-based systems [2,
46, 58, 67, 72]. We trust the hardware and firmware of Intel SGX, which ensures that code and
data in an enclave cannot be seen or tampered with from outside. We trust that the remote
attestation service can identify genuine SGX devices from fake ones (e.g., emulated with QEMU).
Side-channel and access pattern attacks on SGX are out of the scope of this paper. Moreover, the
adversary cannot break standard cryptographic primitives, including public-key based signatures
and collision-resistant hash functions.

Transaction model. Same as most existing blockchain systems [36, 66, 78, 87], EGEs assumes
that (1) each transaction has a verifiable client signature, and (2) the execution and validation
of any transaction are deterministic and can be performed by any node independently.
Communication model. EGEs maintains safety in an asynchronous network, where network
packets can be dropped, delayed, or reordered arbitrarily. Nodes may be nonresponsive, due to going
offline or targeted DoS attacks (e.g., botnet DDoS attacks [54]) by a DoS attacker. When a node cannot
reach a remote node, the node cannot determine whether the remote node is under DoS attack (or is
offline) or the network packets are delayed. Nodes are equipped with loosely synchronous clocks
(e.g., by running NTP), but EGes does not rely on the correctness of these clocks for safety.

To achieve liveness, same as existing protocols [22, 55, 75, 84]. EGEs has the partial synchrony [31]
assumption: there is an unknown global stabilization time (GST), after which messages between
two nodes not under DoS attacks can be delivered within a known time bound.

Nodes are connected with a P2P overlay network, same as existing large-scale blockchain
systems [36, 63]. Each node has a P2P module connecting to a random set of other nodes and
relays messages using the gossip protocol [40, 48, 49, 71].
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A node’s P2P module is outside SGX and can be controlled by the attackers [79]: the attacker

can partition some nodes from other nodes [43, 64]) or selectively pass consensus messages to nodes’
SGX enclaves. However, such manipulations are already included in EGEs’s asynchronous network
assumption. For safety, EGEs leverages the sampling merit to estimate the delivery rate of a specific
block proposal and derives overwhelming probability, regardless of how nodes are connected. For
liveness, EGEs can tolerate the adversary controlling the P2P modules of a number of nodes with the
restriction of the adversary’s attack budget described below.
Assumptions on the capability of DoS attackers. EGEs has three assumptions on the capability of
aDoS attacker, same as Algorand [36] and existing move target defense (MTD) systems [24, 81]. First,
the adversary has a targeted attack budget B: the adversary cannot constantly cause more than
Btargeted nodes in EGEs to be nonresponsive. B can be a constant number (e.g., 300) or a fraction (e.g.,
10%) of the total number of nodes, but B should be bounded by the ubiquitous attack threshold in the
second assumption below. Note that this budget B is adaptive: the adversary can attack different
nodes at different times, but the number of attacked nodes at a time cannot be constantly larger than
B. By “constantly”, we mean that the adversary can sometimes cause more than B targeted nodes to
be non-responsive (e.g., because most randomly selected committee nodes are luckily controlled by
the adversary) and cause an EGes block cannot be confirmed. However, EGEs can still achieve liveness
by letting subsequent committee consistently confirm this block (§4.3).

Second, the attacker can conduct ubiquitous DoS attacks (without targeting specific nodes) or
partition a number of nodes from other nodes (e.g., by manipulating nodes’ P2P modules [43, 64]).
However, the P2P overlay network should have a large enough portion (e.g., 65%) of nodes connected.
We provide a quantitative analysis of how EGEs can preserve liveness under such attacks in §5.3.

Third, the adversary cannot constantly succeed in mounting an attack targeting a node within the
time window for the node to send out an EGEs protocol message. Specifically, EGEs protocol messages
are larger than the network maximum packet size and are fragmented into multiple packets; an
EGEs committee node’s identity is unknown to the adversary before sending out the first packet,
and we assume that the adversary cannot mount targeted DoS attacks until the node sends out
all packets belonging to this message (at most hundreds of kB and can be sent within one second).

EGEs already assumes a strong enough attacker for practical distributed systems on the Internet.
As pointed out by Algorand [36], a more powerful adversary than our model usually controls
the internet service provider and can prevent all EGes nodes from communicating at all: no
practical system can ensure liveness under such a strong adversary, and such attacks can be
easily detected. We will provide a rigorous analysis of EGEs’s DoS resistance in §5.2.

DoS resistance of EGEs. EGEs has three important features to achieve DoS resistance:

e EGEs randomly selects a distinct committee for each block. The selection is done inside the SGX
enclaves of a previous committee, and the selection result is encrypted on the confirmed common
prefix of the blockchain. By doing so, a committee node can determine its committee membership
without interactions with other nodes, making it stay stealth before trying to achieve consensus on
its block.

e When a committee is achieving consensus for a given block, EGEs uses fake committee nodes
to conceal the real ones by sending encrypted dummy messages. Since whether a node is a
real committee node is only known within the node’s SGX enclave, and the encrypted dummy
messages are of the same format as real ones, a DoS attacker cannot distinguish the real committee
nodes from the fake ones. Therefore, the attacker must have an unrealistic large attack budget to
attack all the real and fake committees; otherwise, he has to randomly guess who are the real ones.

o Even if the attacker luckily guesses the real ones (he may eventually succeed if trying persistently),
EGES can ensure safety with overwhelming probability. Specifically, even if a committee cannot
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confirm its own block, committees for subsequent blocks can help to consistently confirm
this block (§4.3). This feature is in contrast to most existing consensus protocols (i.e., all except
Algorand [36]), where the system must wait statically until a quorum of nodes become reachable.

4 EGES CONSENSUS PROTOCOL
4.1 Protocol Preliminaries

Protocol parameters. EGES’s consensus protocol has three parameters, n4 (default 300), 7 (default
59%), and D (default 4), where ny is the number of acceptors, 7 is the quorum ratio, and D is the
finalization depth for an empty block. We will show how to select these parameters in §5.3 and how
these parameters affect EGEs’s performance in §7.3.

Block structure. EGEes adds one data field to the block structure of common blockchain systems [21,
63]: the encrypted committee identities for a future block (§4.2). EGEs is oblivious to how transactions
are stored or executed.

Invariant 1 (see §5.1 for proof). For any block index n, at most one unique block proposal (proposal,)
is generated; a node can only confirm proposal, or a default empty block (empty, ) as its n'" block.

Block status. Each block in a node’s chain
has three states: undecided, finalized, and con-
firmed. An undecided n" block can only be |undecided |—ZrEZ0 | fiizeq | SPCIN Ll Gongrme
empty,. A node appends empty,, to its chain
when the node triggers a timeout waiting for
the finalize message for the n'" block; the block is in the undecided state because the node cannot
determine (for now) whether it should confirm proposal,, or empty,,.

A finalized n'" block can be either proposal, or empty,. EGEs ensures the following invariant:

ltimeout for Finalize message l recv Finalize message

Fig. 3. EGES’s block status diagram.

Invariant 2. Ifanode’sn'" block is finalized as proposal,, no other nodes will finalize the n'"* block as
empty,, and vice versa.

There are two rules for appending a finalized n" block: (1) a node appends finalized proposal,, if
it receives the finalize message for proposal,, and (2) a node changes the empty, from the
undecided state to finalized if the node can predicate that no node has finalized proposal, (§4.3).

A node confirms its finalized n* block if all blocks with indices smaller than n in its chain

are finalized. Note that although EGEs may finalize blocks out of order, EGEs confirms blocks
sequentially, same as typical blockchains [11, 21].
Each node’s local states. Each EGes node maintains three major local states: a local blockchain (the
chain), a proposal cache (the cache), and a set of learntProposals, The cache is maintained
in the node’s EGEs enclave. When the node receives proposal,, it puts the proposal into the
cache, in case the committees of future blocks query the delivery rate of proposal,,.

The chain on each node is divided into two parts: the confirmed part and the unconfirmed part.

We use MC to represent the maximum confirmed index and U to represent the indices of undecided
blocks in chain. The confirmed part of chain (i.e., indices<MC) are cryptographically-chained
by hash values and can be saved out of the enclave and get executed, while unconfirmed parts
are saved in the EGEs enclave. The learntProposals is the set of known proposals for undecided
blocks on this node and is saved in EGEs enclave.
Membership and key management. Each node i has a key pair (pk;, sk;), with the public key pk;
as its account, and its secret key sk; is only visible within its enclave: even this node’s administrator
cannot see the plain-text of its secret key. We use the notations from PBFT [22]: we denote a message
m; sent to node i encrypted by i’s public key pk; as {m}k,; we denote a message m; generated by
node i’s enclave and signed by sk; as (m;),. For efficiency, EGEs signs on message digests.
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Propose Algorithm 2: all nodes’ action
n The index of the proposal /* All message senders’ memberships and signatures are verified,
blk The content of the block to be proposed o . . .
ommited in all algorithms for brevity */
MC, The MC value of the proposer . - blk. MC
U, The U list of the proposer 1 upon receiving msg = (Propose, n, blk, MC ...)s;

. . . 2 | cache[n] = msg
1 = Up). The t to finalize th
proposaly,, tm = max(Up). The proposer tries to finalize this 3 | if MC < MCp : ask peers for missing blocks

proposal together with its proposed n' block 4 | if hash(sk;, n) > threshold : Reply fake (cover) ACKs message

g - ACK pF T | /" same format as true ACKs, with isReal = false. */
:ender ihz lsr;nz);:s ;‘:;:ﬁzpli’; ;:Cgcglr::lft’;sa 5 upon receiving (Finalize, n, upm,, learnt)y,
6 |if up, # nil:
notifications Proposals to notify the proposer . ch':in[u,,,]status  finalized
isReal For identifying real ACK from cover messages s U=U\um
nonce Random padding to f'nake cipher text unpredictable | ;¢ [U] == 0: Confirm chain up to index n (MC « n)
Finalize 10 | else:
n The index of the block finalized 1 learntProposals.insert(learnt)
Um The index of the block that is finalized together 12 for u in U in descending order:
learnt Proposals learnt from acceptors notifications 13 if canFinalize(u) :
Table 2. EGes’s messages’ fields. Blue fields are used ™ | chain(u].status = finalized
. . S - Ise: break // Empty block finalized in d di der.
only in the checking mode (nil in the normal mode). * [LL*°¢ 2 /'/4 ity blocks are Hinalized in descending order
Algorithm 1: the proposer for the n'" block 16 upon timeout waiting for next block

17 Lchain.append (empty, status = undecided)

-

n4 « the number of acceptors 18 function canFinalize(u):

2 blk « the content of the n*” block to propose 19 | count = 0

3 function normalPropose(): 20 |fori=u+1;i< chain.len; ++i:

4 | bcast (Propose, blk, MC, nil, nil),,,, 21 | | if chain[i] 1= empty :

5 | upon receiving (ACK, n, pk;, nil)o, 2 count++

6 ACKs.insert(pk;) 23 if count > D : return true

7 Lf ACKs.count > 7 X ny : bcast (Finalize, n, nil, nil)o,e 2| | else: return false

s function checkPropose():

o | tm — max(U) Algorithm 3: an acceptor for the n'" block
10 | if cache[u,] != nil || learntProposalsfupm, ] = nil : 1 upon receiving (Propose, blk, MCp, Uy, proposal,,  )o;
1 ‘ proposal,, =« the proposal for index un, 2 | r=rand()

12 | else: proposal, =« nil 3 | if HCp < MC: notify proposer to catch up (omitted)

13 | bcast (Propose, blk, MC, U, proposal,, . Yome 4 |if [Up| ==0:
14 |learnt =[] 5 reply ({ACK, n, pkme, nil, true, r}pr; )oyme
15 | upon receiving (ACK, n, pk;, notifications ), // Only the leader(i) can decrypt this message

16 ACKs.insert(pk;) 6 | else:

17 learnt.insert(notifications) 7 notifications = []

18 if ACKs.count > TXng : 8 for uin Up:

19 Lbcast(F'Lnalize, n, proposal, ., learnt) 9 Lif cache[u] != nil : notifications.append(cache[u])

10 reply ({ACK, n, notifications, true, r } pk; Jome

Fig. 4. EGES’s consensus protocol.

To ease understanding, we describe EGEs protocol on a fixed membership, where all nodes’
accounts (public keys) are loaded to nodes’ EGEs enclaves a priori, and all nodes’ EGEs enclaves are
attested. We show how EGEs supports dynamic membership and attestations in Appendix D.

4.2 Selecting a Stealth Committee

For each block, EGEs selects a commiittee, including one proposer, n4 acceptors, and n,, arbiters,
in an unpredictable way without communication among nodes.

The committee members for the n" block is selected in the EGEs enclave of P,_jp, and these
committee nodes’ identities are encrypted in the (n—Ib)*" block. Ib (look-back) is a system parameter
and needs to be large enough (e.g., the number of blocks confirmed in days) to ensure that even when
the network condition is poor, and new blocks cannot be confirmed in time, EGEs can still derive
committees for future blocks. We assume that the first [b committees’ identities are encrypted in the
genesis (0") block by a trusted party, or that the blockchain is bootstrapped in a controlled domain
for at least Ib blocks. Note that the value of [b does not affect EGES’s safety.
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Occasionally, a node may be selected as the committee for a future block and then leave the system,
which EGEs already tolerates as a failed node. If the (n — Ib)*" block happens to be an empty block,
EGEs uses the committee identities encrypted in the (n—21b)*" block (and identities in the (n—31b)*"
block if the (n — 21b)" block is also empty, recursively). Although this proposer’s identity is already
explicit when confirming the (n — Ib)*" block and may be targeted, EGEs can tolerate it as a failed
proposer and uses subsequent committees to confirm empty,,.

P(n_1p) selects the committee for the n'* block with two steps, which are done in P(,_;;)’s EGEs
enclave to ensure both integrity (i.e., an attacker cannot control the selection) and confidentiality (i.e.,
an attacker cannot know the selection result). In the first step, P,—ip) randomly selects the committee
members from all member nodes following the uniform distribution. Recall that the member list is
loaded in the EGEs enclave on each node (§4.1), so P(,_ip) simply selects ns + 1 nodes from the
list using the SGX’s trustworthy pseudo-random number generator as the random source, which has
been shown to be cryptographically-secure and cannot be seen or tampered with from outside
enclave (§2.1).

In the second step, for each selected committee node, P(,_j5) generates one certificate, which
is the cipher-text of the concatenation of a predefined byte string and a random nonce (for making
the cipher-text unpredictable), encrypted with that committee node’s public key. Then, P,
includes these (n4 + n, + 1) certificates in the (n — Ib)*" block’s proposal. The first certificate
is for the proposer, and the other ny certificates are for acceptors. When a node confirms this
block, it tries to decrypt one of these certificates using its own secret key in its enclave; if the
node can get the predefined string, it predicates that it is a committee node for the n*" block.

Despite using asymmetric cryptography, this mechanism is efficient in EGEs because both
encryption and decryption are done asynchronously off the consensus’s critical path. For encryption,
since P(,—)’s enclave knows it is the proposer for the (n—Ib)*" block after confirming the (n—21b)*"
block, P(,,—p) starts selecting the committees and encrypting the certificates as soon as confirming
the (n — 21b)!" block. Similarly, the decryption is also off the critical path as the decryption result is
used [b blocks later.

EGEs’s committee selection mechanism is unpredictable and non-interactive because: (1) the

random source cannot be seen or tampered with from outside the enclave of P,_j;,, and the cer-
tificates can only be verified within a selected committee node’s enclave; and (2) the selection
process is solely done within the EGEs enclave of P,_;;. These two features ensure the committee
nodes’ identities are not exposed during the selection, so the committee nodes cannot be targeted
before sending out protocol messages for the n*" block.
Discussions. EGEs selects only one proposer for each block to achieve good efficiency: EGEs only
needs to achieve a binary consensus on whether to confirm the unique proposal by this proposer or a
default empty block. For acceptors, an alternative design is to let each node independently determine
whether it is an acceptor for the current block with a probability, and EGEs only controls the expected
total count. However, this alternative design will lead to a much larger quorum ratio (i.e., 7) to ensure
safety and thus worse liveness (quantitative analysis in §7.3).

4.3 Confirming a Block

A proposer P, has two operation modes: normal mode and checking mode. P, is in the normal
mode if all blocks in its chain before n are confirmed (i.e., U = 0), and P, tries to confirm
proposal, quickly. Otherwise, P, is in the checking mode: while proposing proposal,,, it also
checks the status of the undecided blocks in its chain.

Normal mode. Algorithm 1 Line 3~7 shows how a normal mode P, tries to confirm proposal, in
a gracious run. First, P, broadcasts a propose request through the P2P network carrying proposal,
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and its MC (§4.1). The MC value helps nodes align confirmed parts of their chain: if a node’s MC
is smaller than the proposer’s, the node asks for the missing confirmed blocks from its peers (Algo-
rithm 2 Line 3). Upon receiving this propose request, an acceptor replies an ACK using UDP directly
to P, (Algorithm 3 Line 5). Second, P,, waits for quorum (z X n4) ACKs from A,,. P, does not know
which nodes are acceptors, but EGEs’s ensures that a non-acceptor cannot send valid ACKs (§4.1).
Third, P, broadcasts a finalize message; on receiving this message, a node finalizes proposal,,.
Checking mode. P, is in the checking mode if it has undecided blocks (i.e., U is non-empty), and its
workflow is shown in Algorithm 1 Line 8~19. P, checks the status of its undecided blocks and tries to
finalize them (if possible) by adding additional fields to the propose message.

Each u € Uin P,’s chain is categorized into one of the two types: (1) if P, has learnt the unique
proposal,, either from the propose messages or from P, from the notifications of other nodes, we
call u a “known undecided” block; (2) otherwise we call u “unknown undecided". For each unknown
undecided block u, P, tries to learn proposal,, from A,. If P, learns the proposal, P, carries it in the
finalize message in order to let subsequent proposers finalize it. Otherwise, P, carries a message
stating that most acceptors in A, never received proposal,, and a node receiving this message
finalize empty, if the node received such messages from more than D consecutive proposers
(Algorithm 2 Line 18).

For known undecided blocks, P, helps to finalize only proposal, ~where u,, = max(U) and
leaves other blocks for subsequent proposers. In other words, undecided blocks must be finalized in
descending order. This is because, without this restriction, when a node finalizes empty,,, it only
ensures proposers for blocks with index < n+D has not finalized proposal, ; adding this restriction
helps to ensure that proposers for blocks with index > n + D cannot finalize proposal,,.

To help understanding, we give three concrete examples in Appendix C showing (1) how a
proposer helps to finalize an undecided proposal, (2) how a proposer finalizes an undecided block as
empty, and (3) why a checking mode proposer can only finalize proposal, where u,, = max(U).
Discussions. EGEs does not let the acceptors validate transactions enclosed in proposal, because
EGEs may finalize blocks out of order. Specifically, if proposal,, contains a money transfer trans-
action, and an acceptor has undecided blocks preceding n, the acceptor cannot predicate whether
the source account has enough balance without a complete history. Therefore, EGEs validates transac-
tions when they are confirmed at each node because Eges always confirms blocks in order. An invalid
transaction is deterministically (§3.2) discarded by all nodes, without impairing EGEs’s safety.

For the same reason, EGEs does not force P, to generate its proposal,, within its SGX enclave
because P, cannot forge a valid signed transaction to affect EGEs’s safety. Overall, EGEs achieve
consensus on proposal, opaquely.

The drawback is that EGEs may waste resources on achieving consensus on invalid transactions.
However, as all invalid transactions are recorded on the blockchain, if an entity keeps injecting
invalid transactions, it can be easily detected and penalized in a permissioned deployment.
Comparison with Algorand. EGEs and Algorand both select a distinct committee for each block in
an unpredictable way, and both use the delivery rate of a block proposal to confirm a block. Algorand
leverages its built-in cryptocurrency to incentivize committee nodes to follow its protocol (i.e., proof
of stake). However, even if one runs Algorand within SGX in a permissioned blockchain, there are
still two major design differences making EGes more efficient than Algorand.

First, Algorand uses verifiable random functions (VRF) to determine committees, so it can only
control the expected count of proposers for each block without an exact number (1 ~ 70 in their ex-
periment [36]). This design makes Algorand’s consensus protocol not responsive [16, 84]: informally,
a responsive protocol lets nodes wait for a number of messages rather than a large amount of time
in each protocol step, which ensures a good performance when the network is in good condition. For
each block, Algorand selects 1 ~ 70 proposers, and each proposer broadcasts a block proposal with
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a distinct priority level. Then, Algorand selects one of these proposals by letting nodes vote for the re-
ceived proposal with the highest priority. Since the total number of proposers is unknown, each node
must wait for a conservatively long time (e.g., 10s) before voting to ensure it received most proposals.
In contrast, EGESs selects one proposer for each block, without the necessity for the selection progress,
and EGEs’s protocol is responsive (§4).

Second, EGEs adopts an optimistic design while Algorand adopts a pessimistic design. Specifically,
Algorand uses a heavy step for both confirming a non-empty block and confirming an empty block.
In contrast, EGEs optimistically makes its gracious runs (i.e., confirming proposal,) fast and shifts
the burden of maintaining consistency to the rare failure cases (i.e., confirming empty,).

4.4 Handling DoS Attacks Targeting Proposers

In EGEs, a proposer stays stealth before proposing its block, but its identity becomes explicit after
broadcasting its proposal. If the proposer is DoS attacked at this time, this block cannot be finalized in
time, impairing EGES’s liveness.

To address this problem, we propose a new role of nodes called arbiter. An arbiter for a
block index n does not generate new block proposals but only helps the proposer to finalize
its proposal. For each block index n, the count of arbiters n, is large than the attack budget
B, and these arbiters do the same tasks to tolerate DoS attacks targeting them.

On receiving proposal,, an arbiter for the n’* block broadcasts an arbit request following

the same protocol as the proposer (Algorithm 1), and an acceptor responds to an arbit message
with the same logic responding to a propose message.
Discussions. With the arbiters’ help, a proposer’s critical task is only to send out its propose
request, and the arbiters help to finalize it. However, responding to both proposer and multiple
arbiters makes acceptors targets of DoS attacks. Therefore, EGEs lets normal nodes also randomly
send fake (dummy) ACKs to cover the real acceptors (Algorithm 2 Line 4). Since real or fake ACKs are
all encrypted with the receiver’s public key, only the receiver’s EGEs enclave can decrypt them in the
enclave and distinguish the real ones, so an attacker cannot know who are the real acceptors.

5 SECURITY ANALYSIS
5.1 Safety with Overwhelming Probability

EGES ensures safety with overwhelming probability (i.e., > 1—107!?). Formally, if a node confirms a
block b as the i*" block on the blockchain, the probability that another member node confirms b’ # b
as the i*? block is < 1071,

We prove the safety guarantee of EGEs by induction, which is shown in Appendix A.

5.2 Liveness under Targeted DoS Attacks

EGEs can defend against DoS attacks and partition attacks targeting committee nodes under the
threat model in §3.2. Since from a single node’s point of view, it cannot distinguish whether a remote
node is under DoS attack or is partitioned, EGEs handles these two attacks altogether.

EGEs has three types of committee nodes for each block, a proposer, n4 acceptors, and n, arbiters,
randomly selected from all nodes in the system. Because of EGES’s stealth committee abstraction
(§4.2), the identity of each committee node is unknown to attackers outside SGX enclaves before the
node sending out its first protocol message.

We first discuss acceptors. An acceptor sends ACK messages to both the proposer and arbiters,
and its identity becomes explicit after sending out its first ACK message, so EGEs uses fake acceptors
to conceal the real ones. If observed from outside enclaves, the fake acceptors behave identically
as real ones so an attacker cannot differentiate the real acceptors and attack them. EGEs achieves
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687 this with three design points. First, fake acceptors are randomly selected from all nodes for each
638 block so that an attacker cannot determine the fake acceptors by monitoring network packets (§4.2).
689 Second, real and fake acceptors’ EGEs enclaves respond to protocol messages (propose and arbit)
690 inthe same way if observed outside the enclaves (§4.3), so an attacker cannot distinguish real or fake
691 acceptors by watching their behaviors. Third, all messages from real or fake acceptors have the same
692  format, encrypted with the receiver’s public key (§4.3) and can only be decrypted in the receiver’s
693 enclave, so an attacker cannot differentiate real acceptors from fake ones by watching the packet content.
694 Therefore, if an attacker targeting acceptors in EGEs, it can only randomly select B nodes
695 from both real acceptors and fake acceptors. For instance, if EGEs has ngy = 300, 7 = 59% and
69  has (expected) 600 fake acceptors; if the attacker’s attack budget is 300, the probability that
697  the attacker can luckily attack more than (1 — 7) X ny4 real acceptors for one block is 0.3%.
698  Moreover, even if the attacker is so lucky that it successfully guessed more than (1 — 7) X ny4
69 acceptors for some block (say n‘"), EGes can still consistently determine whether to confirm
700  proposal, or empty, using the committees for subsequent blocks (§4.3); in other words, the
701 attacker must constantly be so lucky to make EGEs lose liveness.

702 Then we discuss proposers and arbiters. The identity of a proposer P, becomes explicit after
703 broadcasting its proposal, and may be targeted attacked when it is waiting for quorum ACKs.
704 However, since EGEs has many (i.e., n, > B) arbiters that can help to finalize the proposal,,
705 attacking P, will not affect EGES’s liveness. Note that as long as one arbiter is not under targeted
706 DoS attack, it can finalize the current n'”? block.

707 Note that EGEs’s targeted attack model (§3.2) handles only DoS or partition attacks targeting
708 specific EGEs nodes. A more powerful attacker may also target EGEs’s major communication links.
709 From the protocol aspect, EGEs avoids such vulnerabilities in the Network layer (in the OSI model [3])
710 by using distinct committees for different blocks: EGEs’s protocol traffic is spread among the whole
711 P2P network rather than centralized among a few dedicated nodes. However, when EGEs is deployed,
712 EGES’s communication messages may be aggregated in the Link or Physical layer. For instance, if a
713 large number of EGEs nodes are hosted in the same data center (DC), the links connecting this DC and
714 the Internet may be susceptible to attacks. Fortunately, such attacks are not adaptive, and as long as
715 agreat majority of nodes are connected, EGEs can achieve practical liveness. §7.3 shows the relation
716 between EGES’s liveness and the maximum connected component size in the P2P network. Never-
717 theless, EGEs cannot ensure liveness under arbitrary partitions, and previous work shows that it is impos-
718 sible to ensure both consistency and liveness under partitions [34, 37].

719

20 5.3 Parameter Selection

721 EGEs has two correlated parameters 7 and D. We show in Appendix B the relation between 7 and D to
722 ensure EGES’s safety under any network condition and to achieve reasonable liveness (confirm
723 non-empty blocks) on network partitions (or ubiquitous DoS attacks).

724

725 6 IMPLEMENTATION

726 We selected the Golang implementation of Ethereum (i.e., geth) as our codebase because geth is
727 heavily tested on the Internet. We leveraged the P2P libraries from geth and rewrote the functions
728 for generating, verifying, and handling new blocks. Since SGX only provides SDKs in C/C++, we used
729 CGo to invoke ECalls. We modified 2073 lines of Golang code and implemented the consensus
730 protocol for 1943 lines of C code. For asymmetric key based encryption, we used ECC-256 from
731 the API provided by the SGX SDK. For timeouts, we used the trusted timer API sgx_get_trusted_time
732 provided by the SGX platform

733 Each EGEs node has three modules: a consensus module running the EGEs consensus protocol and
734 storing nodes’ member list (§4), a P2P module connecting to a random set of peers and relaying
735
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Config # Nodes Acceptor group size (n4) D 7 LB timeout SGX mode
Cluster 300 100 4  65% 5000 @ 2s hardware mode
AWS Cloud upto 10K 300 4  59% 10000 3s simulation mode

Table 3. EGES’s evaluation parameters.

messages using the Gossip [49] protocol, and a blockchain core module storing confirmed parts of
chain and client transactions. Only the consensus module runs in the node’s SGX enclave.

In EGEs, a node may finalize a block before knowing its preceding blocks. Therefore, when an EGEs
proposer proposes a block or a node finalizes a block, it lefts the block’s field of “hash of the previous
block” empty, and EGEs’s enclave computes this field when confirming the block. In essence, EGEs
achieves consensus on a totally ordered sequence of transactions, same as Hyperledger Fabric [11],
and encapsulates these baches into a hash-chain of blocks while confirming them.

6.1 Membership, Attestation, and Enclave Interactions

Appendix D covers how EGEs supports dynamic membership, and Appendix E shows EGEs’s enclave
interactions and how EGEs handles enclave forking attacks.

7 EVALUATION

Evaluation setup. Our evaluation was done on both our own cluster with 30 machines and
the AWS cloud, with parameters shown in Table 3. In our cluster, each machine has 40Gbps
NIC, 2.60GHz Intel E3-1280 V6 CPU with SGX, 64GB memory, and 1TB SSD. On AWS, we
started up to 100 c5.18xlarge instances (VMs) running in the same city, each of which has 72
cores, 128GB memory, and up to 25 Gbps NIC. We ran up to 100 EGs nodes on each VM (10k
nodes in total), with each EGEs node running in a docker container.

To evaluate EGEs and baseline protocols in a geo-replicated setting, while running EGEs on both
our cluster and AWS, we emulated the world scale Internet by using the Linux traffic control (TC) to
limit the RTT between every two nodes to a random value between 150ms and 300ms. These settings
are comparable to Algorand’s setting on AWS. As AWS does not provide SGX hardware, we ran EGEs
in the SGX simulation mode on AWS and in the SGX hardware mode on our cluster; we show that
EGEs’s performance in simulation mode is roughly the same as hardware mode because EGES’s
performance is bound to network latency in WAN (§7.1). The scalability (Figure 5) and robustness
(Figure 6) experiments were done on AWS, and the rest were in our cluster.

We evaluated EGEs with nine consensus protocols for blockchain systems, including five state-
of-the-art efficient BFT protocols for permissioned blockchains (BFT-SMaRt [75], SBFT [39],
HoneyBadger [62], and HotStuff [84]), two SGX-powered consensus protocols for permissioned
blockchains (Intel-PoET [66] and MinBFT [82]), the default consensus protocol in our codebase
(Ethereum-PoW [21]), and two permissionless blockchains’ protocol that runs on dynamic commit-
tees (Algorand [36] and Tendermint [20]). A detailed description of these protocols is in §2.2.

Since Algorand’s open-source code is under development, and we were unable to deploy its
latest release [1] to the same scale as EGs and Algorand’s paper (i.e., 10k nodes), we took Algorand’s
performance from Figure 5 in its paper [36]. To make the comparison fair, we make EGEs’s network
setting more rigorous than Algorand’s: Algorand divided nodes into multiple cities where intra-city
packets have negligible latency, while EGEs lets the RT'T among any two nodes be at least 150ms.

For all evaluated protocols, we measured their performance when each of them reached peak
throughput. For an apple-to-apple comparison of latency, we adopted Algorand’s method to
measure transactions’ server-side confirmation time: from the time a transaction is first pro-
posed by a committee node to the time the transaction is confirmed at this node, excluding
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the time for clients’ transaction submissions. We measured the server-side instead of the client-
side latency because this method precludes the disturbance of client behaviors as these pro-
tocols run on different blockchain frameworks. For instance, in Ethereum, PoET (running on
Hyperledger Sawtooth [66]), and EGEs, a client submits a transaction to a random node, and
the transaction is disseminated via P2P networks; in BFT-SMaRt, a client submits transactions
to a fixed node (i.e., the leader); in Algorand, a consensus node directly packs a block with
a fixed amount of data (e.g., 1MB) instead of using separate transactions.

We set EGES’s transaction size to 250 bytes, a typical transaction size for general data-sharing
applications [7, 10]. Since Algorand reported throughput on block size, we convert it to txn/s by
assuming the same size of transactions as EGEs’s. The transaction sizes for the other eight baseline
protocols are either equal to or smaller than that of EGes. Our evaluation focuses on these questions:

§7.1 :Is EGes efficient and scalable?

§7.2 : What is EGEs’s performance under DoS attacks?

§7.3 :How sensitive is EGEs to its parameters?

§7.4 :How do EGEs performance and fault tolerance compare with notable BFT protocols?
§7.5 :What are the limitations and future work of EGes?

7.1 Efficiency and Scalability

Table 1 shows the performance comparison of EGEs and eight baseline protocols. As Alogrand’s
paper [36] evaluated at least 2K nodes, we postpone the comparison between EGes and Algorand to
when we evaluated EGEs’s scalability.

Overall, in the geo-replicated setting, EGEs achieved comparable performance to MinBFT, Ten-
dermint, HotStuff, and SBFT. We ran BFT-SMaRt in its default setting (ten nodes), and it showed
higher throughput and lower latency than EGes. BFT-SMaRt is more suitable for small scale
permissioned blockchains where a few companies run nodes in a controlled environment, so
it lets nodes send messages to each other directly. In contrast, EGEs is designed for tolerating
targeted DoS attacks on committee nodes, so it has two P2P broadcasts to confirm a block. §7.4
shows that EGes’s scalability and fault tolerance are better than BFT-SMaRt.

SBFT and HotStuff had a lower throughput and a higher latency than Eces. They rely on
designated nodes to collect the consensus messages that were originally all-to-all broadcasted and
to distribute a combined message to all nodes. Although this approach improves scalability, it also
incurs two more RTTs, limiting their performance in a geo-distributed deployment. Moreover, an
attacker targeting these designated nodes will cause a dramatic performance drop to the system,
which is evaluated in §7.4.

HoneyBadger showed a lower throughput and a higher latency than EGes because Honey-
Badger uses multiple rounds of broadcasts for a single block, which incurred a long latency
in a geo-distributed setting. EGEs showed orders of magnitude better performance than PoET
and Ethereum, two PoW protocols. Their performance is limited by the time for solving PoW
puzzles (or sleep time) and the number of blocks to wait for before confirming a block (§2.3).
Our evaluation result for PoET is similar to a recent study [29].

Breakdown and micro-events. To understand EGEs’s latency, we recorded the time taken for the
two steps of EGEs’s protocol (§4.3): seeking for quorum ACKs took 576ms; broadcasting finalize
messages took 329ms. The first step took a longer time because EGEs broadcasts the proposed block
in its P2P network in this step. This P2P broadcast time is essential in any blockchain system because
new blocks need to be broadcasted to all nodes.

SGX’s overhead. Table 4 shows the micro-events of EGes. The ECall column shows the number of
times that EGEs’s proposer node entered its SGX enclaves on finalizing a block. Since each ECall only
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834 blk size | txns/blk | # ECalls | CPU usage | network usage
835 750 KB 3000 97 12.4% 15.53 Mbps
Table 4. Proposer’s micro-events for finalizing a block.

836
837 takes around 3us [26], and EGEs’s proposer only did 97 ECalls on average for each block, running in
833 SGX hardware mode and simulation mode makes little difference for EGes’s performance.

839 Scalability. To evaluate EGEs’s scalability, we ran 100-10000

840  nodes on AWS and evaluated its confirm latency with the same 175 B8 broadcast finalize msg
. . . . 1.50

41 block size as in the cluster evaluation. Figure 5 shows the result. 55| 5 seek for quorum ACKs

82 Thelatency is divided into two parts. The figure shows that the =~ g1.00

843 seeking for quorum ACKs phase of EGEs (§4.3) is the dominant  ~ 8:;3 :

s14  factor because it broadcasts the proposed 750KB block on g-ég ;
845 the P2P network. Fortunately, a P2P broadcast latency is pro- ' 2000 4000 ~ €000 8000 10000

846 portional to approximately the log of the number of nodes [76], Fig. 5. Scalability to the number of

847 indicating EGES’s reasonable scalability. The increase rate was nodes on the Internet.

848 slightly greater than the log scale because 100 nodes were

829 runinone VM with CPU and NIC contentions. EGs’s latency on AWS was slightly faster than on our clus-
850  ter, because AWS CPUs are faster.

851 Compared to Algorand’s performance in Table 1, EGes showed 2.3X higher throughput and 16.8X

852 faster latency than Algorand. This is due to two reasons. First, Algorand’s VRF-based method selects

853 multiple proposers for each block, and Algorand uses a reduction step to select one proposal by

854 these proposers. Moreover, as the VRF-based approach cannot control the exact number of proposers,

855 nodes must wait for a conservatively long time in the reduction step (§4.3). In contrast, EGEs’s stealth

856 committee abstraction selects one proposer for each block, without the need for such a reduction step.

857 Second, EGES’s consensus protocol has only two rounds in gracious runs to confirm a block (§4.3).
858

¢s0 7.2 Performance on DoS Attacks

860 To evaluate EGES’s robustness under DoS attacks, we ran EGes with 1000 nodes on AWS with
861  ng = ng = 100, and conducted targeted DoS attacks that are compliant with our attack model
862 (§3.2): we assumed the attacker’s budget B = 10% of total nodes, and we set the expected count for
863 fake acceptors and arbiters to be 200. Each time we targeted the current proposer and 99 arbiters
84 or real/fake acceptors (because we cannot distinguish real acceptors). For each attack, we blocked all
865 communication from the attacked nodes for 20 seconds.

866 We deem such attacks to be powerful enough, as no existing protocols for permissioned blockchain
87  can maintain liveness under such powerful attacks. As shown in §7.3, existing consensus protocols,
868 which ran on static committee nodes, lost liveness until the DoS attack ended. In contrast, each time
860 after we attacked 100 nodes, EGEs’s throughput had a temporary drop and recovered before the DoS
870 attack ended, which shows that EGEs can ensure practical liveness under such powerful attacks.
871 After the first attack, the line started to go up after 11.3s, much slower than the other attacks
872 (about 3.1s). We inspected the log and found that the slow recovery was because the proposer for
873 the next block happened to be attacked, and EGEs waited until D more blocks to confirm that
874 block as empty. After the second attack, the line took about 7.2s to go up. This is because most
875 real acceptors happened to be attacked together with the proposer, which makes the arbiters failed to
876 finalize the block for the proposer (§4.4). For the other three attacks, the arbiters successfully helped
877 corresponding proposers to finalize their blocks quickly.

878 To evaluate EGEs performance on network partitions, we manually divided the network into
879 two partitions at 200s and reconnected them at 400s, with one partition containing 80% nodes
830 and the other containing 20% nodes. Figure 6b shows the throughput measured in the large
881 partition. Overall, the large partition maintained liveness during the partition. The small partition
882
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(a) Targeted DoS attacks (b) 80%-20% partition
Fig. 6. EGES’s throughput on DoS and network partition attacks. There were 1000 nodes on AWS at 0s.

did not succeed in confirming any block during the partition and caught up after the network
reconnected, preserving safety. There are two obvious throughput drops in the figure, which
are caused by the pre-designated proposers being in the small partition, and EGEes confirmed
empty blocks for them. Note that EGes may temporarily lose liveness in catastrophic partitions
(e.g., 50-50 or 40-30-30 partitions) but can preserve safety. §7.3 shows a quantitative analysis
of how EGEs can preserve liveness under network partitions.

7.3 Sensitivity
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Fig. 7. Sensitivity on block size, acceptor numbers, and expected fake acceptor numbers (cluster setting).

Figure 7a and Figure 7b show EGEs’s performance sensitivity on block size. When the block size was
larger, EGes’s throughput did increase, but its block confirm latency also increased. In our evaluation,
we set EGES’s block size to be 750KB, which is a near-optimal setting for both throughput and latency.

EGEs’s throughput and confirm latency depend on three important protocol parameters, the
number of acceptors, the number of fake acceptors, and block size. Figure 7c and Figure 7d show the
sensitivity results. EGEs’s performance turns out to be insensitive to the first two parameters because
the latency is dominated by the time for broadcasting the new block on the P2P network.

7.4 Comparison to BFT-SMaRt and SBFT

Since BFT-SMaRt with 10 (committee) nodes was faster than EGes with 100 acceptors, we evaluated
both of them on a different number of nodes because more such nodes can tolerate more faults
and DoS attacks. Figure 8a shows the results using the same setting for both systems (e.g., in our
cluster, TC disabled, and the same number of transactions in each batch). Overall, EGEs throughput
was stable because the number of acceptors affects little on the latency in the seeking for quorum
ACKs phase. BFT-SMaRt’s throughput drops dramatically because its protocol involves a quadratic
number of messages on the number of ordering nodes.

Figure 8a also shows SBFT’s performance. In the non-geo-replicated mode, when the number of
nodes increased from 4 to 62, SBFT’s throughput dropped from 38.2K to 6.9K transactions/s. This
is because SBFT’s collectors (§2.2) need to collect more messages and to verify their signatures, so the
time spent in collectors increased from 2.5ms to 13.1ms.

Figure 8b shows the performance comparison of EGEs, BFT-SMaRt, and SBFT in the geo-replicated
setting. EGEs’s throughput was at least 3.4X larger than both systems on 62 nodes. BFT-SMaRt’s
performance trend was similar to the no-delay setting because of its PBFT all-to-all broadcasted
messages. SBFT’s throughput also dropped dramatically because some nodes became stragglers for
the collectors due to the varied RTT. Since SBFT’s fast path can only tolerate a small number of
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Fig. 8. Comparing EcEs, SBFT, and BFT-SMaRt.

straggler nodes (usually two (§2.2)), we observed that 87% of the consensus rounds in SBFT have
reverted to the slow path (PBFT).

More importantly, EGEs can safely switch its acceptor groups across blocks, and it tolerated
various failure scenarios, including DoS attacks (Figure 6a). For comparison, we evaluated the
performance of BFT-SMaRt and SBFT on node failures (i.e., DoS attacks targeting consensus
nodes). Figure 8c shows the result of BFT-SMaRt with its default 10-node setting. We randomly
killed one node on each vertical line. The third time we killed its leader coincidentally, so there
was a noticeable performance drop. BFT-SMaRt’s throughput dropped to zero after we killed
the fourth node. For SBFT (Figure 8d), we started with 62 nodes and killed 7 nodes every time.
Since SBFT’s fast path can only tolerate two crashed or straggler nodes, its throughput dropped
significantly (reverted to PBFT) after the first kill.

Overall, EGEs is complementary to BFT-SMaRt and SBFT: BFT-SMaRt is the fastest in a small
scale; SBFT has better scalability, but its high performance requires a synchronous network (stated
in their paper). EGEs achieved reasonable efficiency and DoS resiliency in a geo-replicated setting.

7.5 Discussions

EGEs has two limitations. First, EGEs requires each node to have an SGX device. We deem this
requirement reasonable because SGX is available on commodity hardware, and both academia and
industry are actively improving the security of SGX. Recent permissionless [87] and permissioned
blockchains [6, 66, 82] also use SGX. Second, EGEs targets Internet-scale permissioned blockchain
systems (e.g., a global payment system [16]), while for small-scale deployments (e.g., supply chain
among a few small companies), existing consensus protocols (e.g., BFT-SMaRt) are more suitable.
Our paper reveals that, in addition to safety and high performance, DoS resistance is also
an essential evaluation metric for a practical Internet-scale blockchain application, including
e-voting [77], decentralized auction [19], and payment systems [16]. Moreover, the attested SGX
enclave on each EGEs node brings the potential to port existing centralized SGX-powered ap-
plications [51, 52, 67, 72] onto EGEs and to make them DoS-resistant. For instance, ToR [30]
is a popular anonymous network and is widely used for providing client anonymity to blockchain
systems [33, 44]; SGX-ToR [51] greatly improves the security and privacy of ToR by leveraging
SGX. However, SGX-ToR relies on a few directory servers for maintaining the list of attested nodes
(relays), which has been shown [73] to be susceptible to DoS attacks. By deploying SGX-ToR’s
directory service as a blockchain application on EGes, SGX-ToR can be made DoS-resistant.

8 CONCLUSION

We have presented EGEs, the first efficient permissioned blockchain consensus protocol that can
tolerate targeted DoS and partition attacks. EGEs achieves comparable performance to existing
fastest permissioned blockchain’s consensus protocols while achieving much stronger robustness.
Our evaluation reveals that, in addition to safety and performance, DoS resistance should also be
an essential evaluation metric for a blockchain system deployed on the Internet. EGES’s source code is
available on github.com/performance21-p216/eges.
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Appendices

A PROOF OF SAFETY

EGEs ensures safety with overwhelming probability (i.e., > 1—1071?). Formally, if a node confirms a
block b as the i*" block on the blockchain, the probability that another member node confirms b # b
as the i block is < 1071°.

We prove the safety guarantee of EGes by induction: suppose EGEs guarantees safety from the
block to the (n—1)*" block (hypothesis 1), and we prove that there is only one unique block that can
be confirmed as the n*”* block among nodes in the blockchain. The base case is trivial because all
nodes start from the same 0" block.

Oth

LEMMA A.1. if two nodes have the same maximum confirmed block in their chain (i.e., MC =n—1 due
to hypothesis 1), then during consensus for the (n+1i)*" block wherei > 0, as long as MC is not changed,
these two nodes see the same member list.

Proor. Proving this lemma is trivial if EGes works on a fixed member list, and we will show in
Appendix D that EGEs’s protocol for dynamic memberships also ensures this lemma. O

LEMMA A.2. (Invariant 1in §4.1): at most one proposal can be generated for the n*"* block.

Proo¥. This lemma is proved by two steps. First, as the proposer for the n” block is encrypted in
the (n — Ib)!" block, and the (n — Ib)*" block is the same among nodes because of hypothesis 1.
Therefore, there is only one proposer (may have failed) for the n** block. Second, this proposer
generates at most one proposal, and non-proposer nodes cannot generate valid proposals for the n*"
block because EGES’s consensus module runs in SGX. O

Proof of the induction step. In EGEs, each block has only two choices (Lemma 2), and a confirmed
block must be first finalized (§4.1). Therefore, it is sufficient to prove the following proposition 1: the
probability that one node finalizes empty, (event A), and another node finalizes proposal,, (event B)
is overwhelmingly small.

For event A, suppose node X finalizes empty,. We use f;, to denote the maximum finalized
block index on node X. Consider blocks with indices in [n + 1, fi,, ]. Since EGEs finalizes empty
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blocks in descending order (Algorithm 2 Line 12~15), there are no undecided blocks in [n + 1, f;,,_ ],
and we can have another level of induction by supposing blocks finalized as empty in (n+ 1, f,_ ]
are finalized consistently (name it hypothesis 2). For event B, proposal,, can be finalized either
by P, (call it event B1) or by subsequent proposers that have learnt this proposal (event B2).

First, we prove that the probability that event A and event B1 happen together is overwhelmingly
low. Suppose that a portion p of all M EGEs nodes received and cached the proposal,, and we
calculate the probability for event B1. We use Re to denote the number of acceptors for the n”* block
that REceived proposal,. Since proposal,, is broadcasted in EGes’s P2P network and the stealth
acceptors are selected uniformly, Re follows hypergeometric distribution Re ~ H(M, ng, p X M).
Thus, the probability that P, finalizes proposal, is

Prob(B1) = Prob(Re > 7 X ng)

We then calculate the probability of event A. Event A infers that after the n” block, there are at least
D non-empty blocks that are finalized and carrying n in the undecided list. This means each proposer
of these D blocks received (7 X ny) ACKs from their acceptor group, and none of these acceptors
sending those ACKs has received proposal,. For each of the D blocks, the number of acceptors
NR not receiving proposal, follows hypergeometric distribution NR ~ H(M, na, (1 — p) X M)).
Therefore, the probability of event A is

Prob(A) = (Prob(NR > 7 X n))”

The calculation shows that the probability of event A and event B1 happening together Prob(A) x
Prob(B1) is overwhelmingly low for any delivery rate p by setting 7 and n4 (§7.3). For instance, our
evaluation chose 7 as 59%, D as 4, n4 as 300, M as 10K, and the probability of EGEs enforcing safety is
1-107°. In real deployments, M may change due to membership changes; however, when M is much
bigger (e.g., 20X) than ny, this probability is not sensitive to M because hypergeometric distribution
is approximate to binomial.

For the second step, we prove that event A and event B2 cannot happen together. For event
B2, we suppose that proposer P;, where i > n, learns and finalizes proposal,. We discuss by
comparing i and f;, and derive contradictions. If i < f;, , hypothesis 2 infers that X did not
finalize empty;, so proposal, is finalized together with proposal; at node X, contradicting
to event A. Else if i > f;, , since a proposer can only finalize the maximum index in its local
U list (Algorithm 1 Line 9), for node P; we can predicate that blocks with index in [n + 1,1)
are finalized. Due to hypothesis 2, blocks within [n + 1, f;,_ ] are finalized the same as node X,
and therefore P; should also finalize the n*" block as empty, causing contradiction.

Putting the two steps together, we proved proposition 1 and thus proved the induction step that
the n'" block must be confirmed consistently among nodes with overwhelmingly high probability.
Therefore, EGEs ensures safety with overwhelmingly high probability.
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Fig. 11. Parameter selection and liveness requirements if EGEs lets each node to independently decide its
committee membership.

Figure 9 shows the relation between 7 and D to ensure EGes’s safety. With a smaller 7z, a proposer
P, can finalize proposal,, after collecting fewer ACKs from acceptors, so subsequent proposers need
more rounds of checking (larger D) when trying to finalize the empty, (§4.3).

The 7 and D values also affect EGEs’s ability to achieve liveness (confirm non-empty blocks) on
network partitions (or ubiquitous DoS attacks). We quantify this ability to the “minimum largest
connected component size” (cc%) required in the P2P graph, provided that nodes in a connected
component can reach each other before a timeout. A smaller cc means that EGEs is more robust to
partition and ubiquitous DoS attacks. From a mathematical aspect, as long as the probability of
finalizing a proposal is non-zero, the probability pp that D consecutive proposals are successfully
finalized is always larger than zero, inferring that eventually EGEs can achieve liveness. However, we
conservatively calculate the required cc to make the pp larger than 5% for practical liveness, as
shown in Figure 10. In our evaluation, we chose 7 as 59%, D as 4, n4 as 300, which ensures both safety
and achieves good liveness on partition attacks (§7.2).

Figure 11 shows the parameter selections if EGEs does not use its stealth committee mechanism,
but lets each node independently determine whether it is an acceptor with the probability of
M/ng4, with ns being the expected number of acceptors for each block. If EGEs makes such a
design choice, the Re (§5.1) becomes a binomial distribution with the probability of p X M/ny,
and other distribution changes similarly. As shown in Figure 11, EGEs would need a larger quorum
size T X n4 and achieve worse liveness on network partition.
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C EXAMPLES OF EGES’S CONSENSUS PROTOCOL

Local chain status of the proposer for the 102" block (P102)

100 101

- content: proposalyg1
99 . undecided U [100]

content: empty learnt: [propsalygg]

A
Max Confirmed

Nodes receiving the finalize message from P92

100 101 102
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Fig. 12. An example where p1o helps finalizing proposal;, while proposing its (102t") block.

Figure 12 gives an example illustrating how a proposer P helps to finalize an undecided proposal,,.
Suppose Pj failed just before broadcasting its f inalize message. Therefore, the 100 block’s state
is undecided among all nodes. Then, P;o; learns proposal,,, and carries it in its finalize message,
and Py learns it. Then P finalizes proposal,,, together with proposal,,,. Moreover, since all
blocks before 102 are finalized, the chain is confirmed up to 102.

Figure 13 gives an example showing how an undecided block is finalized as empty. Suppose Pago
failed before broadcasting its proposal, and D = 4. When P,y; ~ P54 asks whether their acceptors
(Ago1 ~ Aggy) receive proposal,,, they get no positive answers. Therefore, these four blocks are
all finalized, carrying a message stating that four samplings have been conducted on the delivery rate
of proposal,,, but no replied node has received proposal,,. This indicates that the probability that
proposal,, is finalized at some nodes is overwhelmingly low. Therefore, a node can independently
finalize empty,,, after which the chain is confirmed to 204.

Figure 14 shows why it is essential that a checking mode proposer can only finalize proposal,
where u,,, = max(U). Suppose we remove this restriction, and we consider the following scenario.
(1) Py fails after broadcasting proposal,,, and only very few nodes received it: none of Pyp; ~ Pa4
learns proposal,,. (2) The network is divided into two partitions A&B just before P4 broadcasting
its finalize message; Py is in partition A, so nodes in partition A confirm proposal,;, and
confirm empty,,, (3) Pzos and Py are in partition B, so they timeout waiting for the finalize
message for proposal,, and mark the 204" block as undecided. (4) Pyys learns proposal,, from
one node from Ayys (who happens to be in the very few nodes) and carries proposal,,, with its
finalize message, which is learnt by Pyg. (5) Pgs finalizes proposal,,, and causes inconsistency:

Nodes receiving finalize message for the 204! block

200 201 202 203 204

199 l| undecided content: proposalpgq| |content: proposalygp|  [content: proposalygg|  |content: proposalagg

content: empty U: [200] U: [200] U: [200] U: [200]
learnt: [ ] learnt: [ ] learnt: [ ] learnt: [ ]
A
Max Confirmed @ canFinalize(200) = true

199 200 le | 201 L 202 203 204

content:empty content: proposalygq | |content:proposalygz | |content:proposalygg | - |content:proposalggs
X
confimred as empty block after D rounds of checking Max Confirmed

Fig. 13. An example for confirming an empty block (200) after D = 4 succeeding blocks containing 200 in U.
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28 Anon. Submission Id: 216

Nodes receiving finalize message for the 204! block: confirmed the 200th block as empty

200

£22 content: empty

201 [« 202 < 203 < 204

?

Max Confirmed

Partition A (10% nodes) Network wasd partitioned right before P54 sending out its finalize message

Partition B (90% nodes) Local chain status of P2gg: Should not try to finalize proposalygg although knowing it

200 201 202 203 204 205
199 «— undecided U: [200] U: [200] U: [200] undecided U: [200, 204]
content:empty learnt: [ ] learnt: [ ] learnt: [] content:empty | |learnt: [proposalygol

4

Max Confirmed

Fig. 14. An example showing why a checking mode proposer can finalize only proposal; where i = max(U).
D =4 in this example.

nodes in partition A confirm empty,,,, while nodes in partition B confirm proposal,,.

By restricting that a checking mode proposer can only finalize proposal, ~where u,, = max(U),
such inconsistency will not happen. This is because nodes in partition B must first finalize the
empty,,, before finalizing proposal,,,. However, since proposal,, has already been delivered to
a large portion of nodes, this inconsistency cannot happen.

D MEMBERSHIP AND ATTESTATION

To support dynamic memberships, EGEs leverages the idea from SciFer [9] to record the joining of
new nodes as transactions on the blockchain. This mechanism ensures Lemma 1 because all updates
to the member list are only determined by confirmed blocks.

When a node i wants to join the system, it needs to find a member node j to do attention (§2)
through an out-of-band peer discovery service. We assume that node i knows the genesis (0/*) block,
so node i can inductively verify the blockchain, without relying on whether peer j is malicious.

A node i joins EGEes with three steps. First, i launches its EGes enclave, which generates its account
(pki, sk;) and creates the hardware monotonic counter ¢ for defending forking attacks (Appendix E).
The node’s account is securely saved to permanent storage using SGX’s seal mechanism [26] for
recoveries from machine failures (e.g., power off). Then, i sends a join request to j. Second, j does a
standard SGX remote attestation [26], which succeeds with a signed quote Q; from Intel’s attestation
service, and i’s enclave transfers its public key pk; and counter value ¢ to j’s enclave through the
secure communication channel between two enclaves created during attestation. Third, node j’s
enclave creates a signed registration transaction including pk;, c, addr;, Q; and i’s ip address. Node i
joins EGEs when the transaction is included in a confirmed block.

E ENCLAVE INTERACTIONS

Figure 15 shows the implementation of EGEs enclave. An EGEs enclave holds three data structures
shared among ECalls: cache, is_proposer, and is_acceptor, each as a hash map. As explained
in §4.1, the cache saves received block proposals. In our implementation, the cache only keeps
the hash values of block headers instead of whole blocks to save enclave memory. is_proposer
and is_acceptor are hash maps with block indices as keys and boolean as values, saving whether
this node will be in the committee for a future block.

In Figure 15a, when a node’s blockchain core module confirms the (n — lb)”’ block, it asyn-
chronously invokes an ECall letting the enclave check whether it will be the proposer/acceptor
for the n'” block (§4.2). In Figure 15b, when a node’s core module appends the (n — 1) block, it
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Core module on Core module on appending
confirming (n-Ib)t block the (n-1)" block to chain
1
|
| !
is_proposer[n]?
try_decrypt (certs[ ]) -prop (]
Yes
success certs[0)] —is_proposer (n) gen_propose_req —
success certs[1:n,] — is_acceptor (n)
success certs[n,,,:] — is_arbiter (n) — wait_quorum_ACKs
gen_finalize_msg-
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v v v v
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[ Blockchain core module

(c) On receiving a propose request

Fig. 15. EGES’s enclave interactions (ECalls and OCalls). The enclave module is shaded in orange.

invokes an ECall with a batch of transactions, and the enclave will follow the protocol in Algorithm 1
if it is the proposer for the n*" block. In Figure 15¢, when a node’s P2P module received a propose
request, it invokes an ECall passing this request to the enclave, and the enclave will generate an
ACK that will be sent through UDP using an OCall if it is an acceptor (Algorithm 3) or fake acceptor
(Algorithm 2 Line 4). If it is an arbiter for the n*" block, it will also start working as an arbiter (§4.4).
Enclave forking attacks. In the P2P scenario, one challenge is enclave forking attacks [59]. EGEs
must permit a node to reuse its sealed account (Appendix D) in case the node restarts its machine.
However, a malicious node can create multiple copies of EGEs enclaves with the same account
pk, directs different messages to them, and lets them generate conflicting messages (e.g., block
proposals). Existing defending techniques [38, 59] work in the client-server manner, where clients
attest and communicate to only a single server. These techniques are not suitable for P2P settings
because they will need every two EGEs nodes to connect and attest each other.

EGEs defends such attacks using SGX’s platform counter [26], which is monotonic among all
enclaves on the same machine. When a node launches its EGEs enclave, the enclave increments
and read this counter value ¢ and enclose this ¢ to its registration transaction: the node’s membership
is bound to the enclave with counter value ¢ but not the account pk. When the enclave sees a
registration with the same account but a higher counter value, it quits automatically.
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